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Abstract We continue to develop the most general theory of one-sided fractions started in Bavula (Localizable
sets and the localization of a ring at a localizable set. arXiv:2112.13447). The aim of the paper is to introduce
10 types of saturations of a set in a ring and using them to study localizations of a ring at localizable sets, their
groups of units and various maximal localizable sets satisfying some natural conditions. The results are obtained
for denominator sets (the classical situation), Ore sets and localizable sets.
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1 Introduction

In the paper, all rings and their homomorphisms are unital.
In [2], Ore’s method of localization was extended to localizable left Ore sets, a criterion was given of when a

left Ore set is localizable, and prove that all left and right Ore sets of an arbitrary ring are localizable (not just
denominator sets as in Ore’s method of localization). Applications are given for certain classes of rings (semi-prime
Goldie rings, Noetherian commutative rings, the algebras of polynomial integro-differential operators).
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In [3], some basic results of the most general theory of one-sided fractions was developed and the following
new concepts were introduced and studied: the almost Ore set, the localizable set, the perfect localizable set, the
localization of a ring and a module at a localizable set. Their relations are given by the chain of inclusions:

{Denominator sets} ⊆ {Ore sets} ⊆ {almost Ore sets} ⊆ {perfect localizable sets}
⊆ {localizable sets}.

Localizable sets are generalization of Ore sets and denominator sets, and the localization of a ring/module at a
localizable set is a generalization of localization of a ring/module at a denominator set.

In this paper, for a subset S of a ring R, the following concepts are introduced: the left saturation Ssatl , the right
saturation Ssatr , the weak saturation Sws , the left weak saturation Sws

l , and the right weak saturation Sws
r . If the set

S is a left or right localizable set then so are some of its saturations (Thereom 1.2).
In Sect. 2, for a left denominator set S ∈ Denl(R) of a ring R, explicit descriptions of the group of units (SR)×

of the ring S−1R, and the monoids (SR)×l and (SR)×r of left and right invertible elements of S−1R are obtained
(Theorem 2.1).

The largest element Sl(R, a, S−1R) in (Denl(R, a, S−1R) ⊆) and its characterizations where S ∈ Denl(R).
Let S, T ∈ Denl(R). The denominator set T is called S-saturated if sr ∈ T , for some s ∈ S and r ∈ R, then r ∈ T ,
and if r ′s′ ∈ T , for some s′ ∈ S and r ′ ∈ R, then r ′ ∈ T , [2].

Let S ∈ Denl(R), a = assl(S) := {r ∈ R | sr = 0 for some s ∈ S}, Denl(R, a) := {T ∈ Denl(R) | assl(T ) = a},
and

Denl(R, a, S−1A) = {T ∈ Denl(R, a) | T−1R � S−1R, an R − isomorphism}.
[2, Proposition 3.1] describes the largest element Sl(R, a, S−1R) of the partially ordered set (Denl(R, a, S−1R),⊆).
[2, Lemma3.3.(1)] gives another description of Sl(R, a, S−1R) in terms of the group of units of the ring S−1R.

Lemma 1.1 ( [2, Lemma 3.3.(1)]) Let R be a ring, S ∈ Denl(R, a), and σ : R → S−1R, r �→ r
1 . Then the set

Sl(R, a, S−1R) = σ−1((S−1R)×) is the largest element of the partially ordered set (Denl(R, a, S−1R),⊆). The
set Sl(R, a, S−1R) is S-saturated.

Similarly, for a right denominator set S ∈ Denr (R, a) (resp., S ∈ Den(R, a)) , we denote by Sr (R, a, RS−1)

(resp. S(R, a, S−1R)) the largest element of the poset (Denr (R, a),⊆) (resp., (Den(R, a),⊆)).
Definition. Let R be a ring and S ⊆ R. The sets

Ssatl := {a ∈ R | ba, cb ∈ S for some b, c ∈ R},
Ssatr := {a ∈ R | ab, bc ∈ S for some b, c ∈ R},
Sws := {a ∈ R | ba, ac ∈ S for some b, c ∈ R},
Sws
l := {a ∈ R | ba ∈ S for some b ∈ R},
Sws
r := {a ∈ R | ac ∈ S for some c ∈ R}

are called the left saturation, the right saturation, the weak saturation, the left weak saturation, and the right weak
saturation of S, respectively. By the very definition,

Sws = Sws
l ∩ Sws

r ⊇ Ssatl ∩ Ssatr , Ssatl ⊆ Sws
l , and Ssatr ⊆ Sws

r . (1.1)

A ring R is called a finite ring if yx = 1 implies xy = 1 (every one-sided inverse is the inverse).
Theorem 1.2 is another characterization of the sets S∗(R, a, S−1R) in terms of the five saturations above where

∗ ∈ {l, r,∅}. Its proof is given in Sect. 2.

Theorem 1.2 Let R be a ring.

1. If S ∈ Denl(R, a) then Sl(R, a, S−1R) = Ssatl .
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2. If S ∈ Denr (R, a) then Sr (R, a, RS−1) = Ssatr .
3. If S ∈ Den(R, a) then S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, RS−1) = Ssatl = Ssatr = Sws and

Sws = Ssatl ∩ Ssatr .
4. If S ∈ Denl(R, a) and the ring S−1R is a finite ring then Sl(R, a, S−1R) = Ssatl = Sws

l .
5. If and S ∈ Denr (R, a) and the ring RS−1 is a finite ring iff Sr (R, a, RS−1) = Ssatr = Sws

r .
6. If S ∈ Den(R, a) and the ring S−1R is a finite ring iff

S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, RS−1) = Ssatl = Ssatr = Sws = Sws
l = Sws

r .

Theorem 1.2 shows that saturations of ∗ denominators sets are also ∗ denominators sets.
Corollary 2.2 is a strengthening of Theorem 1.2 in the case when the ring S−1R is either a domain or a one-sided

Noetherian ring or does not contain an infinite direct sum of one-sided ideals. Corollary 2.3 shows that saturations
are idempotent functors in the case of denominator sets.

Applications are given for the algebra Sn of one-sided inverses (Proposition 2.5) where saturations are explicitly
described (the algebra Sn is not a finite ring. It is neither left nor right Noetherian, not a domain and contains infinite
direct sums of left and right ideals).

Finiteness criterion for a localization of a ring via its saturations. Theorem 1.3 is a finiteness criterion for a
localization of a ring at a localizable set which is given in terms saturations.

Theorem 1.3 Let R be a ring.

1. If S ∈ Denl(R, a) then the ring S−1R is a finite ring iff Sl(R, a, S−1R) = Ssatl = Sws
l .

2. If S ∈ Denr (R, a) then the ring RS−1 is a finite ring iff Sr (R, a, RS−1) = Ssatr = Sws
r .

3. If S ∈ Den(R, a) then the ring S−1R is a finite ring iff

S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, RS−1) = Ssatl = Ssatr = Sws = Sws
l = Sws

r .

The largest element S∗(R, a, S−1R) in (L∗(R, a, S−1R) ⊆) and its characterizations where S ∈ L∗(R, a).
In Sect. 3, the results of Sect. 2 for the denominator sets are generalized for localizable sets. At the beginning
of Sect. 3, some results are collected from [3] on localizable sets and localizations of rings at localizable sets.
Proposition 3.8.(2), is an explicit description of the largest element S∗(R, a, S−1A) of the partially ordered set
(L∗(R, a,R),⊆) of all ∗ localizable sets S in R with assR(S) = a and R〈S−1〉 � R where ∗ ∈ {l, r,∅}.
Theorem 3.10 is another characterization of the set S∗(R, a, R〈S−1〉) which is given in terms of the five saturations
(it is an analogue of Theorem 1.2 but for localizable sets). In the case of Ore sets, we can strengthen Theorem 3.10,
see Theorem 1.4.

Definition. Let R be a ring and S ⊆ R. The sets

Sbsatl := {a ∈ R | s1bas2, t1cbt2 ∈ S for some s1, s2, t1, t2 ∈ S and b, c ∈ R},
Sbsatr := {a ∈ R | s1abs2, t1bct2 ∈ S for some s1, s2, t1, t2 ∈ S and b, c ∈ R},
Swbs := {a ∈ R | s1bas2, t1act2 ∈ S for some s1, s2, t1, t2 ∈ S and b, c ∈ R},
Swbs
l := {a ∈ R | s1bas2 ∈ S for some s1, s2 ∈ S and b,∈ R},
Swbs
r := {a ∈ R | s1abs2 ∈ S for some s1, s2 ∈ S and b ∈ R}

are called the left bi-saturation, the right bi-saturation, the weak bi-saturation, the left weak bi-saturation, and the
right weak bi-saturation of S, respectively. By the very definition,

Swbs = Swbs
l ∩ Swbs

r ⊇ Sbsatl ∩ Sbsatr , Sbsatl ⊆ Swbs
l , and Sbsatr ⊆ Swbs

r . (1.2)

Theorem 1.4 We keep the notation of Theorem 3.10. Suppose that S ∈ Ore(R, a) where a = assR(S).

1. S(R, a, S−1R) = Sbsatl = Sbsatr = Swbs .
2. Suppose, in addition, that the ring S−1R is either a domain or a one-sided Noetherian ring or does not contain

an infinite direct sum of one-sided ideals then S(R, a, S−1R) = Swbs
l = Swbs

r .

The proof of Theorem 1.4 is given at the end of Sect. 3.
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2 Localizations of a Ring at Denominator Sets, their Groups of Units and Saturations

Let R be a ring. A multiplicative subset S of R is called a left Ore set if it satisfies the left Ore condition: for
each r ∈ R and s ∈ S, Sr

⋂
Rs �= ∅. Let Orel(R) be the set of all left Ore sets of R. For S ∈ Orel(R),

assl(S) := {r ∈ R | sr = 0 for some s ∈ S} is an ideal of the ring R.
A left Ore set S is called a left denominator set of the ring R if rs = 0 for some elements r ∈ R and s ∈ S

implies tr = 0 for some element t ∈ S, i.e., r ∈ assl(S). Let Denl(R) be the set of all left denominator sets of R.
For S ∈ Denl(R), let S−1R = {s−1r | s ∈ S, r ∈ R} be the left localization of the ring R at S (the left quotient ring
of R at S). Let us stress that in Ore’s method of localization one can localize precisely at left denominator sets. In a
similar way, right Ore and right denominator sets are defined. Let Orer (R) and Denr (R) be the set of all right Ore
and right denominator sets of R, respectively. For S ∈ Orer (R), the set assr (S) := {r ∈ R | rs = 0 for some s ∈ S}
is an ideal of R. For S ∈ Denr (R), RS−1 = {rs−1 | s ∈ S, r ∈ R} is the right localization of the ring R at S.

Given ring homomorphisms νA : R → A and νB : R → B. A ring homomorphism f : A → B is called an
R-homomorphism if νB = f νA. A left and right set is called an Ore set. Let Ore(R) and Den(R) be the set of all
Ore and denominator sets of R, respectively. For S ∈ Den(R),

S−1R � RS−1

(an R-isomorphism) is the localization of the ring R at S, and ass(R) := assl(R) = assr (R).
For a ring R and ∗ ∈ {l, r,∅}, Den∗(R, 0) be the set of ∗ denominator sets T of R such that T ⊆ CR , i.e., the

multiplicative set T is a ∗ Ore set of R that consists of regular elements of the ring R.
The group of units (S−1R)×and monoids of one-sided inverses of a localization S−1R where S ∈ Denl(R).

For a ring R, we denote by R× its group of units. Let R×
l := {a ∈ R | ba = 1 for some b ∈ R} and R×

r := {a ∈
R | ab = 1 for some b ∈ R}, the sets of left and right invertible elements of the ring R, respectively. The sets R×

l
and R×

r are multiplicative monoids that contain the group R× and R× = R×
l ∩ R×

r . The ring R is called a finite ring
if ab = 1 implies ba = 1 (every one-sided inverse is the inverse). The ring R is a finite ring iff R× = R×

l = R×
r

iff R× = R×
l iff R× = R×

r . Every domain or a one-sided Noetherian ring is a finite ring. It is well-known that
the algebra of one-sided inverses, S1 = K 〈x, y | yx = 1〉, is not a finite ring (see [1] for generalizations and their
properties). Let K be a field of characteristic zero and I1 be the subalgebra of the algebra EndK (K [x]) which is
generated by the K -derivation ∂ = d

dx and the integration
∫ : K [x] → K [x], xn �→ xn

n! where n ≥ 0. Then the
K -algebra homomorphism

S1 → I1, x �→
∫

, y �→ ∂

is an isomorphism (since ∂
∫ = 1, S1 = ⊕

i, j≥0 Kxi y j , and I1 = ⊕
i, j≥0 K

∫ i
∂ j ). Clearly, the elements ∂ and

∫

are not invertible (since ker(∂) = K �= 0). Hence, the algebras S1 and I1 are not finite.
For a ring R and its left denominator set S, Theorem 2.1 gives an explicit descriptions of the set (S−1R)×,

(S−1R)×l and (S−1R)×r .

Theorem 2.1 Let R be a ring, S ∈ Denl(R), and T ∈ Denr (T ). Then

1. (S−1R)× = {s−1a | ba, cb ∈ S for some b, c ∈ R, s ∈ S}.
2. (S−1R)×l = {s−1a | ba ∈ S for some b ∈ R, s ∈ S}.
3. (S−1R)×r = {s−1a | t1a = a1t, a1b = t1 for some elements t, t1 ∈ S and a1, b ∈ R, s ∈ S}.
4. (AT−1)×r = {as−1 | ac ∈ S for some c ∈ R, s ∈ S}.
5. If, in addition, S ∈ Den(R) then (S−1R)× = {s−1a | Ra ∩ S �= ∅, aA ∩ S �= ∅} = {s−1a | ba, ac ∈ S for some

b, c ∈ R, s ∈ S}.
6. If, in addition, the ring R is finite then (S−1R)× = (S−1R)×l = {s−1a | ba ∈ S for some b ∈ R, s ∈ S}.
7. If, in addition, the ring R is finite and S ∈ Den(R) then (S−1R)× = {s−1a | ba ∈ S for some b ∈ R, s ∈ S} =

{s−1a | ab ∈ S for some b ∈ R, s ∈ S}.
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Proof 2. An element s−1a ∈ S−1R (where s ∈ S and a ∈ R) belongs to the monoid (S−1R)×l iff a ∈ (S−1R)×l
iff t−1b1a = 1 for some elements t ∈ S and b1 ∈ R iff ba ∈ S for some element b ∈ R (the equality b1a = t
that holds in the ring S−1R is equivalent to the equality t1(b1a − t) = 0 in R for some element t1 ∈ S, then put
b = t1b1).

1. Let B = {s−1a | ba, cb ∈ S for some b, c ∈ R, s ∈ S}.
(i) B ⊆ (S−1R)×: If ba = s and cb = t for some elements s, t ∈ S and b, c ∈ R then

b · as−1 = 1 and t−1c · b = 1,

and so b ∈ (S−1R)× and so a = b−1s ∈ (S−1R)×.
(ii) B ⊇ (S−1R)×: Given an element a ∈ R such that a ∈ (S−1R)×. Then a ∈ (S−1R)×l , and so ba = s for

some elements s ∈ S and b ∈ R, by statement 2. Then a−1 = s−1b, and so

as−1 · b = 1.

Hence, b ∈ (S−1R)×l , and so cb ∈ S, by statement 2.
By the statements (i) and (ii), B = (S−1R)×.
3. An element s−1a ∈ S−1R (where s ∈ S and a ∈ R) belongs to the monoid (S−1R)×r iff a ∈ (S−1R)×r iff

at−1b = 1

for some elements t ∈ S and b ∈ R. The set S is a left Ore set, hence τ1a = a′
1t for some elements τ1 ∈ S and

a′
1 ∈ R. Now, at−1b = 1 and τ1a = a′

1t iff

τ1at
−1b = a′

1b = τ1

1
and τ1a = a′

1t

iff τ2a′
1b = τ2τ1 for some element τ2 ∈ S and τ1a = a′

1t iff τ2a′
1b = τ2τ1 for some element τ2 ∈ S and

τ2τ1a = τ2a′
1t iff

t1a = a1t and a1b = t1

where t1 = τ2τ1 ∈ S and a1 = τ2a′
1 ∈ R (the operations are reversible).

4. By statement 2, (RT−1)×r = {as−1 | ab ∈ T, s ∈ T } (apply statement 2 to the opposite ring

(RT−1)op = (T op)−1Rop

of the ring T R−1).
5. The second equality is obvious. By statement 4,

(RS−1)×r = {as−1 | ac ∈ S for some c ∈ R, s ∈ S}.
Since S is a denominator set, S−1R � RS−1. In particular,

(S−1R)×r = (RS−1)×r = {as−1 | ac ∈ S for some c ∈ R, s ∈ S}.
By statement 2, (S−1R)× ⊆ (S−1R)×l = {s−1a | ba ∈ S for some b ∈ R, s ∈ S}. Now, statement 5 follows from
the fact that R× = R×

l ∩ R×
r .

6. The ring R is a finite ring. Hence,

(S−1R)× = (S−1R)×l = {s−1a | ba ∈ S for some b ∈ R, s ∈ S},
by statement 2.

7. The ring R is a finite ring and S ∈ Den(R). Hence,

(S−1R)× = (S−1R)×l = {s−1a | ba ∈ S for some b ∈ R, s ∈ S}, by statement 2,

(S−1R)× = (AS−1)×r = {s−1a | ab ∈ S for some b ∈ R, s ∈ S}, by statement 4,

and statement 7 follows. ��
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Proof of Theorem 1.2 1. Statement 1 follows from Theorem 2.1.(1) and Lemma 1.1: a ∈ Sl(R, a, S−1R) iff a
1 ∈

(S−1R)× (Lemma 1.1) iff s−1b ·a = 1 and t−1c ·b = 1 for some elements s, t ∈ S and b, c ∈ R (since b ·as−1 = 1)
iff sb · a, tc · b ∈ S for some elements s, t ∈ S iff a ∈ Ssatl .

2. Statement 2 follows from statement 1 (by applying statement 1 to the opposite ring).
3. By Lemma 1.1 and its right analogue, we have that

Sl(R, a, S−1R) = σ−1((S−1R)×) = Sr (R, a, RS−1).

Therefore,

S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, S−1R) = Ssatl = Ssatr ,

by statements 1 and 2. By (1.1), Sws ⊇ Ssatl ∩ Ssatr . Given an element a ∈ Sws . Then ba, ac ∈ S for some elements
b, c ∈ R. It follows that a

1 ∈ (S−1R)×. By Lemma 1.1, we have that a ∈ Sl(R, a, S−1R), and so

a ∈ Ssatl = Ssatr = Ssatl ∩ Ssatr .

Therefore, Sws = Ssatl ∩ Ssatr .
4. The first equality in statement 4 follows from statement 1. By the very definition, Ssatl ⊆ Sws

l . Given an
element a ∈ Sws

l . Then s := ba ∈ S for some element b ∈ R. Then s−1b ·a = 1. By the assumption, the ring S−1R
is a finite ring. Hence, a

1 ∈ (S−1R)×. By Lemma 1.1 and statement 1, a ∈ Sl(R, a, S−1R) = Ssatl . Therefore,
Ssatl = Sws

l .
5. Statement 5 follows from statement 4 (by using the opposite rings).
6. Statement 6 follows from statements 3–5. ��

Corollary 2.2 1. Suppose that S ∈ Denl(R) and the ring S−1R is either a domain or a one-sided Noetherian ring
or does not contain an infinite direct sum of one-sided ideals then Sl(R, a, S−1R) = Ssatl = Sws

l .
2. Suppose that S ∈ Denr (R) and the ring RS−1 is either a domain or a one-sided Noetherian ring or does not

contain an infinite direct sum of one-sided ideals then Sr (R, a, RS−1) = Ssatr = Sws
r .

3. Suppose that S ∈ Den(R) and the ring S−1R is either a domain or a one-sided Noetherian ring or does not
contain an infinite direct sum of one-sided ideals then

S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, RS−1) = Ssatl = Ssatr = Sws = Sws
l = Sws

r .

Proof The ring is a finite ring provided it is either a domain or a one-sised Noetherian ring or does not contain an
infinite direct sum of one-sided ideals. Now, statements 1-3 follow from Theorem 1.2.(4–6). ��

If the ring R is a domain the fact that σ−1((S−1R)×) = {a ∈ R | ba ∈ S} was proven in [4, Proposition 10].

Corollary 2.3 Let R be a ring.

1. If S ∈ Denl(R, a) then
(
Ssatl

)sat

l
= Ssatl .

2. If S ∈ Denr (R, a) then
(
Ssatr

)sat

r
= Ssatr .

3. If S ∈ Den(R, a) then
(
Ssatl

)sat

l
=

(
Ssatr

)sat

r
=

(
Sws

)ws = Ssatl = Ssatr = Sws .

4. If S ∈ Denl(R, a) and the ring S−1R is a finite ring then
(
Ssatl

)sat

l
=

(
Sws
l

)ws

l
= Ssatl = Sws

l .

5. If and S ∈ Denr (R, a) and the ring RS−1 is a finite ring iff
(
Ssatr

)sat

r
=

(
Sws
r

)ws

r
= Ssatr = Sws

r .

6. If S ∈ Den(R, a) and the ring S−1R is a finite ring iff
(
Ssatl

)sat

l
=

(
Ssatr

)sat

r
=

(
Sws

)ws =
(
Sws
l

)ws

l
=

(
Sws
r

)ws

r
= Ssatl = Ssatr = Sws = Sws

l = Sws
r .

Proof The corollary follows from Theorem 1.2. ��



Localizations of a Ring at Localizable Sets Page 7 of 15 10

Proof of Theorem 1.3 . 1. (⇒) Theorem 1.2.(4).
(⇐) Suppose that Sl(R, a, S−1R) = Ssatl = Sws

l . We have to show that (S−1R)× = (S−1R)×l = (S−1R)×r .
Notice that

(S−1R)× = (S−1R)×l = (S−1R)×r ⇔ (S−1R)× = (S−1R)×l ⇔ (S−1R)× = (S−1R)×r .

So, it suffices to show that (S−1R)× = (S−1R)×l . An element s−1a ∈ S−1R belongs to the set (S−1R)×l where
s ∈ S and a ∈ R iff a

1 ∈ (S−1R)× iff t−1ba = 1 for some elements t ∈ S and b ∈ R iff ba ∈ S iff

a ∈ Sws
l .

Similarly, an element s−1a ∈ S−1R belongs to the set (S−1R)× where s ∈ S and a ∈ R iff a
1 ∈ (S−1R)× iff

t−1ba = 1 for some elements t ∈ S and b ∈ R such that t−1b ∈ (S−1R)×l iff ba ∈ S and cb ∈ S iff a ∈ Ssatl .
Therefore, (S−1R)× = (S−1R)×l iff

Ssatl = Sws
l ,

and we are done.
2. (⇒) Theorem 1.2.(5).
(⇐) Repeat the proof of the implication (⇐) of statement 1 by making obvious modifications (changing ‘l’ to

‘r’).
3. Statement 3 follows from statements 1 and 2. ��
The algebra Sn of one-sided inverses. Let K be a field and K× be its group of units, and Pn := K [x1, . . . , xn]

be a polynomial algebra over K .
Definition, [1]. The algebra Sn of one-sided inverses of Pn is an algebra generated over a field K by 2n elements

x1, . . . , xn, y1, . . . , yn that satisfy the defining relations:

y1x1 = · · · = ynxn = 1, [xi , y j ] = [xi , x j ] = [yi , y j ] = 0 for all i �= j,

where [a, b] := ab − ba, the commutator of elements a and b.
By the very definition, the algebra Sn is obtained from the polynomial algebra Pn by adding commuting, left (or
right) inverses of its canonical generators. The algebra S1 is a well-known primitive algebra [5], p. 35, Example
2. Over the field C of complex numbers, the completion of the algebra S1 is the Toeplitz algebra which is the
C∗-algebra generated by a unilateral shift on the Hilbert space l2(N) (note that y1 = x∗

1 ). The Toeplitz algebra is
the universal C∗-algebra generated by a proper isometry.

Clearly, Sn = S
⊗n
1 and S1 = K 〈x, y | yx = 1〉 = ⊕

i, j≥0 Kxi y j . For each natural number d ≥ 1,

let Md(K ) := ⊕d−1
i, j=0 K Ei j be the algebra of d-dimensional matrices where {Ei j } are the matrix units, and

M∞(K ) := lim−→ Md(K ) = ⊕
i, j∈N K Ei j be the algebra (without 1) of infinite dimensional matrices. The algebra

S1 contains the ideal F := ⊕
i, j∈N K Ei j , where

Ei j := xi y j − xi+1y j+1, i, j ≥ 0. (2.1)

For all natural numbers i , j , k, and l, Ei j Ekl = δ jk Eil where δ jk is the Kronecker delta function. The ideal F is an
algebra (without 1) isomorphic to the algebra M∞(K ) via Ei j �→ Ei j . For all i, j ≥ 0,

xEi j = Ei+1, j , yEi j = Ei−1, j (E−1, j := 0), (2.2)

Ei j x = Ei, j−1, Ei j y = Ei, j+1 (Ei,−1 := 0). (2.3)

S1 = K ⊕ xK [x] ⊕ yK [y] ⊕ F, (2.4)

the direct sum of vector spaces. Then

S1/F � K [x, x−1] =: L1, x �→ x, y �→ x−1, (2.5)

since yx = 1, xy = 1 − E00 and E00 ∈ F .
Lemma 2.4 is used in the proof of Proposition 2.5.



10 Page 8 of 15 V. V. Bavula

Lemma 2.4 Let R be a ring, a be an ideal of R, and π : R → R := R/a, r �→ r + a. Suppose that S is a
multiplicative set in R such that S := π(S) ∈ Den∗(R, b) and a ⊆ ass∗(S)where ∗ ∈ {l, r,∅}. Then S ∈ Den∗(R, b)

where b = π−1(b).

Proof We prove the lemma for ∗ = l. The other two cases can be proven in a similar way. For each element r ∈ R,
let r = π(r).

(i) S ∈ Orel(R): Given elements s ∈ S and r ∈ R. Then s ∈ S and r ∈ R. Since S is a left Ore set in R,
s1r = r1s for some elements s1 ∈ S and r1 ∈ R. Hence,

a := s1r − r1s ∈ a.

Since a ⊆ assl(S), we can choose an element, say s2 ∈ S, such that 0 = s2a = s2s1r − s2r1s, and the statement (i)
follows.

(ii) assl(S) = b: Given an element b ∈ b. Then b ∈ b, and so sb = 0 for some element s ∈ S (since
S ∈ Denl(R, b)). Hence, sb ∈ a, and so tsb = 0 for some element t ∈ S (since a ⊆ assl(S)). Therefore,
b ∈ assl(S) and b ⊆ assl(S).

Conversely, given an element a ∈ assl(S). Then sa = 0 for some element s ∈ S. Then sa = 0, and so a ∈ b and
a ∈ b. Therefore, b ⊇ assl(S), and the statement (ii) follows.

(iii) S ∈ Denl(R, b): In view of the statements (i) and (ii), we have to show that if as = 0 for some elements
a ∈ R and s ∈ S then a ∈ b. Clearly, as = 0, and so a ∈ b. Hence, a ∈ π−1(b) = b, as required. ��

The algebra Sn admits the involution

η : Sn → Sn, xi �→ yi , yi �→ xi , i = 1, . . . , n,

i.e. it is a K -algebra anti-isomorphism (η(ab) = η(b)η(a) for all a, b ∈ Sn) such that η2 = idSn , the identity map
on Sn . So, the algebra Sn is self-dual (i.e. it is isomorphic to its opposite algebra, η : Sn � S

op
n ). This means that

left and right algebraic properties of the algebra Sn are the same.
Let an := (x1y1 − 1, . . . , xn yn − 1), an ideal of Sn . By [1, Eq. (19)], the factor algebra

Sn/an = Ln = K [x±1
1 , . . . , x±1

n ]
is the Laurent polynomial algebra. Clearly, L×

n = {λxα | λ ∈ K×, α ∈ Z
n} where xα = xα1

1 · · · xαn
n . Let

σ : Sn → Ln, a �→ a + an .

Then Ln := σ−1(L×
n ) = {λxα + a | λ ∈ K×, α ∈ Z

n, a ∈ an}.
Proposition 2.5 Let X = 〈x1, . . . , xn〉 and Y = 〈y1, . . . , yn〉 be multiplicative submonoids of (Sn, ·) that are
generated by the elements in the brackets. Then

1. Y ∈ Denl(Sn, an), Y−1
Sn = Ln, Sl(Sn, an, Ln) = Y sat

l = Yws
l = Ln.

2. X ∈ Denr (Sn, an), Sn X−1 = Ln, Sr (Sn, an, Ln) = Xsat
r = Xws

r = Ln.

Proof 1. Recall that Sn = S
⊗n
1 . By [1, Eq. (19)], an = p1 + · · · + pi + · · · + pn where

p1 = F ⊗ Sn−1, . . . , pi = Si−1 ⊗ F ⊗ Sn−i , . . . , pn = Sn−1 ⊗ F.

By (2.2), pi ⊆ assl(Si ) where Si = {y j
i | j ≥ 0} ⊆ Y . Hence, an ⊆ assl(Y ). Notice that Y ∈ Denl(Ln, 0). By

Lemma 2.4, Y ∈ Denl(Sn, an). Now,

Y−1
Sn � Y−1(Sn/an) = Y−1Ln = Ln .

The algebra Y−1
Sn � Ln is a Noetherian algebra. Hence,

Sl(Sn, a, Ln) = Y sat
l = Yws

l = Ln,

by Corollary 2.2.(1) and Lemma 1.1.
2. By applying the involution η of the algebra Sn to statement 1 we obtain statement 2 (since η(an) = an ,

η(Y ) = X and η(X) = Y ). ��
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3 Localizations of a Ring at Localizable Sets, their Groups of Units and Saturations

The goal of Sect. 3 is to generalize results of Sect. 2 for localizable sets. At the beginning of the section, we collect
some results on localizable sets and localizations of rings at localizable sets from [3] that are used in the section.

The ring R〈S−1〉. Let R be a ring and S be a multiplicative set in R (that is SS ⊆ S, 1 ∈ S and 0 /∈ S). Let
R〈XS〉 be a ring freely generated by the ring R and a set XS = {xs | s ∈ S} of free noncommutative indeterminates
(indexed by the elements of the set S). Let us consider the factor ring

R〈S−1〉 := R〈XS〉/IS (3.1)

of the ring R〈XS〉 at the ideal IS generated by the set of elements {sxs − 1, xss − 1 | s ∈ S}.
The kernel of the ring homomorphism

R → R〈S−1〉, r �→ r + IS (3.2)

is denoted by ass(S) = assR(S). The ideal assR(S) of R has a complex structure, its description is given in [3,
Proposition 2.12] when S is a left localizable set.

Localizable sets.
Definition, [3]. A multiplicative set S of a ring R is called a left localizable set of R if

R〈S−1〉 = {s−1r | s ∈ S, r ∈ R} �= {0}
where R = R/a, a = assR(S) and S = (S + a)/a, i.e., every element of the ring R〈S−1〉 is a left fraction s−1r for
some elements s ∈ S and r ∈ R. Similarly, a multiplicative set S of a ring R is called a right localizable set of R if

R〈S−1〉 = {rs−1 | s ∈ S, r ∈ R} �= {0},
i.e., every element of the ring R〈S−1〉 is a right fraction rs−1 for some elements s ∈ S and r ∈ R. A right and left
localizable set of R is called a localizable set of R.

The sets of left localizable, right localizable and localizable sets of R are denoted by Ll(R), Lr (R) and L(R),
respectively. Clearly, L(R) = Ll(R) ∩ Lr (R). In order to work with these three sets simultaneously we use the
following notation L∗(R) where ∗ ∈ {l, r,∅} and ∅ is the empty set (L(R) = L∅(R)). Let

ass L∗(R) = {assR(S) | S ∈ L∗(R)}. (3.3)

For an ideal a of R, let L∗(R, a) = {S ∈ L∗(R) | assR(S) = a}. Then

L∗(R) =
∐

a∈assL∗(R)

L∗(R, a) (3.4)

is a disjoint union of non-empty sets.
The ideals a(S), ′a(S) and a′(S). For each element r ∈ R, let r · : R → R, x �→ r x and ·r : R → R, x �→ xr .

The sets
′CR := {r ∈ R | ker(·r) = 0} and C′

R := {r ∈ R | ker(r ·) = 0}
are called the sets of left and right regular elements of R, respectively. Their intersection

CR = ′CR ∩ C′
R

is the set of regular elements of R. The rings

Ql,cl(R) := C−1
R R and Qr,cl(R) := RC−1

R

are called the classical left and right quotient rings of R, respectively. Goldie’s Theorem states that the ring Ql,cl(R)

is a semisimple Artinian ring iff the ring R is semiprime, udim(R) < ∞ and the ring R satisfies the a.c.c. on left
annihilators (udim stands for the uniform dimension).
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Proposition 3.1 ([3, Proposition 1.1]) Let R be a ring and S be a non-empty subset of R.

1. Suppose that there exists an ideal b of R such that (S+b)/b ⊆ CR/b. Then there is the least ideal, say a = a(S),
that satisfies this property.

2. Suppose that there exists an ideal b of R such that (S+b)/b ⊆ ′CR/b. Then there is the least ideal, say ′a = ′a(S),
that satisfies this property; and ′a(S) ⊆ a(S).

3. Suppose that there exists an ideal b of R such that (S+b)/b ⊆ C′
R/b. Then there is the least ideal, say a

′ = a′(S),
that satisfies this property; and a′(S) ⊆ a(S).

We have the inclusion

a(S) ⊆ ass∗(R) (3.5)

where ∗ ∈ {l, r,∅}, [3, Lemma 1.2]. The proof of Proposition 3.1 contains an explicit description of the ideal a(S).
The ideal a(S) is the key part in the definition of perfect localizable sets that are introduced in [3].

The structure of the ring R〈S−1〉 and its universal property. Recall that for a ring R, we denote by R× its
group of units. Theorem 3.2 describes the structure and the universal property of the ring R〈S−1〉.
Theorem 3.2 ([3, Theorem 1.3]) Let S ∈ L∗(R, a) where ∗ ∈ {l,∅}, R = R/a, π : R → R, r �→ r = r + a and
S = π(S). Then

1. S ∈ Den∗(R, 0).

2. The ring R〈S−1〉 is R-isomorphic to the ring S
−1

R.
3. Let b be an ideal of R and π† : R → R† = R/b, r �→ r† = r + b. If S† = π†(S) ∈ Den∗(R†, 0) then a ⊆ b

and the map

S
−1

R → S†−1
R†, s−1r �→ s†−1

r†

is a ring epimorphism with kernel S
−1

(b/a). So, the ideal a is the least ideal a of the ring R such that S + a ∈
Den∗(R/a, 0).

4. Let f : R → Q be a ring homomorphism such that f (S) ⊆ Q× and the ring Q is generated by f (R) and the
set { f (s)−1 | s ∈ S}. Then
(a) a ⊆ ker( f ) and the map

S
−1

R → Q, s−1r �→ f (s)−1 f (r)

is a ring epimorphism with kernel S
−1

(ker( f )/a), and

Q = { f (s)−1 f (r) | s ∈ S, r ∈ R}.
(b) Let R̃ = R/ ker( f ) and π̃ : R → R̃, r �→ r̃ = r + ker( f ). Then S̃ := π̃(S) ∈ Denl(R̃, 0) and S̃−1 R̃ � Q,

an R̃-isomorphism.

In view of Theorem 3.2.(1,2), for S ∈ L∗(R) we denote by S−1R the ring R〈S−1〉 for ∗ ∈ {l,∅} and by RS−1

for ∗ ∈ {r,∅}. In particular, for S ∈ L(R),

R〈S−1〉 = S−1R � RS−1.

Elements of the rings S−1R and RS−1 are denoted by s−1r and rs−1, respectively, where s ∈ S and r ∈ R.
Sometime, in order to make arguments shorter for S ∈ Lr (R) we denote the ring RS−1 by S−1R.

For the algebra Sn and its multiplicative set Y , Lemma 3.3 presents explicitly all the ingredients of Proposition 3.1
and Theorem 3.2.

Lemma 3.3 1. Y ∈ Ore(Sn) and Y /∈ Denr (Sn), Y ⊆ ′CSn , assl(Y ) = an, and assr (Y ) = 0.
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2. The ideals a(Y ) = a(Y )′ = an and ′a(Y ) = 0 (see Proposition 3.1).
3. We keep the notation of Theorem 3.2. Then for all ∗ ∈ {l, r,∅},

(a) Y ∈ L∗(Sn, a), a = an, and Y−1
Sn � SnY−1 � Ln,

(b) Sn := Sn/a = Sn/an = Ln,
(c) Y = Ỹ ∈ Den∗(Sn, 0).

Proof 1. The equalities yi xi = 1, i = 1, . . . , n, implies that yi ∈ ′CSn , and so Y ⊆ ′CSn . Hence, assr (Y ) = 0. By
Proposition 2.5.(1), assl(Y ) = an . Hence, Y /∈ Denr (Sn) (since 0 �= an = assl(Y ) � assr (Y ) = 0).

By Proposition 2.5.(1), Y ∈ Orel(Sn). To finish the proof of statement 1, it remains to show that Y ∈ Orer (Sn).
Since Sn = S

⊗n
1 , it suffice to prove the statement for n = 1, that is Y = {yi | i ≥ 0}, we drop the subscript ‘1’. The

algebra S1 is generated by the elements x and y, and Y = {yi | i ≥ 0}. So, it suffices to check that the right Ore
condition holds for the elements x ∈ S1 and y ∈ Y , i.e. to prove that there are elements a ∈ S1 and yi such that
xyi = ya. It suffices to take i = 2 and a = 1 − E11:

xy2 = (1 − (1 − xy))y = (1 − E00)y = y − E01 = y(1 − E11).

2. By statement 1, Y ⊆ ′CSn , and so ′a(Y ) = 0. By Proposition 2.5.(1), Y ∈ Denl(Sn, an). Hence, a(Y ) = an .
On the one hand, a(Y )′ ⊆ a(Y ) = an , by Proposition 3.1.(3). On the other hand, an ⊆ a(Y )′, by (2.2). Therefore,
a(Y )′ = an .

3. The case ∗ = l follows from the fact that Y ∈ Denl(Sn, an) (Proposition 2.5.(1)). It suffices to consider the
case where ∗ = r . By statement 1, assl(Y ) = an . Clearly, assl(Y ) ⊆ assR(Y ). Since Sn/assl(Y ) = Sn/an = Ln and
the elements of the set Y are units in the Laurent polynomial ring Ln , we have that assR(Y ) = an , Y ∈ Lr (Sn, an)

and SnY−1 � Ln . Now statements (b) and (c) follows. ��
For the algebra Sn and its multiplicative set X , Lemma 3.4 presents explicitly all the ingredients of Proposition 3.1

and Theorem 3.2.

Lemma 3.4 1. X ∈ Ore(Sn) and X /∈ Denl(Sn), X ⊆ C′
Sn
, assr (X) = an, and assl(X) = 0.

2. The ideals a(X) = ′a(X) = an and a(X)′ = 0 (see Proposition 3.1).
3. We keep the notation of Theorem 3.2. Then for all ∗ ∈ {l, r,∅},

(a) X ∈ L∗(Sn, a), a = an, and X−1
Sn � Sn X−1 � Ln,

(b) Sn := Sn/a = Sn/an = Ln,
(c) X = X̃ ∈ Den∗(Sn, 0).

Proof Since η(Y ) = X and η(an) = an , the lemma follows from Lemma 3.3. ��
For each element α = (α1, . . . , αn) ∈ N

n , let

supp(α) = {i | αi �= 0, i ∈ {1, . . . , n}}.
Recall that σ : Sn → Sn/an = Ln, a �→ a + an . Notice that

Sn =
⊕

α,β∈Nn ,supp(α)∩supp(β)=∅
Kxα yβ ⊕ an . (3.6)

Consider a subgroup of units Z̃ := {xα | α ∈ Z
n} of the algebra Ln . Its pre-image

Z := σ−1(Z̃) = {xα yβ + an | α, β ∈ N
n, supp(α) ∩ supp(β) = ∅} (3.7)

is a submonoid of (Sn, ·).
Lemma 3.5 Z ∈ Den(Sn, an) and Z−1

Sn � SnY−1 � Ln.
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Proof Clearly, Y ⊆ Z . Then, by Lemma 3.3.(1), an = assl(Y ) ⊆ assl(Z). Similarly, X ⊆ Z . Then, by
Lemma 3.4.(1), an = assr (X) ⊆ assr (Z). The algebra Sn/an = Ln is a domain. Hence,

assl(Z) = assr (Z) = an .

Since the set Z̃ = σ(Z) is a group of units in the algebra Ln , we must have Z ∈ Den(Sn, an) and Z−1
Sn �

SnY−1 � Ln . ��
Lemma 3.6 Let R be a ring, S ∈ L∗(R, a) and T ∈ L∗(R, b) such that S ⊆ T where ∗ ∈ {l, r,∅}. Then a ⊆ b and

for ∗ ∈ {l,∅} the map S−1R → T−1R, s−1r �→ t−1r is an R-homomorphism with kernel S−1(b/a) = S
−1

(b/a)

where S = {s + a | s ∈ S}. A similar result holds for ∗ = r .

Proof Recall that a = assR(S) and b = assR(T ). Let Q be a subring of T−1R which is generated by the images
of the ring R and the set {s−1 | s ∈ S} in T−1R (recall that S ⊆ T ). Applying Theorem 3.2.(4a) to the ring
homomorphism R → Q ⊆ T−1R, r �→ r

1 we obtain the ring R-homomorphism

S−1R → T−1R, s−1r �→ s−1r.

Since S−1R = S
−1

R and T−1R = T
−1

(R/b) where T = {t + b | t ∈ T }, the kernel of the R-homomorphism is

S
−1

(b/a). ��
The posets (L∗(R),⊆) and (Loc∗(R),→). The set (Loc∗(R, a),→) is a poset where A1 → A2 if A1 = R〈S−1

1 〉
and A2 = R〈S−1

2 〉 for some localizable sets S1, S2 ∈ L∗(R, a) such that the map A1 → A2, s−1
1 r �→ s−1

1 r if
∗ ∈ {l,∅} (resp., rs−1

1 �→ rs−1
1 if ∗ = r ) is a well-defined homomorphism. Moreover, enlarging if necessary the

denominator set S2 we can assume that S1 ⊆ S2 (for example, by taking S2 = σ−1
2 (A×

2 ) where σ2 : R → A2,
r �→ r

1 , see Proposition 3.8.(2)). By Proposition 3.8.(2),

A1 → A2 iff Sl(R, a, A1) ⊆ Sl(R, a, A2).

In the same way, the poset (Loc∗(R),→) is defined, i.e. A1 → A2 if there exist S1, S2 ∈ L∗(R) such that S1 ⊆ S2,
A1 = R〈S−1

1 〉 and A2 = R〈S−1
2 〉, A1 → A2 stands for the map ϕ : A1 → A2, s−1

1 r �→ s−1
1 r if ∗ ∈ {l,∅} (resp.,

rs−1
1 �→ rs−1

1 if ∗ = r ). The map

L∗(R) → Loc∗(R), S �→ R〈S−1〉, (3.8)

is an epimorphism from the poset (L∗(R),⊆) to (Locl(R),→). For each ideal a ∈ Ass∗(R), it induces the
epimorphism of the posets (L∗(R, a),⊆) and (Loc∗(R, a),→),

L∗(R, a) → Loc∗(R, a), S �→ R〈S−1〉. (3.9)

The sets L∗(R) and Loc∗(R) are the disjoint unions

L∗(R) =
⊔

a∈Ass∗(R)

L∗(R, a), Locl(R) =
⊔

a∈Assl (R)

Loc∗(R, a). (3.10)

For each ideal a ∈ Ass∗(R), the set L∗(R, a) is the disjoint union

L∗(R, a)) =
⊔

A∈Loc∗(R,a))

L∗(R, a, A) (3.11)

where L∗(R, a, A) := {S ∈ L∗(R, a) | R〈S−1〉 � A, an R-isomorphism}.
The largest element S∗(R, a, S−1R) in (L∗(R, a, S−1R) ⊆) and its characterizations where S ∈ L∗(R, a).

Proposition 3.7.(1) is a practical criterion for a multiplicative set S of a ring R to belong to the set L∗(R, a).



Localizations of a Ring at Localizable Sets Page 13 of 15 10

Proposition 3.7 Let S be a multiplicative set of a ring R.

1. Suppose that there exists an ideal a of R such that a ⊆ assR(S) and S := π(S) ∈ Den∗(R, 0) where π : R →
R := R/a, a �→ a + a. Then a = assR(S) and S ∈ L∗(R, a).

2. S ∈ L∗(R, b) iff there is an idealaof R such thata ⊆ band S := π(S) ∈ Den∗(R, 0)whereπ : R → R := R/a,
a �→ a + a.

Proof 1. Since the elements of the set S are invertible in the localization R of the ring R at S, there is an R-
epimorphism from R〈S−1〉 to R. In particular, assR(S) ⊆ a. Hence a = assR(S), and then S ∈ L∗(R, a) (by
Theorem 3.2.(1)), and statement 1 follows.

2. (⇒) If S ∈ L∗(R, b) then it suffices to take a = b, by Theorem 3.2.(1).
(⇐) This implication follows from Theorem 3.2.(3). ��
Proposition 3.8.(2), is an explicit description of the largest element S∗(R, a, S−1A) of the partially ordered set

(L∗(R, a, S−1R),⊆).

Proposition 3.8 Let S ∈ L∗(R, a), π : R → R := R/a, a �→ a + a, and σ : R → S−1R, r �→ r/1 where
∗ ∈ {l, r,∅}.
1. Suppose that T ∈ Den∗(S−1R, 0) be such that π(S), π(S)−1 ⊆ T . Then T := T ∩ R ∈ Denl(R, 0), S :=

π(S) ⊆ T , S
−1

R ⊆ T
−1

R � T−1(S−1R), and T ′ := σ−1(T ) ∈ L∗(R, a, T−1(S−1R)).
2. The set S∗(R, a, S−1A) := σ−1((S−1R)×) is the largest element of the partially ordered set

(L∗(R, a, S−1R),⊆).

Proof 1. (i) T := T ∩ R ∈ Denl(R, 0), S := π(S) ⊆ T , and S
−1

R ⊆ T
−1

R � T−1(S−1R): This is a particular
case of [2, Lemma 3.3.(1)].

(ii) T ′ ∈ L∗(R, a, T
−1

R = T−1(S−1R)): The set T ′ = σ−1(T ) is a multiplicative set in R that contains S.
Since S ⊆ T ′, we have the inclusion of ideals

a = ass∗(S) ⊆ ass∗(T ).

Since π(T ′) = π(σ−1(T )) = σ(σ−1(T )) = T ∩ R = T and T ∈ Denl(R, 0), we have that

T ′ ∈ L∗(R, a),

by Proposition 3.7. (1). Since T
−1

R � T−1(S−1R) (the statement (i)), T ′ ∈ L∗(R, a, T−1(S−1R)).
2. Clearly, (S−1R)× ∈ Den∗(S−1R, 0) ⊆ L∗(S−1R, 0). By statement 1,

σ−1((S−1R)×) ∈ L∗(R, a, S−1R).

On the other hand, if T ∈ L∗(R, a, S−1R), then π(T ) ⊆ (S−1R)×, and so

T ⊆ σ−1((S−1R)×).

Therefore, the set σ−1((S−1R)×) is the largest element of the poset (L∗(R, a, S−1R),⊆). ��
By Lemma 3.5,

Z ∈ Den(Sn, an) and Z−1
Sn � Sn Z

−1 � Ln .

For the algebra Sn and its multiplicative set S = Z (see (3.7)), Lemma 3.9 gives an explicit description of the set
S∗(Sn, an, Ln), see Proposition 3.8.(2).

Lemma 3.9 We keep the notation as above. Then for all ∗ ∈ {l, r,∅},
S∗(Sn, an, Ln) = {K×xα yβ + an | α, β ∈ N

n}.
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Proof Let σ : Sn → Z−1
Sn � Ln , r �→ r

1 . Now, the result follows from Proposition 3.8.(2),

S∗(Sn, an, Ln) = σ−1(L×
n )) = {K×xα yβ + an | α, β ∈ N

n, supp(α) ∩ supp(β) = ∅}
since L×

n = {K×xγ | γ ∈ Z
n} and Sn = ⊕

α,β∈Nn ,supp(α)∩supp(β)=∅ Kxα yβ ⊕ an . ��
Theorem 3.10 is another characterization of the set S∗(R, a, R〈S−1〉) in terms of the five saturations.

Theorem 3.10 Let R be a ring, a be an ideal of R, π : R → R := R/a, a �→ a + a, and S := π(S) for a subset S
of R (in statements 1–6 below, saturations of S are given in the ring R).

1. If S ∈ Ll(R, a) then Sl(R, a, S−1R) = π−1(S
sat
l ).

2. If S ∈ Lr (R, a) then Sr (R, a, RS−1) = π−1(S
sat
r ).

3. If S ∈ L(R, a) then S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, RS−1) = π−1(S
sat
l ) = π−1(S

sat
r ) =

π−1(S
ws

) and S
ws = S

sat
l ∩ S

sat
r .

4. If S ∈ Ll(R, a) and the ring S−1R is finite then Sl(R, a, S−1R) = π−1(S
sat
l ) = π−1(S

ws
l ).

5. If and S ∈ Lr (R, a) and the ring RS−1 is a finite ring then Sr (R, a, RS−1) = π−1(S
sat
r ) = π−1(S

ws
r ).

6. If S ∈ L(R, a) and the ring S−1R is a finite ring then

S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, RS−1) = π−1(S
sat
l ) = π−1(S

sat
r )

= π−1(S
ws

) = π−1(S
ws
l ) = π−1(S

ws
r ).

Proof Given S ∈ L∗(R, a). Let A = R〈S−1〉 be the localization of the ring R at the localizable set S. By
Theorem 3.2.(1,2), S ∈ Den∗(R, 0) and the ring A is R-isomorphic to the localization of the ring R at the denominator
set S. Let σ : R → A, a �→ a

1 . Then the map σ : R → A, r �→ r
1 is the composition of the composition map

σ = σπ . Therefore, by Proposition 3.8.(2),

S∗(R, a, A) = σ−1(A×) = π−1(σ−1(A×)).

Now, statements 1–6 follow from statements 1–6 of Theorem 1.2, respectively. ��
Corollary 3.11 We keep the notation of Theorem 3.10.

1. Suppose that S ∈ Ll(R) and the ring S−1R is either a domain or a one-sided Noetherian ring or does not
contain an infinite direct sum of one-sided ideals then Sl(R, a, S−1R) = π−1(S

sat
l ) = π−1(S

ws
l ).

2. Suppose that S ∈ Lr (R) and the ring RS−1 is either a domain or a one-sided Noetherian ring or does not
contain an infinite direct sum of one-sided ideals then Sr (R, a, RS−1) = π−1(S

sat
r ) = π−1(S

ws
r ).

3. Suppose that S ∈ L(R) and the ring S−1R is either a domain or a one-sided Noetherian ring or does not
contain an infinite direct sum of one-sided ideals then

S(R, a, S−1R) = Sl(R, a, S−1R) = Sr (R, a, RS−1) = π−1(S
sat
l ) = π−1(S

sat
r )

= π−1(S
ws

) = π−1(S
ws
l ) = π−1(S

ws
r ).

Proof The ring is a finite ring provided it is either a domain or a one-sised Noetherian ring or does not contain an
infinite direct sum of one-sided ideals. Now, statements 1-3 follow from Theorem 3.10.(4–6). ��

By [3, Theorem 1.6.(1,2)], if S ∈ Ore(R) then S ∈ L(R) and

assR(S) = {a ∈ R | sat = 0 for some s, t ∈ S}. (3.12)

Proof of Theorem 1.4 We keep the notation of Theorem 3.10. Given elements a, b ∈ R. Then ab ∈ S iff ba ∈ S+a

iff s1bas2 ∈ S for some elements s1, s2 ∈ S, by (3.12).
1. Now, statement 1 follows from Theorem 3.10.(3) and (3.12).
2. Similarly, statement 2 follows from Corollary 3.11.(3) and (3.12). ��
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