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Abstract The paper is devoted to the implementations of the public key algorithms based on simple algebraic
graphs A(n, K ) and D(n, K ) defined over the same finite commutative ring K . If K is a finite field both families
are families of graphs with large cycle indicator. In fact, the family D(n, Fq) is a family of graphs of large girth
(f.g.l.g.) with c = 1, their connected components C D(n, Fq) form the f.g.l.g. with the speed of growth 4/3. Family
A(n, q), charFq �= 2 is a family of connected graphs with large cycle indicator with the largest possible speed of
growth. The computer simulation demonstrates the advantage (better density which is the number of monomial
expressions) of public rules derived from A(n, q) in comparison with symbolic algorithm based on graphs D(n, q).

Keywords Algebraic multivariate cryptography · Graph algorithms · Density of polynomial multivariate maps
of small degree

Mathematics Subject Classification 14G50 · 05C85 · 11T71

1 Introduction

Multivariate cryptography in the narrow sense (see Wikipedia) is the generic term for asymmetric cryptographic
primitives based on multivariate polynomials over finite fields. In certain cases these polynomials could be defined
over both a ground and an extension field. If the polynomials have the degree two, we talk about multivariate qua-
dratics. Solving systems of multivariate polynomial equations is proven to be NP-Hard or NP-Complete. That is why
these schemes are often considered to be good candidates for post-quantum cryptography, once quantum computers
can break the current schemes. Today multivariate quadratics could be used only to build signatures. This definition
rises several questions: Why a finite field but not a commutative ring is used? Why quadratics are so important?

We define multivariable cryptography as studies of cryptosystems based on special regular automorphism f
of algebraic variety Mn(K ) of dimension n in a sense of Zarisski topology over finite commutative ring K . An
example of algebraic variety is a free module K n which is simply a Cartesian product of n copies of K n into iself.
Regular automorphism is a bijective polynomial map of Mn(K ) onto itself such that f −1 is also a polynomial map.
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Elements of K n can be identified with strings (x1, x2, . . . , xn) in alphabet K , nonlinear map f of restricted degree
d can be used as a public rule if the key holder (Alice) knows the secret decomposition of f into composition
of special maps f1, f2, . . . , fs with known inverse maps fi

−1. So she can decrypt by consecutive application of
fs

−1, f −1
s−1, . . . , f1

−1. Notice, that public user (Bob) has to use symbolic computations to work with f , but Alice
may use numerical computations for the implementation of private key decryption process. Of course K n can be
changed for the family of varieties Mn(K ), n = 1, 2, . . ., the commutative ring can be treated as an alphabet,
element v ∈ Mn(k) as a ”potentially infinite” plaintext, parameter n as a measurement of size of v.

The complexity of the best general algorithms for the solution of nonlinear system of equation of kind f (x) =
y, x, y ∈ K n equals d0(n) (see recent paper [5]). One can use Gröbner basis, Gauss elimination method or alter-
native options for the investigation of the system. Of course, one can write simple nonlinear equations which are
easy to solve. So the system of nonlinear equations has to be tested on ”pseudorandomness” and the map f has to
be of large order. Notice, that one of the first attempts to create workable multivariate cryptosystem was proposed
by Imai and Matsumoto. They used finite field of characteristic 2 and its extension, f has a decomposition f1 f2 f3,
where f1 and f2 are affine maps (of degree 1) and f2 is a Frobenius automorphism. Cryptanalysis for the scheme
the reader can find in [14], the history of its various modifications goes on (see, for instance survey in [40]). We
have to notice that the failure of this cryptosystem is not a surprise for specialists in algebra. Despite its formal
quadratic appearance Frobenius automorphism is quite close to linear maps (in his famous book [4] Dieudonné
uses term 3/2 linear map for such automorphism). One of the popular directions in multivariate cryptography is the
use of tools outside commutative algebra such as dynamical systems or extremal algebraic graphs (see [40,41] and
further references) for the creation of nonlinear maps of pseudorandom nature.

Algebraic graphs are graphs defined by systems of algebraic equations, their vertex sets and edge sets are alge-
braic varieties in corresponding Zarisski topology. The walks on such graphs can be used for the generation of public
rules of multivariate cryptography, reverse walk will provide the private key algorithm for the decryption process
(see [24,27–33,35,37,38]). A girth of a graph is the length of its minimal cycle. Generalised m-gon is a bipartite
biregular graph of girth 2m and diameter m. According to modifications of Even Cycle Theorem by P. Erdős, the size
(number of edges) of the graph on v vertices of girth >2n is O(v1+1/n) and the size of known q-regular generalised
m-gons (m = 3, 4, 6) belongs to this upper bound for n = m − 1. In some sense generalised m-gons are similar
to random graphs. The multivariate cryptosystems based on affine parts of known generalised polygons have been
proposed in [30] (see also [32]). A bit earlier we started an investigation of cryptosystems connected with families
of k-regular graphs Gi of large girth for which girth gi is ≥clogk(vi )), where vi is the order of Gi , i = 1, 2, . . ..

The existence of such families was proved by P. Erdős in late 50th. The first explicit constructions appeared in
[17,20]. They are family of special Cayley graphs for the group P SL2(p) and algebraic graphs of nonlinear nature
D(n, q) defined over general finite field Fq (see [19] for descriptions of their connected components C D(n, q)).

In publications [15] classes of stream ciphers and public key algorithms based on explicit construction of families
of algebraic graphs of large girth D(n, q) and their generalisations D(n, K ), where K is general commutative ring
(D(n, Fq) = D(n, q)) were proposed. It was shown later [42] that for each finite commutative ring K we can create a
cubical polynomial map f of K n onto K n depending on string of regular elements (non-zero divisors (α1α2, . . . , αt )

(password). If t ≤ (n +5)/2 and αi +αi+1 are regular ring elements then different strings produce different cipher-
texts. One can use such a map as a stream cipher. Recently [40,41] we show that conditions of regularity we can
change for αi +αi+1 ∈ M , where the multiplicative clousure of a subset M of K does not contain zero. It is possible
to combine f with two invertible sparse affine transformations τ1 and τ2 and use the composition g = τ1 f τ2 as a
public rule. Public user is not able to decrypt a ciphertext without the knowledge of τ1, τ2 and string (α1α2, . . . , αt ).

One can set τ2 as the inverse of τ1 and use the ”symbolic” generator g and related cyclic group for the Diffie-
Hellman key exchange protocol. We can prove that the order of g corresponding to string (α1α2, . . . , αt ), αk +α1 ∈
M is growing with the growth of the parameter n.

The paper [11] is devoted to the implementation of generalisation of the above mentioned algorithms. We consider
linear transformations Ta depending on the string a = (β1, β2, . . . , βd), where d = [n/4] and use f Ta instead of f .

The construction of transformation f uses graphs D(n, K ) (graphs of large girth for K = Fq ), which were
very useful for creation of good LDPC codes in Coding Theory. The transformation Ta is a special automorphism
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of graph D(n, K ). The properties of such modified public keys were presented at MACIS 2011 conference in
Beijing (see [12]). It is very natural to compare multivariate cryptosystems based on D(n, K ) and D(n, K ′) over
different rings of the same size. The densities of public rules in case K = F2m and K ′ is a boolean ring of size
2m, m = 8, 16, 32 are discussed in [13]. The comparison of private keys for K = F2m and arithmetical rings
K = Zn, n = 2m, m = 8, 16, 32 the reader can make looking at material of [11,39].

In current publication we compare the public rules based on graphs D(n, q) and rather new extremal graphs
A(n, q) (see [10,22]). Graphs A(n, q) are important example connected with another optimisation problem on
graphs—problem of finding the maximal size of graph of order v with cycle indicator ≥m (the definition of this
parameter is written below).

Classical problems of Turan type on studies of the maximal size of simple graphs without prohibited cycles are
attractive for mathematicians because they are beautiful and difficult (see [2,25]). The concept of a family of simple
graphs of large girth appears as an important tool for investigation of such problems. Later the applications of these
problems in Networking [1], Coding Theory and Cryptography were found (see [33] and further references).

One of the important directions in W. C. Tutte research (see [2]) was an investigation of cycle matroids. Recall,
that every finite graph (or multigraph) � gives rise to a matroid as follows: take as E(�) the set of all edges in �

and consider a set of edges independent if and only if it does not contain a simple cycle. Such an edge set is called
a forest in graph theory. This is called the cycle matroid or graphic matroid of �. It is usually written M(�). Any
matroid that is equivalent to the cycle matroid of a (multi)graph, even if it is not presented in terms of graphs, is
called a graphic matroid or cycle matroid. The matroids that are graphic have been characterized by Tutte.

Recall, that the girth g(�) of simple graph � is the length of its minimal cycle. Let g(x) be the length of the
minimal cycle through the vertex x from the set V (�) of vertices in graph �. We refer to maxg(x), x ∈ V (�) as
cycle indicator Cind(�) of the a graph. We say that vertex x is incident to subset E of E(�) and write x I E if there
is an edge from E which contains x . We refer to E as connected set if graph E, {x |x I E} is a connected graph. It is
clear that graph with finite Cind is not a forest. For each r, r ≤ Cind there is a vertex x such that for each connected
E, E I x of cardinality r is an element of M(�) ((E, {x |x I E}) is a tree). Obviously Cind(�) ≥ g(�).

The problem of finding the maximal size e(v) of the graph on v vertices with cycle indicator >2m is formally not
a problem of Turan type but it is typical optimisation problem on graph closely connected with studies of extremal
graphs without prescribed cycles. As it was stated in [41] e(v) ⇔ cv1+1/m , where c is a constant. So in difference
with the bound of Even Circuit Theorem the new bound is always sharp.

If �i is a family of connected k-regular graphs of increasing order with increasing cycle indicator for which
projective (or inductive) limit � = �i , i → ∞ is well defined, then � is a tree.

Let us introduce the natural generalisation of a family of graphs of large girth.
We refer to a family of regular simple graphs �i of degree ki and order vi as family with large cycle matroid if

Cird(�i ) ≥ clog(vi ) for some independent constant c, c > 0. It is nice to have speed c of growth of cycle indicator
as large as it possible for a family of graphs.

If all degrees ki are equal to certain constant k we will use the term family of graphs of large cycle indicator.
Families of connected graphs with large cycle matroids are interesting for applications because of the existence

of large rooted tree with the root x ∈ �i . Recall, that family of regular graphs �i of degree ki and increasing order vi

is a family of graphs of large girth f.g.l.g. if g(�i ) ≥ clog(vi ) for some independent constant c, c > 0. F.g.l.g. plays
an important role in Extremal Graph Theory, Theory of LDPC codes and Cryptography [6–8]. F.g.l.g. of bounded
degree are hard to construct. This fact is a serious motivation for the studies of infinite families of graphs with large
cycle matroid, which are generalisations of f.g.l.g..

In our paper we discuss applications of family of graphs A(n, q) with large cycle matroid with constant c = 2 to
cryptography in terms of symbolic computations. It is easy to see that the size of A(n, q) of order v = 2qn belongs
to upper bound for e(v). There is a conjecture that for fixed q family A(n, q) form a family of graphs with large
girth with the constant c′, c′ < 2.

The idea (see [22]) is to create families of cycle groups Cn = 〈 fn〉 with generator fn , which is a bijective
polynomial transformation of vector space Fq

n , such that the order |Cn| is large and all gn are polynomial maps of
small degree.
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Section 2 is devoted to the concept of the girth indicator and the family of large girth for digraphs.
In Sect. 3 we consider the definition of a family of affine algebraic digraphs of large girth over commutative

rings. Explicit constructions of such families of graphs can be used for the development of public keys and a key
exchange protocol. We discuss the connection of these algorithms with the group theoretical discrete logarithm
problem.

The known examples of families of simple algebraic graphs were constructed just in the case of finite fields
(see [18,19]). In Sect. 4 we consider an explicit construction of a family of affine algebraic digraphs of large girth
over each finite commutative ring containing at least 3 regular elements. Different properties of this family are
investigated in [23,24,33,34,36,37].

In Sect. 5 we discuss the implementation of public key algorithms based on a new family A(n, q) of graphs
with large cycle matroids for the generations of cyclic groups Cn of cubical transformations of Fq

n and discuss
corresponding public key algorithms. Section 6 is devoted to the comparison of the density of public keys related
to A(n, q) and D(n, q).

2 On the Families of Directed Graphs of Large Girth

The missing theoretical definitions on directed graphs the reader can find in [21]. Let � be an irreflexive binary
relation over the set V , i.e., � ∈ V × V and for each v the pair (v, v) is not the element of �.

We say that u is the neighbour of v and write v → u if (v, u) ∈ �. We use the term balanced binary relation graph
for the graph � of irreflexive binary relation φ over a finite set V such that for each v ∈ V the sets {x |(x, v) ∈ φ}
and {x |(v, x) ∈ φ} have the same cardinality. It is a directed graph without loops and multiple edges. We say that a
balanced graph � is k-regular if for each vertex v ∈ � the cardinality of {x |(v, x) ∈ φ} is k.

Let � be the graph of binary relation. The path between vertices a and b is the sequence a = x0 → x1 →
. . . xs = b of length s, where xi , i = 0, 1, . . . s are distinct vertices.

We say that the pair of paths a = x0 → x1 → · · · → xs = b, s ≥ 1 and a = y0 → y1 → · · · → yt = b, t ≥ 1
form an (s, t)-commutative diagram Os,t if xi �= y j for 0 < i < s, 0 < j < t . Without loss of general-
ity we assume that s ≥ t . We refer to the number max(s, t) as the rank of Os,t . It is ≥2, because the graph
does not contain multiple edges. Notice that the graph of antireflexive binary relation may have a directed cycle
Os = Os,0 : v0 → v1 → . . . vs−1 → v0, where vi , i = 0, 1, . . . , s − 1, s ≥ 2 are distinct vertices. We will count
directed cycles as commutative diagrams.

For the investigation of commutative diagrams we introduce girth indicator gi, which is the minimal value for
max(s, t) for parameters s, t of a commutative diagram Os,t , s + t ≥ 3. The minimum is taken over all pairs of
vertices (a, b) in the digraph. Notice that two vertices v and u at distance <gi are connected by the unique path from
u to v of length <gi. We assume that the girth g(�) of a directed graph � with the girth indicator d + 1 is 2d + 1 if
it contains a commutative diagram Od+1,d . If there are no such diagrams we assume that g(�) is 2d + 2. In case of
a symmetric binary relation gi = d implies that the girth of the graph is 2d or 2d − 1. It does not contain an even
cycle 2d − 2. In general case gi = d implies that g ≥ d + 1. So in the case of the family of graphs with unbounded
girth indicator, the girth is also unbounded. We also have gi ≥ g/2. In the case of symmetric irreflexive relations
the above mentioned general definition of the girth agrees with the standard definition of the girth of simple graph,
i.e., the length of its minimal cycle.

We will use the term the family of graphs of large girth for the family of balanced directed regular graphs �i of
degree ki and order vi such that gi(�i ) is ≥ clogki

vi , where c′ is a constant independent of i . As it follows from the
definition g(�i ) ≥ c′logki

(vi ) for an appropriate constant c′. So, it agrees with the well known definition for the
case of simple graphs.

The diameter of the strongly connected digraph [21] is the minimal length d of the shortest directed path
a = x0 → x1 → x2 · · · → xd between two vertices a and b. Recall that a graph is k-regular, if each vertex of
G has exactly k outputs. Let F be the infinite family of ki regular graphs Gi of order vi and diameter di . We say,
that F is a family of small world graphs if di ≤ C logki

(vi ), i = 1, . . . for some constant C independent on i . The
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definition of small world simple graphs and related explicit constructions the reader can find in [2]. For the studies
of small world simple graphs without small cycles see [25,34].

3 On the K -Theory of Affine Graphs of High Girth and Its Cryptographical Motivations

Let K be a commutative ring. A directed algebraic graph φ over K consists of two things, such as the vertex set Q
being a quasiprojective variety over K of nonzero dimension and the edge set being a quasiprojective variety φ in
Q × Q. We assume that (xφy means (x, y) ∈ φ).

The graph φ is balanced if for each vertex v ∈ Q the sets Im(v) = {x | vφx} and Out(v) = {x | xφv} are
quasiprojective varieties over K of the same dimension.

The graph φ is homogeneous (or (r, s)-homogeneous) if for each vertex v ∈ Q the sets Im(v) = {x |vφx} and
Out(v) = {x |xφv} are quasiprojective varieties over F of fixed nonzero dimensions r and s, respectively.

In the case of balanced homogeneous algebraic graphs for which r = s we will use the term r -homogeneous
graph. Finally, regular algebraic graph is a balanced homogeneous algebraic graph over the ring K if each pair of
vertices v1 and v2 is a pair of isomorphic algebraic varieties.

Let Reg(K ) be the totality of regular elements (or nonzero divisors) of K , i.e., nonzero elements x ∈ K such
that for each nonzero y ∈ K the product xy is different from 0. We assume that the Reg(K ) contains at least 3
elements. We assume here that K is finite, thus the vertex set and the edge set are finite and we get a usual finite
directed graph.

We apply the term affine graph for the regular algebraic graph such that its vertex set is an affine variety in
Zarisski topology.

Let G be r -regular affine graph with the vertex V (G), such that Out v, v ∈ V (G) is isomorphic to the variety
R(K ). Let the variety E(G) be its arrow set (a binary relation in V (G) × V (G)). We use the standard term perfect
algebraic colouring of edges for the polynomial map ρ from E(G) onto the set R(K ) (the set of colours) if for
each vertex v different output arrows e1 ∈ Out(v) and e2 ∈ Out(v) have distinct colours ρ(e1) and ρ(e2) and the
operator Nα(v) of taking the neighbour u of vertex v ( v → u) is a polynomial map of the variety V (G) into itself.

We will use the term rainbow-like colouring in the case when the perfect algebraic colouring is a bijection. Let
dirg(G) be a directed girth of the graph G, i.e., the minimal length of a directed cycle in the graph. Obviously
gi(G) ≤ dirg(G).

Studies of infinite families of directed affine algebraic digraphs over commutative rings K of large girth with
the rainbow-like colouring is a nice and a difficult mathematical problem. Good news is that such families do exist.
In the next section we consider the example of such a family for each commutative ring with more than 2 regular
elements.

Here, at the end of section, we consider cryptographical motivations for studies of such families.

1. Let G be a finite group and g ∈ G. The discrete logarithm problem for group G is about finding a solution for
the equation gx = b where x is unknown positive number. If the order |g| = n is known we can replace G on a
cyclic group Cn . So we may assume that the order of g is sufficiently large to make unfeasible the computation
of n. For many finite groups the discrete logarithm problem is N P complete.
Let K be a finite commutative ring and M be an affine variety over K . Then the Cremona group C(M) of
all polynomial automorphism of the variety M can be large. For example, if K is a finite prime field Fp and
M = Fp

n then C(M) is a symmetric group Spn .
Let us consider the family of affine graphs Gi (K ), i = 1, 2, . . . with the rainbow-like algebraic colouring of
edges such that V (Gi (K )) = Vi (K ), where K is a commutative ring, and the colour sets are algebraic varieties
Ri (K ). Let us choose a constant k. The operator Nα(v) of taking the neighbour of a vertex v corresponding
to the output arrow of colour α are elements of Ci = C(Vi (K )). We can chose a relatively small number k to
generate h = hi = Nα1 Nα2 . . . Nαk in each group Ci , i = 1, 2, . . .

Let us assume that the family of graphs Gi (K ) is the family of graphs of large girth. It means that the girth
indicator gii = gi(Gi (K )) and the parameter dirgi = dirg(Gi (K )) are growing with the growth of i . Notice that
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|hi | is bounded below by dirgi/k. So there is j such that for i ≥ j the computation of |hi | is impossible. Finally
we can take the base g = u−1h j u where u is a chosen element of C j to hide the graph up to conjugation. We
may use some package of symbolic computations to express the polynomial map g via the list of polynomials
in many unknowns. For example, if Vj (K ) is a free module K n then we can write g in a public mode fashion

x1 → g1(x1, x2, . . . , xn),

x2 → g2(x1, x2, . . . , xn),

. . . ,

xn → gn(x1, x2, . . . , xn).

The symbolic map g can be used for Diffie-Hellman key exchange protocol (see [14] for the details). Let Alice
and Bob be correspondents. Alice computes the symbolic map g and send it to Bob via open channel. So the
variety and the map are known for the adversary (Cezar). Let Alice and Bob choose natural numbers n A and
nB , respectively. Bob computes gnB and sends it to Alice, who computes (gnB )n A , while Alice computes gn A

and sends it to Bob, who is getting (gn A)nB . The common information is gn AnB given in ”public mode fashion”.
Bob can be just a public user (no information on the way in which the map g were cooked) , so he and Cezar
are making computations much slower than Alice who has the decomposition g = u−1 Nα1 Nα2 . . . Nαk u.
We may modify slightly the Diffie-Hellman protocol using the action of the group on the variety. Alice chooses
a rather short password α1, α2, . . . , αk , computes the public rules for the encryption map g and sends them to
Bob via an open channel together with some vertex v ∈ Vj (K ). Then Alice and Bob choose natural numbers
n A and nB , respectively. Bob computes vB = gnB (v) and sends it openly to Alice, who computes (gn A)(vB),
while Alice computes vA = gn A(v) and sends it to Bob, who is getting (gnB )(vA). The common information
is the vertex gn A×nB (v). In both cases Cezar has to solve one of the equations EnB (u A) = z or En A (u B) = w

for unknowns nB or n A, where z and w are known points of the variety.
2. We can construct the public key map in the following manner: The key holder (Alice) chooses the variety

Vj (K ) and the sequence α1, α2, …, αt of length t = t ( j) to determine the encryption map g as above.
Let dim(Vj (K ) = n = n( j) and each element of the variety be determined by independent parameters
x1, x2, . . . , xn . Alice presents the map in the form of public rules, such as

x1 → f1(x1, x2, . . . , xn),

x2 → f2(x1, x2, . . . , xn),

. . . ,

xn → fn(x1, x2, . . . , xn).

We can assume (at least theoretically) that the public rule depending on parameter j is applicable to encryption
of potentially infinite text (parameter t is a linear function on j now).
For the computation she may use the Gröbner base technique or alternative methods, special packages for the
symbolic computation (popular ”Mathematica” or ”Maple”, package ”Galois” for ”Java” as well special fast
symbolic software). So Alice can use the decomposition of the encryption map into u−1, maps of kind Nα and
u to encrypt fast. For the decryption she can use the inverse graph G j (K )−1 for which V G j (K )−1 = V G j (K )

and vertices w1 and w2 are connected by an arrow if and only if w2 and w1 are connected by an arrow in
G j (K ). Let us assume that colours of w1 → w2 in G j (K )−1 and w2 → w1 in G j (K ) are of the same colour.
Let N ′

α(x) be the operator of taking the neighbour of vertex x in G j (K )−1 of colour α. Then Alice can decrypt
applying consequently u−1, N ′

αt
, N ′

αt−1
, . . . , Nα1 and u to the ciphertext. So the decryption and the encryption

for Alice take the same time. She can use a numerical program to implement her symmetric algorithm.
Bob can encrypt with the public rule but for a decryption he needs to invert the map. Let us consider the case
t j = kl, where k is a small number and the sequence α1, α2, . . . , αt j has the period k and the transformation
h = u−1 Nα1 Nα2 . . . Nαk u is known for Bob in the form of public key mode. In such a case a problem to find
the inverse for g is equivalent to a discrete logarithm problem with the base h in related Cremona group of all
polynomial bijective transformations.
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Of course for further cryptanalysis we need to study the information on possible divisors of order of the base of
related discrete logarithm problem, alternative methods to break the encryption. In the next section the family
of digraphs REn(K ) will be described.

3. We may study security of the private key algorithm used by Alice in the algorithm of the previous paragraph but
with a parameter t bounded by the girth indicator of graph G j (K ). In that case different keys produce distinct
ciphertexts from the chosen plaintext. In that case we prove that if the adversary has no access to plaintexts
then he can break the encryption via the brut-force search via all keys from the key space. The encryption map
has no fixed points.

4 On the Family of Affine Digraph of Large Girth over Commutative Rings

E. Moore used term tactical configuration of order (s, t) for biregular bipartite simple graphs with bidegrees s + 1
and r + 1. It corresponds to the incidence structure with the point set P , the line set L and the symmetric incidence
relation I . Its size can be computed as |P|(s + 1) or |L|(t + 1).

Let F = {(p, l)|p ∈ P, l ∈ L , pI l} be the totality of flags for the tactical configuration with partition sets P
(point set) and L (line set) and an incidence relation I . We define the following irreflexive binary relation φ on the
set F :

Let (P, L , I ) be the incidence structure corresponding to regular tactical configuration of order t .
Let F1 = {(l, p)|l ∈ L , p ∈ P, l I p} and F2 = {[l, p]|l ∈ L , p ∈ P, l I p} be two copies of the totality of flags

for (P, L , I ). Brackets and parenthesis allow us to distinguish elements from F1 and F2. Let DF(I ) be the directed
graph (double directed flag graph) on the disjoint union of F1 with F2 defined by the following rules

(l1, p1) → [l2, p2] if and only if p1 = p2 and l1 �= l2,
[l2, p2] → (l1, p1) if and only if l1 = l2 and p1 �= p2.
Below we consider the family of graphs D(k, K ), where k > 5 is a positive integer and K is a commutative ring.

Such graphs are disconnected and their connected components were investigated in [36] ( for the case when K is a
finite field Fq see [19]).

Let P and L be two copies of Cartesian power K N , where K is the commutative ring and N is the set of positive
integer numbers. Elements of P will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V , then (x) ∈ P and [x] ∈ L . It will
also be advantageous to adopt the notation for co-ordinates of points and lines introduced in [17] for the case of
general commutative ring K :

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p′
2,2, p2,3, . . . , pi,i , p′

i,i , pi,i+1, pi+1,i , . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l ′2,2, l2,3, . . . , li,i , l ′i,i , li,i+1, li+1,i , . . . ].
The elements of P and L can be thought as infinite ordered tuples of elements from K , such that only a finite

number of components are different from zero.
We now define an incidence structure (P, L , I ) as follows. We say that the point (p) is incident with the line [l],

and we write (p)I [l], if the following relations between their co-ordinates hold:

li,i − pi,i = l1,0 pi−1,i

l ′i,i − p′
i,i = li,i−1 p0,1

li,i+1 − pi,i+1 = li,i p0,1

li+1,i − pi+1,i = l1,0 p′
i,i

(These four relations are defined for i ≥ 1, p′
1,1 = p1,1, l ′1,1 = l1,1). This incidence structure (P, L , I ) we denote

as D(K ). We identify it with the bipartite incidence graph of (P, L , I ), which has the vertex set P ∪ L and the
edge set consisting of all pairs {(p), [l]} for which (p)I [l].
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For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik) as follows. First, Pk and Lk are
obtained from P and L , respectively, by simply projecting each vector onto its k initial coordinates with respect to
the above order. The incidence Ik is then defined by imposing the first k−1 incidence equations and ignoring all
others. The incidence graph corresponding to the structure (Pk, Lk, Ik) is denoted by D(k, K ).

For each positive integer k ≥ 2 we consider the standard graph homomorphism φk of (Pk, Lk, Ik) onto
(Pk−1, Lk−1, Ik−1) defined Lk by simply projection of each vector from Pk and Lk onto its k − 1 initial coor-
dinates with respect to the above order.

Let DEn(K ) (DE(K )) be the double directed graph of the bipartite graph D(n, K ) (D(K ), respectively).
Remember, that we have the arc e of kind (l1, p1) → [l2, p2] if and only if p1 = p2 and l1 �= l2. Let us assume
that the colour ρ(e) of the arc e is l1

1,0 − l2
1,0.

Recall, that we have the arc e′ of kind [l2, p2] → (l1, p1) if and only if l1 = l2 and p1 �= p2. Let us assume
that the colour ρ(e′) of arc e′ is p1

1,0 − p2
1,0. It is easy to see that ρ is a perfect algebraic colouring.

If K is finite, then the cardinality of the colour set is (|K | − 1). Let RegK be the totality of regular elements,
i.e., not zero divisors. Let us delete all arrows with colour, which is a zero divisor. We will show that a new graph
REn(K ) (RE(K )) with the induced colouring into colours from the alphabet Reg(K ) is vertex transitive. Really,
according to [25] graph D(n, K ) is an edge transitive. This fact had been established via the description of regular
on the edge set subgroup U (n, K ) of the automorphisms group Aut(G). The vertex set for the graph DEn(K )

consists of two copies F1 and F2 of the edge set for D(n, K ).
If K is finite, then the cardinality of the colour set is (|K |− 1). Let RegK be the totality of regular elements, i.e.,

non-zero divisors. Let us delete all arrows with colour, which is a zero divisor. We can show that a new affine graph
REn(K ) (RE(K )) with the induced colouring into colours from the alphabet Reg(K ) is vertex transitive (see [37]).

Notice, that each Ta acts naturally on the flags, it is an automorphism of REn(K ).

5 On the Family of Graph of Large Cycle Indicator

Below we consider the family of graphs A(k, K), where k > 5 is a positive integer and K is a commutative ring.
Let P and L be two copies of Cartesian power K

N, where K is the commutative ring and N is the set of positive
integer numbers. Elements of P will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V , then (x) ∈ P and [x] ∈ L . It will
also be advantageous to adopt the notation for coordinates of points and lines introduced in [22] for the case of a
general commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i , pi,i+1, . . .),

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i , li,i+1, . . .].
The elements of P and L can be thought of as infinite ordered tuples of elements from K, such that only a finite

number of components are different from zero.
We now define an incidence structure (P, L , I ) as follows. We say that the point (p) is incident with the line [l],

and we write (p)I [l], if the following relations between their co-ordinates hold:

li,i − pi,i = l1,0 pi−1,i

li,i+1 − pi,i+1 = li,i p0,1

The incidence structure (P, L , I ) we denote as A(K). We identify it with the bipartite incidence graph of
(P, L , I ), which has the vertex set P ∪ L and the edge set consisting of all pairs {(p), [l]} for which (p)I [l].

For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik) as follows. First, Pk and Lk are
obtained from P and L respectively by simply projecting each vector into its k initial coordinates with respect to
the above order. The incidence Ik is then defined by imposing the first k−1 incidence equations and ignoring all
others. The incidence graph corresponding to the structure (Pk, Lk, Ik) is denoted by A(k, K).
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For each positive integer k ≥ 2 we consider the standard graph homomorphism φk of (Pk, Lk, Ik) onto
(Pk−1, Lk−1, Ik−1) defined as simple projection of each vector from Pk and Lk onto its k − 1 initial coordinates
with respect to the above order.

The following statement is announced in [38].

Theorem 1 For each finite field Fq graphs A(n, Fq) form a family of graphs of large cycle indicator with maximal
possible speed of growth. If charFq �= 2 then A(n, Fq) is a connected graph.

Let D An(K) (D A(K)) be the double directed graph of the bipartite graph A(n, K) (A(K), respectively). Remem-
ber, that we have the arc e of kind (l1, p1) → [l2, p2], if and only if p1 = p2 and l1 �= l2. Let us assume that the
colour ρ(e) of the arc e is l1

1,0 − l2
1,0.

Recall, that we have the arc e′ of kind [l2, p2] → (l1, p1), if and only if l1 = l2 and p1 �= p2. Let us assume
that the colour ρ(e′) of arc e′ is p1

1,0 − p2
1,0.

The vertex set for the graph D An(K) consists of two copies F1 and F2 of the edge set for A(n, K).
Similarly to the content of previous section we define graph R An(K ) by simple deleting of edges with colours

from K − Reg(K ). It can be shown that computation corresponding to the pass of this graph R An(K ) is a cubical
map N = Nl , where l stands for the length of the pass. We will combine new N with two affine transformation T1

and T2 and evaluate multivariate cryptosystem based on the map T1 N T2.

6 On the Implementation of the Public Key Algorithm Based on REn(K ) and R An(K )

The graphs C REn(K ) have the best known speed of growth of the girth indicator evaluated in the previous section.
It turns out that for the computer implementation of the public key algorithm described in the Sect. 4 the family
REn(K ) of “enveloping” for C REn(K ) graphs were chosen first. It is also a family of digraphs of large girth but the
speed of the growth of girth indicator for the family is less of those for REn(K ). Graphs REn(K ) were defined via
the family of graphs D(n, K ) in the way described in the previous section. So, in some publications the description
of the algorithm was done in terms of D(n, K ). We introduced here a speed evaluation of the algorithm for its latest
implementation.

The set of vertices of the graph REn(K ) is a union of two copies free module K n+1. So the Cremona group
of the variety is the direct product of C(K n+1) with itself, expanded by polarity π . In the simplest case of a
finite field Fp, where p is a prime number C(Fp) is a symmetric group Spn+1 . The Cremona group C(K n+1)

contains the group of all affine invertible transformations, i.e., transformation of kind x → xA + b, where x =
(x1, x2, . . . , xn+1) ∈ C(K n+1), b = (b1, b2, . . . , bn+1) is a chosen vector from C(K n+1) and A is a matrix of a
linear invertible transformation of K n+1.

Graph REn(K ) is a bipartite directed graph. We assume that the plaintext K n+1 is a point (p1, p2, . . . , pn+1).
We choose two affine transformations T1 and T2 and a linear transformation u will be of kind p1 → p1 + a1 p2 +
a3 p3 + · · · + an+1. We slightly modify a general scheme, so Alice computes symbolically of chosen T1 and T2,
chooses a string (β1, β2, . . . , βl) of colours for REn(K ), such that βi �= −βi+1 for i = 1, 2, . . . , l − 1. She
computes Nl = Nβ1 × Nβ2 · · · × Nβl . Recall that Nα, α ∈ Reg(K ) is the operator of taking the neighbour of the
vertex v alongside the arrow with the colour α in the graph REn(K ). Alice chooses additionally string a.

Alice keeps chosen parameters secret and computes the public rule g as the symbolic composition of T1, N , Ta

and T2.
In case K = Fqn , q = 2m this public key rule has a certain similarity to the Imai-Matsumoto public rule, which

is computed as a composition T1 ET2 of two linear transformations T1 and T2 of the vector space of dimension
n over Fqm , and E is a special Frobenius automorphism. The public rule corresponding to T1 ET2 is a quadratic
polynomial map (see [14] for the detailed description of the algorithm, its cryptanalysis and generalizations by
J. Patarin)

In the case of REn(K ) the degree of transformation Nl is 3, independently on the choice of length l [42]. So the
public rule is a cubical polynomial map of the free module K n+1 onto itself. In case of a finite field the algorithm
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Table 1 Number of
monomials in public map,
graph D(n, K ), K = F232 ,
case I

n Password length

16 32 64 128

16 145 145 145 145

32 544 545 545 545

64 1,584 2,112 2,113 2,113

128 3,664 6,240 8,320 8,321

Table 2 Number of
monomials in public map,
graph D(n, K ), K = F232 ,
case II

n Password length

16 32 64 128

16 2,062 2,062 2,062 2,062

32 15,475 15,476 15,476 15,476

64 82,722 119,855 119,856 119,856

128 369,250 636,430 943,463 943,464

is equivalent to the public rule considered in [31]. We implemented also a similar algorithm based on new graph
R An(K ) which generate public rules given by cubical polynomials.

More information about the implementation of graph based cryptographic algorithms the reader can find in
[3,9,16,26].

6.1 On the Time Evaluation for the Public Rule

Recall, that we combine a graph transformation Nl corresponding to graph REn(K ) or R An(K ) with two affine
transformation T1 and T2. Alice can use T1 Nl TaT2 for the construction of the following public map of

y = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

Fi (x1, . . . , xn) are polynomials of n variables written as the sums of monomials of kind xi+1 . . . xi3 , where
i1, i2, i3 ∈ 1, 2, . . . , n1 with the coefficients from K = Fq . As we mention before the polynomial equations
yi = Fi (x1, x2, . . . , xn), which are made public, have the degree 3. Hence the process of an encryption and a
decryption can be done in polynomial time O(n4) (in one yi , i = 1, 2 . . . , n there are 2(n3 − 1) additions and
multiplications). But the cryptanalyst Cezar, having only a formula for y, has a very hard task to solve the system of
n equations of n variables of degree 3. It is solvable in exponential time O(3n4

) by the general algorithm based on
Gröbner basis method. Anyway studies of specific features of our polynomials could lead to effective cryptanalysis.
This is an open problem for specialists.

We have written a program for generating a public key and for encrypting text using the generated public key.
The program is written in C++ and compiled with the gcc compiler.

We have implemented three cases:

• T1 and T2 are identities,
• T1 and T2 are of kind x1 → x1 + a2x2 + a3x3 + · · · + an+1xn+1 (linear time of computing T1 and T2),
• T1 = A1x + b1, T2 = A2x + b2; matrices A1, A2 and vectors b1, b2 has mostly nonzero elements.

The Tables 1, 2, 3, 4, 5, and 6 present the number of monomials depending on the number of variables (n) and
the password length in all three cases and both families of graphs D(n, K ) and A(n, K ).

The Tables 7, 8, 9, 10, 11, and 12 present the time (in milliseconds) of the generation of public key monomials
depending on the number of variables (n) and the password length in all three cases and both families of graphs
D(n, K ) and A(n, K ).
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Table 3 Number of
monomials in public map,
graph D(n, K ), K = F232 ,
case III

n Password length

16 32 64 128

16 6,544 6,544 6,544 6,544

32 50,720 50,720 50,720 50,720

64 399,424 399,424 399,424 399,424

128 3,170,432 3,170,432 3,170,432 3,170,432

Table 4 Number of
monomials in public map,
graph A(n, K ), K = F232 ,
case I

n Password length

16 32 64 128

16 250 250 250 250

32 770 1,010 1,010 1,010

64 1,810 3,074 4,066 4,066

128 3,890 7,202 12,290 16,322

Table 5 Number of
monomials in public map,
graph A(n, K ), K = F232 ,
case II

n Password length

16 32 64 128

16 3,426 3,426 3,426 3,426

32 19,392 26,310 26,310 26,310

64 89,472 148,420 206,222 206,222

128 383,232 692,676 1,161,356 1,633,054

Table 6 Number of
monomials in public map,
graph A(n, K ), K = F232 ,
case III

n Password length

16 32 64 128

16 6,544 6,544 ,6544 ,6544

32 50,720 50,720 50,720 50,720

64 399,424 399,424 399,424 399,424

128 3,170,432 3,170,432 3,170,432 3,170,432

Table 7 Public key
generation time (ms), graph
D(n, K ), K = F232 , case I

n Password length

16 32 64 128

32 160 320 640 1,280

64 1,680 3,310 6,650 13,330

96 9,050 18,040 36,000 72,000

128 26,980 53,790 107,610 215,770

160 62,960 125,420 249,460 500,660
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Table 8 Public key
generation time (ms), graph
D(n, K ), K = F232 , case II

n Password length

16 32 64 128

32 290 620 1,260 2,540

64 3,420 8,570 19,340 40,740

96 15,060 37,730 92,040 201,440

128 40,700 102,300 260,740 590,390

160 90,990 226,020 584,480 1,378,700

Table 9 Public key
generation time (ms), graph
D(n, K ), K = F232 , case III

n Password length

16 32 64 128

32 1,160 2,200 4,280 8,440

64 19,050 34,730 66,090 128,810

96 109,620 194,420 364,020 703,220

128 355,260 615,260 1,135,260 2,175,260

160 935,370 1,601,130 2,932,650 5,595,690

Table 10 Public key
generation time (ms), graph
A(n, K ), K = F232 , case I

n Password length

16 32 64 128

32 0 100 280 640

64 1,440 2,900 6,010 12,170

96 8,160 16,260 32,890 66,160

128 24,780 49,270 98,610 197,840

160 58,730 116,870 234,340 469,860

Table 11 Public key
generation time (ms), graph
A(n, K ), K = F232 , case II

n Password length

16 32 64 128

32 330 840 1,920 4,080

64 3,450 9,470 25,330 58,210

96 14,970 39,780 109,920 274,810

128 40,880 106,370 296,840 788,550

160 91,300 232,620 642,250 1,760,530

Table 12 Public key
generation time (ms), graph
A(n, K ), K = F232 , case III

n Password length

16 32 64 128

32 1,110 2,070 3,990 7,830

64 20,120 36,920 70,520 137,720

96 111,020 197,260 369,740 714,700

128 369,980 646,940 1,200,860 2,308,700

160 942,340 1,626,340 2,994,340 5,730,340
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Fig. 1 The number of monomials in public map (n = 128, K = F232 ), case I

Fig. 2 The number of monomials in public map (n = 128, K = F232 ), cases II and III

The time of encryption process depends linearly on the number of monomials (the number of nonzero coefficients)
in cubic polynomials F1, F2 …Fn in the public map y = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)).

Figures 1 and 2 compare the number of monomials in both families of graph and shows the dependence of this
number on the length of the password.

Figures 3, 4, 5, 6, 7, and 8 show the time of the generation of public keys.
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Fig. 3 Public key generation time for fixed graph (n = 128, K = F232 ), case I

Fig. 4 Public key generation time for fixed graph (n = 128, K = F232 ), case II

6.2 On the Case of Ring Extensions

Let us consider the case when a commutative ring K itself is a free module over the other ring R, i. e. K = Rm .
The reader may think over the following examples.
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Fig. 5 Public key generation time for fixed graph (n = 128, K = F232 ), case III

Fig. 6 Public key generation time for fixed password length (64), K = F232 , case I

(1) Commutative ring K is a Kronecker extension of R: there is a polynomial p(x) ∈ R[x] of degree ≥2, such
that K = R[x]/p(x). Commutative ring R[x]/p(x) can be with large multiplicative sets. Obvious exam-
ples: if p(x) = xn + a1xn−1 + · · · + an−1x , then Q = { f (x) ∈ R[x]/p(x)| f (0) �= 0} is a multiplicative
set, if R = Fp, p is prime, and p(x) is irreducible polynomial, then K = R[x]/p(x) is a finite field with
multiplicative group K − {0}.
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Fig. 7 Public key generation time for fixed password length (64), K = F232 , case II

Fig. 8 Public key generation time for fixed password length (64), K = F232 , case III

(2) Recall, that a Boolean ring Bm is the Cartesian power F
m
2 of the finite field F2, i.e a vector space over F2.

We can generalize this example simply by consideration of mth Cartesian power Rm of general commutative
ring R.
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We can generalize the encryption map Tn(D(K), R, τ1, τ2) (Tn(A(K), R, τ1, τ2) associated with the family of
graphs of large girth D(n, K )(or family A(n, K ) of graphs with large cycle indicator) via wider choice of linear
transformations of the module K

n . We assume, that maps are corresponding to the password α1, α2, . . . , αs where
αi +αi+1 ∈ M, i = 1, 2, . . . , s and M is a subset of K such that multiplicative closure of M does not contain zero.

The following statement the reader can find in [40].

Proposition 1 Maps Tn(D(K), R, τ1, τ2) and Tn(A(K), R, τ1, τ2), where R is a finite commutative ring, p(x) ∈
R[x], K = R[x]/p(x) and K = Rm, are cubical maps of Rmn to itself.

7 Conclusion

Results of computer simulation show that multivariate cryptosystem corresponding to family of graphs
A(n, Fq), q = 2i , i = 8, 16, 32, 64 have a better density (number of monomial expressions with nonzero coeffi-
cients) in the comparison with algorithms based on D(n, Fq), q = 2i , i = 8, 16, 32, 64. Same is true for generalised
encryptions of previous proposition in the case R = F2, K = Fq , q = 2i , i = 8, 16, 32, 64. Surprisingly the results
of time evaluation of the process of public key generations are very similar in both cases (A(n, Fq) and D(n, Fq)).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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