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Abstract. We build a topological model, based on intuitionistic logic, for
multi-agent biological systems (such as Physarum polycephalum, bacte-
rial colonies or any other swarm), reacting to external nourishment stim-
uli. Our construction follows the topological description of brain activity,
where particles (neurons) are activated by an external environment, rep-
resented by a topological space X with an open cover {Ui : i ∈ I}. The
brain builds the model of this external space via the nerve (trace) of a
topological spaceX. Here the body of Physarum polycephalum or a swarm
made of networks of tubular structures represents a nerve (trace) of X
also which means that Physarum polycephalum or a swarm gains orien-
tation in the space of external stimuli even in the absence of any neural
system. The logic of living organisms is based on open subsets of X and
thus can be represented by Heyting algebra (i.e. intuitionistically). We
also consider the generalisation of the nerve construction to a categori-
cal context, where the category is determined by the network structures
of multi-agent biological system. This model can be generalised up to
simulating the behaviour of any swarm by means of intuitionistic logic.
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1. Introduction

It is known that the universal Turing machine models any classical compu-
tation performed by any classical computer. At the same time, the Turing
machine is very simple from the point of view of its structure and operations
it performs. In the realm of intelligent behaviour of living (unicellular as well
as multi-cellular) organisms, we can search for some underlying universal com-
putational phenomena, which presumably would be represented by a highly
simplified living organism. In other words, we can try to define some artificial
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(i.e. simplified) living organisms as a universal machine like the Turing one.
In this paper, we aim to sketch a universal logical model for simulating the
intelligent behaviour of living organisms.

This behaviour is usually presented as a multi-agent system where each
particle (computational unit or ‘agent’) has an individual program within the
whole programmable behaviour. For instance, even a one-cellular organism
is regarded as a multi-agent computational system [1]. There are two main
types of biological objects recently discovered from the point of view of com-
putational theory: (i) unicellular organisms with their abilities to solve some
computational problems such as planar-geometric or graph-theoretic ones (bac-
terial colonies [2], Physarum polycephalum [3], Amoeba proteus [4], etc.); (ii)
different swarms with their abilities to solve, first of all, logistic problems (ant
colonies [5], bee colonies [6], fish schooling [7], bird flocking and horse herd-
ing [8], etc.). The point is that some real-time experiments with unicellular
organisms as well as with swarms are easy to be performed for constructing
appropriate computational samples. On the other hand, their behaviour can
be managed by external stimuli to the same extent. Evidently that different
organisms have different stimuli attracting and repelling their activity, but
mathematically we deal with the same topological space we are going to define
in this paper – namely, we consider a mathematical model how active particles
react to the stimuli located differently.

Hence, we focus on many biological agents (ants, bees, active particles
of Physarum polycephalum and Amoeba proteus, etc.) concurrently reacting
to a set of external stimuli located variously and with different powers of
intensity. This study is scale invariant. The matter is that the scale of stimuli
for unicellular organisms differs a lot, for example, from the scale of stimuli for
swarm mammals (such as rats), but topologically both situations are the same:
some stimuli scattered around the individuals cause their concurrent reactions
to these stimuli.

The multi-agent intelligent behaviour of unicellular amoeboid organisms
(e.g. Physarum polycephalum and Amoeba proteus) is explained by a polymeri-
sation and depolymerisation of actin filaments – short protein tubes combined
among themselves and responsible for changing the cell shape. These actin
filaments can appear and disappear and they can be collected into different
complex forms from bushes to trees. It depends on external stimuli which cause
the polymerisation or depolymerisation of new actin filaments. So, such intel-
ligent reactions of one cell to its environment are explained by actin filament
networks. Consequently, these networks can be examined as a medium imple-
menting different logical and arithmetic functions [4,9–11]. Hence, each actin
filament may be regarded as a computational unit (particle or ‘agent’) within
an appropriate network. Meanwhile, the actin filament networks have some
effects of neural networks such as lateral activation and lateral inhibition [4].

So, in our paper, we present the approach showing that each multi-agent
living system such as Physarum polycephalum or a swarm in some sense repre-
sents universal computational phenomena which usually are typical for more
complicated, neural networks. We demonstrate that the space orientation of
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Physarum polycephalum or a swarm reflects the mechanism of activation of
agents/particles/units – e.g. (i) actin filaments in a cell; (ii) neurons in a hip-
pocampus of brain; (iii) swarm members like ants or bees. In this case one
assigns a stimuli space X to a subspace NX of active units (actin filaments,
neurons or swarm members) which are sensitive to the external stimuli from X
and react by their excitation (activation). In the case of swarms, the activation
of their members means that they are located on some traces connecting food
pieces to the nest.

External stimuli are linked to computational units (actin filaments, neu-
rons or swarm members) via some codes which are the patterns of excita-
tion typically grouped to comprise words representing binary sequences of 0, 1
where 1 at the i-th place means that the i-th unit from NX has been activated
(the spike). Even though the space of stimuli X is considered as a kind of
discrete topological space we extend it to a subset X ⊂ R

d, d ∈ N \ {0} thus
endowing it with the certain open convex in R

d subsets {Ui}i∈I ,
⋃

i∈I Ui = X,
as its cover. The index set I is finite at this stage, though in some next sec-
tions we will consider also an infinite extension. The open convex subsets Ui

can be also determined as domains of the so-called receptive fields (RFs). A
RF on X is a function fi : X → R≥0, i ∈ I assigning to a stimulus f ∈ X
a non-negative number which expresses how the i-th unit from NX is likely
to fire in the presence of the stimulus f . Given another stimulus g ∈ X, we
have another RF, i.e. gi : X → R≥0, i ∈ I. Now given a RF fi and its support
Bi = {x ∈ X|fi > 0} considered as the subset of Rd, one equates the support
with Ui, i.e.

Bi = Ui ⊂ R
d, i ∈ I .

Since the RF fi is uniquely determined from its support Bi, so fi is usually
identified with Ui.

The main idea of universal logical model we are going to obtain is that we
can show a homotopy equivalence between the set X of stimuli and the set NX

of active units in a topological space. This equivalence indicates that the space
orientation reflected by mammals brains can be also found in functioning of
Physarum polycephalum when reacting on the external stimuli and thus having
control over its orientation in space. It is also the possibility, advocated in this
paper, that this kind of universal mechanism may lay in the spatial orientations
of any multi-agent biological system or any swarm.

It is a fairly well recognised phenomenon that the orientation in space
is coded in the firing pattern of brain neuron. So, we take this model from
the brain to describe any multi-agent biological system. It is known that there
are place neurons in the hippocampus of brain which fire depending on the
placement of an organism in particular places. After changing the places of
organism, the brain changes the firing pattern of the place neurons. The fun-
damental questions arising in this context are how the orientation in space
and the entire structure of the stimuli space X are coded in the code sets
as above. The answer is based on reflecting the homotopy type of X by the
code and the nerve theorem is perfectly suited to this purpose. In Sect. 2, we
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recall some basic facts relating to this and we also show how to implement
the technique of the nerve of topological space to Physarum polycephalum or
any swarm and to code the space orientation in its structure. In Sect. 3, we
generalise the formalism to the infinite covers of X and thus show that we can
appeal to intuitionistic logic there. In Sect. 4, we introduce a category for the
swarm orientation. In Sect. 5, we close the paper with discussion of the results
and present briefly the future directions of the approach.

The main result of the paper is to define a category for multi-agent biolog-
ical systems like swarms—namely, it is a sheaf category (Sect. 4). It gives the
most general approach to swarm computing. It is worth noting that there are
proposed many algorithms in simulating some particular swarms: the Particle
Swarm Optimisation [12], the Bacterial Foraging Optimisation Algorithm [13],
the Artificial Bee Colony [14], the Cuckoo Optimisation Algorithm [15], the
Social Spider Optimisation [16], the Ant Colony Optimisation [5], etc. Never-
theless, there is no general theory of swarm computing. In the paper, we are
going to sketch one of the possible directions to this theory. Such a theory
will show how multi-agent biological systems from unicellular to multi-cellular
organisms realise a spatial logic in their space orientations.

2. Simplicial Objects and Spatial Orientation

One of the central arguments in this paper and for the brain place recognition,
is presented by the nerve or active trace of finite cover U = {U1, U2, ..., Un}, n ∈
N of X =

⋃n
i=1 Ui, where Ui, i = 1, 2, ...n are open convex subsets of Rd. Recall

that a geometrical k-simplex, C(k), is a complex hull of its k+1 vertices – so it is
a k-dimensional polytope. This k-simplex thus generalises: a point (0-simplex),
a line element (1-simplex), a triangle (2-simplex), a tetrahedron (3-simplex)
etc.

C(k) = {λ0x0 + λ1x1 + ... + λnxn|Σk
i=0λi = 1, λi ≥ 0, xi ∈ R

k, i = 0, 1, ..., k},

where {x1 −x0, ..., xk −x0} is a linearly independent set of vectors in R
k. The

convex hull of any nonempty subset of the k + 1 points, say d + 1, d < k, is
a face of the simplex provided that, it is a d-simplex as well. Any two faces
F1, F2 in C(k), are disjoint or their intersection is a face in C(k). A simplicial
complex K is a set of simplices such that:

1. Each face of the complex in K is an element of K.
2. Given two simplices C(k1), C(k2) in K if C(k1) ∩ C(k2) = A �= ∅ then

A = C(k3) is a common face of both simplices and belongs to K (from 1.
above).

Somewhat similarly one defines an abstract simplicial complex as a family
Δ ⊂ P ([n]) of subsets of the finite set [n] = {0, 1, 2, ..., n} such that if σ ∈
Δ and τ ⊂ σ then τ ∈ Δ. The point is that to a finite good cover U =
{U1, U2, ..., Un} of X one assigns an abstract simplicial complex N (U) ⊂ P ([n])
which is called the nerve or trace of U :
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If two open convex sets in U have nonempty intersection, then it
belongs to the extension U of U , i.e.

Uα ∩ Uβ = Uαβ �= ∅, then Uαβ ∈ U and U ⊃ U .

Representing each Ui ∈ U by a point i ∈ [n] and all nonempty
intersections Ui ∩ Uj by {i, j} ∈ P ([n]) and all nonempty triple
intersections Ui ∩ Uj ∩ Uk by {i, j, k} ∈ P ([n]) and so on, we have
thus obtained the abstract simplicial complex, the nerve or trace of
U , i.e. N (U).

In fact the nerve or trace N (U) can be determined by its highest degree skele-
ton as shown by the following Helly’s theorem

Theorem 2.1. Given k convex open sets {U1, U2, ..., Uk} in R
d, d < k and if

any subfamily of d+1 sets Ui has nonempty intersection, then also
⋂k

i=1 Ui �= ∅.
Crucial is the following nerve theorem

Theorem 2.2. X(U) and N (U) are homotopically equivalent.

In fact this equivalence holds between any paracompact space X with
possibly infinite open cover U , such that each finite intersection of elements of
U is contractible, and its nerve N (U) (see [21, p. 459]).

The nerve theorem gives the direct relationship between the space X of
stimuli and the simplicial object which is the nerve of the convex open cover of
X (see also [17]). This homotopy equivalence, or duality of topological space
and simplicial space, is in the root of the brain functioning regarding the spatial
orientation of living organism (e.g. [19,20]). And this model can be treated as
a model of space orientation of any multi-agent biological systems – from
Physarum polycephalum and Amoeba proteus to social insects and mammal
swarms. To understand this relationship in more detail let us consider the
stimuli space X(U), U = {U1, U2, ...., Un} where each Ui is realised by a RF
as in the Introduction (the receptive field of the i-th stimulus fi as exciting,
or not, the i-th neuron or computational unit). Then the support of fi can
be identified with Ui. In fact of neglecting the convexity requirement for Ui

there holds quite general rule. To see it let us turn to the idea of code words
from the Introduction. A sequence σ ∈ {0, 1}n, where now we allow only signal
activating the i-th neuron (unit) or its lack, represents a code. The totality of
activating signals coming from all stimuli can be grouped in the receptive field
code of U (RF code), i.e. C(U) ⊂ {0, 1}n (see [19,20]).

C(U) def.=

⎧
⎨

⎩
σ ∈ {0, 1}n|

⎛

⎝
⋂

i∈supp(σ)

Ui \
⋃

j /∈supp(σ)

Uj

⎞

⎠ �= ∅
⎫
⎬

⎭
. (2.1)

Recall that a neural or trace code C of a system of n active units {1, 2, ..., n} =
[n] is a subset C ⊂ {0, 1}n describing the pattern of activity and it comprises
with code-words σ = {s1, s2, ..., sn} ∈ C. The support of σ is thus the set of
computational units activated in σ and it is a subset of [n]. Thus, the support
of neural code is

supp(C) ⊂ 2[n].
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The following theorem shows the universality of the construction of neural
codes, units for X, and receptive field codes when applied to systems of neurons
in a brain or to systems of active members in a swarm.

Theorem 2.3 ([20], Lemma 1). Let C ⊂ {0, 1}n be a neural code. Then for any
d ≥ 1 there exists a stimulus space X ⊂ R

d along with the collection of open
sets U = {U1, U2, ..., Un}, Ui ⊂ X such that C = C(U). The sets Ui, i ∈ [n] are
not necessarily convex.

By applying the entire construction (following e.g. [19]) to the hyppocam-
pus part of the brain, formula (2.1) gives the correspondence between the sub-
sets of positions in X and patterns of neural activity: (i) (0)i – no activation
of i-th unit, (ii) (1)j – an activation of j-th unit. In this way codes carry
information about the positions in X. The brains or any other multi-agent
biological system can thus process the data which is at roots of awareness of
the orienting and navigating within the space.

Let us turn to the more general case of Physarum polycephalum, Amoeba
proteus or any swarm which certainly possess no neurons. Any multi-agent
biological system from bacteria colonies to social insects and mammal swarms
typically occupy certain spatial domain in R

3 by a net of trace system (e.g.
[25]). The excitation of individuals in these systems is performed by external
stimuli (e.g. food doses) which results in the varying dynamics of the liquid
excitation flows through the traces (i.e. through the tubes of Physarum poly-
cephalum). It is known that after a certain time each swarm from unicellular
to multi-cellular organisms builds an optimal logistic net of traces connecting
nutrition doses, realising the most effective connections. This was in fact the
source for the effective searching for the shortest connections, thus ‘solving’ the
travelling salesman problem under some circumstances [22–25]. There is, how-
ever, another even more basic problem underlying such a behaviour. Namely,
people are investigating the phenomena like that from the perspective of un-
derstanding cellular intelligence and the origins of cognition. Here we follow
this direction and propose to assign to swarms, spreading over a 3-dimensional
spatial region, a simplicial object – the nerve or trace of an open cover of the
region, such that it explains the spatial orientation and a degree of self-control
usually specific for the brain.

The link of the nerve or trace of the stimuli space X (suitably extended
over a subset of Rd), i.e. N (U) with the system, for example, of the tubes in
Physarum polycephalum is given by the triangulation of X. Namely, still for
the convex open cover U of X it follows from Helly’s theorem 2.1

Proposition 2.4 ([19,20]). N (U) can be canonically identified with the trian-
gulated space Δ(C(U)).

From the formal point of view, the system of swarm logistic traces which
is developed by any multi-agent biological system when extending over a spa-
tial region engulfing food portions scattered in the space can be seen as the
triangulation of the space of stimuli. If the number of various kinds of stimuli
is increasing the dimensionality d of Rd typically exceeds 3.



Vol. 16 (2022) Brain and Its Universal Logical Model 677

Figure 1. Three convex open sets U1, U2, U3, presenting food
pieces, are located around the plasmodium of Physarum poly-
cephalum

Example 1. Let us consider an example of expanding the plasmodium of
Physarum polycephalum thorough growing its protoplasmic tubes. Let us take
k convex open sets U = {U1, U2, ..., Uk} in R

3, where
⋃k

i=1 Ui = X, i.e. we
have k external objects which can be detected by the plasmodium of Physarum
polycephalum. Then N (U) ⊂ P ([k]) is a set of possible traces in reaction to k
objects. Each trace from N (U) can be activated (excited) or deactivated. Then
the code word σ ∈ C(U) ⊂ {0, 1}k shows which points of an appropriate trace
are activated (i.e. have the value of 1) – it means that these points participate
in growing the logistic network of Physarum polycephalum.

Let us assume that k = 3, see Fig. 1. After occupying U = {U1, U2, U3}
by protoplasmic tubes of Physarum polycephalum, we obtain N (U) which is
homotopically equivalent to X(U).

After a period of time T , the protoplasmic tubes extend over and cover
the three (or more) open domains representing the food pieces. Thus, they
meet in the body of Physarum polycephalum in such a way that the resulting
nerve stores information about the positions of the food via the dual local
patches U1, U2, U3 which are extended to U1, U2, U3 and which can be further
extended to a single open superset U containing all 3 as subsets. However,
the emerging environment where the meeting takes place is to be changed
into the intuitionistic logic and set theory. Using the terminology of the next
section, U1, U2, U3 and U1, U2, U3 are stages in the sieves over U in the special
sheaf category, where the intersections of open subsets are given by a pullback
square in this category. Hence, in the next two sections we will analyse the
categorical limit of dense resolutions of swarm networks allowing for infinitely
many open sets in covers of regions in X. Such a procedure will allow for
determining the categorical environment where arbitrary many food pieces
and their interactions can be treated consistently.
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3. Intuitionistic Logic as the Limiting Universal Logic for
Multi-Agent Biological Systems

In this section we recognise the logic based on open covers of X thus on the
structure of the nerve N (U). The basic fact is the classic result by Tarski:

Lemma 3.1. If X is any topological space, the collection O(X) of its open
subsets is a complete Heyting algebra H. The underlying order of H is given
by set-theoretic inclusion.

Remark 3.2. Heyting algebras generalise Boolean algebras and they represent
intuitionistic logic (which is infinitely many-valued) in addition to 2- (or finitely
many-) valued logics.

In order to interpret formulas of intuitionistic logic on O(X), we assign
open sets to propositional atoms similarly as in the case of nerve (trace) of
X where we have assigned open sets to points – nodes of the nerve. Let α
be an atomic formula of intuitionistic logic, then �α� is an open set in O(X).
The next step in building the interpretation of complex formulas is given by
the usage of operations from the Heyting algebra O(X) such that for any
propositions α, β, the following relations hold true:

�α ∧ β� = �α� ∩ �β�

�α ∨ β� = �α� ∪ �β�

�α → β� = Int
(
(X \ �α�) ∪ �β�

)

�¬α� = Int(X \ �α�)

�� = X

�⊥� = ∅

(3.1)

where Int(A) is an interior of set A ⊂ X. Hence, the syntax of intuitionistic
propositional logic is reflected in the algebra of open sets in O(X).

Remark 3.3. Note that Lemma 3.1 holds for finite topological spaces X as well
as for infinite ones.

Tarski, 1938 1. If φ is intuitionistically provable in intuitionistic propositional
logic, then, for any topological interpretation (X, � �) in any topological space
X, �φ� = X.

2. If φ is non-provable intuitionistically, then there exist X and an inter-
pretation (X, � �) such that �φ� �= X

Remark 3.4. Note that the following equivalence holds true: φ is intuitionis-
tically provable in intuitionistic propositional logic iff φ(a1, a2, . . . , an) = 
holds true for any Heyting algebra H and a1, a2, . . . , an ∈ H. Since not all
complete Heyting algebras are representable as topologies on X, so this equiv-
alence generalises the property 1. above.

Let L be a standard propositional language of intuitionistic logic. Its for-
mulas φ1, . . . , φn, . . . describe real-time experiments with unicellular or multi-
cellular organisms (from Physarum polycephalum and Amoeba proteus to swarms
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Figure 2. Three convex open sets U1, U2, U3, where U1, U2

present food pieces and U3 presents a repellent which must be
avoided by ants

of social insects and mammals). These experiments are performed by locating
some objects, which can become stimuli (attractants and repellents), at differ-
ent places around the organisms. Then each singular stimulus �φ� represents
a convex open set and it is described by an appropriate atomic proposition
φ. Any logical composition f(φ1, . . . , φn) of atomic formulas φ1, . . . , φn is to
describe the experiment with n objects �φ1�, . . . , �φn� by means of logical com-
position f(�φ1�, . . . , �φn�) in the Heyting algebra.

Assume that there are two external objects: �α� and �β�, which become
the stimuli. Then �α� ∩ �β� means that the swarm occupies both �α� and �β�;
�α� ∪ �β� means that the swarm occupies �α� or �β�; Int(X \ �α�) means that
the swarm avoids the place of �α�.

Example 2. Let us consider an example of building the logistic network by
foraging ants. Suppose that we decide to locate three potential stimuli: two
attractants U1, U2 and one repellent U3, see Fig. 2. Then the universe X =⋃3

i=1 Ui. Let �α� = U3. Then for this experiment the proposition ¬α has the
meaning Int(X \ �α�).

The connection between topology and intuitionistic logic works for all
topologies on spaces which comprise also covers by open sets discussed in the
context of the stimuli space X. The covers were finite so far thus we need to
focus on a way how to extend the finite to infinite covers and check whether
the limiting case would fit with the intuitionistic logic/topology connection.
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From (2.1) it follows that as long as the intersections Ui∩Uj are nonempty,
they contribute non-trivially to the neural code C(U). Let us consider an in-
finite (countable) cover U∗ of X. Extending U to U∗ is given by still finite
intersections of finite subfamilies of U∗ = {U1, U2, . . . Uk . . .}. This horizontal
case leads to the RF∗h code which eventually suppose infinite collections of
finite strings of excitation as members of C(U∗). However, such an excitation
spreading over X in a series of steps, would require an infinite number of ex-
tension which could presumably require an infinite time to be realised, and
this is a true limitation from the point of view of real processes in the brain
or swarm. Even neglecting this difficulty one infers that

C(U) ⊂ Ch(U∗) ⊂ 2ω, where C(U) ⊂ 2[n].

Here σ ∈ Ch(U∗) is finite, though the entire set – the RF code Ch(U∗) – would
be infinite.

The vertical case of describing the excitation extending over infinite open
covers of X relies on assuming infinite intersections of infinite subfamilies
{Uκ}κ∈K⊂I ⊂ U∗,

⋂
κ∈K Uκ �= ∅. Similarly, it holds:

C(U) ⊂ Cv(U∗) ⊂ 2ω,

however, now the RF code Cv(U∗) supposes infinite strings coming from an
infinite vertical depth of intersecting open sets in U∗. The entire set Cv(U∗)
can be finite, but also infinite.

Yet another, the most general case, for infinite extensions is one obtained
in topologies O(X). The point is that any open cover U(X) fulfils

U(X) ⊂ O(X),

moreover, any subcover U(X)|RF ⊂ U(X), so that U(X)|RF ⊂ U(X) ⊂ O(X).
Here U(X)|RF is a collection of open sets Ui ∈ O(X) excited precisely in the
RF code C(U|RF) = C(U). Finally, we arrive at

U(X)|RF ⊂ U(X) ⊂ U∗(X) ⊂ O(X). (3.2)

Besides for any open subdomain Y ⊂ X such that Y =
⋃

i∈I{Ui|Ui ∈ U(X)|RF},
O(Y ) generalises U(X)|RF

U(X)|RF ⊂ O(Y ) ⊂ O(X). (3.3)

The patterns of excitation are coded in open covers of X. The activity, motility
and growing of swarm networks (such as tube nets of Physarum polycephalum)
is often realised in the presence of variety of stimuli like many food portions
scattered in the 3-dimensional space (see also [18]). The activation then meets
and reacts somehow in the members of swarms. The containment relations
above show that the universal environment for considering all the effects by
stimuli is the (σ-algebra of the) topology O(X) of the resulting stimuli space
X. Let RF1 be the RF code of the excitation 1 in the vicinity of stimulus
a1 ∈ X. Similarly, we assign RFk to ak ∈ X. Hence, it holds:

Lemma 3.5. Let X be the stimuli space for a1, . . . , ak, . . . , an and X ⊂ R
d. The

universal algebraic environment for multi-agent biological systems reacting to
the stimuli is represented by O(X).
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Proof. This is a direct conclusion from the relations of (3.2), (3.3):

U(X)|RFk ⊂ O(Yk) ⊂ O(X), k = 1, 2, . . . , n

and from the fact that any open Yk ⊂ X is extended to an open cover
of X. �

Let X be a minimal stimuli space, where stimuli a1, . . . , . . . , an belongs
to it. We thus can formulate the following general property of logic of infinitely
extended open covers.

Theorem 3.6. The universal logic for multi-agent biological systems reacting
to stimuli belonging to the space X is the intuitionistic logic of the topology
O(X).

Proof. The Lemma 3.1 shows that there is the duality between algebraic
structure of O(X) (Heyting algebras) and the intuitionistic logic of it. Then
Lemma 3.5 directly proves the result. �

In the next section we will see that this connection is even more stringent.

4. The Categorical Generalisation

The partial order determined by the inclusion relation on O(X) suggests yet
another interpretation of the logical structure of swarms from Physarum poly-
cephalum and bacteria colonies to social insects and other animals. Namely,
equation (2.1) indicates that for infinite covers with an infinite depth of inter-
sections, there emerge maximal chains of infinite length, linearly ordered by
inclusion. In fact such chains contribute non-trivially to C(U) as in (2.1). Hav-
ing in mind the results of the previous section, we could ask the question about
the logic of such chains. The proper indication is given by the constructions
known from category theory.

To define a category K one needs to specify the sets, or proper classes, of
objects O1 and the morphisms (arrows) O2 between the objects such that the
following properties hold true:

1. The triple product of morphisms α1α2α3 is defined, whenever there are
defined (α1α2)α3, α1(α2α3) and then the associative law takes place:

α1α2α3 = (α1α2)α3 = α1(α2α3), α1, α2, α3 ∈ O2.

2. α1α2α3 is defined, whenever α1α2 and α2α3 are defined.
3. For each α ∈ O2 there exist identities e1, e2 ∈ O2 such that e1α = αe2 =

α.
4. For each object X ∈ O1, there exist an identity eX ∈ O2.
5. For each identity e, as in 3. above, there exists X ∈ O1 such that e = eX .

If both O1 and O2 are actually sets, the category is small, otherwise large. One
can easily verify that (O(X),⊂) is a small category where O1 = O(X) and
f : A ⊃ B is a morphism f ∈ O2.
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Remark 4.1. Given a category K, one defines the opposite category, Kop, with
the same set of objects O1 as K and all arrows with reversed orientations, i.e.
given α ∈ O2 and e1, e2 as in 3. above, then from 4. it follows that there are
objects a1, a2 ∈ O1 such that the arrows α can be seen as starting from a1 and
aiming at a2. Hence, the reverse arrow starts with a2 and aims at a1 and they
precisely form the arrows in Kop.

Remark 4.2. The category of all sets (which is not a set itself) and functions
between them is SET . This is in a sense model category which is, however
based on the 2-valued (classical) Boolean algebra and, consequently, the logic
it determines (its internal logic) is the classical 2-valued logic (e.g. [26]). In
general, the internal logic is often different from classical and in the case of
toposes (the special class of categories resembling SET ), the internal logic is
based on Heyting algebras (e.g. [26]).

Given a small category K, it is a usual practice to study the functors
F : Kop → SET which could shed light on the difference of K and SET . In
particular, the category of all such functors is called presheaf category, depicted
as SETKop

. The so-called ‘sheafification’ which is a modification of a presheaf
category, resulting in the sheaf category, and depicted Sh(K), is another usefull
form of a functor category.

Remark 4.3. All the categories SET , SETO(X)op , Sh(O(X)) are the examples
of toposes [26]. Topos theory is a vast and rich branch of mathematics espe-
cially in foundations of mathematics which bridges many fields like algebra,
logic, geometry, set theory or topology including algebraic topology (e.g. [27]).
Toposes found also their applicability in quantum mechanics and physics in
general.

The construction of the presheaves in SETO(X)op can be based on the
notion of sieves. Our concern here is that sieves are related to maximal chains
in O(X).

Sieves appear when one wants to categorify the notion of covering of an
open set on a topological space. In categories this becomes the covering of an
object by a family of arrows. A sieve S on an object c ∈ O1 is a collection of
arrows S ⊂ O2 such that for arrows g ∈ O2

if f ∈ S, then f ◦ g ∈ S,

whenever the composition above makes sense.
Translating this definition into open sets in X, a sieve on U ∈ O(X) would

be a family of finer open subsets of U along with finer subsets of them and so
on. In this way we, have a collection of maximal chains of open intersecting
subsets. This covering family JO(X) is by itself the categorification of the cover
of U which gives rise to a categorical version of topology – the Grothendieck
topology which always contains the maximal sieve for any U .

Remark 4.4. A Grothendieck topology on a category K is the assignment J :
a → J(a), where a ∈ O1 is an arbitrary object of K and J(a) is a collection of
sieves on a, where following conditions hold trues:
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1. The maximal sieve on a is a member of J(c).
2. Let S1, S2 be sieves on a and S1 ∈ J(a) and S1 ⊃ S2, then S2 ∈ J(a).
3. There exists the sieve R ∈ J(a), which is a composite of sieve S ∈ J(a)

and family of certain sieves, and this R behaves functorially with respect
to the changes of arrows in S and with respect to the changes of the
object a → d (see [26]).

As we noted before, such maximal chains give nontrivial contributions to
C(U∗). From the categorical point of view, sieves are essential building blocks
for construing sheaves on K. Thus, for K = O(X) Grothendieck topologies
and covering families JO(X) of sieves determine categorical sheaves on O(X).
However, the following statement takes place:

Lemma 4.5. For any topological space X the category Sh(O(X), JO(X)) is equiv-
alent to the ordinary category Sh(X) of sheaves on X.

The above lemma holds since the Grothendieck topology JO(X) on O(X)
contains sieves S on U ∈ O(X) where S = {Ui ↪→ U |i ∈ I} such that

S ∈ JO(X)(U) ⇐⇒
⋃

i∈I

Ui = U.

In this way, the maximal sieves give nontrivial contributions to C(U∗) and also
build sheaves on X. That is why we consider Sh(X) as suitable formal gen-
eralisation of O(X) in the context of swarm motility and reaction on stimuli.

Lemma 4.6. There exist canonical embeddings

O(X) → SETKop → Sh(X).

Proof. The embedding O(X) → SETKop

is the Yoneda embedding of a (small)
category to the corresponding category of presheaves. The second embed-
ding SETKop → Sh(X) is derived from the sheafification functor SETKop →
Sh(O(X), J). Then the statement in the lemma follows from Lemma 4.5. �

Theorem 4.7. The limiting logic and set theory of multi-agent biological sys-
tems reacting on stimuli and assuming interactions between them, is given by
the internal logic and set theory of Sh(X), which are intuitionistic.

This result follows from Lemma 4.6 showing that Sh(X) is the limiting
category extending O(X) and from the fact that Sh(X) is a topos whose
internal logic is based on the Heyting algebra O(X). Lemma 4.5 shows that
Sh(X) is equivalent to the category of sheaves on the above Heyting algebra,
while SET is equivalent to Sh({0, 1}) – the category of sheaves on the 2-valued
Boolean algebra. From that point of view it is evident that Sh(X) is essentially
non-classical with intuitionistic internal logic [26]. Being a topos Sh(X) has
the internal set theory which is intuitionistic [26].
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5. Discussion

We have analysed the situation of limiting logic for swarms reacting on stimuli,
with the stimuli space X ⊂ R

d, and assuming the interaction of excitation.
The limiting case has been determined by taking infinite covers of the topo-
logical space X. Firstly, we have shown that the topology O(X) is the object
encompassing a various excitation carried out by systems of open sets in X
and such that we suppose an interaction of excitation. Moreover, the nerves
(traces) of the covers Ui of X correspond to the excitation in the swarm logistic
networks. Next, we have developed the infinite cover case toward categorical
constructions and observed that Sh(O(X)) would be a natural limiting case of
infinite covers. This abstract construction as a category is, however, equivalent
to the ordinary category of sheaves on a topological space. This shows that the
generalisations of X with finite covers to infinite covers of infinite intersections
depths, even though goes through presheaf topos SETO(X)op , and the sheaves
on Heyting algebra O(X), finally leads to the topological space of sheaves on
X. Hence, X → O(X) → Sh(X) is a final description of the generalisations.
Finally, the intuitionistic logic and set theory of the topos Sh(X) is assigned
to this limiting case. We have observed (following [19,20]) that the duality
of the nerve (logistic trace) of cover of X and open neighbourhoods in space
explains the orientation in space of swarms, but it is also characterising the
brains of mammals activity (hyppocampus region) with respect to the space
orientation. That is why it would be quite interesting to push farther this du-
ality over categorical notion of the nerve of category (SETO(X)op) into the
internal topological space and its cover. Possibly intuitionistic logic and inter-
nal spaces in toposes would be the right abstract base for recognising patterns
of functioning of swarms and would find its place in the study of brain activity.

Let us discuss certain choices made in the paper. As a rule, we work
with open covers and open subsets of X. One could instead take closed convex
subsets and cover which generally lead to the similar results. The reason for
such rough equivalence is the version of the nerve theorem based on finite
closed covers of X (see [29, p. 1850]). However, there are some differences
when infinite cover limit is taken as in Secs. 3 and 4. First, for infinite covers
and infinite depth of closed subsets they can intersect in a single point. We
consider this situation unrealistic from the point of view of determining the
localisation region in physical space of stimuli. It is rather certain unsharp
region in R

3, hence open U , resulting as recognized by an organism localization
of a stimulus. Second, the limiting categorical logic of presheaves on partial
order of closed covers of X, is given by a co-topos rather then by the topos
of sheaves. While this difference is rather subtle from the point of view of real
biological systems, still it leads mathematically to the paraconsistent logic and
we do not decide here that such limiting logic cannot be a valid tool for grasping
the behaviour of real systems. This interesting problem is, however, deferred to
be analysed separately. Therefore we postpone the full fledged demonstration
of this mechanism based on examples to a separate publication.
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One could wonder how concrete biological systems based on these univer-
sal mathematical constructions have the chance to aim at unique solution in
the real world. As we believe, and which was not demonstrated decisively here,
the key indication comes from mathematics and partly from physics. These are
optimization processes of the topological constructions, leading to determin-
ing the link between combinatorial, discrete and continuous, or even smooth,
structures of topological spaces [30]. As the result there is not only the nerve of
a topological space which is to be determined and which depends on covers of
X, but also the nerve is the most effective in the algorithmic and computational
sense and as such, it is unique or almost unique [30]. One additional aspect of
the effectiveness of this mechanism relies on the fact known from physics that
a physical space (or 4-dimensional spacetime) is very precisely, if not perfectly,
represented by the 3-dimensional smooth manifold (4-dimensional Minkowski
manifold, respectively) so that the recognition of positions in 3-space is also
very finely grasped by the dual nerve construction. The more thorough pre-
sentation of this mechanism, based on examples, will be presented separately.

In the course of time we are going to construct a simulation model within
the object-oriented programming in the way of [32] to check the exressibility of
our topological construction presented in this paper. Our main motivation was
to propose the broadest possible mathematical framework in terms of category
theory for studying logistic behaviour in space navigation of living beings.

Recently [28] we have found that intuitionism may indeed be a proper fea-
ture of intelligent swarms considered as realising certain computational tasks.
Even the deeper variation on the internal vs. external perspectives led recently
researchers to formulating and analysing the proposal stating that for the ap-
pearance of ‘mind’ as logical manifestation of the structure, i.e. categorical
‘brain’, is responsible for the duality (the pair of adjoint functors) between
categories LANG of categories and MIND of theories [31]. Such a universal
and categorical mechanism of creation meanings by the brain could, in prin-
ciple, serve as roots of consciousness emerging in the structure of brain. This,
however, requires further studies.
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