
Math.Comput.Sci. (2022) 16:23
https://doi.org/10.1007/s11786-022-00546-3 Mathematics in Computer Science

How Many Structure Constants do Exist in Riemannian
Geometry?

J.-F. Pommaret

Received: 14 September 2021 / Revised: 21 August 2022 / Accepted: 4 October 2022 / Published online: 4 November 2022
© The Author(s) 2022

Abstract After reading such a question, any mathematician or physicist will say that, according to a well known
result of L.P. Eisenhart found in 1926, the answer is surely ”One”, namely the constant allowing to describe the so-
called “ constant Riemannian curvature ” condition. The purpose of this paper is to prove the contrary by studying
the case of two dimensional Riemannian geometry in the light of an old work of E. Vessiot published in 1903 but still
totally unknown today after more than a century. In fact, we shall compute locally the Vessiot structure equations
and prove that there are indeed “ Two ” Vessiot structure constants satisfying a single linear Jacobi condition
showing that one of them must vanish while the other one must be equal to the known one or that both must be
equal. This result depends on deep mathematical reasons in the formal theory of Lie pseudogroups, involving both
the Spencer δ-cohomology and diagram chasing in homological algebra. Another similar example will illustrate
and justify this comment out of the classical tensorial framework of the famous “ equivalence problem ”. The case
of contact transformations will also be studied. Though it is quite unexpected, we shall reach the conclusion that the
mathematical foundations of both classical and conformal Riemannian geometry must be revisited. We have treated
the case of conformal geometry and its application in recent papers (Pommaret in J Mod Phys 12:829–858, 2021.
https://doi.org/10.4236/jmp.2020.1110104; The conformal group revisited. arxiv:2006.03449; Nonlinear conformal
electromagnetism. arxiv:2007.01710).

Keywords Lie pseudogroups · Formal integrability · Vessiot structure equations · Riemannian geometry ·
Equivalence problem

Mathematics Subject Classification 53A55 · 53B20 · 53C18 · 53D10

1 Introduction

When X is a manifold of dimension n with local coordinates (x1, ..., xn), we first sketch the discovery of Vessiot
([8,22]) still not known today after more than a century for reasons which are not scientific at all ([10]). Roughly,
using standard notations of jet theory ([8–11,21]), a Lie pseudogroup � ⊂ aut (X) is made by finite invertible
transformations y = f (x) solutions of a (nonlinear in general) system of OD or PD equations Rq ⊂ �q while,
using vertical bundles, the infinitesimal transformations ξ ∈ � are solutions of the linearized system Rq =
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id−1
q (V (Rq)) ⊂ Jq(T ) where T = id−1(V (X × X) is the tangent bundle of X , id : X → X × X : x → (x, x)

the identity map and idq = jq(id) the q-jet of the identity. When � is transitive, there is a canonical epimorphism
π
q
0 : Rq → T . Also, as changes of source x commute with changes of target y, they exchange between themselves

any generating set of differential invariants {�τ (yq)} of order q. Then one can introduce a natural bundleF over X ,
also called bundle of geomeric objects, by patching changes of coordinates of the form x̄ = ϕ(x), ū = λ(u, jq(ϕ(x))
thus obtained (see examples below). A section ω of F is called a geometric object or structure on X and transforms
like ω̄( f (x)) = λ(ω(x), jq( f )(x)) or simply ω̄ = jq( f )−1(ω). This is a way to generalize vectors and tensors
(q = 1) or even connections (q = 2). As a byproduct, we have � = { f ∈ aut (X)| jq( f )−1(ω) = ω} and we
may say that � preserves ω. Replacing jq( f ) by fq , we also obtain the Lie form Rq = { fq ∈ �q | f −1

q (ω) = ω}.
Coming back to the infinitesimal point of view and setting ft = exp(tξ) ∈ aut (X),∀ξ ∈ T , we may define the
ordinary Lie derivative with value in the vector bundle F0 = ω−1(V (F)) by the formula:

Dξ = L(ξ)ω = d

dt
jq( ft )

−1(ω)|t=0 ⇒ � = {ξ ∈ T |L(ξ)ω = 0}

and we say that D is a Lie operator because Dξ = 0,Dη = 0 ⇒ D[ξ, η] = 0 as we already saw.
In the jet framework at any order q, we shall introduce by linearity as in ([8,11,14,15]) the formal Lie derivative

L(ξq) in such a way that L(ξ) = L( jq(ξ)). It follows that the infinitesimal Lie equations defining Rq can be written
in the so-called Medolaghi form L(ξq)ω = 0 with coefficients depending on j1(ω) in a very specific fashion ([6,8]):

�τ ≡ (L(ξq)ω)τ = −Lτμ
k (ω(x))ξ kμ + ξ r∂rω

τ (x) = 0

Let us suppose that the symbol gq ⊂ SqT ∗ ⊗ T is involutive, in such a way that this system becomes formally
integrable and thus involutive, that is all the equations of order q + r could be obtained by differentiating r times
only, ∀r ≥ 0. Then, as we shall see in the following examples, ω must satisfy certain (non-linear in general)
integrability conditions of the form:

I ( j1(ω)) = c(ω)

calledVessiot structure equations, linearly depending on a certain number ofVessiot structure constants c eventually
satisfying algebraic Jacobi conditions J (c) = 0 expressed by polynomials of degree ≤ 2. With more details, the
degree is exactly 2 when q = 1 with homogeneous polynomials but can be equal to 1 and we let the reader compare
this situation to the Riemannian or contact cases ([8], Theorem 4.8, p 325 and Example 4.15, p 329, [14]). Contrary
to the structure constants of Cartan, the structure constants of Vessiot have NOTHING TO DO with Lie algebras
and the constant Riemannian curvature is indeed a fine example. In the second section, we shall treat a specific
example when n = 2 while in the third section, we shall treat the Riemannian case with full details when n = 2.
The most striking result of this paper is that, though at first sight there does not seem to be any link between these
two examples, we shall discover at the end of the paper that they are in fact... identical !. We want to point out that
these structure equations were perfectly known by E. Cartan (1869–1951) who never said that these results were
at least competing with or even superseding the corresponding Cartan structure equations that he has developed
about at the same time for similar purposes ([1]). The underlying reason is of a purely personal origin related to
the differential Galois Theory within a kind of “mathematical affair ” involving the best french mathematicians of
that time ([9]). The original letters, given to the author of this paper by M. Janet, a friend of E. Vessiot, have ben
published in ([10]) and have been put as a deposit in the main library of Ecole Normale Supérieure in Paris for
future historical studies.

Finally, we can choose for the generating compatibility conditions (CC) D1 of D the first order linearization of
a non-linear version described by the Vessiot structure equations:

∂ I

∂ j1(ω)
( j1(ω)) j1(�) = ∂c

∂ω
(ω)�

that is exactly what is usually done for the flat Minkowski metric in general relativity ([12,16,19]).
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2 Motivating Examples

We show that the Vessiot structure equations may even exist when n = 1 ([12]). In the remaining of this paper, the
reader may refer to ([7,20] or [11]) for the elements of homological algebra allowing to chase in the commutative
diagrams that we shall present.

Example 2.1 When m = n = 1, the affine transformations y = ax + b are solutions of the second order linear
system yxx = 0, the sections of the corresponding linearized systems are respectively satisfying ξxx = 0. The
only generating differential invariant � ≡ yxx/yx of the affine case transforms like u = ū∂xϕ + (∂xxϕ/∂xϕ) when
x̄ = ϕ(x). The corresponding geometric object defined by the section u = γ (x) does transform like the Christoffel
symbols, namely:

γ (x) = γ̄ ( f (x))∂xϕ + (∂xxϕ/∂xϕ)

For this, if γ is the geometric object of the affine group y = ax + b and 0 �= α = α(x)dx ∈ T ∗ is a 1-form, we
consider the geometric object ω = (α, γ ) and get at once the two Medolaghi equations:

L(ξ)α ≡ α∂xξ + ξ∂xα = 0, L(ξ)γ ≡ ∂xxξ + γ ∂xξ + ξ∂xγ = 0

Differentiating the first equation and substituting the second, we get the zero order equation:

ξ(α∂xxα − 2(∂xα)2 + αγ ∂xα − α2∂xγ ) = 0 ⇔ ξ∂x

(
∂xα

α2 − γ

α

)
= 0

and the Vessiot structure equation ∂xα − γα = cα2 with c = cst . Alternatively, setting β = −1/α ∈ T , we get
∂xβ + γβ = c. With α = 1, β = −1, γ = 0 ⇒ c = 0 we get the translation subgroup y = x + b while, with
α = 1/x, β = −x, γ = 0 ⇒ c = −1 we get the dilatation (sometime called dilation) subgroup y = ax .

Working now with isometries, we just need to set ω = α2 in order to obtain the Killing equation 2ωξx +ξ∂xω = 0

and the corresponding Vessiot structure equation ∂xω − 2ωγ = c′ω 3
2 with c′ = 2c. Similarly, if ν is the geometric

object of the projective group y = (ax + b)/(cx + d), transforming like the well known Schwarzian differential
invariant � = (yxxx/yx )− 3

2 (yxx/yx )2 = dx�− 1
2�2, we may consider the new geometric object ω = (γ, ν) and

get the sole Vessiot structure equation ∂xγ − 1
2γ 2 − ν = 0 in a coherent way, without any structure constant.

Example 2.2 With m = n = 2, let us now consider the Lie group of transformations {y1 = ax1 +b, y2 = cx2 +d |
a, b, c, d = cst, ac = 1} as an algebraic Lie pseudogroup �. It is easy to exhibit the corresponding first order
system R1 of finite Lie equations in Lie form by introducing the three generating differential invariants and the
corresponding Lie form:

�1 ≡ y1
2

y1
1

= 0, �2 ≡ y2
1

y2
2

= 0, �3 ≡ y1
1 y

2
2 = 1

The details of the corresponding tricky computations, first done in 1978 ([8]), have been improved in 2016 ([14])
and are again revisited in this paper. As we shall see, its major interest is to work out the two Vessiot structure
constants existing like for the Riemannian structure but without having any tensorial framework ([5]).

First of all, we notice that this system is of finite type with a vanishing second order symbol and is thus formally
integrable but not involutive. For this, we may introduce the six generating differential invariants obtained after one
prolongation, exactly like the six Christoffel symbols in 2-dimensional Riemannian geometry:

�4 ≡ y1
11

y1
1

= 0,�5 ≡ y1
12

y1
1

= 0,�6 ≡ y1
22

y1
1

= 0,�7 ≡ y2
22

y2
2

= 0,�8 ≡ y2
12

y2
2

= 0,�9 ≡ y2
11

y2
2

= 0

while noticing that �3(1 − �1�2) ≡ y1
1 y

2
2 − y1

2 y
2
1 �= 0 is changing like the Jacobian of the change of coordinates

x̄ = ϕ(x).



23 Page 4 of 9 J.-F. Pommaret

Looking to the way these invariants are transformed under an arbitrary change x̄ = ϕ(x), we obtain for example
u1 = (∂2ϕ

1 + ū1∂2ϕ
2)/(∂1ϕ

1 + ū1∂1ϕ
2) and so on for describing the natural fiber bundle F with local coordinates

(x1, x2; u1, u2, u3) and section ω = (ω1, ω2, ω3) becoming (0, 0, 1) with our choice of the above Lie form for R1

and ω3(1 −ω1ω2) = 1 �= 0. Passing to the infinitesimal point of view, we obtain the first order system R1 ⊂ J1(T )

in the Medolaghi form with jet notation � ≡ L(ξ1)ω = 0 as in ([8]) and may compare it to the three equations of
the Killing system in dimension n = 2:⎧⎨
⎩

�1 ≡ ξ1
2 + ω1ξ2

2 − ω1ξ1
1 − (ω1)2ξ2

1 + ξ r∂rω
1 = 0

�2 ≡ ξ2
1 + ω2ξ1

1 − ω2ξ2
2 − (ω2)2ξ1

2 + ξ r∂rω
2 = 0

�3 ≡ ω3(ξ1
1 + ξ2

2 ) + ω1ω3ξ2
1 + ω2ω3ξ1

2 + ξ r∂rω
3 = 0

that we can extend to six intermediate new equations like in ([14]), including in particular:

�4 ≡ ξ1
11 + ω1ξ2

11 + ω4ξ1
1 + 2(ω5 − ω1ω4)ξ2

1 + ξ r∂rω
4 = 0

�5 ≡ ξ1
12 + ω1ξ2

12 + ω4ξ1
2 = (ω6 − ω1ω5)ξ2

1 + ω5ξ2
2 + ξ r∂rω

5 = 0

�6 ≡ ξ1
22 + ω1ξ2

22 + +2ω6ξ2
2 + 2ω5ξ1

2 − ω6ξ1
1 − ω1ω6ξ2

1 + ξ r∂rω
6 = 0

Taking into account these new invariants bringing for example six relations like:

∂1ω
1 − ω5 + ω1ω4 = 0, ∂2ω

1 − ω6 + ω1ω5 = 0

∂1ω
2 − ω9 + ω2ω8 = 0, ∂2ω

2 − ω8 + ω2ω7 = 0

∂1ω
3 − ω3(ω4 + ω8) = 0, ∂2ω

3 − ω3(ω5 + ω7) = 0

The determinant of the 6 × 6 matrix with respect to (ω4, ..., ω9) is ω3(1 − ω1ω2) �= 0.
After tedious but elementary substitutions, we obtain for example:

d2�
4 − d1�

5 ≡ (∂2ω
4 − ∂1ω

5)(ξ1
1 + ξ2

2 ) + ξ r∂r (∂2ω
4 − ∂1ω

5) = 0

However, we have also:

ω3(1 − ω1ω2)(ξ1
1 + ξ2

2 ) + ξ r∂r (ω
3(1 − ω1ω2)) = 0

Replacing (ω4, ..., ω9) by their rational expressions in j1(ω), the quotient of ∂2ω
4 − ∂1ω

5 by ω3(1 − ω1ω2) is
well defined, say equal to c(x), and we obtain the new zero order equation ξ r∂r c(x) = 0 contradicting the formal
integrability of the given system unless we obtain the two Vessiot structure equations with the two Vessiot structure
constants c′, c′′, namely:

∂2ω
4 − ∂1ω

5 = c′ ω3(1 − ω1ω2), ∂1ω
7 − ∂2ω

8 = c′′ ω3(1 − ω1ω2)

It remains to prove that there is only one Vessiot structure equation of order two with a single structure constant.
For this, first of all we notice that:

∂2(ω
4 + ω8) − ∂1(ω

5 + ω7) = 0 ⇒ c′ − c′′ = 0 ⇒ c′ = c′′ = c

Now, if Rq ⊂ Jq(T ), let us define J 0
q (T ) by the short exact sequence:

0 → J 0
q (T ) → Jq(T )

π
q
0−→ T → 0

and set R0
q = Rq ∩ J 0

q (T ) ⊂ Jq(T ). We have the commutative and exact diagram:

0 0
↓ ↓

0 → gq+1 = gq+1 → 0
↓ ↓ ↓

0 → R0
q+1 → Rq+1 → T
↓ ↓ ‖

0 → R0
q → Rq → T → 0

↓
0
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It follows that Rq+1 → Rq is an epimorphism if and only if R0
q+1 → R0

q and Rq+1 → T are both epimorphisms.
It just remains to use successively q = 1 and q = 2.

In the present situation, constructing the same diagram as the one used in the study of the Killing system (see
[8] or [11] for the details), we have the commutative and exact diagram allowing to construct the second order CC
when g2 = 0, g3 = 0, namely:

0 0
↓ ↓

0 → S3T ∗ ⊗ T → S2T ∗ ⊗ F1 → F2 → 0
↓ ↓

0 → T ∗ ⊗ S2T ∗ ⊗ T → T ∗ ⊗ T ∗ ⊗ F1 → 0
↓ ↓

0 → ∧2T ∗ ⊗ g1 → ∧2T ∗ ⊗ T ∗ ⊗ T → ∧2T ∗ ⊗ F1 → 0
↓ ↓
0 0

We obtain the isomorphism F2 � ∧2T ∗⊗g1 by a snake chase and deduce thus the relation dim(F2) = dim(∧2T ∗⊗
g1) = dim(g1) = 1 because n = 2. Of course, as dim(F1) = 3, we also obtain dim(F2) = dim(S2T ∗ ⊗ F1) −
dim(S3T ∗ ⊗ T ) = 9 − 8 = 1 in a coherent way.

For the sake of completeness, we provide the only component of the second order CC, namely:

�1 ≡ ξ1
2 = 0,�2 ≡ ξ2

1 = 0,�3 ≡ ξ1
1 + ξ2

2 = 0 ⇒ d11�
1 + d22�

2 − d12�
3 = 0

that must be compared to the linearized Riemann operator for the Euclidean metric leading to:

�11 ≡ 2ξ1
1 = 0,�12 ≡ ξ1

2 + ξ2
1 = 0,�22 ≡ 2ξ2

2 = 0 ⇒ d11�22 + d22�11 − 2d12�12 = 0

In a more contructive way, we have ω5 = ∂1ω
1 + ω1 ω4 where ω4 is given in a rational way by the formula:

ω3∂2ω
2 − ∂1ω

3 + ω2∂2ω
3 − ω2ω3∂1ω

1 + ω3(1 − ω1ω2)ω4 = 0

Accordingly, if we do want to solve the equivalence problem �1 = ω̄1,�2 = ω̄2,�3 = ω̄3, we must know the
Vessiot structure equations. As for the Vessiot structure constant c, it must be the same at first sight because the
Vessiot structure equations are invariant under any diffeomorphism. However, we have to take into account the fact
that two sections ω and ω̄ of F may give the same infinitesimal Lie equations. For example, in the present situation,
we must have:

ω̄1 = ω1, ω̄2 = ω2, ω̄3 = aω3 ⇒ c̄ = c/a

where a �= 0 is the parameter of the multiplicative group of the real line. It follows that we have c = 0 ⇒ c̄ = 0
both with c �= 0 ⇒ c̄ �= 0 and it just remains to exhibit such situations.

In the present situation, we have ω1 = 0, ω2 = 0, ω3 = 1 ⇒ c = 0
However, the new pseudogroup:

�̄ = {y1 = ax1 + b

cx1 + d
, y2 = ax2 + b

cx2 + d
| a, b, c, d = cst}

is easily seen to be provided by the new specialization:

ω̄1 = 0, ω̄2 = 0, .ω̄3 = 1/(x2 − x1)2 ⇒ c̄ = −2

leading to the new Lie form:

y1
2 = 0, y2

1 = 0,
1

(y2 − y1)2 y
1
1 y

2
2 = 1

(x2 − x1)2

It follows that the equivalence problem y1
2/y1

1 = 0, y2
1/y2

2 = 0, y1
1 y

2
2 = 1/(x2 − x1)2 cannot be solved.

Indeed, we should get y1 = f (x1), y2 = g(x2) with ∂1 f (x1)∂2g(x2) = 1/(x2 − x1)2. Inverting the formula
and setting x1 = x2 = x , we should conclude that ∂x f (x) = 0 or ∂x g(x) = 0 but this is impossible.

We could also notice that 0 = ac = c̄ = −2 for a certain a �= 0 which yelds a contradiction.
Needless to say that no classical tool can produce anyone of these results.



23 Page 6 of 9 J.-F. Pommaret

3 Riemann Structure

In such a way to emphasize that this section could be even more striking, we shall copy almost “word by word” the
procedure of the preceding section.

With m = n = 2, let us consider the Lie group of isometries y = Ax+ B where A is an orthogonal matrix for the
Euclidean metric ω = (dx1)2 + (dx2)2 as an algebraic Lie pseudogroup �. It is easy to exhibit the corresponding
first order system R1 of finite Lie equations in Lie form by introducing the three generating differential invariants
�i j ≡ ωkl(y)yki y

l
j and the corresponding Lie form:

�11 ≡ (y1
1)2 + (y2

1 )2 = 1, �22 ≡ (y1
2)2 + (y2

2 )2 = 1, �12 ≡ y1
1 y

1
2 + y2

1 y
2
2 = 0

The details of the following tricky computations, first done in 1978 ([8]), have been improved in 2016 ([14]) and
are again revisited in this paper. Its major interest is to work out the two Vessiot structure constants existing but
within a tensorial framework now. By this way, we prove that the well-known formal integrability result found by
L. P. Eisenhart in 1926 ([2]) on the constant Riemannian curvature condition is only a very particular case of the
Vessiot structure equations found by E. Vessiot more than twenty years before ([22]).

First of all, we notice that this system is finite type with a vanishing second order symbol and is thus formally
integrable but not involutive. For this, we may introduce the six generating differential invariants �k

i j obtained after
one prolongation and transforming like the six Christoffel symbols of Riemannian geometry:

γ k
i j = 1

2
ωkr (∂iωr j + ∂ jωir − ∂rωi j ) = γ k

ji ⇒ 2�kr�
k
i j ≡ di�r j + d j�ir − dr�i j

by introducing the inverse matrix of ω. We notice that:

det (�i j ) = �11�22 − (�12)
2 ≡ (y1

1 y
2
2 − y1

2 y
2
1 )2 �= 0

is changing like the square of the Jacobian � and we have γ r
ri = 1

2ωrs∂iωrs = ∂i (det (ω))
1
2 .

Looking to the way these invariants are transformed under an arbitrary change x̄ = ϕ(x) of local coordi-
nates, we obtain ui j = ∂iϕ

k∂ jϕ
l ūkl for describing the natural fiber bundle F = S2T ∗ with local coordinates

(x1, x2; u11, u22, u12) and section ω = (ω11, ω22, ω12) becoming (1, 1, 0) with our choice and det (ω) �= 0. Pass-
ing to the infinitesimal point of view we obtain the first order system R1 ⊂ J1(T ) in the Medolaghi form, also
called Killing system, with jet notation � ≡ L(ξ1)ω = 0 as in ([8,11]) in dimension n = 2, using capital letters
for the linearization:

�i j ≡ ωr j (x)ξ
r
i + ωir (x)ξ

r
j + ξ r∂rωi j (x) = 0

that we can extend to six intermediate new second order equations, namely:

�k
i j ≡ ξ ki j + γ k

r j (x)ξ
r
i + γ k

ir (x)ξ
r
j − γ r

i j (x)ξ
k
r + ξ r∂rγ

k
i j (x) = 0 ⇒ �r

ri ≡ ξ rri + γ s
sr ξ

r
i + ξ r∂rγ

s
si = 0

It is only now that we have to use specific concepts of Riemannian geometry, namely the Riemann and Ricci tensors:

ρk
l,i j ≡ ∂iγ

k
l j − ∂ jγ

k
li + γ r

l jγ
k
ri − γ r

liγ
k
r j ⇒ ρi j = ρr

i,r j ⇒ ϕi j = ρi j − ρ j i = ρr
r,i j = ∂iγ

r
r j − ∂ jγ

r
ri

Accordingly, if we use the Christoffel symbols γ “per se”, that is independently of ω, we may have ρi j �= ρ j i (care)
and we have the following lemma:

Lemma 3.1 The γ alone are the geometric objects for the affine group y = Ax+B with n(n+1) parameters, which
are a section of an affine natural bundle modeled on S2T ∗ ⊗ T . Introducing the Spencer δ-map, the n2(n + 1)/2
generating differential invariants (�k

i j ) allow to describe a vanishing Riemann tensor in the Janet sequence for the
Lie operator T → S2T ∗ ⊗ T : ξ → � ≡ L(ξ)γ :

0 → � → T → S2T
∗ ⊗ T → F1 → ...

where F1 is defined by the short exact sequence 0 → F1 → ∧2T ∗ ⊗ T ∗ ⊗ T
δ−→ ∧3T ∗ ⊗ T → 0.
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Proof As g2 = 0 and thus g3 = 0, we have the commutative and exact diagram:

0 0
↓ ↓

0 → S3T ∗ ⊗ T → T ∗ ⊗ S2T ∗ ⊗ T → F1 → 0
↓ δ ‖

0 → T ∗ ⊗ S2T ∗ ⊗ T = T ∗ ⊗ S2T ∗ ⊗ T → 0
↓ δ ↓

∧2T ∗ ⊗ T ∗ ⊗ T 0
↓ δ

∧3T ∗ ⊗ T
↓
0

and deduce from a snake chase that F1 � δ(T ∗ ⊗ S2T ∗ ⊗ T ).
Now, from the transformation rules of γ , we deduce that ykr �

r
i j = yki j . Differentiating formally with respect to

xi and substituting, we obtain:

di�
k
l j − d j�

k
li + �r

l j�
k
ri − �r

li�
k
r j = 0

In dimension 2, we have F1 � ∧2T ∗ ⊗ T ∗ ⊗ T with dim(F1) = 4 like in the previous section. ��
The linearization provides:

Rk
l,i j ≡ −ρr

l,i jξ
k
r + ρk

r,i jξ
r
l + ρk

l,r jξ
r
i + ρk

l,ir ξ
r
j + ξ r∂rρ

k
l,i j = 0 ⇒ Ri j ≡ ρr jξ

r
i + ρir ξ

r
j + ξ r∂rρi j = 0

Fi j ≡ Rr
r,i j ≡ ϕr jξ

r
i + ϕir ξ

r
j + ξ r∂rϕi j = 0

In the specific dimension n = 2 considered, we have by chance the simplified formulas:

ρ11 = ρr
1,r1 = ρ2

1,21, ρ12 = ρr
1,r2 = ρ1

1,12, ρ21 = ρr
2,r1 = ρ2

2,21, ρ22 = ρr
2,r2 = ρ1

2,12

and thus the specific isomorphism ∧2T ∗ ⊗ T ∗ ⊗ T � ∧2T ∗ ⊕ S2T ∗ only for n = 2, defined by:

(ρk
l,i j ) → (ρi j ) → (

1

2
(ρi j − ρ j i ),

1

2
(ρi j + ρ j i ))

by counting the dimensions with 1 × 2 × 2 = 4 = 1 + 3 while using the canonical splitting of the short exact
δ-sequence:

0 → S2T
∗ δ−→ T ∗ ⊗ T ∗ δ−→ ∧2T ∗ → 0

Now, we have proved in many books ([8,11,14,15]) or papers that, for any dimension n, two sections ω and ω̄

provide the same system of infinitesimal Lie equations if and only if ω̄ = aω for a �= 0 the parameter of the
multiplicative group of the real line. It follows that we have necessarily a first Vessiot constant c1 in such a way
that:
1

2
(ρi j + ρ j i ) = c1ωi j

However, after linearization, we also obtain ωi j�i j = 2ξ rr + ξ r∂r (log(det (ω)) = 0 for any n, thus

2det (ω)(ξ1
1 + ξ2

2 ) + ξ r∂r det (ω) = 0

for n = 2 and obtain therefore a secondVessiot structure constant c2 such that we have (Compare [8] to the computer
algebra result found in [5]) R12 − R21 = 0 ⇒ ϕ12ξ

r
r + ξ r∂rϕ12 = 0 both with 2det (ω)ξ rr + ξ r∂r det (ω) = 0, a

result leading to:

1

2
(ρ12 − ρ21) = 1

2
ϕ12 = c2(det (ω))

1
2
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Finally, we do want second order integrability conditions for the metric ω, that is, we must eliminate γ by using
the Levi-Civita isomorphism (ω, γ ) � j1(ω). Then, it is well known that ϕi j = 0 and we must thus have c2 = 0.
Also, using the same diagram as in the previous section, we must have only one second order integrability condition
which is indeed the standard ([2]) constant curvature condition expressed by means of the Ricci tensor which is
now symmetric.

Remark 3.2 Let us prove that there is almost no difference with the example 2.2 presented in the preceding section,
even though the background group is quite different. For this, let us introduce the different generating differential
invariants and the new Lie form:

�11 = 2�2�3 ≡ 2y1
1 y

2
1 = 0, �22 = 2�1�3 ≡ 2y1

2 y
2
2 = 0, �12 = �3 + �1�2�3 ≡ y1

1 y
2
2 + y1

2 y
2
1 = 1

in such a way that:

ω11 = 2ω2ω3, ω22 = 2ω1ω3, ω12 = ω3(1 + ω1ω2) ⇒ d11�22 + d22�11 − 2d12�12 = 0

We now notice that �11�22 − (�12)
2 = −�2 and obtain again �i j ≡ ωkl yki y

l
j as before but now with the strange

metric ω11 = 0, ω22 = 0, ω12 = 1 in such a way that det (ω) = −1 < 0 contrary to the previous example where
ω̄11 = 1, ω̄22 = 1, ω̄12 = 0 leading to det (ω̄) = 1 > 0. However, the equivalence problem between these two
structures cannot be solved. Indeed, taking the determinants of the equations ωkl(x)∂i f k(x)∂ j f l(x) = ω̄i j (x), we
should obtain det (ω)�2 = det (ω̄) = 1 and thus the contradiction �2 = −1.

Remark 3.3 When n = 3, the Lie pseudogroup of transformations preserving the so-called contact 1-form α =
dx1 − x3dx2 is unimodular because it also preserves β = dα = dx2 ∧ dx3 and thus the volume form α ∧ β =
dx1 ∧ dx2 ∧ dx3. Hence, we can consider the geometric object ω = (α, β) with α ∧ β �= 0 which is a meaningful
condition like det (ω) �= 0 previously. In this case, the Vessiot structure equations are dα = c′β, dβ = c′′α ∧ β

with two Vessiot structure constants (see [14] for details). Closing this exterior system, we obtain the quadratic
integrability condition:

0 = d(dα) = c′dβ = c′c′′α ∧ β ⇒ c′c′′ = 0

which is quite unusual. Hence, one of the two constants must vanish like before but for a completely different
reason. More generally, we refer the reader to ([16]) for the study of how the extension modules in homological
algebra may depend on the Vessiot structure constants.

4 Conclusion

According to the Italian mathematician U. Amaldi in 1907 ([10], Introduction), at the beginning of the last century,
only two frenchmen, namely E. Cartan and E. Vessiot, were knowing and understanding the work of S. Lie on
the infinite groups of transformations, now called Lie pseudogroups. However, the respective Cartan structure
equations and Vessiot structure equations that they developed about at the same time were so different that Amaldi
said that “only the future should say which of the two should be the most important one”. Unhappily and mainly for
private reasons that we have explained, Cartan and followers never told that there could be another way superseding
their approach. Also Cartan never told to A. Einstein in his letters of 1930 on absolute parallelism about the work
of M. Janet in 1920 on systems of partial differential equations ([3]). Then, D.C. Spencer, largely ignoring these
tentatives, created around 1970 new tools for the formal study of systems of partial differential equations ([21]), in
particular the ones allowing to define Lie pseudogroups ([4]). As a matter of fact, the nonlinear Spencer sequences
are superseding the Cartan structure equations because they are able to quotient the results down to the base manifold
while Cartan was doing exterior calculus on jet bundles but this result is largely unknown today. As a byproduct,
the work of Vessiot is still almost totally unknown after more than a century. It is only in 2008 that an interesting
PhD thesis has been done by a German student who wanted to use computer algebra for exhibiting the Vessiot
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structure constants in the Riemannian case ([5]). However, it is clear that the student was lucky to be able to use
the corresponding tensorial framework. The purpose of the present paper was to illustrate and justify these results
by means of a general constructive procedure, proving that things are not so simple for Riemannian or contact
structures. We have already proved that the case of a conformal structure is even more intricate since it highly
depends on the dimension of the base manifold, for example space-time ([13,14,16,17]). Finally, the author wants
to thank an anonymous referee for his many constructive comments that have been taken into account.
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