Skip to main content
Log in

Linear k-arboricity of Caylay Graphs on Abelian Groups with Given Degree

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

A linear k-forest is a forest whose components are paths of length at most k. The linear k-arboricity of a graph G, denoted by \(\mathrm{la}_k(G)\), is the least number of linear k-forests needed to decompose G. In this paper we study this invariant for Cayley graphs on Abelian groups with degree 3,4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

    Article  MathSciNet  Google Scholar 

  2. Akiyama, J.: Three Developing Topics in Graph Theory. Doctoral Dissertation, University of Toyo, (1980)

  3. Aldred, R.E.L., Wormald, N.C.: More on the linear \(k\)-arboricity of regular graphs. Australas. J. Combin. 18, 97–104 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Alon, N.: The linear arboricity of graphs. Israel J. Math. 62(3), 311–325 (1988)

    Article  MathSciNet  Google Scholar 

  5. Alon, N., Teague, V.J., Wormald, N.C.: Linear arboricity and linear \(k\)-arboricity of regular graphs. Graphs Combin. 17(1), 11–16 (2001)

    Article  MathSciNet  Google Scholar 

  6. Babai, L.: Automorphism groups, isomorphism, reconstruction. In: Graham, R.L., et al. (eds.) Handbook of Combinatorics, pp. 1449–1540. Elsevier Science, Amsterdam (1995)

    Google Scholar 

  7. Bao, F., Igarashi, Y., Öhring, S.R.: Reliable broadcasting in product networks. Discrete Appl. Math. 83, 3–20 (1998)

    Article  MathSciNet  Google Scholar 

  8. Bermond, J.C., Fouquet, J.L., Habib, M., Péroche, B.: On linear \(k\)-arboricity. Discrete Math. 52(2–3), 123–132 (1984)

    Article  MathSciNet  Google Scholar 

  9. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  10. Bondy, J.A., Murty, U.S.R.: Graph Theory, GTM 244. Springer, Berlin (2008)

    Book  Google Scholar 

  11. Chang, G.J.: Algorithmic aspects of linear \(k\)-arboricity. Taiwanese J. Math. 3(1), 73–81 (1999)

    Article  MathSciNet  Google Scholar 

  12. Chang, G.J., Chen, B.L., Fu, H.L., Huang, K.C.: Linear \(k\)-arboricities on trees. Discrete Appl. Math. 103(1–3), 281–287 (2000)

    Article  MathSciNet  Google Scholar 

  13. Chen, B.L., Huang, K.C.: On the linear \(k\)-arboricity of \(K_n\) and \(K_{n, n}\). Discrete Math. 254(1–3), 51–61 (2002)

    Article  MathSciNet  Google Scholar 

  14. Cygan, M., Kowalik, Ł, Lužar, B., Planar linear arboricity, A., Conjecture. In: Calamoneri T., Diaz J. (eds) Algorithms and Complexity, 204–216. CIAC, : Lecture Notes in Computer Science, vol. 6078. Springer, Berlin (2010)

  15. Fu, H., Huang, K., Yen, C.: The linear \(3\)-arboricity of \(K_{n, n}\) and \(K_n\). Discrete Math. 308, 3816–3823 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hammack, R., Imrich, W.: Sandi Klavz̆r. Secend edition, CRC Press, Handbook of product graphs (2011)

  17. Harary, F.: Covering and packing in graphs. I. Ann. NY Acad. Sci. 175, 198–205 (1970)

  18. Heydemann, M.C.: Cayley graphs and interconnection networks. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry, pp. 167–224. Kluwer, Dordrecht (1997)

    Chapter  Google Scholar 

  19. Jiang, M.: Trees, paths, stars, caterpillars and spiders. Algorithmica 80, 1964–1982 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ku, S., Wang, B., Hung, T.: Constructing edge-disjoint spanning trees in product networks. IEEE Trans. Parall. Distrib. Syst. 14(3), 213–221 (2003)

    Article  Google Scholar 

  21. Liu, J.: Hamiltonian decomposition of Cayley graphs on Abelian groups of odd order. J. Combin. Theory Ser. B 66, 75–86 (1996)

  22. Mao, Y.: Path-connectivity of lexicographical product graphs. Int. J. Comput. Math. 93(1), 27–39 (2016)

    Article  MathSciNet  Google Scholar 

  23. Shiu, W.-Ch.: On 3-regular and \(4\)-regular Cayley graphs of abelian groups, Technical Report. Hong Kong Baptist University, Dept. of Mathematics (1995)

  24. Thomassen, C.: Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5. J. Combin. Theory Ser. B. 75(1) , 100–109 (1999)

  25. Zhou, S.: A class of arc-transitive Cayley graphs as models for interconnection networks. SIAM J. Discrete Math. 23, 694–714 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for a number of helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Science Foundation of China (Nos. 11601254, 11551001, 11161037, 11461054) and the Science Found of Qinghai Province (Nos. 2019-ZJ-921).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, N., Mao, Y., Wang, Z. et al. Linear k-arboricity of Caylay Graphs on Abelian Groups with Given Degree. Math.Comput.Sci. 15, 743–755 (2021). https://doi.org/10.1007/s11786-021-00503-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-021-00503-6

Keywords

Mathematics Subject Classification

Navigation