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Abstract In arithmetic and algebraic geometry, superspecial (s.sp. for short) curves are one of the most important
objects to be studied, with applications to cryptography and coding theory. If g ≥ 4, it is not even known whether
there exists such a curve of genus g in general characteristic p > 0, and in the case of g = 4, several computational
approaches to search for those curves have been proposed. In the genus-4 hyperelliptic case, Kudo-Harashita
proposed a generic algorithm to enumerate all s.sp. curves, and recently Ohashi-Kudo-Harashita presented an
algorithm specific to the case where automorphism group contains the Klein 4-group as a subgroup. In this paper,
we propose an algorithm with complexity Õ(p4) in theory but Õ(p3) in practice to enumerate s.sp. hyperelliptic
curves of genus 4 with automorphism group containing the cyclic group of order 6. By executing the algorithm
over Magma, we enumerate those curves for p up to 1000. We also succeeded in finding a s.sp. hyperelliptic curve
of genus 4 in every p with p ≡ 2 (mod 3).

Keywords Algebraic curves · Hyperelliptic curves · Curves of genus four · Superspecial curves · Automorphism
groups
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1 Introduction

Throughout, all the complexities are measured by the number of arithmetic operations in Fp2 for a prime p, unless

otherwise noted. Soft-O notation Õ omits logarithmic factors, namely we write f (n) = Õ(g(n)) if f (n) =
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g(n)logkn for some k. A curve means a non-singular projective variety of dimension one. Let K be a field of
characteristic p > 0, and K its algebraic closure. A curve C of genus g over K is said to be superspecial (s.sp. for
short) if its Jacobian variety is isomorphic to a product of supersingular elliptic curves. S.sp. curves are of course
important objects in theory, but also in practical applications such as cryptography using algebraic curves, see e.g.,
[5], where s.sp. genus-2 curves are used to construct Hash function.

Given a pair (g, p), only finite s.sp. curves of genus g over Fp exist, and the problem of finding or enumerating
them is known to be classically important. For the field of definition, the most important case is Fp2 , since any s.sp.

curve over K is K -isomorphic to one over Fp2 , see the proof of [8, Theorem 1.1]. For g ≤ 3, the problem is solved
for all p > 0, based on the theory of principally polarized abelian varieties. Specifically, for g = 1 (resp. 2 and
3), Deuring [6] (resp. Ibukiyama-Katsura-Oort [18, Theorem 2.10]) showed that the number of Fp-isomorphism
classes of s.sp. curves is determined by computing the class numbers of a quaternion algebra (resp. quaternion
hermitian lattices). These class numbers were computed in [7] (resp. [16], [15]) for g = 1 (resp. 2, 3).

On the other hand, the problem for g ≥ 4 has not been solved in all primes, but in recent years, Kudo-Harashita
developed several algorithms to count genus-4 or 5 s.sp. curves [21], [22], [24]. In particular, an algorithm for
enumerating s.sp. hyperelliptic curves of genus 4 was proposed in [22] and [23], but is practical only for small
p (in fact p ≤ 23), due to the cost of solving multivariate systems (cf. Sect. 2.4 below). Recently, Ohashi-Kudo-
Harashita [34] (resp. Kudo-Harashita-Howe [25]) presented an algorithm for enumerating s.sp. hyperelliptic (resp.
non-hyperelliptic) curves of genus 4 with automorphism group containing a subgroup isomorphic to the Klein
4-group V4 = C2 ×C2, with complexity O(p3) (resp. Õ(p4)), where Cn denotes the cyclic group of order n. They
also succeeded in enumerating such s.sp. curves for every prime p up to 200.

This paper proposes a more efficient algorithm than [22] to produce s.sp. hyperelliptic curves of genus 4, which is
practical for p extremely larger than some number mentioned in [22]. For this, we focus on a family of hyperelliptic
curves given by Ha,b : y2 = fa,b(x):=x10 + x7 + ax4 + bx , where a, b ∈ Fp2 . This kind of a curve appears
as a s.sp. curve over F172 enumerated in [22] (see also Table 2 in Sect. 2.4 below), and it tends to be s.sp. from
our preliminary computation; by exhaustive search for (a, b), we confirmed that there exists (resp. does not exist)
(a, b) such that Ha,b is s.sp. for any 17 ≤ p < 100 with p ≡ 2 mod 3 (resp. p ≡ 1 mod 3). We also note that the
full (resp. reduced) automorphism group of Ha,b contains a subgroup isomorphic to C6 (resp. C3), see Theorem
2.1.5 for a complete classification of reduced and full automorphism groups of hyperelliptic curves of genus 4.
Note that the proof of Theorem 2.1.5 is given in the appendix of the preprint version of this paper [26]. With this
classification, we see that our family Ha,b is included in the cases 3, 7, and 9 of Table 1, while Ohashi-Kudo-
Harashita’s recent work [34] treats the cases 2-1, 4-1, 5, 6, 8, and 10 of the table. A relationship between Ha,b and
the family CA,B : y2 = x10 + Ax7 + Bx4 + x in the cases 3, 7, and 9 of Table 1 will be described in Sect. 3.1 below.

Here, main results of this paper are summarized in Theorems A and B below.

Theorem A There exists an algorithm (Main Algorithm in Theorem 4.1.1) with complexity Õ(p4) to enumerate
the Fp-isomorphism classes of all s.sp. Ha,b’s with a, b ∈ Fp2 . Assuming the gcd of resultants appearing in the

algorithm has degree O(p), the complexity becomes Õ(p3).

While the outline of our algorithm is same as that of our previous algorithm in [22], we shall develop various
computational techniques specific to our family Ha,b. Specifically, we prove in Lemma 3.2.1 that the Cartier-
Manin matrix Ma,b of Ha,b with parameters a and b can be computed very efficiently, in O(p3), only with linear
algebra. We then solve the equation Ma,b = 0 in Õ(p4) with bivariate resultants, where the complexity becomes
Õ(p3) assuming the gcd of computed resultants has degree O(p); we see from our computational results that this
assumption is practical. To make isomorphism classification of s.sp. Ha,b’s obtained as above efficient, we also
present some criteria. For instance, it will be proved in Lemma 3.1.1 that two curves Ha,b and Ha′,b′ with reduced
automorphism groupsC3 orC9 are isomorphic, then (a, b) = (a′, b′). These criteria reduce the cost of isomorphism
classification from O(p4) to O(p2) (in practice O(p)).
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By implementing and executing our algorithm on Magma [1], we succeeded in enumerating s.sp. Ha,b’s with
a, b ∈ Fp2 up to isomorphisms over Fp for every prime p between 17 and 1000. More precisely, we obtain the
following computational results:

Theorem B For every prime p with 17 ≤ p < 1000, the number of Fp-isomorphism classes of s.sp. Ha,b’s with
a, b ∈ Fp2 are summarized in Table 3 below. In particular, for each 17 ≤ p < 1000 with p ≡ 2 mod 3 (resp.
p ≡ 1 mod 3), there exists (resp. does not exist) (a, b) ∈ F

2
p2 such that Ha,b is a s.sp. hyperelliptic curve.

The upper bound on p in Theorem B is much larger than those of [22] and [23], and it can be increased easily;
for instance, on a PC with macOS Monterey 12.0.1, at 2.6 GHz CPU 6 Core (Intel Core i7) and 16GB memory, it
took 6,300 s (about 1.75 h) in total for computing the Fp-isomorphicm classes of s.sp. Ha,b’s with a, b ∈ Fp2 for
all 17 ≤ p < 1000, and the execution time for p = 997 was only 195 seconds.

The rest of this paper is organized as follows. Section 2 is devoted to preliminaries, where we review some known
facts on hyperelliptic curves and their automorphisms, Cartier-Manin matrices, and enumeration results in [22],
[23] on s.sp. hyperelliptic curves. Section 3 studies our parametric family Ha,b : y2 = x10 + x7 + ax4 + bx . In
Sect. 4, we present the main algorithm and computational results. Section 5 is conclusion.

2 Preliminaries

This section reviews some known facts on hyperelliptic curves and their automorphisms, and recalls the definition
of Cartier-Manin matrices and the superspeciality of curves. In particular, a classification of hyperelliptic curves
of genus 4 in terms of automorphism groups will be recalled in Sect. 2.1. In Sect. 2.2, we will describe a method
to compute the Cartier-Manin matrix of a hyperelliptic curve. Section 2.3 briefly reviews Elkin’s results [9] on the
rank of the Cartier operator of a cyclic cover. In Sect. 2.4, we also review Kudo-Harashita’s algorithm [22], [23] to
enumerate superspecial hyperelliptic curves, and their enumeration results.

Let K be a field of characteristic p with p �= 2, and k = K its algebraic closure. For n ≥ 2, we denote
respectively by Cn , Dn , An , V4, and Q8 the cyclic group of order n, the dihedral group of order 2n, the alternating
group of order n!/2, the Klein 4-group C2 × C2, and the quaternion group.

2.1 Hyperelliptic Curves and Their Isomorphisms

For a curve C of genus g ≥ 2 over K , let AutK (C) denote the automorphism group of C over K , and Autk(C)

is denoted simply by Aut(C). It is well-known that Aut(C) is finite for an arbitrary C , and has size ≤ 16g4

unless C is a Hermitian curve [38]. If the characteristic of K exceeds g + 1, we have a quite more strong bound
Aut(C) ≤ 84(g −1), see [35]. A hyperelliptic curve H over K is a curve H over K admitting a degree-2 morphism
over K from H to the projective line P

1
k . Let ι be the hyperelliptic involution of H , that is, the unique involution

over k on C such that the quotient curve C/〈ι〉 is rational. We call the quotient group Aut(H):=Aut(H)/〈ι〉 the
reduced automorphism group of H , while Aut(H) and AutK (H) are often called full automorphism groups.

A typical way to represent a hyperelliptic curve H explicitly is realizing it as the desingularization of the projective
closure of an affine plane curve y2 = f (x), where f (x) ∈ k[x] is a separable polynomial of degree 2g + 1 or
2g +2. In this situation, we simply write H : y2 = f (x), and call the equation y2 = f (x) a (hyperelliptic) equation
of H . We can also write down an equation of H in terms of a field K of definition for H :

Lemma 2.1.1 ( [22, Lemma 2]) Let H be a hyperelliptic curve of genus g over K . Assume that p and 2g + 2 are
coprime, and let ε ∈ K ×

� (K ×)2. Then H is birational to the projective closure of

cy2 = f (x) = x2g+2 + bx2g + a2g−1x2g−1 + · · · + a1x + a0, (2.1.1)

where ai ∈ K for 0 ≤ i ≤ 2g − 1, and where b = 0, 1, ε and c = 1, ε.
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The following lemma gives a criterion to test whether two hyperelliptic curves over K are K -isomorphic to each
other, or not:

Lemma 2.1.2 ( [28, Section 1.2] or [22, Lemma 1]) Let Hi : ci y2 = fi (x) be hyperelliptic curves of genus g over
K for i = 1 and 2, where ci y2 = fi (x) is of the form (2.1.1). For any K -isomorphism σ : H1 → H2, there exists
(P, λ) ∈ GL2(K ) × K × with

P =
(

α β

γ δ

)

such that

σ(x, y) =
(

αx + β

γ x + δ
,

λy

(γ x + δ)g+1

)

for all (x, y) on H1. The representation of σ is unique up to the equivalence (P, λ) ∼ (μP, μg+1λ) for μ ∈ K ×.

Remark 2.1.3 Considering a hyperelliptic curve H : y2 = f (x) over an algebraically closed field k, we may assume
that the coefficients of the highest and lowest degree terms in f (x) are 1. Indeed, writing f (x) = ∑d

i=s ai xi with

d = 2g + 1, 2g + 2, s = 0, 1, ad �= 0, and as �= 0, an isomorphism (x, y) �→
(

αx
δ

,
y

δg+1

)
transforms y2 = f (x)

into y2 = ∑d
i=s aiα

iδ2 g+2−i x i choosing α and δ so that adαdδ2 g+2−d = 1 and asα
sδ2 g+2−s = 1, as desired.

As a particular case of Lemma 2.1.2, any K -automorphism of a hyperelliptic curve H of genus g over K can be
represented by (P, λ) ∈ GL2(K )×K × as in the lemma. Based on this, we can compute automorphisms of a given H
by e.g., the Gröbner basis computation with help of computer calculation (cf. [31] and [23, Section 4]). For instance,
the computer algebra system Magma [1] has the function AutomorphismsOfHyperellipticCurve imple-
mented by Lercier-Sijsling-Ritzenthaler [31]. Once all K -automorphisms of H are computed, the group structure
of AutK (H) can be also determined.

When K is algebraically closed, namely k = K , possible finite groups isomorphic to Aut(H) can be determined
from ones isomorphic to the reduced automorhism group Aut(H), which is canonically embedded into the projective
linear group PGL2(k) (see e.g., [32, Section 2.2] for an explicit description). Indeed, in the case of characteristic
zero, Shaska [36], [37] applied a classification of finite subgroups of PGL2 to determining possible types of Aut(H),
and then he also found an equation (in reduced form) defining H for each type and the structure of Aut(H), with the
action of elements in Aut(H) as matrices. His idea can be applied to the positive characteristic case, with carefully
considering some exceptional cases depending on p and g such as the existence of p-subgroups of PGL2. For the
case of genus 2, 3, and 4, explicit classifications in characteristic p are given in [19] (and [18]), [30, Table 2], and
[24, Table 6] respectively.

We here recall the classification in the case where g = 4. A key ingredient for the classification is the fact
(this is noted in [12, Section 2] without proof) that any automorphism σ of a hyperelliptic curve is represented by
diag(μ, 1) ∈ GL2(k) for a primitive 
-th root μ of unity with 
 = ord(σ ) (the order of σ as an element of Aut(H)),
if 
 is coprime to the characteristic of k. An explicit proof of this fact is given in [32], and we here state assertions
only:

Proposition 2.1.4 ( [32, Proposition 2.2.2]) Let H be a hyperelliptic curve of genus g over an algebraically closed
field k, and 
 a positive integer coprime to char(k). Assume that σ has order 
 in the reduced automorphism group
of H. Then there exists a hyperelliptic curve H ′ : y2 = f (x) over k and an isomorphism ρ : H ′ → H such that
the automorphism ρ−1σρ of H ′ is represented by (diag(μ, 1), μ′) ∈ GL2(k) × k×, where μ is a primitive 
-th root
of 1, and where μ′ is an element satisfying (μ′)
 = 1 or −1. We also have μ′ = ±μg+1 if deg( f ) = 2 g + 2, and
μ′ = ±√

μ2 g+1 if deg( f ) = 2 g + 1. Moreover, σ is the hyperelliptic involution (i.e., 
 = 1) if and only if μ = 1.

Based on this proposition together with the classification of subgroups of PGL2(k), we can determine possible
finite groups isomorphic to the reduced automorphism groups of hyperelliptic curves over k of given genus g. In
the case where g = 4, we can prove the following theorem:
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Table 1 Possible finite groups isomorphic to Aut(H) for hyperelliptic curves H of genus 4 over an algebraically closed field k of
characteristic p ≥ 7, and hyperelliptic equations y2 = f (x) defining H , where A, B, C, D ∈ k

Type Aut(H) #Aut(H) y2 = f (x) birational to H Aut(H) #Aut(H)

1 {0} 1 y2 = (square-free polynomial inxof degree 9 or 10) C2 2

2-1 C2 2 y2 = x10 + Ax8 + Bx6 + Cx4 + Dx2 + 1 V4 4

2-2 C2 2 y2 = x9 + Ax7 + Bx5 + Cx3 + x C4 4

3 C3 3 y2 = x10 + Ax7 + Bx4 + x C6 6

4-1 V4 4 y2 = x10 + Ax8 + Bx6 + Bx4 + Ax2 + 1, or D4 8

y2 = x9 + Ax7 + Bx5 + Ax3 + x 8

4-2 V4 4 y2 = x(x4 − 1)(x4 + Ax2 + 1) Q8 8

5 D4 8 y2 = x9 + Ax5 + x D8 16

6 D5 10 y2 = x10 + Ax5 + 1 D10 20

7 A4 12 y2 = x(x4 − 1)(x4 + 2
√−3x2 + 1) SL2(F3) 24

8 D8 16 y2 = x9 + x C16 � C2 32

9 C9 9 y2 = x10 + x C18 18

10 D10 20 y2 = x10 + 1 C5 � D4 40

Theorem 2.1.5 ( [26, Theorem C]) Assume that p ≥ 7. The reduced automorphism group Aut(H) of a hyperelliptic
curve H of genus 4 over an algebraically closed field k of characteristic p is isomorphic to either of the 10 finite
groups listed in Table 1. In each type of Aut(H), the hyperelliptic curve H is isomorphic to y2 = f (x) given in the
fourth column of Table 1, and the finite group isomorphic to Aut(H) is provided in the fifth column of the table.

In particular, the reduced automorphism group contains a subgroup isomorphic to C3 (or equivalently Aut(H)

contains a subgroup isomorphic to C6), then it is isomorphic to C3, C9 or A4. Moreover, in each case, H is
isomorphic to y2 = f (x) given as follows:

• (Aut(H)) ∼= C3) y2 = x10 + Ax7 + Bx4 + x for some A, B ∈ k with (A, B) �= (0, 0).
• (Aut(H)) ∼= C9) y2 = x10 + x .
• (Aut(H)) ∼= A4) y2 = x(x4 − 1)(x4 + 2

√−3x2 + 1).

2.2 Cartier–Manin Matrices and Superspeciality

In this section, we review how to compute the Cartier-Manin matrix of a hyperelliptic curve.
We start with recalling the definition of the Cartier operator and the Cartier-Manin matrix for a general curve C

of genus g over an algebraically closed field k which admits an affine plane model. Assume for simplicity that C
is birational to an affine plane (possibly singular) curve F(x, y) = 0 in the affine plane A

2 over k with coordinate
ring R:=k[x, y]/〈F〉, where F is an irreducible polynomial over k in x and y. We can take x as a separating
element, i.e., x is transcendental over k, and the function field k(C) is a finite separable extension of k(x). We may
identify k(C) and the field of fractions K :=k(x, y) for R. Under this identification, every regular differential form
ω ∈ H0(C,1

C ) is uniquely written as ω = dφ + ηpx p−1dx for φ, η ∈ k(C). Here we define a map

C : H0(C,1
C ) → H0(C,1

C )

by C (ω):=ηdx , and call it the (modified) Cartier operator on H0(C,1
C ). Moreover, the matrix representing C

with respect to a basis A for the g-dimensional space H0(C,1
C ) is called the Cartier-Manin matrix of C (with

respect to the basis A). We here also recall Nygaard’s criterion for superspeciality in terms of the Cartier operator:
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Theorem 2.2.1 ( [33, Theorem 4.1]) With notation as above, the Jacobian variety J (C) of a curve C is isomorphic
to a product of supersingular elliptic curves if and only if C vanishes.

In the case where C is hyperelliptic, we have a well-known explicit formula (Lemma 2.2.2 below) by Yui [41]
to compute the Cartier-Manin matrix of C , and so recall it here. As in the previous subsection, assume that C is a
hyperelliptic curve of genus g over k defined by y2 = f (x), where f (x) is a polynomial in k[x] of degree 2g + 1
or 2g + 2 with no multiple root. First, it is well-known that a basis of H0(C,1

C ) is given by

A =
{
ω j := x j−1

y
dx : 1 ≤ j ≤ g

}
.

Writing f (x)(p−1)/2 = ∑

 c
x
 for c
 ∈ k, it follows from y p−1 = f (x)(p−1)/2 in k(C) that

ω j = y−p f (x)(p−1)/2x j−1dx

= d

⎛
⎜⎜⎝y−p

∑



j+
 �≡0 (mod p)

c


j + 

x j+


⎞
⎟⎟⎠ +

∑
i≥1

cip− j
x (i−1)p

y p
x p−1dx .

Therefore

C (ω j ) =
g∑

i=1

c1/p
ip− jωi

by the definition of the Cartier operator described above, and hence we have the following lemma:

Lemma 2.2.2 ( [41, Section 2]) With notation as above, the Cartier-Manin matrix of C is the g × g matrix whose
(i, j)-entry is the coefficient cip− j of x pi− j in f (p−1)/2 for 1 ≤ i, j ≤ g. Hence, by Theorem 2.2.1, C is superspecial
if and only if the coefficients of x pi− j in f (p−1)/2 are equal to 0 for all pairs of integers 1 ≤ i, j ≤ g.

Example 2.2.3 Consider the hyperelliptic curves H1 : y2 = x2g+2 + x , H2 : y2 = x2 g+1 + x , and H3 : y2 =
x2 g+2 + 1 over Fp. The reduced automorphism group of the first curve has a subgroup isomorphic to C2g+1, and
those of the second and third ones are isomorphic to D2g and D2g+2 respectively, by [26, Lemma A.2.1]. Since

(x2 g+2+x)
p−1

2 = ∑ p−1
2


=0

( p−1
2



)
x (2 g+1)
+ p−1

2 , the Cartier-Manin matrix of H1 is zero if i p− j �≡ p−1
2 (mod 2 g+1)

for any 1 ≤ i, j ≤ g. For instance, if p ≡ −1 (mod 2g + 1), then H1 is superspecial. Similarly, H2 (resp. H3) is
superspecial if p ≡ −1 (mod 2 g) (resp. p ≡ −1 (mod 2 g + 2)).

More strongly, it is proved in [39] that H1 (resp. H2) is Fp2 -maximal if and only if p ≡ −1 (mod 2 g +1) (resp.
p ≡ −1, 2 g + 1 (mod 4 g)).

Lemma 2.2.2 reduces the computation of the Cartier-Manin matrix of C : y2 = f (x) into that of g2 (particular)
coefficients in the power f (p−1)/2. In the case where all the coefficients of f belong to a finite field (there is no
parameter in the coefficients), several efficient algorithms to compute the coefficients have been proposed by Bostan-
Gaudry-Schost [2], Komoto-Kozaki-Matsuo [20], and Harvey-Sutherland [13], [14]. These algorithms commonly
use a linear recurrence by Flajolet-Salvy [11] (described also in e.g., [2, Section 4]) which is used in the general
method to compute the power of a given univariate polynomial.

We here recall the recurrence since it will be required to analyze the complexity of our main algorithm. Let h(x)

be a univariate polynomial of degree d, and let dh
dx denote its derivative with respect to x . We also denote by hi its

xi -coefficient for each 0 ≤ i ≤ d, say h(x) = ∑d
i=0 hi xi . Let n be a positive integer, and we consider to compute

the power hn . For each 
 with 0 ≤ 
 ≤ (n + 1)d, it follows from hn+1 = hhn that

(hn+1)
 =
d∑

j=0

h j (h
n)
− j , (2.2.1)
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where (hn)−d = (hn)−d+1 = · · · = (hn)−1 = (hn)nd+1 = (hn)nd+2 = · · · = (hn)(n+1)d = 0. On the other hand,
it also follows from d

dx (hn+1) = (n + 1) dh
dx · hn that


(hn+1)
 = (n + 1)

d−1∑
i=0

(
dh

dx

)
i
(hn)
−1−i = (n + 1)

d∑
j=1

jh j (h
n)
− j (2.2.2)

by comparing the x
−1-coefficient. Multiplying (2.2.1) by 
 and subtracting (2.2.2), we have a linear recurrence
d∑

j=0

(nj − 
 + j)h j (h
n)
− j = 0, (2.2.3)

equivalently,


h0(h
n)
 =

d∑
j=1

(nj − 
 + j)h j (h
n)
− j .

Thus, if both h0 and 
 are not equal to zero in the coefficient ring of h, the coefficient (hn)
 is a linear combination
of d lower-degree coefficients (hn)
−1, . . . , (hn)
−d , say

(hn)
 =
d∑

j=1

nj − 
 + j

h0

h j (h

n)
− j , (2.2.4)

and hence

U
:=

⎛
⎜⎜⎜⎝

(hn)
−d+1

(hn)
−d+2
...

(hn)


⎞
⎟⎟⎟⎠ = A(
)U
−1 = A(
)A(
 − 1) · · · A(1)U0, (2.2.5)

where we set

A(
):=

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .

0 1
rd(
) rd−1(
) · · · r2(
) r1(
)

⎞
⎟⎟⎟⎟⎟⎠

with

r j (
) = (nj − 
 + j)h j

h0


for 1 ≤ j ≤ d . Note that blank entries in A(
) mean zero. Therefore, the coefficients (hn)
 for all 1 ≤ 
 ≤ m can
be obtained by recursively computing the vectors U
 with (2.2.5), starting from 
 = 1 up to m, for the initial value
U0 with (hn)−d+1 = (hn)−d+2 = · · · = (hn)−1 = 0 and (hn)0 = (h0)

n . Note that each U
 is computed unless

 �= 0 in the coefficient ring of h. Therefore, this recursive computation is always valid for the characteristic 0 case,
but it may not be applied directly in the positive characteristic case since the value of 
 can be zero in the coefficient
ring of h: One solution is lifting to characteristic 0 such as Fp to Qp.

This method (with lifting to characteristic zero if necessary) can be applied to computing the Cartier-Manin
matrix of the hyperelliptic curve C : y2 = f (x) as follows: If f0 �= 0, simply put n = (p − 1)/2 and h = f , and
then the (i p − j)-th coefficients ( f n)i p− j with 1 ≤ i, j ≤ g are computed as entries of U
 for 1 ≤ 
 ≤ gp − 1.

Otherwise, putting f = xh(x), it follows from f n = xnhn that ( f n)i p− j is equal to the
(

(2i−1)p−(2 j−1)
2

)
-th

coefficient of hn . Hence, it suffices to compute U
 for 1 ≤ 
 ≤ (2 g−1)p−1
2 .

Bostan-Gaudry-Schost [2] constructed an efficient algorithm to compute the Cartier-Manin matrix of C over
Fpr , by using the above recurrences with lifting to the unramified extension of Qp of degree r .
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Remark 2.2.4 Unlike (2.2.4), each coefficient (hn)
 can be represented as a linear combination of d higher-degree
coefficients (hn)
+1, . . . , (hn)
+d . More precisely, it follows from (2.2.3) that

(nd − 
 + d)hd(hn)
−d = −
d−1∑
j=0

(nj − 
 + j)h j (h
n)
− j .

Replacing 
 by 
 + d, one has

(nd − 
)hd(hn)
 = −
d−1∑
j=0

(nj − 
 − (d − j))h j (h
n)
+d− j

for −d ≤ 
 ≤ nd. Putting i = d − j , one also has

(nd − 
)hd(hn)
 = −
d∑

i=1

(n(d − i) − 
 − i)hd−i (h
n)
+i (2.2.6)

for −d ≤ 
 ≤ nd. Therefore, we can compute (hn)
 from (hn)
+1, . . . , (hn)
+d as in (2.2.4) unless nd − 
 �= 0,
and can consider a recursive computation as in (2.2.5) starting from (hn)nd = (hd)n .

2.3 Cyclic Covers of the Projective Line and Their Cartier Operators

In this subsection, we briefly review Elkin’s results [9] on the rank of the Cartier operator for a cyclic cover, since
they will be applied in Sect. 3.2 below to our family of hyperelliptic curves Ha,b having order-6 automorphisms.

Let C be a (non-singular) curve of genus g over an algebraically closed field k of characteristic p > 2. Assume
that there exists a ramified Galois cover π : C → P

1 of degree n, and let r be the number of ramification points
in P

1 of π , where n is coprime to p. In this case, for each ramification point Pi in P
1of π , its preimage π−1({Pi })

consists of n/vi branched points in C with the same ramification index vi with 2 ≤ vi ≤ n dividing n. By Hurwitz’s
formula, we have

2g − 2 + 2n =
r∑

i=1

n

vi
(vi − 1),

and C is birational to the homogenization of

Y n = (X − a1)
n1 · · · (X − ar )

nr (2.3.1)

for some mutually distinct elements a1, . . . , ar ∈ k, and some integers ni with 1 ≤ ni < n, vi = n/gcd(n, ni ),
gcd(n, n1, . . . , nr ) = 1, and

∑r
i=1 ni ≡ 0 (mod n). In this case, we say that C → P

1 (or C simply) is a cyclic
cover of type (n; n1, . . . , nr ).

The group of n-th roots of unity in k acts on H0(C,1
C ). More precisely, let ζn be a primitive n-th root of

unity in k, and δ the automorphism on C defined by (X, Y ) �→ (X, ζ−1
n Y ) (namely δ is a generator of Aut(C)).

Then δ induces an automorphism δ∗ of the linear space H0(C,1
C ). Denoting by Di the ζ i

n-eigenspace of δ∗, we
decompose

H0(C,1
C ) =

n−1⊕
i=0

Di , (2.3.2)

where the dimension di of Di is given as

di =
⎛
⎝ r∑

j=1

(in j mod n)

n

⎞
⎠ − 1. (2.3.3)
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By the p−1-linearity of the Cartier operator C , we have C (λpiω) = λiC (ω) for any differential ω, and thus

C (Dpi mod n) ⊂ Di (2.3.4)

for every 0 ≤ i ≤ n − 1.
By the decomposition (2.3.2), we have

rank(C ) =
n−1∑
i=0

dim(C (Di )), (2.3.5)

each term of which satisfies the following:

Theorem 2.3.1 ( [9, Theorem 1.1]) With notation as above, we have the following inequalities:

min(2�di/p�, dσ(i)) ≤ dim(C (Di )) ≤ min(di , dσ(i)),

where �·� denotes the floor function, and where σ is the inverse of a permutation map on the set {0, 1, . . . , n − 1}
given by i �→ pi mod n.

Therefore, it follows from (2.3.5) that we obtain:

n−1∑
i=0

min(2�di/p�, dσ(i)) ≤ rank(C ) ≤
n−1∑
i=0

min(di , dσ(i)),

see [9, Corollary 4.3].

2.4 Kudo-Harashita’s Enumeration of Superspecial Hyperelliptic Curves

Based on Lemmas 2.1.1, 2.1.2, and 2.2.2, an algorithm for enumerating superspecial hyperelliptic curves over
K = Fq with q = p or p2 was proposed by Kudo-Harashita [22], [23], and it consists of the following three steps:

1. Regarding unknown coefficients in (2.1.1) as variables, compute the Cartier-Manin matrix of H given in Lemma
2.2.2.

2. Fixed constants b and c in (2.1.1), compute the roots over Fq of the multivariate system “the Cartier-Manin
matrix is zero” with 2g variables a2 g−1, . . . , a0 by the hybrid approach [4] mixing Gröbner basis computation
and exhaustive search.

3. Classify the collected curves corresponding to the roots of the system into isomorphism classes, by Lemma
2.1.2.

Kudo-Harashita implemented the algorithm on Magma [1], and executed it for the case g = 4 with q =
112, 132, 172, 192, 23. According to [23, Section 3.1], they succeeded in finishing required computation within
a day in total. The main results in [22] and [23] are the following:

Theorem 2.4.1 ( [22, Theorem 1]) There is no superspecial hyperelliptic curve of genus 4 in characteristic p with
p ≤ 13.

Theorem 2.4.2 ( [22, Theorem 2]) There exist precisely 5 (resp. 25) superspecial hyperelliptic curves of genus
4 over F17 (resp. F172) up to isomorphism over F17 (resp. F172). Moreover, there exist precisely 2 superspecial
hyperelliptic curves of genus 4 over F17 up to isomorphism.

Theorem 2.4.3 ( [22, Theorem 3], [23, Theorem 3]) There exist precisely 12 (resp. 18) superspecial hyperelliptic
curves of genus 4 over F19 (resp. F192) up to isomorphism over F19 (resp. F192). Moreover, there exist precisely 2
superspecial hyperelliptic curves of genus 4 over F19 up to isomorphism.
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Table 2 The Fp-isomorphism classes of all superspecial hyperelliptic curves H of genus 4 over the prime field Fp for p = 17, 19, and
23

p Equation of H representing an isomorphism class Aut(H) Aut(H) Case in Table 1

17 y2 = x10 + x C9 C18 9

y2 = x10 + x7 + 13x4 + 12x A4 SL2(F3) 7

19 y2 = x10 + 1 D10 C5 � D4 10

y2 = x10 + x7 + 4x6 + 15x5 + 6x4 + 8x3 + 5x2 + 12x + 1 V4 D4 4-1

23 y2 = x10 + x7 + 3x4 + 10x C3 C6 3

y2 = x10 + x7 + 18x4 + 6x A4 SL2(F3) 7

y2 = x10 + x7 + 5x6 + 3x5 + 21x4 + 3x3 + 9x2 + 4x + 21 V4 D4 4-1

y2 = x10 + x7 + 9x6 + 11x5 + 19x4 + 10x3 + 16x2 + 8x + 21 C2 V4 2-1

Theorem 2.4.4 ( [23, Theorem 4]) There exist precisely 14 superspecial hyperelliptic curves of genus 4 over F23

up to isomorphism over F23. Moreover, there exist precisely 4 superspecial hyperelliptic curves of genus 4 over F23

up to isomorphism over F23.

As examples, the Fp-isomorphism classes of superspecial hyperelliptic curves of genus 4 defined over the prime
field Fp are summarized in Table 2. Note that the reduced automorphism group of every superspecial curve in Table
2 is non-trivial.

While Kudo-Harashita succeeded in enumerating superspecial hyperelliptic curves for concrete p, the complexity
of their algorithm has not been investigated, due to the difficulty of estimating the cost of Gröbner basis computation.
In fact, it might be exponential with respect to p, since the multivariate system to be solved in Step 2 has the maximal
total-degree (p − 1)/2. Moreover, Step 3 might also be costly, due to the growth of the number of solutions found
in Step 2.

To overcome the limitation of the enumeration in practical time, Ohashi-Kudo-Harashita [34] recently proposed
an efficient algorithm with complexity O(p3) for enumerating superspecial hyperelliptic curves of genus 4, focusing
on the space of those curves with extra involution (see also [32] for the genus-3 case, and [25] for the genus-4 non-
hyperelliptic case). Namely, the algorithm in [34] treats just the case 2-1 (and the cases 4-1, 5, 6, 8, 10) of Table 1,
i.e., Aut(H) ⊃ V4 whereas this paper focuses on the cases 3, 7, and 9, i.e., Aut(H) ⊃ C6.

3 Hyperelliptic Curves of Genus Four with Automorphism Group Containing C6

Let K be a field of characteristic p with p ≥ 7, and k = K its algebraic closure. Assume that K contains Fp2 .
In this section, we study hyperelliptic curves of genus 4 over K with automorphism group containing the cyclic
group of order 6, namely the cases 3, 7, and 9 of Table 1 in Theorem 2.1.5. In particular, we focus on the following
parametric family of hyperelliptic curves of genus 4:

Ha,b : y2 = fa,b(x):=x10 + x7 + ax4 + bx, (3.0.1)

where a, b ∈ k. The reason why we focus on this family is described in Sect. 1, and we will use this family in
the main algorithm provided in Sect. 4 below. Let ι be the hyperelliptic involution of Ha,b, say (x, y) → (x,−y).
Denoting by ζ3 a primitive 3rd root of unity in k, this curve has an order-3 automorphism σ3 : (x, y) �→ (ζ3x, ζ 2

3 y)

represented by (A, λ) with A = diag(ζ3, 1) and λ = ζ 2
3 . The automorphism σ6 := σ3 ◦ ι has order-6, say

σ6 : (x, y) → (ζ3x,−ζ 2
3 y). Note that ζ3 ∈ Fp2 since ζ3 is a root of x2 + x + 1 ∈ Fp[x]. It is also straightforward

that there exists a degree-3 map Ha,b → Ha,b/〈σ3〉, where the quotient curve Ha,b/〈σ3〉 is a genus-one curve given
by Y 2 = X (X3 + X2 + aX + b).
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3.1 Our Paramteric Family Ha,b : y2 = x10 + x7 + ax4 + bx

We start with describing a relationship between Ha,b and CA,B : y2 = x10 + Ax7 + Bx4 + x in Table 1, in
particular a merit to use Ha,b, not CA,B , in our enumeration of superspecial curves. Recall from Theorem 2.1.5 that
any hyperelliptic curve H of genus 4 over K with Aut(H) ⊃ C6 is k-isomorphic to CA,B for some A, B ∈ k. Note
that A or B not necessarily belongs to K , but it follows from the proof of Proposition 2.1.4 that they belong to a finite
extension K ′ of K , and we can take K ′ so that it does not depend on a nor b but only on g and K . For the central
topic of this paper, we can use the family CA,B by restricting ourselves to the case where A, B ∈ Fp2 . However,
different choices of A and B lead to isomorphic curves, which causes that the isomorphism classification might be
inefficient. (This kind of question also motivates the notion of “representative family”, see [29] for the case of genus
3.) For example, over F292 , the extension of F29 defined by t2 +24t +1, the curves y2 = x10 +11x7 +7x4 + x and
y2 = x10 + (9t + 1)x7 + (18t + 24)x4 + x are isomorphic to each other, where the authors learned this example
from one of the reviewers.

On the other hand, the curve CA,B for A, B ∈ K ′ with A �= 0 is k-isomorphic to Ha,b for some a, b ∈ K ′,
so that the family Ha,b for a, b ∈ Fp2 covers the family CA,B for A, B ∈ Fp2 with A �= 0. Indeed, taking δ ∈ k
so that δ3 = A−1, the isomorphism (x, y) �→ ( x

δ
,

y
δg+1 ) transforms CA,B into y2 = x10 + x7 + Bδ6x4 + δ9x

whose coefficients of x4 and x belong to K ′ by δ3 ∈ K ′. Although the family Ha,b for a, b ∈ K (as well as CA,B

for A, B ∈ K ) does not represents all curves over K whose automorphism group contains C6, we can see by the
following lemma that it is better behaved with respect to isomorphism classes than CA,B :

Lemma 3.1.1 Let a and b be elements in k. If two hyperelliptic curves Ha,b and Ha′,b′ with reduced automorphism
groups C3 or C9 are isomorphic, then (a, b) = (a′, b′).

Proof Assume that there exists an isomorphism ρ : Ha,b → Ha′,b′ . Then ρ is represented by (P, λ) ∈ GL2(k)×k×
as in Lemma 2.1.2. Let ζ := ζ3 be a primitive 3rd root of unity in k. For an order-3 automorphism σ3 : (x, y) �→
(ζ x, ζ 2 y) on Ha,b represented by A:=diag(ζ, 1), we set σ := σ3 and τ :=ρ−1σρ;

Ha,b
σ−−−−→ Ha,b

ρ

�⏐⏐
⏐⏐�ρ−1

Ha′,b′
τ−−−−→ Ha′,b′ .

Since τ also has order 3 in Aut(H), and since C9 has a unique subgroup of order 3, we have that τ is given by
(x, y) �→ (ζ i x,±ζ 2i y) for i = 1 or 2. Thus, comparing the matrices corresponding to the both sides of τ = ρ−1σρ,
we obtain an equation P−1 AP = Ai in PGL2(k), say(

ζα ζβ

γ δ

)
= μ

(
ζ iα β

ζ iγ δ

)

for some μ ∈ k×.
If δ �= 0, then μ = 1, β = γ = 0, and i = 1. In this case, ρ is (x, y) �→ (αδ−1x, δ−5λy), and thus y2 = fa,b(x)

is transformed into λ2 y2 = α10x10 +α7δ3x7 +aα4δ6x4 + bαδ9x = λ2 fa′,b′(x). Therefore, α10 = α7δ3 = λ2, and
hence α = ζ jδ for some j . Since ζ jδ10 = λ2, it follows also from aζ jδ10 = a′λ2 and bζ jδ10 = b′λ2 that a = a′
and b = b′.

Suppose δ = 0; then μ = ζ , α = 0, and i = 2. In this case, ρ is (x, y) �→ (
β
γ x ,

λy
γ 5x5 ), and thus y2 = fa,b(x) is

transformed into λ2 y2 = β10 + β7γ 3x3 + aβ4γ 6x6 + bβγ 9x9 = λ2 fa′,b′(x). This is a contradiction since fa′,b′
has degree 10. ��

Thanks to the above lemma, we need not conduct the isomorphism classification on Ha,b’s with Aut(Ha,b) ∼= C3

or C9 collected in Step 2 of the main algorithm provided in Sect. 4 below.
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If Aut(Ha,b) is not isomorphic toC3 norC9, recall from Sect. 2.1 that Aut(Ha,b) ∼= A4 and Aut(Ha,b) ∼= SL2(F3).
In this case, by considering elements in SL2(F3), there exists an order-2 element in Aut(Ha,b) whose order in
Aut(Ha,b) is 4. Any two of such Ha,b’s are isomorphic to y2 = x(x4 − 1)(x4 + 2

√−3x2 + 1), and one of them is
detected by Lemma 3.1.3 below; more generally, we have the following lemma, whose proof is essentially same as
that of [32, Theorem 3.1.1]:

Lemma 3.1.2 Let H : y2 = f (x) be a hyperelliptic curve of genus g over an algebraically closed field k, where
f (x) is a separable polynomial over k of degree 2g + 2. Then, the following are equivalent:

(1) Aut(H) has an element σ of order 2 which has order 4 as an element in Aut(H).
(2) There exist roots a1 and a2 in k of f such that{

ai − a2

ai − a1
: 3 ≤ i ≤ 2g

}
=

{
−ai − a2

ai − a1
: 3 ≤ i ≤ 2g

}
,

where a3, . . . , a2g+2 are the other roots in k of f .

Proof Assume (1). By Proposition 2.1.4, there exists a hyperelliptic curve H ′ : y2 = f ′(x) over k and an iso-
morphism ρ : H ′ → H such that the automorphism τ :=ρ−1σρ of H ′ is represented by (diag(−1, 1), μ′) ∈
GL2(k) × k×;

H
σ−−−−→ H

ρ

�⏐⏐ ⏐⏐�ρ−1

H ′ τ−−−−→ H ′,

where μ′ is an element in k satisfying (μ′)2 = ±1. Since τ also has order 4 in Aut(H), we have (μ′)2 = −1 and
thus μ′ = ±√−1. Moreover, it follows from τ ∈ Aut(H) that − f ′(−x) = f ′(x). Therefore, f ′(x) is of degree
2g + 1 and is divided by x .

As for the form of a matrix representing ρ, we may assume from the proof of [32, Theorem 3.1.1] that it is either
of the following:

(A):
(

a1 a2

1 1

)
or (B):

(
1 b1

0 1

)
,

where a1, a2, b1 ∈ k. The case (B) is impossible since ρ does not send the point at infinity to itself. In the case (A),
the inverse map ρ−1 is represented by
(

a1 a2

1 1

)−1

= 1

a1 − a2

(
1 −a2

−1 a1

)
.

For a ramification point (α, 0) of H with a root α of f , its image in H ′ by ρ−1 is
(
−α−a2

α−a1
, 0

)
. Since H ′ has 0 and

∞ as ramification points, we have that a1 and a2 are (mutually different) roots of f . The condition τ ∈ Aut(H)

implies the assertion (2).
Conversely, if (2) holds, then we define ρ as in (A) with roots a1 and a2 of f , and then the domain of ρ is

a hyperelliptic curve H ′ with ramification points ∞, (0, 0), and (±b j , 0) for some b j ∈ k× with 1 ≤ j ≤ g.
Therefore H ′ has an automorphism (x, y) �→ (−x,

√−1y), as desired. ��
As a particular case of Lemma 3.1.2, we have the following:

Lemma 3.1.3 Aut(Ha,b) ∼= A4 if and only if there exist roots a1 and a2 of fa,b satisfying the condition (2) of
Lemma 3.1.2 for f = fa,b and g = 4.
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3.2 Cartier-Manin Matrices

In this subsection, we determine the form of the Cartier-Manin matrix Ma,b of Ha,b : y2 = fa,b(x) with respect to

the basis A:={ 1
y dx, x

y dx, x2

y dx, x3

y dx} of H0(Ha,b,
1
Ha,b

) given in Sect. 2.2. For each 
 with 0 ≤ 
 ≤ 5(p − 1),

we denote by c
 the x
-coefficient of f (p−1)/2
a,b .

Lemma 3.2.1 With notation as above, the Cartier-Manin matrix Ma,b of Ha,b is given as follows:

(1) If p ≡ 1 (mod 3), then

Ma,b =

⎛
⎜⎜⎝

cp−1 0 0 cp−4

0 c2p−2 0 0
0 0 c3p−3 0

c4p−1 0 0 c4p−4

⎞
⎟⎟⎠ .

(2) If p ≡ 2 (mod 3), then

Ma,b =

⎛
⎜⎜⎝

0 0 cp−3 0
0 c2p−2 0 0

c3p−1 0 0 c3p−4

0 0 c4p−3 0

⎞
⎟⎟⎠ ,

and hence the rank of Ma,b is equal to or smaller than 3.

Proof Since

fa,b(x)
p−1

2 =
∑

k1+k2+k3+k4= p−1
2

( p−1
2

k1, k2, k3, k4

)
ak3 bk4 x9k1+6k2+3k3+ p−1

2 ,

the coefficient of each x
 in fa,b(x)
p−1

2 is zero if 
 �≡ p−1
2 (mod 3). Computing 1 ≤ i, j ≤ 4 with i p − j ≡ p−1

2
(mod 3) dividing the case into p ≡ 1 (mod 3) and p ≡ 2 (mod 3), we obtain the assertion by Lemma 2.2.2. ��
Remark 3.2.2 We can also determine the form of the Cartier-Manin matrix M ′

a,b (with respect to a basis different
from A) constructed by Elkin’s method reviewed in Sect. 2.3. Similarly to Ma,b as in Lemma 3.2.1, there are many
zero entries in M ′

a,b, but a transformation between these two matrices is not explicitly given, and also a relation
between the entries of M ′

a,b and the coefficients of f is not clear. In the following, we describe how to apply Elkin’s
method.

First, Ha,b is a cyclic cover of type (6; 1, 2, 3, 3, 3), which is birational to

Y 6 = (X − a1)(X − a2)
2(X − a3)

3(X − a4)
3(X − a5)

3 (3.2.1)

for some mutually different a1, a2, a3, a4, a5 ∈ k. Indeed, writing fa,b(x) = x
∏3

i=1(x3 − Ai ) for some Ai ∈ k
with 1 ≤ i ≤ 3, a straightforward computation shows that the ramification points in Ha,b/〈σ3 ◦ ι〉 of the degree-6
cyclic cover π : Ha,b → Ha,b/〈σ3 ◦ ι〉 ; (x : y : z) �→ (x3 : x2 y2 : z) are (0 : 0 : 1), (0 : 1 : 0), and (Ai : 0 : 1)

for 1 ≤ i ≤ 3, whose ramification indexes are 6, 3, and 2 respectively. Hence, Ha,b is birational to an affine plane
curve of the form (2.3.1) with n = 6 and r = 5, so that we can take (n1, n2, n3, n4, n5) = (1, 2, 3, 3, 3).

Letting ζ6 be a primitive 6-th root of unity in k, we decompose H0(Ha,b,
1
Ha,b

) = ∑5
i=0 Di as in Sect. 2.3,

where Di is the ζ i
6-eigenspace. The dimensions di of Di for 1 ≤ i ≤ 5 are computed by (2.3.3), say d0 = 0, d1 = 1,

d2 = 0, d3 = 1, d4 = 0, and d5 = 2. Choosing a basis B = {w(1), w(3), w
(5)
1 , w

(5)
2 } of H0(Ha,b,

1
Ha,b

) such that

{w(1)}, {w(3)}, and {w(5)
1 , w

(5)
2 } are bases of D1, D3, and D5 respectively, it follows form (2.3.4) that we have the

following:

• For p ≡ 1 (mod 6), we have C (Di ) ⊂ Di for any i . In this case, M ′
a,b is a matrix whose entries are zero except

for (1, 1), (2, 2), (3, 3), (3, 4), (4, 3), and (4, 4)-th ones.
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• For p ≡ 5 (mod 6), we have C (D5) ⊂ D1, C (D3) ⊂ D3, and C (D1) ⊂ D5. In this case, M ′
a,b is a matrix

whose entries are zero except for (1, 3), (1, 4), (2, 2), (3, 1), and (4, 1)-th ones. Therefore, the rank of M ′
a,b is

equal to or smaller than 3.

Note that, however, since any explicit birational map between Ha,b and (3.2.1) is not given, we cannot compute the
change-of-basis matrix between A and B.

4 Algorithm and Computational Results

As in the previous sections, let k be an algebraically closed field of characteristic p with p ≥ 7. In this section, we
shall present an algorithm to efficiently produce superspecial hyperelliptic curves of genus 4, by focusing on the
family Ha,b : y2 = x10 + x7 + ax4 + bx with a, b ∈ k as in (3.0.1).

4.1 Main Algorithm and Its Complexity

Now, we construct an algorithm to enumerate superspecial hyperelliptic curves Ha,b. For the efficiency, let us here
restrict ourselves to the case where a and b belong to Fp2 .

Theorem 4.1.1 Main Algorithm below outputs the k-isomorphism classes of all s.sp. hyperelliptic curves of the form
(3.0.1) with a, b ∈ Fp2 in time Õ(p4). Moreover, if the gcd of resultants of non-zero entries of the Cartier-Manin

matrix of Ha,b has degree O(p), the complexity becomes Õ(p3).
Main Algorithm. For a prime p ≥ 7 as the input, conduct the following:

1. Regarding a and b as variables, compute the Cartier-Manin matrix Ma,b of Ha,b.
2. Collect all (a, b) ∈ F

2
p2 such that Ha,b is a s.sp. hyperelliptic curve, as follows:

2-1. Compute the solutions (a0, b0) ∈ F
2
p2 to Ma,b = 0.

2-2. For each solution (a0, b0) computed in Step 2-1, check if the equation y2 = fa,b(x) in (3.0.1) for (a, b) =
(a0, b0) defines a hyperelliptic curve, by computing gcd( fa,b, f ′

a,b).

3. For each of Ha,b’s collected in Step 2, check the condition of Lemma 3.1.3 to decide whether Aut(Ha,b) ∼= A4

or not. Output one Ha,b with Aut(Ha,b) ∼= A4 (if exists) and all of Ha,b’s such that Aut(Ha,b) is not isomorphic
to A4.

Proof The correctness follows from Lemmas 2.2.2, 3.1.1, 3.1.3, and Theorem 2.1.5. The complexity of Step 1 is
estimated as O(p3) by Lemma 4.1.2 below. The most generic and efficient method for Step 2-1 is the following
resultant-based method:

(1) Compute resultants of non-zero entries of Ma,b with respect to a (or b).
(2) Compute the gcd in Fp2 [b] of the resultants and its roots in Fp2 .
(3) For each root b0, evaluate it to b in Ma,b, and then compute the gcd in Fp2 [a] of non-zero entries of Ma,b0 and

its roots in Fp2 .

We here note that, for a given univariate polynomial h(t) of degree D ≤ p2 over Fp2 , one can compute its roots in

Fp2 with complexity Õ(p2 + D2). Indeed, the gcd of h(t) and t p2 − t is computed in Õ(p2) with fast gcd algorithm,
and it is a separable polynomial of degree ≤ D. Hence, computing the roots of the gcd is done just by equal-degree
factorization, and its complexity is estimated as Õ(D2).

Since the degree of each non-zero entry of Ma,b is O(p) (both in a and b), the resultants are computed in Õ(p3)

[40], and their gcd in (2) is computed in Õ(p2). Letting the degree of the gcd be d = O(p2), one can compute
its roots in Fp2 with complexity Õ(d2). For each root b0 (O(d) possible choices), evaluate it to b of Ma,b in time
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O(p), and compute the gcd of non-zero entries of Ma,b0 in time Õ(p). The roots in Fp2 of the second gcd are also

computed in Õ(p2). Step 2-2 is clearly done in constant time. Thus, the complexity of Step 2 is upper-bounded by
Õ(p3 + d2 + dp2). Note that the number of roots (a0, b0) is O(p2).

As for Step 3, checking the condition in Lemma 3.1.3 is done in constant time for each root (a0, b0), so that the
complexity of Step 3 is O(p2). ��

We remark that d and the number of roots (a0, b0) are both O(p) in practice, see tables in a pdf (named as
NKT_table.pdf) available at [17]. From this, the complexities of Steps 2 and 3 are expected to be Õ(p3) and
O(p), and in this case the total complexity of Main Algorithm is Õ(p3).

Lemma 4.1.2 The Cartier-Manin matrix Ma,b in Step 1 is computed in time O(p3).

Proof Recall from Lemma 2.2.2 that each (i, j)-entry of Ma,b is the xip− j -coefficient of f n with f := fa,b and
n:=(p − 1)/2. Putting g = x9 + x6 + ax3 + b, it follows from f n = xngn that xip− j -coefficient of f n is equal to
the x
-coefficient of gn for 
 = (2i−1)p−(2 j−1)

2 . Moreover, since gn is a polynomial in x3, the coefficient of x
 in
gn is zero if 
 �≡ 0 (mod 3). Here, it follows from (2.2.3) that


b(gn)
 = (3(n + 1) − 
)a(gn)
−3 + (6(n + 1) − 
)(gn)
−6 + (9(n + 1) − 
)(gn)
−9,

for any 
 = 3, 6, 9, . . . , 3p−3, where we used g9 = g6 = 1, g3 = a, and g0 = b. Hence, we can recursively compute

(gn)
 for all 
 ≤ 3p − 3, starting from (gn)0 = b
p−1

2 . In particular, the coefficients (gn)
 with 
 = (2i−1)p−(2 j−1)
2

for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4 are computed, since the maximal value (5p − 1)/2 of such 
 is less than 3p. The
number of required iteration is at most (5p − 1)/2 = O(p). The cost of computing each (gn)
 is O(p2). Indeed,
each (gn)
 is a polynomial in a and b of total degree ≤ n = p−1

2 , and thus the number of its non-zero terms is(n+2
2

) = O(p2). Therefore, the total cost of computing the (i, j)-entries of Ma,b for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4 is
O(p3).

Next, we consider to compute the x
-coefficients of gn for 
 = (2i−1)p−(2 j−1)
2 with i = 4 and 1 ≤ j ≤ 4,

namely, 7p−7
2 , 7p−5

2 , 7p−3
2 , and 7p−1

2 . It follows from (2.2.6) that

(9n − 
)(gn)
 = (
 + 9)b(gn)
+9 + (
 + 6 − 3n)a(gn)
+6 + (
 + 3 − 6n)(gn)
+3.

for 
 = 9n − 3, 9n − 6, . . . , 6n + 3 = 3p. When 
 ∈ 3Z with 0 < 
 < 9n, the only case where 9n − 
 is
divided by p is 9n − 
 = 3p, i.e., 
 = 3n − 3. Hence, we can recursively compute (gn)
 for all 
 ∈ 3Z with
3p = 6n + 3 ≤ 
 ≤ 9n, starting from (gn)9n = 1. In particular, the coefficients (gn)
 for 
 = 7p−7

2 , 7p−5
2 , 7p−3

2 ,

and 7p−1
2 are computed. Hence, the total cost of computing the (i, j)-entries of Ma,b for i = 4 and 1 ≤ j ≤ 4 is

O(p3), similarly to the case where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4. ��
Remark 4.1.3 Here, we list possible variants of Main Algorithm with q:=p2, and provide upper-bounds of their
complexities; Our bounds for Main Algorithm in Theorem 4.1.1 does not exceed each of the bounds below:

1. Brute force on (a, b) ∈ F
2
q . For each (a, b) ∈ F

2
q , test gcd( f, f ′) = 1 or not in constant time. If gcd( f, f ′) = 1,

compute Ma,b in time Õ(
√

p) (cf. [2]). The total complexity is Õ(q2√p).
2. For each a ∈ Fq , compute Ma,b in time O(p2) keeping b as a parameter. Then brute force on b: Test gcd( f, f ′) =

1 or not in constant time. If gcd( f, f ′) = 1, evaluate it to Ma,b in time O(p). The total complexity is O(q2q).
3. For each a ∈ Fq , compute Ma,b in time O(p2) keeping b as a parameter. Compute the gcd of non-zero entries

of Ma,b in time Õ(p). Compute the roots in Fp2 of the gcd in time Õ(p2). For each root b, test gcd( f, f ′) = 1

or not in constant time. The total complexity is Õ(qp2).
4. Compute Ma,b in time O(p3) keeping a and b as parameters. Then brute force on (a, b): Test gcd( f, f ′) = 1 or

not in constant time. If gcd( f, f ′) = 1, evaluate it to Ma,b in time O(p). The total complexity is O(p3 + q2 p).
5. Compute Ma,b in time O(p3) keeping a and b as parameters. Then brute force on a: Evaluate it to Ma,b in time

O(p), and compute the gcd of non-zero entries of Ma,b in time Õ(p). Compute the roots in Fp2 of the gcd in

time Õ(p2). For each root b, test gcd( f, f ′) = 1 or not in constant time. The total complexity is Õ(p3 + qp2).
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Table 3 Computational results for 17 ≤ p < 1000 obtained by the execution of Main Algorithm in Theorem 4.1.1. “Num. of Ha,b”
denotes the number of Fp-isomorphism classes of obtained Ha,b’s

p Num. of Ha,b p Num. of Ha,b p Num. of Ha,b p Num. of Ha,b

17 1 227 29 461 54 719 112

23 2 233 30 467 73 743 124

29 1 239 36 479 82 761 129

41 4 251 28 491 79 773 106

47 5 257 28 503 93 797 90

53 4 263 58 509 59 809 94

59 6 269 32 521 70 821 107

71 9 281 34 557 67 827 120

83 8 293 29 563 75 839 119

89 7 311 62 569 78 857 121

101 8 317 21 587 89 863 138

107 4 347 61 593 94 881 112

113 14 353 25 599 108 887 156

131 18 359 55 617 60 911 182

137 12 383 72 641 84 929 89

149 18 389 49 647 106 941 126

167 26 401 44 653 54 947 95

173 22 419 61 659 89 953 109

179 17 431 72 677 59 971 122

191 32 443 50 683 102 977 120

197 21 449 38 701 68 983 115

4.2 Implementation and Computational Results

We implemented Main Algorithm on Magma V2.26-10 on a PC with macOS Monterey 12.0.1, at 2.6 GHz CPU 6
Core (Intel Core i7) and 16GB memory (cf. [17] for the source code “NKT_enum4.txt”). Executing the implemented
algorithm, we obtain Theorem B in Sect. 1. Our computational results are summarized in Table 3. For any p with
17 ≤ p < 1000 and p ≡ 1 (mod 3), there is no (a, b) ∈ F

2
p2 such that Ha,b is a s.sp. hyperelliptic curve, and hence

we write the computational results only for p with p ≡ 2 (mod 3) in the table. As for the timings, the degrees
of the gcds computed in Step 2, and other detailed information, we summarize them in a separated pdf (named as
NKT_table.pdf) which is available at [17].

We can easily increase the upper bound on p in Theorem B. For example, on the PC described above, computing
the Fp-isomorphicm classes of s.sp. Ha,b’s with a, b ∈ Fp2 for all 17 ≤ p < 1000 took 6,300 s (about 1.75 h) in
total, and the execution for p = 997 took only 195 seconds.

The degree of the gcd of the resultants computed in Step 2 and the number of isomorphism classes of obtained
Ha,b’s might follow O(p), which implies that the complexity of Step 2 is Õ(p3) in practice, see Theorem 4.1.1.

Most of time is spent at Step 2. We see from tables in a pdf (named as NKT_table.pdf) available at [17] that
Steps 1 and 2 might follow our estimations O(p3) and Õ(p3) respectively. As for Step 3, our estimation in the
proof of Theorem 4.1.1 is O(p2), but it might be O(p) in practice since the number of (a, b) for which Ha,b is a
s.sp. hyperelliptic curve would be O(p).

Remark 4.2.1 When p ≡ 1 (mod 3), the non-superspeciality of Ha,b for some (a, b) with b �= 0 is deduced from
that of Ea,b : Y 2 = X (X3+X2+aX +b), which is a quotient curve of Ha,b by the order-3 automorphism σ3 defined
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at the begining of Sect. 3. Indeed, the genus-one curve Ea,b is isomorphic to Y 2 = X3 + (a/b)X2 + (1/b)X + (1/b)

via the transformation (X, Y ) �→ (1/X,
√

bY/X2). Eliminating the X2-coefficient by X �→ X − a
3b , one obtains

the equation Y 2 = X3 + 3b−a2

3b2 X + (const.). If 3b = a2, the genus-one curve Ea,b is isomorphic to Y 2 = X3 + A
for some constant A ∈ k× which is supersingular if and only if p ≡ 2 (mod 3). Thus, if p ≡ 1 (mod 3), the curve
Ha,b is not superspecial for any (a, b) ∈ k2 with 3b = a2 by Serre’s covering result: A subcover of a superspecial
curve is also superspecial (cf. [27] and [10, Corollary 2.8].

We observe that the non-superspeciality of Ha,b for any (a, b) ∈ F
2
p2 with p ≡ 1 (mod 3) is not deduced directly

from that of Ea,b: We computationally examined that there exists (a, b) ∈ F
2
p2 such that Ea,b is supersingular but

Ha,b is not superspecial. We leave the problem to prove it open.

5 Concluding Remarks

We realized an algorithm with complexity Õ(p4) in theory but Õ(p3) in practice, specific to producing s.sp.
hyperelliptic curves of genus 4, restricting to a parametric family of curves Ha,b given by y2 = x10 +x7 +ax4 +bx .
Our case is included in the case where Aut(H) ⊃ C6 in Theorem 2.1.5, while a recent work [34] presented at
WAIFI2022 treats the case where Aut(H) ⊃ V4:=C2 × C2 (Klein 4-group). Our algorithm cannot enumerate all
s.sp. hyperelliptic curves of genus 4 different from the algorithm in [22] at WAIFI2018, but it is expected from
Theorem B to surely find such a curve for arbitrary p ≥ 17 with p ≡ 2 mod 3. By executing the algorithm on
Magma, we succeeded in enumerating s.sp. hyperelliptic curves Ha,b with (a, b) ∈ F

2
p2 for every p between 17 to

1000, which is much larger than p = 17, 19 as in the enumeration of [22].
A future work is to present the (representative) family that covers all hyperelliptic curves of genus 4 over Fp2

with automorphism group containing C6, which enables us to enumerate all s.sp. those curves. A similar problem
can be considered also in the other cases Aut(H) ⊃ V4 and Aut(H) ⊃ C4 in Theorem 2.1.5: As far as the
authors’ knowledge, any representative family as in [29] has not been explicitly given in both cases. In the former
case, Ohashi-Kudo-Harashita [34] already provided an algorithm efficiently enumerating all s.sp. curves without any
representative family, but it is still interesting problem to find such a family, in terms of efficiently parameterizing the
moduli space of curves. As for the case where Aut(H) ⊃ C4, since there are a small number of parameters (at most
3 parameters, see cases 2-2 and 4-2 in Table 1), we can produce s.sp. curves by the resultant computation, similarly
to the main algorithm of this paper. Then the problem is to implement the efficient isomorphism classification of
produced curves.
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