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Abstract When one goes from a geometrical statement to an algebraic statement, the immediate translation is to
replace every point by a pair of coordinates, if in the plane (or more as required). A statement with N points is then
a statement with 2N (or 3N or more) variables, and the complexity of tools like cylindrical algebraic decomposition
is doubly exponential in the number of variables. Hence one says “without loss of generality, A is at (0,0)” and so
on. Howmight one automate this, in particular the detection that a “without loss of generality” argument is possible,
or turn it into a procedure (and possibly even a formal proof)?
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1 Introduction

Symmetry is at once a familiar concept (we recognize it when we see it!) and a profoundly deep mathematical
subject. At its most basic, a symmetry is some transformation of an object that leaves the object (or some
aspect of the object) unchanged. [11]

That quotation comes from a major survey of symmetry in purely Boolean satisfiability problems, but our setting
is “Satisfiability Modulo Theories” over the real numbers, and the desire to enhance this with techniques from
Computer Algebra, notably Cylindrical Algebraic Decomposition: see [1,2]. Hence we need to worry about sym-
metry in the underlying theory as well as in the Boolean formulation, and ask what alignment there is between
symmetry in the underlying theory and in the Boolean satisfiability problem that encodes the problem. Clearly if
neither have any symmetry there is nothing to discuss, and if both possess the same symmetry, the reasoning in
[11] applies. If there is symmetry in the Boolean problem, but that is not reflected in the underlying theory, then the
theory in [11] is not applicable. For example, if P(a, b, c) is symmetric in a and b, we might think that we have
to consider three cases: P(T, T, c), P(T, F, c) and P(F, F, c), since P(F, T, c) is equivalent to P(T, F, c). But
if P is c ⇒ (a ∨ b) ∧ ¬(a ∧ b) with c being x = 1, a being x < 0 and b being x2 < 4, then truth of c gives us
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the a = F , b = T case we would have discarded. This paper is concerned with the remaining case, where there is
symmetry in the underlying theory that does not manifest itself directly in the Boolean formulation.

Many proofs, particularly of the more computational kind, in mathematics contain a line of the form “without
loss of generality, we may assume …” (often abbreviated w.l.o.g). This is discussed in [6], who claims, we believe
correctly, that this means one of two, rather different, types of argument:

Type A: non-degeneracy for example “w.l.o.g. α �= 0”, really means1 “α = 0 is a special case, which you can
easily see for yourself, so I am not going to bother with it here”;
Type B: exploitation of symmetry as in [6]’s opening example of Schur’s inequality ∀a, b, c ∈ R, k ∈ N,

0 ≤ ak(a − b)(a − c) + bk(b − a)(b − c) + ck(c − a)(c − b), (1)

where a typical proof might begin: “Without loss of generality, let a ≤ b ≤ c”.

This paper is essentially concerned with the second case, though, as we shall see, it is not possible to ignore the
first, and indeed a given statement might combine both in practice.

This is a very powerful form of human reasoning. Harrison [6] asks, and substantially answers, the question of
how, assuming the symmetry is stated, it can be incorporated into formal proof: here we ask an equivalent question
for computation, notably in the context of Symbolic Computation and Satisfiability Checking [2]. The challenge
turns out to be the detection, rather than the use, of the symmetry. Harrison [6] does not discuss detection: we
believe that our study of detection is equally applicable to the proof context.

2 Exploitation of Symmetry—Discrete

Harrison [6] explains the example above as follows.

If asked to spell this out in more detail, wemight say something like: Since≤ is a total order, the three numbers
must be ordered somehow, i.e. we must have (at least) one of a ≤ b ≤ c, a ≤ c ≤ b, b ≤ a ≤ c, b ≤ c ≤ a,
c ≤ a ≤ b or c ≤ b ≤ a. But the theorem is completely symmetric between a, b and c, so each of these cases
is just a version of the other with a change of variables, and we may as well just consider one of them.

He then offers two possible formalisms:

• The phrase may be an informal shorthand saying ‘we should really do 6 very similar proofs here, but if
we do one, all the others are exactly analogous and can be left to the reader’.

• The phrase may be asserting that ‘by a general logical principle, the apparently more general case and the
special WLOG case are in fact equivalent (or at least the special case implies the general one)’.

He then argues that the second interpretation is closer to the informal mathematics, and shows how to implement
this as a HOL-Light theorem, more precisely

	 (∀xyz.Pxyz ⇒ Pyxz ∧ Pxzy) ∧
(∀xyz.x ≤ y ∧ y ≤ z ⇒ Pxyz)

⇒ (∀xyz.Pxyz) (2)

Note 1 There’s a subtlety here: in fact the statement is invariant under S3, the symmetric group on {x, y, z}, but
the two permutations listed, xyz → yxz and xyz → xzy (in cycle notation (x, y) and (y, z)), generate S3.

1 However, it may also mean Type C: “α = 0 renders the result meaningless, so we shall not consider it further”. These are extremely
common in geometry: see Observation 1 and [7].
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Table 1 Cells satisfying
a ≤ b ≤ c c < 0 b < c All

b = c a < c; a = c

c = 0 b < 0 a < b; a = b

b = 0 a < 0; a = 0

c > 0 b < 0 All

b = 0 a < c

0 < b < c All

b = c a < 0; a = 0; 0 < a < c; a = c

2.1 Does this Help SC2?

Unfortunately (1) is not polynomial: we need to specialise k. If we feed (1)|k=2 into Cylindrical Algebraic Decom-
position (either the [5] or the [3] implementations), we get 31 cells (as we do for any even k: odd k give us 59 cells,
but the conclusions are similar): the major split is on how c compares with 0: c < 0 then splits on how b compares
with c and 0 (five possibilities, with b = c splitting a into five possibilities, and b = 0 splitting on how a compares
with c); c > 0 similarly, and c = 0 having a three-way split on b, each having a three-way split on a. Of these, the
14 listed in Table 1 satisfy a ≤ b ≤ c, either totally, or, where underlined, only partially. Not only is this ratio of
14/31 ≈ 45% disappointing compared with the naïve (not allowing for equality) 1/6 one might expect: if we split
the underlined cells to get precisely the cells with a ≤ b ≤ c, the ratio would be 18/39 ≈ 46%.

2.2 How Might We Detect It?

The most obvious generalisation of Note 1 is the following well-known result.

Proposition 1 The permutations (1, 2, . . . , n) and (1, 2) generate Sn as a group acting on {1, 2, . . . , n}.
Corollary 1 Hence, if a statement P(x1, x2, . . . , xn) is given, and P(x1, x2, . . . , xn) is mathematically equivalent
to P(x2, x1, . . . , xn) and to P(x2, . . . , xn, x1), it is sufficient to prove

x1 ≤ x2 ∧ x2 ≤ x3 ∧ · · · xn−1 ≤ xn ⇒ P(x1, x2, . . . , xn) (3)

Note 2 We have said “mathematically equivalent to”, rather than just “equal to”, as we needed the laws of algebra
(at least commutativity of addition and multiplication) to show that (1) was actually invariant.

3 Exploitation of Symmetry—Continuous

One of the most important ways in which such invariances are used in proofs is to make a convenient choice
of coordinate system. [6]

If a problem is intrinsically geometric, then the precise coordinate system is irrelevant to the truth of the statement.
It is this sort of symmetry that we will look for in this section.

Let us consider the following example

Theorem 1 (Simson’s Theorem, [9,12]) Let D be on the circumcircle of the triangle ABC, let P, Q and R be the
points of AB, AC and BC where the line to D is perpendicular. Then P, Q and R are collinear.

Let us consider just the first statement2 “Let D be on the circumcircle of the triangle ABC”.

2 The rest of the theorem introduces no more free variables.
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Observation 1 Implicit in this is the statement that ABC has a circumcircle, i.e. that it is non-degenerate. To get
as far as (4), we need to state this: see [4] for the details.

One possible coordinatisation3 of this is (4).

xD
2 + yD

2 =
xD

(
xA

2yB − xA
2yC − xB

2yA + xB
2yC + xC

2yA − xC
2yB + yA

2yB
−yA

2yC − yA yB
2 + yA yC

2 + yB
2yC − yB yC

2)

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB

+

yD
(−xA

(
xB

2 + yB
2
)

+ xA

(
xC

2 + yC
2
)

+xA
2 (xB − xC) + yA

2 (xB − xC) − xB

(
xC

2 + yC
2
)

+ xC

(
xB

2 + yB
2
))

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB

+1

4

(
xA

2yB − xA
2yC − xB

2yA + xB
2yC + xC

2yA − xC
2yB + yA

2yB − yA
2yC − yA yB

2 + yA yC
2 + yB

2yC − yB yC
2
)2

(xA yB − xA yC − xB yA + xB yC + xC yA − xC yB)2

+1

4

(
−xA

(
xB

2 + yB
2
)

+ xA

(
xC

2 + yC
2
)

+ xA
2 (xB − xC) + yA

2 (xB − xC) − xB

(
xC

2 + yC
2
)

+ xC

(
xB

2 + yB
2
))2

(xA yB − xA yC − xB yA + xB yC + xC yA − xC yB)2

−

⎛

⎜⎜
⎜
⎝

xA − 1

2

xA
2yB − xA

2yC − xB
2yA + xB

2yC + xC
2yA − xC

2yB
+yA

2yB − yA
2yC − yA yB

2 + yA yC
2 + yB

2yC − yB yC
2

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB

⎞

⎟⎟
⎟
⎠

2

−

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

yA + 1

2

−xA

(
xB

2 + yB
2
)

+ xA

(
xC

2 + yC
2
)

+ xA
2 (xB − xC)

+yA
2 (xB − xC) − xB

(
xC

2 + yC
2
)

+ xC

(
xB

2 + yB
2
)

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

2

(4)

It is relatively easy (for a computer algebra system) to verify that (4) is invariant if we replace all variables z by
z + c. Hence it is legitimate to choose yA = 0, which gives us (5).

xD
2 + yD

2 = xD
(
xA

2yB − xA
2yC + xB

2yC − xC
2yB + yB

2yC − yB yC
2
)

xA yB − xA yC + xB yC − xC yB

+ yD

yD − xA
(
xB

2 + yB
2
) + xA

(
xC

2 + yC
2
) + xA

2 (xB − xC)

−xB
(
xC

2 + yC
2
) + xC

(
xB

2 + yB
2
)

xA yB − xA yC + xB yC − xC yB

+ 1

4

(
xA

2yB − xA
2yC + xB

2yC − xC
2yB + yB

2yC − yB yC
2
)2

(xA yB − xA yC + xB yC − xC yB)2

−
(

xA − 1

2

xA
2yB − xA

2yC + xB
2yC − xC

2yB + yB
2yC − yB yC

2

xA yB − xA yC + xB yC − xC yB

)2

(5)

Again, it is relatively easy (for a computer algebra system) to verify that (5) is invariant if we replace all variables
z ∈ {xA, xB, xC , xD} by z + c′. Hence it is legitimate to choose xA = 0, which gives us (6).

xD
2 + yD

2 = xD
(
xB

2yC − xC
2yB + yB

2yC − yB yC
2
)

xB yC − xC yB
+ yD

(−xB
(
xC

2 + yC
2
) + xC

(
xB

2 + yB
2
))

xB yC − xC yB
(6)

3 Obtained with Maple’s geometry[circumcircle] command, after making the non-degeneracy assumption xA yB − xA yC −
xB yA + xB yC + xC yA − xC yB �= 0.
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In fact, both [9,12] coordinatise with A = (xA, 0) and B = (−xA, 0), taking (implicit) advantage of the fact that
the problem is invariant under translation (so we can place the midpoint of AB at (0, 0)) and rotation (so we can
place A and B on the x-axis). Then (4) becomes the simpler (7).

xD
2 + yD

2 = yD
(−xA

2 + xC
2 + yC

2
)

yC
+ xA

2 (7)

One further step, which [9,12] could have done, and a computer system could certainly spot, is that the equation is
homogeneous, and hence we can pick, say, xA = 1. However, whilst appearing to be a type B w.l.o.g., exploiting
symmetry under dilation, it is also asserting xA �= 0, thus a type A (trivial special case), or even type C (degenerate
special case), w.l.o.g. as well.

3.1 Does this Help SC2?

The non-vanishing of the denominators in (4)–(7) essentially corresponds to the non-degeneracy of the triangle
ABC, so it is legitimate to consider just the numerators. The resource consumptions of Cylindrical Algebraic
Decomposition, computing a complete CAD of Rn on these are shown in Table 2.

Let us consider first the [3] timings. These show, somewhat to the author’s initial surprise, that Cylindrical
Algebraic Decomposition is, at least in this example, unaffected in terms of cell count by the translation w.l.o.g.s,
though rotation [(7) rather than (6)] and scaling (the substitution lines) help, at least in terms of cell count.

We solved (6) with variable ordering x 
 y 
 xC 
 yB 
 yC (i.e. yC is the first variable to be eliminated).
The different scalings were applied to (6) after (6)|xB=1 showed quite large denominators, e.g. cell (1,1,1,2,1)
has − 3710363

2097152 < yB < − 7420725
4194304 , and hence the author hoped that rescaling would reduce this problem. The

effect is in fact negligible: in (6)|xB=16 the same cell has − 303093
131072 < yC < − 2424743

1048576 , and in (6)|xB=256 we have
− 27504107

1048576 < yC < − 13752053
524288 . As can be seen, the overall effect on memory and time of changing the scaling was

for the worse.
The second set of timings were produced using the software in [5], but with no special declarations, hence

effectively the projection of [8]. In several cases, this warned that the projection was not well-oriented. Since
the McCallum projection is a superset of the Lazard projection, and this has been recently [10] been proved
unconditionally correct, we can ignore these. We observe that detecting the rotational symmetry [(7) rather than
(6)] had a much greater effect here than it did for the [3] method.

Table 2 CAD of Rn for numerators of (4)–(7)

Chen and Moreno Maza [3] England et al. [5] and McCallum [8]

Equations Cells Time Memory Cells Time Memory
(s) MiB (s) MiB

(7)|xA=1 37 0.14 11 245 1.86 108

(7) 107 0.47 26 589* 3.89 303

(6)|xB=1 319 3.48 256 30803* 433.20 31460

(6)|xB=16 319 3.53 290

(6)|xB=256 319 4.24 318

(6) 591 2.29 188 36531* 807.00 55000

(5) 591 2.80 235 – >9000

(4) 591 4.12 341

The timings and memory usage come from Maple’s CodeTools[Usage], and hence both have (up to) four significant figures.
*Warning that the input is not well-oriented
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The really surprising effect was the difference between (6) and (5). As far as the author could tell, the code
was still projecting when interrupted after 2 1

2 h: at least it had produced no warnings about orientation. This needs
further investigation.

3.2 How Might We Detect It?

The question of detection comes in several forms.

1D Invariance by translation by R can be detected, as we did in going from (4) to (5), by checking
that adding c to all variables leaves the equation (or system of equations) invariant. This will
fail, of course, if there are variables other than the results of coordinatisation.

2D Having detected invariance by translation by R, we can look for invariance by translation by
R2 as we did in going from (5) to (6), by checking that adding c to a proper subset of the
variables leaves the equation (or system of equations) invariant. Of course, the author “cheated”
and translated all the x variables based on variable name, but in practice one would have to try
all subsets (but not a subset and its complement) of the set of variables.

3+D Though not present in our example, we could then go on to detect invariance by translation by
R3, and so on. As we see in the discussion of rotation, it is important to do so.

Scaling This is a consequence of homogeneity, and can easily be detected. The problem is that this is also
a type A (or even C) w.l.o.g. as well as type B one, and, having chosen xi as our dehomogenising
variable, we ought in principle to consider the two cases xi = 1 and xi = 0. The second case,
if it does not collapse, is also homogeneous in the remaining variables, so we can recurse.

2D Rotation If we know that we have 2D translation symmetry, we might hope for 2D rotational symmetry
as well. Let us call the set of variables translated by c in the search for 2D symmetry the “x”
variables, and its complement the set of “y” variables, and assume that there are no more “x”
variables than “y” variables, which will occur if we do a breadth-first search for such a set.
If the problem comes from coordinatisation of a 2D geometrical problem, there should be as
many “x” as “y” variables—of course whether these correspond to the original x and y or vice
versa is a matter of chance, but from now on we shall drop the quotes, implicitly assuming the
correspondence, not that it matters.

Then the question comes:which y j ∈ {y1, . . . , ym} corresponds towhich xi ∈ {x1, . . . , xn}?
Here we know of no better answer than trying all m!/(m − n)! possibilities for a complete
assignment σ . We then replace all pairs (xi , yσ(i)) by (cxi − syσ(i), cyσ(i) + sxi ) to practice a
rotation4 by θ with c = cos θ , s = sin θ , and apply c2 + s2 = 1. For the correct assignment in
our example, it is relatively easy to demonstrate equality (in particular the result is independent
of c and s), and for incorrect examples we get results that still contain c and s.

3D Rotation We have no examples of this, but the principles are the same as above. Note that, if there really
is 3D symmetry, we should identify it, and then choose triples (xi , yσ(i), zτ(i)), as assuming we
have merely 2D symmetry, and rotating the x and y but not the z, will fail.

4 Conclusion

We have only considered one example so far, but intend to study others. It is a “natural” example in that it comes
from 2D geometry. It would be possible to build artificial examples that had, for example, rotational symmetry but

4 The reader may object that this is a rotation about the origin. But we have already demonstrated 2D translational invariance, so one
centre is as good as another.
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no translational symmetry, but, in the spirit of [2], we have started with natural problems. From the basis of this
limited analysis, we draw the following provisional conclusions.

It is possible to detect certain forms of symmetry simply from the equations (though it would clearly be better to
detect them before coordinatisation if at all possible). For the method of [3], detecting translational symmetry has
no effect on the cell count (and a modest effect on runtime and memory), but seems to be a pre-requisite to efficient
detection of rotational symmetry, which is extremely helpful. The method of [8] seems much more susceptible to
the number of variables, and hence all symmetry detection and “w.l.o.g.” specialisation are helpful.
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