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Abstract The paper is devoted to the implementations of the public key algorithms based on simple algebraic
graphs A(n, K) and D(n, K) defined over the same finite commutative ring K. If K is a finite field both families
are families of graphs with large cycle indicator. In fact, the family D(n, F,) is a family of graphs of large girth
(f.g.L.g.) with ¢ = 1, their connected components C D(n, F,) form the f.g.1.g. with the speed of growth 4/3. Family
A(n, q), charF, # 2 is a family of connected graphs with large cycle indicator with the largest possible speed of
growth. The computer simulation demonstrates the advantage (better density which is the number of monomial
expressions) of public rules derived from A(n, ¢) in comparison with symbolic algorithm based on graphs D(n, q).

Keywords Algebraic multivariate cryptography - Graph algorithms - Density of polynomial multivariate maps
of small degree

Mathematics Subject Classification 14G50 - 05C85 - 11T71

1 Introduction

Multivariate cryptography in the narrow sense (see Wikipedia) is the generic term for asymmetric cryptographic
primitives based on multivariate polynomials over finite fields. In certain cases these polynomials could be defined
over both a ground and an extension field. If the polynomials have the degree two, we talk about multivariate qua-
dratics. Solving systems of multivariate polynomial equations is proven to be NP-Hard or NP-Complete. That is why
these schemes are often considered to be good candidates for post-quantum cryptography, once quantum computers
can break the current schemes. Today multivariate quadratics could be used only to build signatures. This definition
rises several questions: Why a finite field but not a commutative ring is used? Why quadratics are so important?
We define multivariable cryptography as studies of cryptosystems based on special regular automorphism f
of algebraic variety M, (K) of dimension n in a sense of Zarisski topology over finite commutative ring K. An
example of algebraic variety is a free module K" which is simply a Cartesian product of n copies of K" into iself.
Regular automorphism is a bijective polynomial map of M,,(K) onto itself such that f~! is also a polynomial map.
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Elements of K" can be identified with strings (x{, x2, ..., x,) in alphabet K, nonlinear map f of restricted degree
d can be used as a public rule if the key holder (Alice) knows the secret decomposition of f into composition
of special maps fi, fa, ..., f; with known inverse maps f;~!. So she can decrypt by consecutive application of
fs_l, S__ll, e, fl_l. Notice, that public user (Bob) has to use symbolic computations to work with f, but Alice
may use numerical computations for the implementation of private key decryption process. Of course K" can be
changed for the family of varieties M,(K),n = 1,2, ..., the commutative ring can be treated as an alphabet,
element v € M, (k) as a ”potentially infinite” plaintext, parameter n as a measurement of size of v.

The complexity of the best general algorithms for the solution of nonlinear system of equation of kind f(x) =
y,x,y € K" equals d%(n) (see recent paper [5]). One can use Grobner basis, Gauss elimination method or alter-
native options for the investigation of the system. Of course, one can write simple nonlinear equations which are
easy to solve. So the system of nonlinear equations has to be tested on ’pseudorandomness” and the map f has to
be of large order. Notice, that one of the first attempts to create workable multivariate cryptosystem was proposed
by Imai and Matsumoto. They used finite field of characteristic 2 and its extension, f has a decomposition fi f> f3,
where f1 and f are affine maps (of degree 1) and f> is a Frobenius automorphism. Cryptanalysis for the scheme
the reader can find in [14], the history of its various modifications goes on (see, for instance survey in [40]). We
have to notice that the failure of this cryptosystem is not a surprise for specialists in algebra. Despite its formal
quadratic appearance Frobenius automorphism is quite close to linear maps (in his famous book [4] Dieudonné
uses term 3/2 linear map for such automorphism). One of the popular directions in multivariate cryptography is the
use of tools outside commutative algebra such as dynamical systems or extremal algebraic graphs (see [40,41] and
further references) for the creation of nonlinear maps of pseudorandom nature.

Algebraic graphs are graphs defined by systems of algebraic equations, their vertex sets and edge sets are alge-
braic varieties in corresponding Zarisski topology. The walks on such graphs can be used for the generation of public
rules of multivariate cryptography, reverse walk will provide the private key algorithm for the decryption process
(see [24,27-33,35,37,38]). A girth of a graph is the length of its minimal cycle. Generalised m-gon is a bipartite
biregular graph of girth 2m and diameter m. According to modifications of Even Cycle Theorem by P. Erd&s, the size
(number of edges) of the graph on v vertices of girth >2n is O (v!*1/") and the size of known g-regular generalised
m-gons (m = 3,4, 6) belongs to this upper bound for n = m — 1. In some sense generalised m-gons are similar
to random graphs. The multivariate cryptosystems based on affine parts of known generalised polygons have been
proposed in [30] (see also [32]). A bit earlier we started an investigation of cryptosystems connected with families
of k-regular graphs G; of large girth for which girth g; is >clog, (v;)), where v; is the order of G;,i = 1,2, ....

The existence of such families was proved by P. Erd6s in late 50th. The first explicit constructions appeared in
[17,20]. They are family of special Cayley graphs for the group P SL;(p) and algebraic graphs of nonlinear nature
D(n, q) defined over general finite field F; (see [19] for descriptions of their connected components C D (n, q)).

In publications [15] classes of stream ciphers and public key algorithms based on explicit construction of families
of algebraic graphs of large girth D(n, ¢) and their generalisations D (n, K ), where K is general commutative ring
(D(n, Fy) = D(n, q)) were proposed. It was shown later [42] that for each finite commutative ring K we can create a
cubical polynomial map f of K" onto K" depending on string of regular elements (non-zero divisors (¢ja2, . . ., ;)
(password). If t < (n+5)/2 and «; 4+ ;1 are regular ring elements then different strings produce different cipher-
texts. One can use such a map as a stream cipher. Recently [40,41] we show that conditions of regularity we can
change for o; + ;11 € M, where the multiplicative clousure of a subset M of K does not contain zero. It is possible
to combine f with two invertible sparse affine transformations 71 and 1, and use the composition g = 71 f12 as a
public rule. Public user is not able to decrypt a ciphertext without the knowledge of 71, 12 and string (@2, . . ., ;).

One can set 17 as the inverse of 77 and use the ”symbolic” generator g and related cyclic group for the Diffie-
Hellman key exchange protocol. We can prove that the order of g corresponding to string («joa, ..., o), ¢+ €
M is growing with the growth of the parameter 7.

The paper [11] is devoted to the implementation of generalisation of the above mentioned algorithms. We consider
linear transformations 7, depending on the string a = (81, B2, ..., Ba4), where d = [n/4] and use f T, instead of f.

The construction of transformation f uses graphs D(n, K) (graphs of large girth for K = F;), which were
very useful for creation of good LDPC codes in Coding Theory. The transformation 7, is a special automorphism



On the Comparison of Cryptographical Properties 183

of graph D(n, K). The properties of such modified public keys were presented at MACIS 2011 conference in
Beijing (see [12]). It is very natural to compare multivariate cryptosystems based on D(n, K) and D(n, K') over
different rings of the same size. The densities of public rules in case K = Fom and K’ is a boolean ring of size
2" m = 8,16, 32 are discussed in [13]. The comparison of private keys for K = Fo» and arithmetical rings
K=27,,n=2"m =38, 16, 32 the reader can make looking at material of [11,39].

In current publication we compare the public rules based on graphs D(n, ¢) and rather new extremal graphs
A(n, q) (see [10,22]). Graphs A(n, q) are important example connected with another optimisation problem on
graphs—problem of finding the maximal size of graph of order v with cycle indicator >m (the definition of this
parameter is written below).

Classical problems of Turan type on studies of the maximal size of simple graphs without prohibited cycles are
attractive for mathematicians because they are beautiful and difficult (see [2,25]). The concept of a family of simple
graphs of large girth appears as an important tool for investigation of such problems. Later the applications of these
problems in Networking [1], Coding Theory and Cryptography were found (see [33] and further references).

One of the important directions in W. C. Tutte research (see [2]) was an investigation of cycle matroids. Recall,
that every finite graph (or multigraph) I" gives rise to a matroid as follows: take as E(I") the set of all edges in I'
and consider a set of edges independent if and only if it does not contain a simple cycle. Such an edge set is called
a forest in graph theory. This is called the cycle matroid or graphic matroid of I'. It is usually written M (I"). Any
matroid that is equivalent to the cycle matroid of a (multi)graph, even if it is not presented in terms of graphs, is
called a graphic matroid or cycle matroid. The matroids that are graphic have been characterized by Tutte.

Recall, that the girth g(I") of simple graph I" is the length of its minimal cycle. Let g(x) be the length of the
minimal cycle through the vertex x from the set V (I') of vertices in graph I". We refer to maxg(x),x € V(I') as
cycle indicator Cind(I") of the a graph. We say that vertex x is incident to subset £ of E(I") and write x I E if there
is an edge from E which contains x. We refer to E as connected set if graph E, {x|x[ E'} is a connected graph. It is
clear that graph with finite Cind is not a forest. For each r, r < Cind there is a vertex x such that for each connected
E, EIx of cardinality r is an element of M (I") ((E, {x|xI E}) is a tree). Obviously Cind(I") > g(TI").

The problem of finding the maximal size e(v) of the graph on v vertices with cycle indicator >2m is formally not
a problem of Turan type but it is typical optimisation problem on graph closely connected with studies of extremal
graphs without prescribed cycles. As it was stated in [41] e(v) < cv!T1/”, where ¢ is a constant. So in difference
with the bound of Even Circuit Theorem the new bound is always sharp.

If I'; is a family of connected k-regular graphs of increasing order with increasing cycle indicator for which
projective (or inductive) limit I' = I';, i — oo is well defined, then I is a tree.

Let us introduce the natural generalisation of a family of graphs of large girth.

We refer to a family of regular simple graphs I'; of degree k; and order v; as family with large cycle matroid if
Cird(T";) > clog(v;) for some independent constant ¢, ¢ > 0. It is nice to have speed ¢ of growth of cycle indicator
as large as it possible for a family of graphs.

If all degrees k; are equal to certain constant k we will use the term family of graphs of large cycle indicator.

Families of connected graphs with large cycle matroids are interesting for applications because of the existence
of large rooted tree with the root x € I';. Recall, that family of regular graphs I'; of degree k; and increasing order v;
is a family of graphs of large girth f.g.L g. if g(I';) > clog(v;) for some independent constant ¢, ¢ > 0. F.g.l.g. plays
an important role in Extremal Graph Theory, Theory of LDPC codes and Cryptography [6-8]. F.g.Lg. of bounded
degree are hard to construct. This fact is a serious motivation for the studies of infinite families of graphs with large
cycle matroid, which are generalisations of f.g.l.g..

In our paper we discuss applications of family of graphs A (n, ¢) with large cycle matroid with constant ¢ = 2 to
cryptography in terms of symbolic computations. It is easy to see that the size of A(n, ¢) of order v = 2¢” belongs
to upper bound for e(v). There is a conjecture that for fixed g family A(n, g) form a family of graphs with large
girth with the constant ¢/, ¢’ < 2.

The idea (see [22]) is to create families of cycle groups C, = (f,) with generator f;,, which is a bijective
polynomial transformation of vector space F,", such that the order |C, | is large and all g,, are polynomial maps of
small degree.
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Section 2 is devoted to the concept of the girth indicator and the family of large girth for digraphs.

In Sect. 3 we consider the definition of a family of affine algebraic digraphs of large girth over commutative
rings. Explicit constructions of such families of graphs can be used for the development of public keys and a key
exchange protocol. We discuss the connection of these algorithms with the group theoretical discrete logarithm
problem.

The known examples of families of simple algebraic graphs were constructed just in the case of finite fields
(see [18,19]). In Sect. 4 we consider an explicit construction of a family of affine algebraic digraphs of large girth
over each finite commutative ring containing at least 3 regular elements. Different properties of this family are
investigated in [23,24,33,34,36,37].

In Sect. 5 we discuss the implementation of public key algorithms based on a new family A(n, g) of graphs
with large cycle matroids for the generations of cyclic groups C, of cubical transformations of F," and discuss
corresponding public key algorithms. Section 6 is devoted to the comparison of the density of public keys related
to A(n,q) and D(n, q).

2 On the Families of Directed Graphs of Large Girth

The missing theoretical definitions on directed graphs the reader can find in [21]. Let ® be an irreflexive binary
relation over the set V,i.e., ® € V x V and for each v the pair (v, v) is not the element of .

We say that u is the neighbour of v and write v — u if (v, u) € ®. Weuse the term balanced binary relation graph
for the graph I of irreflexive binary relation ¢ over a finite set V such that for each v € V the sets {x|(x, v) € ¢}
and {x|(v, x) € ¢} have the same cardinality. It is a directed graph without loops and multiple edges. We say that a
balanced graph I' is k-regular if for each vertex v € I the cardinality of {x|(v, x) € ¢} is k.

Let T" be the graph of binary relation. The path between vertices a and b is the sequence a = xog — x; —
...xy = b of length s, where x;,i =0, 1, ...s are distinct vertices.

We say that the pair of pathsa =xp > x; > - > xs=b,s > landa=yg > y1 —> - >y =b,t > 1
form an (s, )-commutative diagram O, if x; # y; for 0 < i < 5,0 < j < t. Without loss of general-
ity we assume that s > . We refer to the number max(s, ) as the rank of O; ;. It is >2, because the graph
does not contain multiple edges. Notice that the graph of antireflexive binary relation may have a directed cycle
Os = O50:v90 —> vl = ...Vs—1 — Vo, Where v;,i =0,1,...,5 — 1,5 > 2 are distinct vertices. We will count
directed cycles as commutative diagrams.

For the investigation of commutative diagrams we introduce girth indicator gi, which is the minimal value for
max (s, t) for parameters s, ¢ of a commutative diagram O;;, s + ¢ > 3. The minimum is taken over all pairs of
vertices (a, b) in the digraph. Notice that two vertices v and u at distance <gi are connected by the unique path from
u to v of length <gi. We assume that the girth g(I") of a directed graph I with the girth indicator d + 1 is 2d + 1 if
it contains a commutative diagram O, 1 4. If there are no such diagrams we assume that g(I") is 2d + 2. In case of
a symmetric binary relation gi = d implies that the girth of the graph is 2d or 2d — 1. It does not contain an even
cycle 2d — 2. In general case gi = d implies that g > d + 1. So in the case of the family of graphs with unbounded
girth indicator, the girth is also unbounded. We also have gi > g/2. In the case of symmetric irreflexive relations
the above mentioned general definition of the girth agrees with the standard definition of the girth of simple graph,
i.e., the length of its minimal cycle.

We will use the term the family of graphs of large girth for the family of balanced directed regular graphs I'; of
degree k; and order v; such that gi(T';) is > clogki v;, where ¢’ is a constant independent of i. As it follows from the
definition g(I';) > c’logki (v;) for an appropriate constant ¢’. So, it agrees with the well known definition for the
case of simple graphs.

The diameter of the strongly connected digraph [21] is the minimal length d of the shortest directed path
a = xg —> x] = x3--- — xg between two vertices a and b. Recall that a graph is k-regular, if each vertex of
G has exactly k outputs. Let F be the infinite family of k; regular graphs G; of order v; and diameter d;. We say,
that F' is a family of small world graphs if d; < Clog;, (vi),i =1, ... for some constant C independent on i. The
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definition of small world simple graphs and related explicit constructions the reader can find in [2]. For the studies
of small world simple graphs without small cycles see [25,34].

3 On the K-Theory of Affine Graphs of High Girth and Its Cryptographical Motivations

Let K be a commutative ring. A directed algebraic graph ¢ over K consists of two things, such as the vertex set Q
being a quasiprojective variety over K of nonzero dimension and the edge set being a quasiprojective variety ¢ in
0 x Q. We assume that (x¢y means (x, y) € ¢).

The graph ¢ is balanced if for each vertex v € Q the sets Im(v) = {x|v¢x} and Out(v) = {x |x¢v} are
quasiprojective varieties over K of the same dimension.

The graph ¢ is homogeneous (or (r, s)-homogeneous) if for each vertex v € Q the sets Im(v) = {x|vpx} and
Out(v) = {x|x¢v} are quasiprojective varieties over F' of fixed nonzero dimensions r and s, respectively.

In the case of balanced homogeneous algebraic graphs for which r = s we will use the term r-homogeneous
graph. Finally, regular algebraic graph is a balanced homogeneous algebraic graph over the ring K if each pair of
vertices v1 and vy is a pair of isomorphic algebraic varieties.

Let Reg(K) be the totality of regular elements (or nonzero divisors) of K, i.e., nonzero elements x € K such
that for each nonzero y € K the product xy is different from 0. We assume that the Reg(K) contains at least 3
elements. We assume here that K is finite, thus the vertex set and the edge set are finite and we get a usual finite
directed graph.

We apply the term affine graph for the regular algebraic graph such that its vertex set is an affine variety in
Zarisski topology.

Let G be r-regular affine graph with the vertex V(G), such that Out v, v € V(G) is isomorphic to the variety
R(K). Let the variety E(G) be its arrow set (a binary relation in V(G) x V(G)). We use the standard term perfect
algebraic colouring of edges for the polynomial map p from E(G) onto the set R(K) (the set of colours) if for
each vertex v different output arrows e; € Out(v) and e» € Out(v) have distinct colours p(e1) and p(e2) and the
operator Ny (v) of taking the neighbour u of vertex v (v — u) is a polynomial map of the variety V (G) into itself.

We will use the term rainbow-like colouring in the case when the perfect algebraic colouring is a bijection. Let
dirg(G) be a directed girth of the graph G, i.e., the minimal length of a directed cycle in the graph. Obviously
gi(G) < dirg(G).

Studies of infinite families of directed affine algebraic digraphs over commutative rings K of large girth with
the rainbow-like colouring is a nice and a difficult mathematical problem. Good news is that such families do exist.
In the next section we consider the example of such a family for each commutative ring with more than 2 regular
elements.

Here, at the end of section, we consider cryptographical motivations for studies of such families.

1. Let G be a finite group and g € G. The discrete logarithm problem for group G is about finding a solution for
the equation g* = b where x is unknown positive number. If the order |g| = n is known we can replace G on a
cyclic group C,,. So we may assume that the order of g is sufficiently large to make unfeasible the computation
of n. For many finite groups the discrete logarithm problem is N P complete.

Let K be a finite commutative ring and M be an affine variety over K. Then the Cremona group C (M) of
all polynomial automorphism of the variety M can be large. For example, if K is a finite prime field F, and
M = F," then C(M) is a symmetric group Sp».

Let us consider the family of affine graphs G;(K),i = 1, 2, ... with the rainbow-like algebraic colouring of
edges such that V(G;(K)) = V;(K), where K is a commutative ring, and the colour sets are algebraic varieties
R;(K). Let us choose a constant k. The operator N, (v) of taking the neighbour of a vertex v corresponding
to the output arrow of colour « are elements of C; = C(V;(K)). We can chose a relatively small number k to
generate h = h; = Ny Ny, ... Ny, ineach group C;,i = 1,2, ...

Let us assume that the family of graphs G;(K) is the family of graphs of large girth. It means that the girth
indicator gi; = gi(G;(K)) and the parameter dirg; = dirg(G; (K)) are growing with the growth of i. Notice that
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|h;| is bounded below by dirg; / k. So there is j such that fori > j the computation of |4; | is impossible. Finally
we can take the base g = u~'h ju where u is a chosen element of C; to hide the graph up to conjugation. We
may use some package of symbolic computations to express the polynomial map g via the list of polynomials
in many unknowns. For example, if V;(K) is a free module K" then we can write g in a public mode fashion

X1 —> g1(x1, x2, ..., Xn),
X2 —> g2(X1, X2, .+, Xn),
Xn —> gn(X1, X2, ..., Xpn).

The symbolic map g can be used for Diffie-Hellman key exchange protocol (see [14] for the details). Let Alice
and Bob be correspondents. Alice computes the symbolic map g and send it to Bob via open channel. So the
variety and the map are known for the adversary (Cezar). Let Alice and Bob choose natural numbers n 4 and
np, respectively. Bob computes g”# and sends it to Alice, who computes (g"8)"4, while Alice computes g"4
and sends it to Bob, who is getting (g"4)"#. The common information is g"4"# given in ”public mode fashion”.
Bob can be just a public user (no information on the way in which the map g were cooked) , so he and Cezar
are making computations much slower than Alice who has the decomposition g = u_lNo,1 Ng, ... Ny u.

We may modify slightly the Diffie-Hellman protocol using the action of the group on the variety. Alice chooses
a rather short password o1, a2, . . ., ax, computes the public rules for the encryption map g and sends them to
Bob via an open channel together with some vertex v € V;(K). Then Alice and Bob choose natural numbers
n4 and np, respectively. Bob computes vp = g"#(v) and sends it openly to Alice, who computes (g"4)(vp),
while Alice computes v4 = g"4(v) and sends it to Bob, who is getting (g"2)(v4). The common information
is the vertex g"4*"8 (v). In both cases Cezar has to solve one of the equations E"8(u) = z or E"A(up) = w
for unknowns np or n4, where z and w are known points of the variety.

We can construct the public key map in the following manner: The key holder (Alice) chooses the variety

V;(K) and the sequence oy, a2, ..., a; of length r = (j) to determine the encryption map g as above.
Let dim(V;(K) = n = n(j) and each element of the variety be determined by independent parameters
X1, X2, ..., X,. Alice presents the map in the form of public rules, such as

xp = filxr, x2, ..oy Xp),

x2 - f2(x1, x27 AR ] xn)5

Xp = fu(x1, X2, ..., Xp).

We can assume (at least theoretically) that the public rule depending on parameter j is applicable to encryption
of potentially infinite text (parameter ¢ is a linear function on j now).

For the computation she may use the Grobner base technique or alternative methods, special packages for the
symbolic computation (popular "Mathematica” or "Maple”, package “Galois” for “Java” as well special fast
symbolic software). So Alice can use the decomposition of the encryption map into !, maps of kind N, and
u to encrypt fast. For the decryption she can use the inverse graph G ; (K )_l for which VG ; (K )_1 =VG;(K)
and vertices w; and w; are connected by an arrow if and only if wy and w; are connected by an arrow in
G (K). Let us assume that colours of w; — w3 in Gj(K)_1 and wy — wy in G (K) are of the same colour.
Let N/, (x) be the operator of taking the neighbour of vertex x in G ; (K )~! of colour . Then Alice can decrypt
applying consequently u !, N(;r, N&H , ..., Ny, and u to the ciphertext. So the decryption and the encryption
for Alice take the same time. She can use a numerical program to implement her symmetric algorithm.

Bob can encrypt with the public rule but for a decryption he needs to invert the map. Let us consider the case
tj = kI, where k is a small number and the sequence a1, a2, ..., o : has the period k and the transformation
h = u""Ng, Ng, ... Ny u is known for Bob in the form of public key mode. In such a case a problem to find
the inverse for g is equivalent to a discrete logarithm problem with the base /4 in related Cremona group of all
polynomial bijective transformations.
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Of course for further cryptanalysis we need to study the information on possible divisors of order of the base of
related discrete logarithm problem, alternative methods to break the encryption. In the next section the family
of digraphs RE, (K) will be described.

3. We may study security of the private key algorithm used by Alice in the algorithm of the previous paragraph but
with a parameter ¢ bounded by the girth indicator of graph G ;(K). In that case different keys produce distinct
ciphertexts from the chosen plaintext. In that case we prove that if the adversary has no access to plaintexts
then he can break the encryption via the brut-force search via all keys from the key space. The encryption map
has no fixed points.

4 On the Family of Affine Digraph of Large Girth over Commutative Rings

E. Moore used term tactical configuration of order (s, t) for biregular bipartite simple graphs with bidegrees s + 1
and r + 1. It corresponds to the incidence structure with the point set P, the line set L and the symmetric incidence
relation /. Its size can be computed as | P|(s + 1) or |L|(t + 1).

Let F = {(p,])|p € P,l € L, pll} be the totality of flags for the tactical configuration with partition sets P
(point set) and L (line set) and an incidence relation /. We define the following irreflexive binary relation ¢ on the
set F:

Let (P, L, I) be the incidence structure corresponding to regular tactical configuration of order ¢.

Let 1 ={(,p)ll € L,p € P,lIp}and F> = {[l, pl|l € L, p € P,lIp} be two copies of the totality of flags
for (P, L, I). Brackets and parenthesis allow us to distinguish elements from F and F>. Let D F (1) be the directed
graph (double directed flag graph) on the disjoint union of F| with F> defined by the following rules

(I1, p1) = 2, p2]if and only if p; = pr and [| # I,

[l2, p2] = (I1, p1) if and only if /1 = [ and p; # p».

Below we consider the family of graphs D(k, K'), where k > 5 is a positive integer and K is a commutative ring.
Such graphs are disconnected and their connected components were investigated in [36] ( for the case when K is a
finite field Fy see [19]).

Let P and L be two copies of Cartesian power K, where K is the commutative ring and N is the set of positive
integer numbers. Elements of P will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x € V, then (x) € P and [x] € L. It will
also be advantageous to adopt the notation for co-ordinates of points and lines introduced in [17] for the case of
general commutative ring K:

(p) = (po,lv pl,lv p1,21 PZ,lv p2,21 pé,Z’ P2,3, ey pi,is pl{’[v Pi,i—H, pi-‘:—l,i» .. ')7
1=1[ho bl oo by b, ol b it iy -

The elements of P and L can be thought as infinite ordered tuples of elements from K, such that only a finite
number of components are different from zero.

We now define an incidence structure (P, L, ') as follows. We say that the point (p) is incident with the line [/],
and we write (p)I[/], if the following relations between their co-ordinates hold:

lii — pii =hopi-1.

li; = pii =lii-1po,

lii+1 — pii+1 = liipo.1

liv1i = pi+1i =hopi;

(These four relations are defined fori > 1, p’1 | = P11, lﬂ 1 = I1,1). This incidence structure (P, L, I') we denote

as D(K). We identify it with the bipartite incidence graph of (P, L, I), which has the vertex set P U L and the
edge set consisting of all pairs {(p), [[]} for which (p)I[l].
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For each positive integer k > 2 we obtain an incidence structure (P, L, I;) as follows. First, P, and Ly are
obtained from P and L, respectively, by simply projecting each vector onto its k initial coordinates with respect to
the above order. The incidence Ij is then defined by imposing the first k — 1 incidence equations and ignoring all
others. The incidence graph corresponding to the structure (P, L, Ix) is denoted by D(k, K).

For each positive integer k > 2 we consider the standard graph homomorphism ¢y of (Px, Ly, Ix) onto
(Pr—1, Lx—1, Ix—1) defined Ly by simply projection of each vector from P, and Lj onto its k — 1 initial coor-
dinates with respect to the above order.

Let DE,(K) (DE(K)) be the double directed graph of the bipartite graph D(n, K) (D(K), respectively).
Remember, that we have the arc e of kind (I!, p') — [I?, p?]if and only if p' = p? and /! # [?. Let us assume
that the colour p(e) of the arc e is 111’0 — 112,0.

Recall, that we have the arc ¢’ of kind [12, p?] — (I', p!) if and only if /! = [? and p! # p2. Let us assume
that the colour p(¢’) of arc ¢’ is p{ 0~ p% o- Itis easy to see that p is a perfect algebraic colouring.

If K is finite, then the cardinaliiy of the colour set is (|K| — 1). Let RegK be the totality of regular elements,
i.e., not zero divisors. Let us delete all arrows with colour, which is a zero divisor. We will show that a new graph
RE,(K) (RE(K)) with the induced colouring into colours from the alphabet Reg(K) is vertex transitive. Really,
according to [25] graph D(n, K) is an edge transitive. This fact had been established via the description of regular
on the edge set subgroup U (n, K) of the automorphisms group Aut(G). The vertex set for the graph DE, (K)
consists of two copies F; and F> of the edge set for D(n, K).

If K is finite, then the cardinality of the colour setis (| K| — 1). Let RegK be the totality of regular elements, i.e.,
non-zero divisors. Let us delete all arrows with colour, which is a zero divisor. We can show that a new affine graph
RE,(K) (RE(K)) with the induced colouring into colours from the alphabet Reg(K) is vertex transitive (see [37]).

Notice, that each T}, acts naturally on the flags, it is an automorphism of RE, (K).

5 On the Family of Graph of Large Cycle Indicator

Below we consider the family of graphs A(k, K), where k > 5 is a positive integer and K is a commutative ring.
Let P and L be two copies of Cartesian power K, where K is the commutative ring and N is the set of positive
integer numbers. Elements of P will be called points and those of L lines.
To distinguish points from lines we use parentheses and brackets. If x € V, then (x) € P and [x] € L. It will
also be advantageous to adopt the notation for coordinates of points and lines introduced in [22] for the case of a
general commutative ring K:

(p) = (Po,1, P1,15 P1,2s P22, P2.3» - - -5 Pii> Disit1s - - +)
N=T1ho 1,02 02,03, . lii Liigr, ..

The elements of P and L can be thought of as infinite ordered tuples of elements from K, such that only a finite
number of components are different from zero.

We now define an incidence structure (P, L, I) as follows. We say that the point (p) is incident with the line [/],
and we write (p)I[/], if the following relations between their co-ordinates hold:

lii — pii =lopi-1,
liit1 — pii+1 =liipoa

The incidence structure (P, L, I) we denote as A(K). We identify it with the bipartite incidence graph of
(P, L, I), which has the vertex set P U L and the edge set consisting of all pairs {(p), [/]} for which (p)I[I].

For each positive integer k > 2 we obtain an incidence structure (P, L, I;) as follows. First, P, and Ly are
obtained from P and L respectively by simply projecting each vector into its k initial coordinates with respect to

the above order. The incidence Ij is then defined by imposing the first kK — 1 incidence equations and ignoring all
others. The incidence graph corresponding to the structure (P, L, Ix) is denoted by A(k, K).
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For each positive integer k > 2 we consider the standard graph homomorphism ¢ of (Px, Lk, Ix) onto
(Px—1, Lx—1, Ix—1) defined as simple projection of each vector from Py and L onto its k — 1 initial coordinates
with respect to the above order.

The following statement is announced in [38].

Theorem 1 For each finite field F,; graphs A(n, Fy) form a family of graphs of large cycle indicator with maximal
possible speed of growth. If charF; # 2 then A(n, Fy) is a connected graph.

Let DA, (K) (DA(K)) be the double directed graph of the bipartite graph A (n, K) (A (K), respectively). Remem-
ber, that we have the arc e of kind (I!, p') — [I?, p?], if and only if p' = p? and I' # I%. Let us assume that the
colour p(e) of the arc e is l},o — l%_o.

Recall, that we have the arc ¢’ of kind [I%, p?] — (I', p!), if and only if /! = [? and p' # p®. Let us assume
that the colour p(e’) of arc ¢’ is P%,o — P%p'

The vertex set for the graph D A, (K) consists of two copies F and F, of the edge set for A(n, K).

Similarly to the content of previous section we define graph RA, (K) by simple deleting of edges with colours
from K — Reg(K). It can be shown that computation corresponding to the pass of this graph RA,(K) is a cubical
map N = N;, where [ stands for the length of the pass. We will combine new N with two affine transformation 7
and 7, and evaluate multivariate cryptosystem based on the map 71N 7>.

6 On the Implementation of the Public Key Algorithm Based on RE,(K) and RA,(K)

The graphs C R E, (K) have the best known speed of growth of the girth indicator evaluated in the previous section.
It turns out that for the computer implementation of the public key algorithm described in the Sect. 4 the family
RE, (K) of “enveloping” for CRE, (K) graphs were chosen first. It is also a family of digraphs of large girth but the
speed of the growth of girth indicator for the family is less of those for RE, (K ). Graphs RE, (K) were defined via
the family of graphs D(n, K) in the way described in the previous section. So, in some publications the description
of the algorithm was done in terms of D (n, K). We introduced here a speed evaluation of the algorithm for its latest
implementation.

The set of vertices of the graph RE,(K) is a union of two copies free module K”*!. So the Cremona group
of the variety is the direct product of C(K"*!) with itself, expanded by polarity 7. In the simplest case of a
finite field F),, where p is a prime number C(F)) is a symmetric group S ,.+1. The Cremona group C(K ntly
contains the group of all affine invertible transformations, i.e., transformation of kind x — XA + b, where x =
(X1, X2, ..., Xps1) € C(K"™ 1), b = (b1, bs, ..., byy1) is a chosen vector from C(K"*!) and A is a matrix of a
linear invertible transformation of K"+

Graph RE,(K) is a bipartite directed graph. We assume that the plaintext K"*! is a point (p1, p2, ..., Pns1)-
We choose two affine transformations 77 and 73 and a linear transformation u will be of kind p; — p1 + a1 p> +
azp3 + - -+ + ap+1. We slightly modify a general scheme, so Alice computes symbolically of chosen 77 and 7>,
chooses a string (81, B2, ..., B1) of colours for RE,(K), such that 8; # —B;4y fori = 1,2,...,/ — 1. She
computes N; = Ng, x Ng, --- x Ng,. Recall that Ny, o € Reg(K) is the operator of taking the neighbour of the
vertex v alongside the arrow with the colour « in the graph RE, (K). Alice chooses additionally string a.

Alice keeps chosen parameters secret and computes the public rule g as the symbolic composition of 77, N, T,
and T5.

In case K = Fyn, g = 2™ this public key rule has a certain similarity to the Imai-Matsumoto public rule, which
is computed as a composition 71 ET» of two linear transformations 77 and 75> of the vector space of dimension
n over Fym, and E is a special Frobenius automorphism. The public rule corresponding to 71 ET; is a quadratic
polynomial map (see [14] for the detailed description of the algorithm, its cryptanalysis and generalizations by
J. Patarin)

In the case of RE, (K) the degree of transformation A is 3, independently on the choice of length / [42]. So the
public rule is a cubical polynomial map of the free module K*! onto itself. In case of a finite field the algorithm
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Table 1 Number of

L . n Password length

monomials in public map,

graph D(n, K), K = Fy», 16 32 64 128

case |
16 145 145 145 145
32 544 545 545 545
64 1,584 2,112 2,113 2,113
128 3,664 6,240 8,320 8,321

Table 2. Ngmber (?f n Password length

monomials in public map,

graph D(n, K), K = Fy, 16 32 64 128

case II
16 2,062 2,062 2,062 2,062
32 15,475 15,476 15,476 15,476
64 82,722 119,855 119,856 119,856
128 369,250 636,430 943,463 943,464

is equivalent to the public rule considered in [31]. We implemented also a similar algorithm based on new graph
R A, (K) which generate public rules given by cubical polynomials.

More information about the implementation of graph based cryptographic algorithms the reader can find in
[3,9,16,26].

6.1 On the Time Evaluation for the Public Rule

Recall, that we combine a graph transformation N; corresponding to graph RE,(K) or RA,(K) with two affine
transformation 77 and 75. Alice can use 71 N;T,T; for the construction of the following public map of

y=(F1(x1,.... %), ..., Fp(x1, ..., X))

F;(x1, ..., x,) are polynomials of n variables written as the sums of monomials of kind x;11 ...x;;, where
i1,i2,i3 € 1,2,...,ny with the coefficients from K = F;. As we mention before the polynomial equations
vi = Fij(x1,x2,...,x,), which are made public, have the degree 3. Hence the process of an encryption and a

decryption can be done in polynomial time O (n*) (in one y;, i = 1,2...,n there are 2(n®> — 1) additions and
multiplications). But the cryptanalyst Cezar, having only a formula for y, has a very hard task to solve the system of
n equations of n variables of degree 3. It is solvable in exponential time 0(3”4) by the general algorithm based on
Grobner basis method. Anyway studies of specific features of our polynomials could lead to effective cryptanalysis.
This is an open problem for specialists.

We have written a program for generating a public key and for encrypting text using the generated public key.
The program is written in C++ and compiled with the gcc compiler.

We have implemented three cases:

e Tj and 75 are identities,
e Tiand T, are of kind x; — x1 + azxxy + azx3 + - - - + ap+1X,+1 (linear time of computing 77 and 73),
o Ty =A1x+b1,To = Ayx + by; matrices Ay, Ay and vectors by, br has mostly nonzero elements.

The Tables 1, 2, 3, 4, 5, and 6 present the number of monomials depending on the number of variables (n) and
the password length in all three cases and both families of graphs D(n, K) and A(n, K).

The Tables 7, 8, 9, 10, 11, and 12 present the time (in milliseconds) of the generation of public key monomials
depending on the number of variables (n) and the password length in all three cases and both families of graphs
D(n, K) and A(n, K).
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Table 3 Number of

monomials in public map, " Password length

graph D(n, K), K = Fyx, 16 32 64 128

case IIT
16 6,544 6,544 6,544 6,544
32 50,720 50,720 50,720 50,720
64 399,424 399,424 399,424 399,424
128 3,170,432 3,170,432 3,170,432 3,170,432

Table 4 Number of B Password lenath

monomials in public map, g

graph A(n, K), K = Fy», 16 32 64 128

case I
16 250 250 250 250
32 770 1,010 1,010 1,010
64 1,810 3,074 4,066 4,066
128 3,890 7,202 12,290 16,322

Table 5 Number of B Password lenath

monomials in public map, g

graph A(n, K), K = Fyz, 16 32 64 128

case II
16 3,426 3,426 3,426 3,426
32 19,392 26,310 26,310 26,310
64 89,472 148,420 206,222 206,222
128 383,232 692,676 1,161,356 1,633,054

Table 6. quber (?f n Password length

monomials in public map,

graph A(n, K), K = Fy», 16 32 64 128

case III
16 6,544 6,544 ,6544 ,6544
32 50,720 50,720 50,720 50,720
64 399,424 399,424 399,424 399,424
128 3,170,432 3,170,432 3,170,432 3,170,432

Table 7 Public key

L Password length
generation time (ms), graph

D(n, K), K = Fy», case 16 32 64 128
32 160 320 640 1,280
64 1,680 3,310 6,650 13,330
96 9,050 18,040 36,000 72,000
128 26,980 53,790 107,610 215,770

160 62,960 125,420 249,460 500,660
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Table 8 Public key
generation time (ms), graph
D(n, K), K = Fy»,casell

Table 9 Public key
generation time (ms), graph
D(n, K), K = Fy3»,case Ill

Table 10 Public key
generation time (ms), graph
A, K), K = Fy»n,casel

Table 11 Public key
generation time (ms), graph
A(n, K), K = Fy3,casell

Table 12 Public key
generation time (ms), graph
A(n, K), K = Fy», case 1l

Password length

16 32 64 128
32 290 620 1,260 2,540
64 3,420 8,570 19,340 40,740
96 15,060 37,730 92,040 201,440
128 40,700 102,300 260,740 590,390
160 90,990 226,020 584,480 1,378,700
n Password length

16 32 64 128

32 1,160 2,200 4,280 8,440
64 19,050 34,730 66,090 128,810
96 109,620 194,420 364,020 703,220
128 355,260 615,260 1,135,260 2,175,260
160 935,370 1,601,130 2,932,650 5,595,690
n Password length

16 32 64 128
32 0 100 280 640
64 1,440 2,900 6,010 12,170
96 8,160 16,260 32,890 66,160
128 24,780 49,270 98,610 197,840
160 58,730 116,870 234,340 469,860
n Password length

16 32 64 128
32 330 840 1,920 4,080
64 3,450 9,470 25,330 58,210
96 14,970 39,780 109,920 274,810
128 40,880 106,370 296,840 788,550
160 91,300 232,620 642,250 1,760,530
n Password length

16 32 64 128

32 1,110 2,070 3,990 7,830
64 20,120 36,920 70,520 137,720
96 111,020 197,260 369,740 714,700
128 369,980 646,940 1,200,860 2,308,700
160 942,340 1,626,340 2,994,340 5,730,340
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18000 . : ,
---  D(n,K), case |

16000 F1 __ A(n,K), case | )

14000

12000

10000

8000

6000

number of monomials

4000

2000

O ! 1 1
0 50 100 150 200

password length

Fig. 1 The number of monomials in public map (n = 128, K = F,3), case I

3500000 T . T

3000000 [ .
--- D(n,K), case |
—  A(n,K), case |

2500000 -
- - D(n,K), A(n,K), case lll

2000000 | .

1500000

1000000

number of monomials

500000

0 1 1 1
0 50 100 150 200

password length

Fig. 2 The number of monomials in public map (n = 128, K = F,3), cases II and III

The time of encryption process depends linearly on the number of monomials (the number of nonzero coefficients)
in cubic polynomials Fi, F; ...F, in the public map y = (F1(x1, ..., Xn), ..., Fu(x1, ..., Xp)).

Figures 1 and 2 compare the number of monomials in both families of graph and shows the dependence of this
number on the length of the password.

Figures 3, 4, 5, 6, 7, and 8 show the time of the generation of public keys.
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250000 T T T T T T T

T

200000

150000

time (ms)

100000 -

T

50000

0 L L 1 L 1 1 1
0 20 40 60 80 100 120 140 160

password length

Fig. 3 Public key generation time for fixed graph (n = 128, K = F)3), case |

1000000 : : : . . . .
— D(n,K)
Ve
--  A(n,K) d
800000 | g
< 600000 .
E
()
E
+ 400000 | .
200000 | .
0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

password length
Fig. 4 Public key generation time for fixed graph (n = 128, K = F»3), case Il
6.2 On the Case of Ring Extensions

Let us consider the case when a commutative ring K itself is a free module over the other ring R, i. e. K = R™.
The reader may think over the following examples.
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3000000 T T T T T T T
— D(n,K)
- = A(n,K) -,

2500000

2000000

1500000

time (ms)

1000000

T

500000

0 L 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

password length

Fig. 5 Public key generation time for fixed graph (n = 128, K = F,3), case III

250000 T T T T T T T
--- D(n,K)
— A(n,K)
200000
—~ 150000 |
0
3
]
=
+ 100000
50000 |
0 L 4 1 1 1 1 L
0 20 40 60 80 100 120 140 160

n (number of variables)
Fig. 6 Public key generation time for fixed password length (64), K = F,3, case |

(1) Commutative ring K is a Kronecker extension of R: there is a polynomial p(x) € R[x] of degree >2, such
that K = R[x]/p(x). Commutative ring R[x]/p(x) can be with large multiplicative sets. Obvious exam-
ples: if p(x) = x" +a;x" ' + .- 4 a,_1x, then Q = {f(x) € R[x]/p(x)|f(0) # 0} is a multiplicative
set, if R = IF,, p is prime, and p(x) is irreducible polynomial, then K = R[x]/p(x) is a finite field with
multiplicative group K — {0}.
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700000 T T T T T T T

600000 || — A(n,K)

500000

400000 |

time (ms)

= 300000

200000 -

100000

0 L = ) i ! 1 ! 1
0 20 40 60 80 100 120 140 160

n (number of variables)

Fig. 7 Public key generation time for fixed password length (64), K = Fy3, case 11

3000000 T T T T T T T
--- D(n,K)

—  A(n,K
2500000 |- (n.K) g

2000000 -

1500000 : :

time (ms)

1000000

500000

T

O 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

n (hnumber of variables)

Fig. 8 Public key generation time for fixed password length (64), K = F,3, case III

(2) Recall, that a Boolean ring By, is the Cartesian power [’ of the finite field I, i.e a vector space over ;.
We can generalize this example simply by consideration of mth Cartesian power R™ of general commutative
ring R.
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We can generalize the encryption map 7, (D (K), R, 11, 12) (T, (A(K), R, 11, T2) associated with the family of
graphs of large girth D(n, K)(or family A(n, K) of graphs with large cycle indicator) via wider choice of linear
transformations of the module K”. We assume, that maps are corresponding to the password o, o2, . .., oy Where
ai+aiy1 € M, i =1,2,...,s and M is a subset of K such that multiplicative closure of M does not contain zero.

The following statement the reader can find in [40].

Proposition 1 Maps T,,(D(K), R, t1, 72) and T,(A(K), R, 11, 72), where R is a finite commutative ring, p(x) €
R[x], K = R[x]/p(x) and K = R™, are cubical maps of R™ to itself.

7 Conclusion

Results of computer simulation show that multivariate cryptosystem corresponding to family of graphs
A, Fy),q = 20 i = 8,16, 32, 64 have a better density (number of monomial expressions with nonzero coeffi-
cients) in the comparison with algorithms based on D(n, Fy), g = 2/, i =8, 16, 32, 64. Same is true for generalised
encryptions of previous propositioninthecase R = >, K = F,;,q = 2! i =8, 16, 32, 64. Surprisingly the results
of time evaluation of the process of public key generations are very similar in both cases (A(n, F;) and D(n, Fy)).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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