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Abstract. A statement is generic if it expresses a generalization about
the members of a kind, as in, ’Pear trees blossom in May,’ or, ’Birds lay
egg’. In classical logic, generic statements are formalized as universally
quantified conditionals: ‘For all x, if..., then....’ We want to argue that
such a logical interpretation fails to capture the intensional character of
generic statements because it cannot express the generic statement as
a simple proposition in Aristotle’s sense, i.e., a proposition containing
only one single predicate. On the contrary, we want to show that typed
lambda-abstraction can help us transform the classical, non-simple and
extensional expression of generic statements into a new, simple and inten-
sional formalization, through the introduction of an abductively defined
operator ALL*. This new operator allows for the possibility of a single
predication, e.g. fly(), because it builds, out of a concept like ‘bird’, a
concrete universal, e.g. ‘birds’, upon which the single predicate can be
applied to authentically formalize a generic statement, e.g. ‘birds fly’.
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1. The Logical Expression of Generic Statements

A statement is generic if it expresses a generalization about the members of a
kind, as in, ‘Stones fall to the ground’, ‘Pear trees blossom in May’ or ‘Birds
fly’ [5,6]. Such generalization are fairly common in ordinary language and

For this paper, I am indebted to the guidance of Jean-Pierre Desclés and the helpful com-
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usually expressed as a relation between concepts or properties; they have the
form: ‘All N are M,’ ‘Ns are Ms,’ or ‘Ns do M.’ In what follows, we want to
challenge the classical interpretation of such sentences in logic and argue for
another kind of formalization. As Tovena [24] remarks about the treatment
of generic statements in classical logic, “the literature on the topic classifies
generic statements as categorical”. While philosophy [23], linguistics [9] and
psychology [8,25] make a distinction between generic and categorical state-
ments, classical logic reduces the first to the second by considering that ‘Ns
are Ms’ is equivalent to the universally quantified proposition: ‘for all x, x is
an N implies x is an M.’ But generic sentences are not categorical statements
expressing hierarchies of classes like in ‘All men are mammals’ or ‘Squares
are rectangles.’ Rather, generic sentences are expressing a general property or
behavior of members of a kind, as in, ‘men desire happiness,’ ‘Frenchies are
arrogant,’ ‘pear trees blossom in May,’ or ‘Birds fly to their nests.’ For such
propositions, the classical universally quantified formalization is inappropriate
because the predication doesn’t hold for every single extension of the category
(e.g. not all French people are arrogant). Generic statements are semantically
richer than categorical statements so they require a finer and more intensional
logical approach.

1.1. Are Generic Statements Simple or Composite Propositions?

Restrained universally quantified statements put a predicate into a certain re-
lation with another predicate. In this sense, they give an accurate formalization
of generic statements. Consider the following proposition:

(P ) ‘Men desires happiness’

(P ) is a proposition in which the predicate ‘man’ stands in a certain relation
with the predicate ‘desires happiness.’ Symbolic logic can help us achieve a
better understanding of this relationship. In classical logic, such a quantified
expression is thus formalized:

(P∀) ∀x (man(x) → desire(x,Happiness))

Where man( ) and desire( , ) are respectively unary and binary predicates.
‘Man(X)’ is true if X is indeed a man. ‘Desire(X,Y)’ is true if X desires Y.

Aristotle [1] tells us that “of propositions one kind is simple, i.e. that
which asserts or denies something of something, the other composite, i.e., that
which is compounded of simple propositions” (De Interpretatione, 5). The
expression “Men desire happiness” can rightly be called a proposition because
it is indeed a truth-bearer, a logos apophantikos : this expression is either true
or false. Now, we may ask: is ‘Men desire happiness’ a simple or a composite
proposition? And, if it is a simple proposition: what does it assert of what,
i.e., what is the predicate and what is the subject?
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At first glance, the proposition (P ) ‘Men desire happiness’1 is clearly
not a composite proposition; it is a simple proposition. Indeed, it contains a
single verb playing the role of the predicate: desire. So, to the question “what is
asserted of what?” the obvious answer is that desire is a binary predicate taking
as its arguments Men and happiness. If we bring verb and object together:2 it
is said of ‘Men’ that they ‘Desire Happiness’.

However, we won’t recognize a proposition of this form in the classical
interpretation:

(P∀) ∀x (man(x) → desire(x,Happiness))

(P∀) is clearly not a simple proposition in Aristotle’s sense simply because
it contains two predicates: the unary predicate ‘being a man’ represented by
man(); and the binary predicate ‘desiring’ represented by desire(). Once the
variable x is bound (say to the subject Socrates), we can even say that (P∀)
contains two propositions, ‘x is a man’ and ‘x desires happiness’, that are
compounded by a conditional. Therefore, what natural language expresses as
a simple proposition, classical logic interprets as a composite proposition. Can
(P∀) genuinely formalize (P ) when (P ) is a simple proposition and (P∀) is not?

One might object that the quantifier unifies two propositional functions
man(x) and desire(x,Happiness) into one simple proposition by bounding
the free variable x under the quantifier ∀x. But the Aristotelian definition of
a simple proposition doesn’t leave room for any combination of even proposi-
tional forms because a simple proposition can only contain one predicate.

Another explanation might come from the fact that in (P ) the concepts
man and desire are not on the same level because they don’t have the same
position in the conditional expression. One is the categorical concept, here man,
because it restrains the category to which the statement applies. The other one
is the predicative concept, here desire, because it is the actual predicate of the
sentence: it is what is predicted of the members of the category man. But this
precision doesn’t make the formal expression (P ) a valid one with respect to
the Aristotelian definition because the categorical concept man still appears
as a predicate in (P∀), i.e. man(x) when it is actually the subject in (P )
considered as a simple proposition.

1.2. The Meaning of a Generic Statements and Its Simplicity

From this assessment, a series of questions follows: (1) Does the classical logic
representation of this sentence capture its meaning? (2) if not, does it have
to do with the lack of simplicity3 of its representation, i.e. the separation of
a simple proposition into two propositions linked through a conditional? And

1For the sake of clarity and convenience, we shall use (P ) as an archetypal example of generic
statement. Although we won’t always specify it as we expose our arguments, what is said is
assumed to be valid for all generic statements. We’ll say more on this in the conclusion (See
Sect. 4).
2See the notion of curryfication in Sect. 1.3.
3By ‘simplicity’ we mean the property of being a simple proposition in the sense of Aristotle’s
definition in De Interpretatione.
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(3) if it is indeed the cause, can we restore its simplicity, i.e express it as a
simple proposition?

1.2.1. Do (P ) and (P∀) have the Same Meaning? Does it mean the same
thing to claim (P ) ‘Men desire happiness’ and to claim (P∀) ‘For all x, if x is
a man, then x desires happiness’? No, it doesn’t. Actually, there is a double
gap between the two propositions: in one sense, (P ) says more than (P∀) and,
in another sense, (P ) says more than (P∀).

First, (P∀) says more than (P ). Indeed, necessary conditions can be met
for (P ) to be true while some necessary conditions for (P∀) to be true are still
missing. In general, it is commonly accepted that (P∀) says more than (P ):
“Generic sentences are often judged true despite weak statistical evidence”
[8]. To show this in the case of (P ), it is enough to find one individual who—
maybe by accident—doesn’t desire happiness.4 Such a situation necessarily
falsifies (P∀) without necessarily falsifying (P ). There is a sense in which it
is possible for a specific person not to desire happiness while for ‘men desire
happiness’ to remain true because the first refers to each particular individual
while the second is a generic statement. For instance, if this particular case
happens by accident, it doesn’t immediately make (P ) a false statement. It
could be true that ‘men desire happiness’ and still this one man ends up not
desiring it at some point. So (P∀) says more than (P ) in the sense that it is
a stronger statement: if (P∀) is true, it is impossible to find such a thing as a
man not desiring happiness.

Now, in another sense, (P ) says more than (P∀) precisely because it can’t
include something happening by accident [23]. It is enough that all extensions
of man to desire happiness for (P∀) to be true but it is not enough for (P ) to
be true. It is not enough for the very reason that (P∀) could still happen to be
the case by accident. (P ) ‘Men desire happiness’ says something about what
manhood is that (P∀) doesn’t say. Suppose all men that ever existed in the
universe happened to desire happiness: does it necessarily make it true that
‘men desire happiness’? It makes it highly likely, of course, but not necessarily
true. Because it could be per accident that such men ended up all desiring to
be happy. On the contrary, (P ) doesn’t leave room for a subject to accidentally
fall under a concept. If ‘men desire happiness’ is true, it means that it is part
of the definition of manhood, i.e. of its intension, that its instances desire
happiness. Such an intensional meaning cannot be captured by an extensional
logic like classical logic. Can any symbolic formalism capture it?

1.2.2. What is the Role of Proposition Simplicity in the Discrepancy? To
answer this question, we need first to move to question (2): if there is a gap—
actually, as we just saw, a double gap—between (P ) and (P∀), then is this
essentially caused by the fact that (P ) is a simple proposition and (P∀) is
not? A proposition asserts something of something. The first something is the

4This point is even easier to make with more ordinary and perfectly valid examples of generic
statements like ‘birds fly’ or ‘pear trees blossom in May’ where it is enough to point at a
penguin or a dead tree to falsify (P∀).
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predicate, the second is the subject. What is the subject in (P ) and what is
the subject in (P∀)? As we just said, (P ) says something about ‘Men’. On the
other hand, (P∀) says something about ‘any x ’, namely that ‘its being a man
implies its desiring happiness’, whatever ‘x’ may be (possibly a man but not
necessarily). So (P∀) really says something about everything (or anything).
And it is precisely where lies the gap: (P∀) is stronger than (P ) in as much
as it is true for any x that happens to be man and it is weaker than (P ) in
as much as it doesn’t take ‘Men’ as the subject. In both cases, the problem
springs from a mistake on the subject. And this is inherent to the extensional
nature of classical logic: it cannot take an intensional concept like ‘Men’ as a
subject, it can only take fully determined extensional objects like ‘x ’. Indeed,
as Frege says in the Grundgesetze [20], “The domain of what is admitted as
argument must also be extended to objects in general. Objects stands opposed
to functions. Accordingly I count as objects everything that is not a function,
for example, numbers, truth-values, and the courses-of-values.” So ‘Men’ can-
not be admitted as an argument of the predicate ‘desire’ insofar as it is itself
a concept but only through any object x that happens to be a man. Indeed,
Frege [20] calls “a concept a function whose value is always a truth-value”
and accordingly doesn’t permit it to be the argument of a function or another
concept. Only objects can. And Frege is right: how can we make sense of being
a man desiring happiness? Only an object, a man, this man, any man, every
man, this x, any x, and so forth, can desire happiness. So it seems that (P∀) is
indeed the right logical way to express (P ). But then we reached a dead end
because this would inevitably leave us with the double gap we just pointed
out. Is there any chance that (3) we can formally restore the simplicity of (P )
by expressing it differently? We just said that the possibility for a concept
to be the subject of another concept was a critical step on the way to for-
mally express (P ) as a simple proposition. We are going to show that a simple
analysis of (P∀) in the framework of λ-calculus opens new perspectives on the
possibility for a concept to be the subject of another concept and, therefore,
on the possibility of formalizing (P ) as a simple proposition.

1.3. Expression of (P ) in the Framework of λ-Calculus

We give the following definition:5

(def1) ALL ≡def λP1.λP2.(∀x(P1(x) → P2(x)))

If P1 and P2 are unary predicates, we can thus formalize any expression of
the form ‘Every P1 is P2’ by applying the operator ALL to P1 and P2 in this
order:

ALL(P1)(P2)

For instance, the following expression

ALL(man)(mortal)

5In what follows, we assume some background in the theory of λ-calculus developed by
Church (see [7]).
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leads, by definition of ALL, to the following β-reduction:6

(λP1.λP2.(∀x(P1(x) → P2(x))))(man)(mortal) *−→
β

∀x(man(x) → mortal(x))

Which yields the classical logical expression of ‘Every man are mortal’. Now,
in our example ‘Every man desires happiness’, one of the two predicates is a
binary predicate (or relation). But we can still use the definition of ALL if we
transform P2 into a unary predicate. And we can do that insofar as we know
the second argument, we know what is desired: happiness. We thus define the
corresponding unary predicate desireH :

desireH = λx.desire(x,Happiness)

The unary predicate desireH when applied to an object x means that ‘x desires
happiness’.7 Now we can use the definition of ALL to express (Pλ):

(Pλ) ALL (man) (desireH)

Lambda-calculus uses left-associativity as a convention, so this is equivalent
to the following expression:

(Pλ) ((ALL (man)) desireH)

which is β-reducible to (P∀):

(β1) ((ALL (man)) desireH) *−→
β

∀x(man(x) → desire(x,Happiness))

(β1) (Pλ) *−→
β

(P∀)

In a λ-expression of the form X Y , X is the operator and Y the operand
and X Y is the operation of application of X upon Y . When applied to the
domain of functions, X would be the function and Y the argument. When
applied to the domain of predicate logic, X would be the predicate and Y
the subject.8 Therefore, in (Pλ), (ALL man) can be considered as a predicate
meaning ‘what can be said of all men’. Indeed, according to (P ) it can be said
that they desire happiness: (Pλ)(ALL man) desireH. Through λ-abstraction,
we’ve been able to:

1. get rid of all the free variables (∀x..x)
2. get rid of all the objects in general (‘x’, ‘Happiness’)
3. express some complex concepts (operators) as applications (or combina-

tions) of some more elementary concepts (operators)
4. manipulate concepts as argument of other concepts ((ALL* man) is ap-

plied to desireH)

6To be more precise, this is a sequence of β-reductions (expressed by the ‘*’). We shall
sometimes talk about a β-reduction when it is actually a sequence of β-reductions.
7This transformation of a binary predicate into a unary predicate is called curryfication.
8Here, we are greatly indebted to the work of Jean-Pierre Desclés [12,14] and Anca Pascu
[16,17]. See also [4].
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5. express all the concepts as unary predicates (in the abstract λ-expression
(ALL man), ALL has one single argument, here man9; and, in the ab-
stract λ-expression (ALL man)desireH, (ALL man) also has one single
argument, here desireH)

The third point is introducing us to the specific approach of λ-calculus and
combinatory logic: we’re able to express some complex operators as applica-
tions of some more elementary operators. In (Pλ), the quantifying operator
ALL is applied to the categorical concept man to build a complex operator
meaning ‘what is true of all men’. When applied to a concept (the predicative
concept), here desireH, it states that every man is subsumed under this con-
cept. The fourth point is particularly crucial because, as we mentioned before,
the impossibility for a concept to be the argument of a concept is at the root
of the double gap between (P ) and (P∀). Here it becomes possible through
λ-abstraction.

1.4. Toward a Simple Proposition

To formalize the generic statement

(P ) ‘Men desires happiness’,

we went from the framework of classical logic,

(P∀) ∀x (man(x) → desire(x,Happiness))

to the framework of λ-calculus,

(Pλ) ALL (man) (desireH),

In this framework, it is now possible for the concept desireH to be the argu-
ment of the other concept (ALL man): (ALL (man)), as a λ-abstraction, is
applied to desireH. So we can say that we have the form of a simple proposi-
tion in Aristotle’s sense.

However we do not yet have the right order between subject and predi-
cate. As we mentioned earlier, (P ) says of ‘Men’ that they ‘desire happiness’.
So Men is the subject and desireH is the predicate. But this is not the case in
(Pλ) where, formally, the concept (ALL man) is applied as a predicate to the
subject desireH. In (Pλ), the predicate is (ALL man), ‘what can be said of
men’, and the subject is desireH, ‘desiring happiness’. Compared to (P ), the
roles are inverted: the predicate in (P ) is ‘desire happiness’ and the subject is
‘Men’. Moreover, (Pλ) is not really a simple proposition because the subject
‘desiring happiness’ and the predicate ‘what can be said of men’ are not really
two ‘somethings’ in Aristotle’s sense. So we do not yet have the simple propo-
sition we are looking for. But we’re very close: we just need to invert the order
of application. If ‘what can be said of men’ can truly be applied to ‘desiring
happiness’, then ‘what desires happiness’ can truly be applied to ‘men’. The
inverse application is a simple proposition. Assuming a new operator (ALL*)

9Even though (ALL man) is still an unsaturated concept in Frege’s sense.
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that we yet have to define, we can say that we are looking for the following
formal expression, in the right order this time:

(Pλ*) desireH (ALL* man)

This is the simple proposition we are looking for because (1) it contains one
single predicate and one single subject and (2) they correspond to the ac-
tual predicate and subject in our generic proposition (P ). (Pλ*) can be read:
desireH is predicated of (ALL* man).

At this point, we do not have yet defined (ALL* man). In what follows,
we are going to try to express the inversion process inversion process from (Pλ)
to (Pλ*) in the framework of Combinatory Logic.10

Remember that we’re trying to relate the well defined expression

(Pλ) ((ALL man) desireH)

to the incompletely defined expression

(Pλ*) desireH (ALL* man)

To do this, we’ll show that (Pλ*) is β-expandable to (Pλ) by introducing some
combinators [10]:

1 desireH (ALL* man) (Pλ *)

2 I desireH (ALL* man) I-i

3 C I (ALL* man) desireH C-i

4 B (C I) ALL* man desireH B-i

5 [ALL ≡def B (C I) ALL*] def2

6 ALL man desireH ALL-subst.

7 ((ALL man) desireH) (Pλ)
Thus, inversely, we have the following β-reduction:

(β2) ((ALL man) desireH) *−→
β

desireH (ALL* man)

Before we go further into the analysis, several things are worth noticing in this
inversion process:

1. Our initial movement takes us from (P∀) toward (P ). We went indeed
halfway in this direction by going from (P∀) to (Pλ) but, while the other
half would have been expected to go from (Pλ) to (Pλ*) which is assumed
equivalent to (P ), the β-expansion above goes in the opposite direction:
from (Pλ*) to (Pλ).

2. So far, two definitions have been given, def1 and def2. In both of them,
ALL is the definiendum but the definiens is different. However these
definiens do not conflict with each other as def2 is not a complete defi-
nition (see point 4)

10Here we assume some background in Curry’s Combinatory Logic. For useful references,
see [4,10,11,15,19].
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3. ALL* is not properly defined. In def2, ALL* belongs to the definiens,
that is to say what defines and not what is defined. More precisely, it
belongs to the proximate genus part of the definiens I, that is to say the
nearest general class to which a thing belongs: ALL is a specific kind of
ALL*.

4. From the preceding point, we can deduce that ALL itself is not completely
defined in def2. However it is completely defined in def1.
In other words, ALL* is not being apprehended inductively nor deduc-

tively but rather through abduction in Pierce’s sense [22]. We formulated a
hypothesis for the proper logical form of a generic statement (Pλ*) which in-
volves a new unknown operator ALL* and, from that hypothesis, we were able
to deduce the well known proposition (Pλ).

In the β-expansion, we introduced the operator ALL* through the fol-
lowing definition:

(def2) ALL ≡def B (C I) ALL*

From this definition, we have, for any two concepts f and g, the following
β-reduction:

ALL g f
*−→
β

f (ALL* g)

For example:

ALL* (man) (mortal) *−→
β

mortal (ALL* man)

and, in our present case:

(β2) ALL (man) (desireH) *−→
β

desireH (ALL* man)

(β2) (Pλ) *−→
β

(Pλ*)

So (Pλ) is β-reducible (β2) to (Pλ*) and, inversely, (Pλ*) is β-expandable to
(Pλ). Let us also remind that (Pλ) is β-reducible to (P∀):

(β1) ((ALL (man)) desireH) *−→
β

∀x(man(x) → desire(x,Happiness))

(β1) (Pλ) *−→
β

(P∀)

We thus have the following path of β-conversion from (P∀) to (Pλ*):

(P∀) *←−
β

(Pλ) *−→
β

(Pλ*)

in which we can see the peculiar half-way forward/half-way backward approach
mentioned in point 1 above.

Now that we seem to have formally expressed, in (Pλ*), the simple propo-
sition we were looking for, we need to investigate regarding the definition and
meaning of ALL* on which this new generic statement formalization (Pλ*)
entirely depends.
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2. What is ALL*?

As we shall see now, we don’t really have, properly speaking, a definition
of ALL*. We thus need to investigate on the identity and the meaning of
this new operator. As we mentioned above, ALL* is defined abductively. This
means that we can’t formally define this concept through the traditional means
of induction or deduction. But we can say quite a bit about it and we can
approach it, abductively, through different angles, by under-approximation
and over-approximation, to discover what it is and what it is not, what it can
be and what it can’t be. The different angles of approach will be the following:
the absence of definiendum, the combinators, the β-reduction and type theory.

2.1. A Concept Introduced Without a Definition

As it was pointed out earlier, ALL* has been introduced as the definiens
in the definition of ALL. What is here very particular is that a new term
is usually introduced by being the definiendum of a definition and not the
definiens. If we want to introduce a new term, clarity requires that we say
what it is, not just it has as a particular species. We could call it an abductive
definition [22] because it doesn’t give us a full deductive grasp of what ALL*
is but only an abductive grasp of it. The abductive definition is somewhat
counter-intuitive: while we usually start from a primitive operator to define
more complex operators, here we proceeded in the opposite direction from the
definition of a complex operator, ALL, to somewhat guess the meaning of a
more primitive (or more general) operator ALL*. Basically, we’re given an
instance or a species of ALL* to understand what it is. It’s like defining the
concept of cat to apprehend the concept of mammal.

Now it is important to point out that the abductive approach of ALL*
fits some of the special features of generic statements like

(P ) Men desire happiness

In some sense, the general aspect of such sentence, which is formalized through
the ALL*, is grasped abductively. Indeed, this generic statement itself is not
inferred through induction nor deduction. Rather, we observe some evidence
about me, you or her before considering its generic version (P ) as a valid
hypothesis.11 The generic statement is not as clear and obvious as one of
its particular instanciations (eminently, my desiring happiness as a man is
the most obvious of all) but it is plausible [22]. So, just like the definition
and the generality of ALL* is to be apprehended behind the particularity of
ALL, the genericity of (P ) ‘men desire happiness’ is to be guessed behind the
particularity of my desiring happiness.12 One might say that this is specific

11On this particular generic statement, an example of abductive reasoning can be found
in [3]. But the point is assumed to be valid for generic statements in general. For generic
statements as abduced explanatory hypothesis [22] instead of induced or deduced general
rules, see [23].
12We’re not trying to show that ALL* is exactly apprehended like a generic statement is
apprehended. That would be a categorical confusion. Instead, we’re trying to show that they
share an analogous, abductive, property with respect to truth and inference. Simply, this
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of a sentence like (P∀) that involves a very subjective (in the contemporary
meaning of the word) concept like ‘desire’. But it’s not true. Other generic
statements like ‘Frenchies are arrogant’ and ‘Birds fly’ also come to provide
explanatory power [22] for observed patterns and evidence.

Over all, we can say that ALL* has the specificity to be introduced
abductively, from the operator ALL, behind which emerges a larger and more
fundamental concept.

2.2. A Definition from the Combinators

What is happening in the β-reduction (β2)? We can say that the definition
def2 of ALL allows for a displacement of the quantifying operator. This dis-
placement is induced by the combinaison of elementary combinators B (C I).
In (Pλ*), the span of ALL* is limited to the categorical concept man and its
application builds an entity that is itself in the span of the predicative operator
desireH. What happens, through β-expansion (β2), is that ALL* is somehow
extracted from this limited span to be placed at the forefront position, where its
span covers, firstly, the concept man and, secondly, the concept desireH, thus
getting us closer—to be precise two lambda-abstractions away—to the classi-
cal expression (P∀). Said differently, the complex combinator defining ALL*,
B (C I), transforms the natural13 span of ALL* in (Pλ*) (as a formalization
of (P )) into the classical or Fregean span of ALL in (P∀).

2.3. A Definition from the β-Conversion

The double gap that we pointed out earlier between (P ) and (P∀) is actually
analogous to the double gap we can find between a β − redex and its β −
contractum. Curry [10] gives the following definition:

“We call an ob which can form the left side of an instance of one
of the rules (β), (η), or (δ) a redex of the corrresponding type ; the
right side of the same instance will then be called de contractum
of the redex. A replacement of a redex by its contractum will then
be called a contraction (...). Thus (...) a β − redex is an ob of the
form (λx.M)N , its contractum is [N/x]M ; and a replacement of an
instance of (λx.M)N by [N/x]M is a β-contraction.” (p. 93)
It is clear, then, that a β-redex is not strictly equivalent to its β-contractum.

We want to argue that, just like it is between (P∀) and (P ), the β-redex is
extensionally weaker than the β-contractum but, in same time, the former is
intensionally stronger than the latter.14 Let us look at a simple example in
λ-calculus:

(λx.x2)3
β−→ 32 = 9 (2.1)

Footnote 12 continued
shared property is further evidence that the intension behind ALL* matches that of generic
statements.
13In the sense of natural language or natural reasoning.
14For references on the inverse relation between intension and extension of concepts, see
[2,14,16,21].
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The β-redex ‘(λx.x2)3’ exhibits an operation that partially disappear in
the β-contractum ‘32’ and completely disappeared in the expression ‘9’. The
former contains more meaning or intension than the latter, because it doesn’t
only say what we’re calculating but also how we’re calculating it. A good way
to see it more clearly is to compare it to another β-reduction leading to the
same result or extension but coming from a different intension. In this example,
we arrive at 9 through a different operation:

(λx.x ∗ x)3
β−→ 3 ∗ 3 = 9 (2.2)

In this example, we even arrive at the same 32 through a different oper-
ation:

(λx.3x)2
β−→ 32 = 9 (2.3)

While the extension, the number 9, can be the same, the intension, (λx.x∗
x)3, (λx.3x)2 or (λx.x2)3 can be different, thus showing that the β-redex is
indeed intensionally stronger than the β-contractum. On the other hand, it is
easy to show that the β-redex is extensionally weaker than the β-contractum
because it is one step further away from the β-normal form which is the form
of purely extensional expressions. An expression is in β-normal if it cannot be
β-reduced. It is the case for ‘9’. 9 is both the extension of (λx.x2)3 and 32 but
while it takes two β-reduction steps to get to 9 from the former, it only takes
one step from the latter. The former being the β-redex of the latter, we can say
it is further away from their extension. Therefore, the β-redex is extensionally
weaker than its β-contractum.

We thus see that we can recognize in the relation of β-reduction the dou-
ble gap that emerged in the relation between (P ) and (P∀). In the meantime,
we have suggested (Pλ*) as the best-fitting logical formalization of (P ). If
this is right, we should also be able to identify a similar double gap between
(Pλ*) and (P∀).15 According to what we just demonstrated, this would simply
mean showing that (Pλ*) is β-reducible to (P∀). But so far, the only β-relation
that exists between (Pλ*) and (P∀) is not standard because it goes through a
β-expansion (see Fig. 1) followed by a β-reduction:

15Or, at least, being able to do so would be one more evidence in favor of our hypothesis,
in the sense of the abduction.
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1 desireH (ALL* man) (Pλ *)

2 I desireH (ALL* man) I-i [β-exp.]

3 C I (ALL* man) desireH C-i [β-exp.]

4 B (C I) ALL* man desireH B-i [β-exp.]

5 [ALL ≡def2 B (C I) ALL*] def2

6 ALL man desireH ALL-subst.

7 ((ALL man) desireH) (Pλ)

8 [ALL ≡ λP1.λP2.(∀x(P1(x) → P2(x)))] def1

9 (((λP1.λP2.(∀x (P1(x) → P2(x)))) man) desireH) ALL-subst.

10 ((λP2.(∀x (man(x) → P2(x)))) desireH) λ-elim. [β-red.]

11 (∀x(man(x) → desireH(x))) λ-elim. [β-red.]

12 ∀x(man(x) → desireH(x)) (P∀)

However, we know that the completely extensional expression of (Pλ*)
is (P∀). So (P∀) is the β-normal form of (Pλ*). Indeed, it is clear that there
is no more β-redex in (P∀). On the contrary, we can’t claim that (Pλ*) is a
normal form. First, to be the case, ALL* would need to be completely and
extensionally defined. But we don’t really know the operator ALL*: it is a
new entity without any particular equivalent in classical logic. Second, the
Church-Rosser theorem and its corollaries [?] state that an expression can
only be β-reducible to one β-normal form at most. If (P∀) is the β-normal
form associated with (Pλ), (Pλ*) can’t also be the β-normal form associated
with (Pλ). We’ve established that (P∀) is a normal form. Therefore (Pλ*) is
not a β-normal form. Now, if we make abstraction of the fact that ALL has
two different definitions,16 the Church-Rosser theorem and its corollaries also
imply that (Pλ*) has to be β-reducible to (P∀). Otherwise, if (Pλ*) was β-
reducible to another normal form, say (P2), then (Pλ) being β-reducible to
(Pλ*), it would also be β-reducible to the normal form (P2), thus having two
normal forms which contradicts the theorem. Thus, we can give (see Fig. 2)
a more complete representation of the relations of β-reduction between (Pλ),
(P∀) and (Pλ*).

Hence, (Pλ*) is indeed β-reducible to (P∀) and, for that reason, in a dou-
ble gap relationship (both intensively stronger and extensively weaker) with
(P∀) that is analogous to that which (P ) holds with (P∀).17 So the operator
ALL*, although not completely defined, gets us closer to the generic intension
in (P ).

16Considering the two different definitions, one could object that (P def1
λ ) differs from

(P def2
λ ) with respect to β-reduction because they use two different definitions of ALL.

However, such differentiation isn’t relevant for the present argument.
17As we mentioned in the previous note, the differentiation between (P def1

λ ) and (P def2
λ )

isn’t relevant here as the double-gap relationship holds simply because (Pλ*) is both exten-
sionally equivalent to (P∀) and at a higher level of λ-abstraction than (P∀).
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Figure 1. A representation of the relations of β-reduction
between (Pλ), (P∀) and (Pλ*)

Figure 2. A representation of the relations of β-reduction
between (Pλ), (P∀) and (Pλ*) including the inference from
the Church-Rosser theorem

2.4. A Definition from the Functional Types

The definition of ALL* can also be given through type theory. If we consider
Curry’s two primitive types J and H for, respectively, individuals and proposi-
tions, then concepts like man have the type FJH because they are, like Frege
defines them, functions taking an individual (denoting an object) as an ar-
gument and building up a proposition (denoting a truth-value) out of it. We
write

X : α

to signify that the combinatorial expression X has the type α.
We will now use Curry’s [10] “stratification technique” (p. 282) to find

out what the functional type of ALL* is. To make it more concrete, we’ll
stick to our example but what follows holds for the general case. We have the
following application tree18:

18As usual with Combinatory Logic, we assume left associativity.
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1. ALL 2. men
3. ALL men 4. desireH

5. ALL men desireH

We call ηi the type of the expression (i) in the deduction. η1 ≡ Fη2η3
η3 ≡ Fη4η5 η5 ≡ H because:

(5) ≡ (Pλ)

and

(Pλ) *−→
β

(P∀)

and (P∀) is a proposition. Therefore (5) is a proposition.
As we said before, we also know that: η2 ≡ η4 ≡ FJH

Therefore we have:

η3 ≡ F(FJH)H
η1 ≡ F(FJH)(F(FJH)H)

Now, we will use def2 to find out the type of ALL*:

6. B 7. C I
8. B (C I) 9. ALL*

10. B (C I) ALL*

By def2, we know that η10 ≡ η1
Curry already gives us the following types (p. 308):
η6 ≡ F2(Fβγ)(Fαβ)(Fαγ)
η7 ≡ F2δ(Fδε)ε
And we know that we necessarily have: η6 ≡ Fη7η8
Therefore we deduce:
η7 ≡ Fβγ and η8 ≡ F(Fαβ)(Fαγ) and thus:
β ≡ δ and γ ≡ F(Fδε)ε
so that:
η8 ≡ F(Fαδ)(FαF(Fδε)ε)
η8 ≡ F(Fαδ)(F2α(Fδε)ε)
In the same way:
η8 ≡ Fη9η10
leads to:
η9 ≡ Fαδ and η10 ≡ F2α(Fδε)ε
We also said that
η10 ≡ η1
So we deduce that:
α ≡ FJH
δ ≡ J
ε ≡ H
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So, the type of ALL* is:
η9 ≡ Fαδ ≡ F(FJH)J

Thus we see that ALL* is a complex operator which, applied to a concept (of
type FJH), transforms it into an object (of type H). Indeed ALL* man is the
subject of desireH in (Pλ*). From the concept man, ALL* built the subject
of ‘men desire happiness’ in (Pλ*), that is to say ‘men’.

3. Illative Logic with ALL*

Like Curry [10], we have made the choice here to distinguish what he calls
“pre-logic” (Urlogik), which deals with formal ojects and their definitions in-
dependently from the concepts of the propositional domain (truth, predicate,
proposition,...), from what he calls “illative logic”, which deals with truth con-
ditions, propositions and inference. Now that we have attempted to define, or
rather surround, the concept ALL* in the urlogik, we will briefly consider its
role and application in the illative side of things. The illative behavior of the
classical formalization of generic statement is very well known:

(P∀) ∀x (man(x) → desireH(x))
man(Socrates) → desireH(Socrates) man(Socrates)

desireH(Socrates)

And so is well known the logical difficulty that arises when we encounter an
exception like a man, say Achilles, who doesn’t desire happiness:

(P∀) ∀x (man(x) → desireH(x))
man(Achilles) → desireH(Achilles) man(Achilles)

desireH(Achilles) ¬desireH(Achilles)
�

This logical difficulty further demonstrates the inadequacy of the classi-
cal account with respect to natural language and natural reasoning. Indeed,
generic statements are common place and they do allow for atypical instances
or exceptions [8,17,23]. People say things like ‘men desire happiness’, ‘birds
fly’ or ‘pear trees blossom in May’ all the time. Nevertheless, it is thinkable
that some man doesn’t desire happiness, it is a fact that penguins don’t fly
and it may be that such pear tree won’t blossom in May. Nevertheless, this
doesn’t make the original generic statement a false statement with respect to
ordinary language and natural reasoning.

Contrary to the classical interpretation of generic statements, the ALL*
account leaves room for natural reasoning because it doesn’t require a univer-
sally quantified proposition. Indeed, We just saw in the previous section (See
Sect. 2.4) that, in (Pλ*), desireH is applied to an object (ALL* man). Thus
there is no universal quantification. At least, it is clear, given what we know so
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far, that no contradiction can be inferred from the conjunction of the following
propositions:

(Pλ*) desireH (ALL* man)

and

man(Achilles)

and

¬desireH(Achilles)

The absence of contradiction lies in the fact that ALL* man is an object
that is not fully determined. It’s an abstract object, here an abstract man,
that inherits the intension of the concept ‘being-man’, including ‘desiring-
happiness’. Now once this is said, it is possible for a man to not fall under all
the non-essential intension of ‘being-man’. The abstract object (the abstract
man) carries with it a whole series of meaning and intension that doesn’t
universally applies to all men. So the ALL* operator leaves room for an inten-
sional and non-universally quantified interpretation of generic statements. A
rough formalization of such interpretation19 is given in the following inference
tree where typMan is the predicate ‘typical Man’ (more on this in Sect. 4.2):

(Pλ*) desireH (ALL* man) man(Achilles)
desireH(Achilles) → typMan(Achilles) ¬desireH(Achilles)

¬typMan(Achilles)

Unlike the classical case, no contradiction may be derived from the in-
tensional formalization.

4. Conclusion

4.1. (Pλ*) as the logical expression of (P )

The classical expression of generic statements (P∀) fails to capture the inten-
sional character of (P ) because it doesn’t formally express the simplicity20 of
the proposition. Through lambda-abstraction and combination of operators,
and via the creation of a new operator ALL*, we were able to transform (P∀)
into a new intensional formalization of (P ):

(Pλ*) desireH (ALL* man)

After a careful analysis of (Pλ*) and of its key operator ALL* we have several
reasons to think that (Pλ*) is a particularly suited formalization of (P ):

19For a complete account on this topic, see the Logic of Object Determination [4,13,16,17].
20The property of being a simple proposition in Aristotle’s sense.
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• (Pλ*) is intensionally stronger and extensionally weaker than (P∀). This
‘double gap’ also exists between (P ) and (P∀) and was the starting point
of our inquiry because it exhibits the inadequacy of classical logic with
respect to generic statements. Given that, as it has been demonstrated
above, (Pλ*) manifests this same ‘double gap’ in relations to (P∀), we
can say that it capture very well the intensional (and non-extensional)
character of (P ).

• (Pλ*) is a simple proposition. We have shown that (P∀) is not a sim-
ple proposition in Aristotle’s sense. On the contrary (Pλ*) is a simple
proposition because it contains one and only one predicate desireH().
Its argument, ALL* man, is yet to be investigated but, in the meantime,
it appears very clearly that, in (Pλ*), only one predication is made, some-
thing is said of something: that it desires happiness (desireH) is said of
men (ALL* man).

• (Pλ*) respects Frege’s constraint on unsaturated concepts. Frege limits
the arguments that can saturate a predicative concepts to objects only,
i.e. anything but functions (and concepts in particular). This point could
appear as a major hindrance to the possibility of ever formalizing (P ) into
a logical simple proposition because it (P ) seems to relate predicatively
two concepts. However, it happens that (Pλ*) is a simple proposition and
does respect Frege’s constraint on the saturation of concepts. In (Pλ*),
the argument of desireH is indeed an object. We just saw that ALL*
is a complex operator which, applied to a concept, transforms it into
an object. Therefore ALL* man is an object and not a concept. So the
unique predicate desireH of this simple proposition is rightly applied to
an object.

• (Pλ*) leaves room for exceptions or atypical instances like the use of the
generic statements in ordinary language does. Unlike in classical logic,
we saw that the proposition (Pλ*) could coexist with a man that doesn’t
desire happiness without de facto generating a contradiction.

4.2. What is ALL ∗ man?

A crucial point in our inquiry was to find a logical expression of (P ) that was
a simple proposition because that would mean finding a way to express ‘what
desires happiness’, i.e. ‘men’, as an object. As we saw at the beginning, this is
not possible in an extensional and classical setting. Now that we found a way
to logically express this object, it is just as much crucial to investigate what it
is. If (Pλ*) is the right logical expression for (P ), then its object ALL* man is
the right logical expression for ‘men’ in ‘men desire happiness’. Let us briefly
recapitulate what has been deduced from our preceding investigation:

• ALL* is abductively defined from one of its species: ALL.
• ALL* is intensionally richer and extensionally weaker than its classical

equivalent ALL.
• The span of the operator ALL* is reduced to the categorical concept

(here man) only.
• ALL* builds an object out of this concept.
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The object ALL* man, built out of the concept man, designates men in gen-
eral. Not each and every man that exists or existed, in the extensional manner,
but men in general or the Man. Neither is ALL* man the unsaturated concept
‘being-a-man’, because we know it’s an object and subject of a predicate. But
what object exactly? If it is an object, I should somehow be able to point at it.
Referring to what have been said before, ALL* man is the object hidden, to
be guessed, behind the concept man. It is the Man or a typical man. This def-
inition rightly fits (P ) as ‘men desire happiness’ can rightly be re-formulated
as ‘man desires happiness’ or ‘a typical man desires happiness’. The plural of
natural language in (P ) prevents us to see the nature of ‘men’ as a single object
built from the concept man. Again, ALL* man is an object and not a concept.
Which means I represent it mentally. And indeed, this is what I do when I say
‘men desire happiness’ or ‘men have two legs’: I represent to myself an object,
the typical man, as having such or such property. As a matter of fact, some
men don’t have two legs and this is perfectly fine because ALL* man is not a
fully determined extension.

4.3. ALL* man is a Concrete Universal

The notion of concrete or self-predicative universal comes from Plato’s theory
of forms. Ellerman [18] gives the following definition of concrete universals:

Philosophy has long contemplated another type of universal, vari-
ously called a self-predicative, self-participating, or concrete univer-
sal. The intuitive idea of a self-participating universal for a prop-
erty is that it is an object that has the property and has it in such
a universal sense that all other objects with the property resemble
or participate in that paradigmatic, archetypal, canonical, iconic,
ideal, essential, or quintessential exemplar. Such a universal μF for
a property F is self-predicative in the sense that it has the prop-
erty itself, i.e., F (μF ). It is universal in the intuitive sense that it
represents F -ness is such a perfect and exemplary manner that any
object resembles or participates in the universal μF if and only if it
has the property F .

ALL* man is not a fully determine extension but we claim that it is a concrete
universal in Plato and Ellerman’s sense21 because:

• ALL* man is an object
• ALL* man represents a paradigmatic, archetypal, canonical, iconic, ideal,

essential, or quintessential instance of man. What is expressed in (P∀) by
the plural ‘men’.

• ALL* man is self-predicative in the sense that man (ALL* man) is
analytically true22. Indeed, we have shown that the following β-reduction

21It is not the point of the present paper to demonstrate that ALL* man is a concrete
universal builder. We shall present that argument in a subsequent paper.
22We could had that it is also self-predicative in the sense that adding a determination
‘being-a-man’ to the typical object ALL* man doesn’t modify the object in any way. In
other words, ALL* man is a fix point of the operation that adds the determination
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Table 1. How ALL* operates on a concept to build a subject
of a generic statement

Concept Concrete universal Meaning Generic statement

man ALL* man ‘men’, ‘a typical man’ ‘Men desire
happiness’

bird ALL* bird ‘birds’, ‘a typical bird’ ‘Birds fly’
stone ALL* stone ‘stones’, ‘Stones fall

‘a typical stone’ to the ground’
pear Tree ALL* pear Tree ‘pear trees’, ‘Pear trees

‘a typical pear tree’ blossom in may’

holds: man (ALL* man) *−→
β

∀x (man(x) → man(x)), which is a

tautology.

Thus ALL* can be defined as a concrete universal constructor because it
builds a concrete universal out of a concept. This notion of concrete universal
is implicitly present in the plural or generic form of the subject of a generic
statement, e.g. ‘men’, ‘birds’, ‘stones’, ‘wood’, ‘fire’, etc. But one can also
express this notion of concrete universality by using the singular indetermi-
nate qualified as typical23: ‘a typical man’, ‘a typical bird’, ‘a typical stone’,
‘a typical peace of wood’, ‘a typical fire’, etc. In Table 1, we can see how
ALL* transforms a concept to make it an appropriate subject of a generic
statement.24
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International License, which permits use, sharing, adaptation, distribution and re-
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Footnote 22 continued
‘being-a-man’ to an object. In the formalism of the Logic of Object Determination [4,16,17],
δ(being-man) (ALL* man) ≡ (ALL* man)
23Without this qualification, one could think we’re talking about just one specific but un-
known individual.
24Showing how those different examples of generic statements all fall under the same category

that can be formalized via ALL* goes beyond the scope of this paper and will be the object
of a subsequent article. In short, those generic statements, like RÖdl shows, are all similar
in that they “give rise to an asymmetric contrast of rule and exception, and they explain
statements that exemplify them.” [23].
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