
Math.Comput.Sci. (2012) 6:121–133
DOI 10.1007/s11786-012-0118-5 Mathematics in Computer Science

Truncation Formulas for Invariant Polynomials of Matroids
and Geometric Lattices

Relinde Jurrius · Ruud Pellikaan

Received: 29 November 2011 / Revised: 6 June 2012 / Accepted: 12 June 2012 / Published online: 21 July 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract This paper considers the truncation of matroids and geometric lattices. It is shown that the truncated
matroid of a representable matroid is again representable. Truncation formulas are given for the coboundary and
Möbius polynomial of a geometric lattice and the spectrum polynomial of a matroid, generalizing the truncation
formula of the rank generating polynomial of a matroid by Britz.
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1 Introduction

The mathematical meaning of truncation is just as it is in every day life: cutting something off. In the situation of
this paper, we will be “cutting off” matroids and geometric lattices, by ‘removing’ their hyperplanes and bases,
respectively. An overview of more possible constructions on matroids and geometric lattices can be found in [4].

There are several polynomials associated to matroids and geometric lattices. Probably the most famous and well
studied polynomial is the Tutte polynomial, or its equivalent, the rank generating polynomial. The coboundary poly-
nomial is equivalent to the rank generating polynomial. Polynomials that are not equivalent to the rank generating
polynomial include the Möbius polynomial and the spectrum polynomial.

Britz [3] showed that the rank generating function of a truncated matroid is defined by the rank generating
function of the matroid itself. It is a natural question to ask if there are similar truncation formulas for other poly-
nomials. We will give truncation formulas for the coboundary, Möbius and spectrum polynomial. The outline of
the combinatorial proof for these formulas is the same for all three polynomials.

We will conclude by listing some possible applications and generalizations of the various truncation formulas.
The truncations formulas trigger questions related to linear codes, Whitney numbers and Duursma zeta-functions.
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2 Truncation of Matroids and Geometric Lattices

For an excellent introduction into the topic of matroids; see [14,18]. More about the theory of geometric lattices
and the Möbius function can be found in [1,8,16]. In [20] the cryptomorphism between matroids and geometric
lattices is discussed.

We can define the truncation of a matroid in several equivalent ways, just as we can define a matroid in terms of
its independent sets, bases, rank function, flats, circuits, etcetera. We will give some equivalent definitions that are
most suitable for our purposes. For a more extensive list; see [4].

Definition 1 The truncation of a matroid M of rank r(M) = r ≥ 1 is denoted by τ(M), it has the same set of
elements as M and it has the following equivalent definitions:

• The independent sets of τ(M) are all the independent sets of M , except those of rank r .
• The rank function of τ(M) is given by rτ(M)(A) = min{rM (A), r − 1}.
• The bases of τ(M) are the independent sets of rank r − 1 in M .

The truncation of a matroid is again a matroid.

Example 2 Consider the uniform matroid M = Ur,n on n elements of rank r ≥ 1. Then τ(M) = Ur−1,n .

For a geometric lattice, the definition is more straightforward.

Definition 3 The truncation of a geometric lattice L of rank r(L) = r ≥ 1 with partial ordering ≤ has as elements
all the elements of L except those of rank r − 1, with the same partial ordering ≤. It is denoted by τ(L).

The truncation of a geometric lattice is again a geometric lattice. Note that the truncations of a matroid and a
geometric lattice each have rank r −1. For a matroid M , we denote by L(M) its associated geometric lattice of flats.
Conversely, for a geometric lattice L , we denote by M(L) its associated matroid. Now L(M(L)) is isomorphic to L ,
and M(L(M)) is isomorphic to M if M is a simple matroid, i.e., M has no loops or parallel elements. Furthermore
τ(M(L)) = M(τ (L)) and τ(L(M)) = L(τ (M)).

Instead of removing all elements of rank r −1 from a geometric lattice, one might ask what happens if we remove
all elements of rank 1, the atoms, from the geometric lattice. Unfortunately, the resulting structure is no longer a
geometric lattice. We therefore loosen our definitions to get a class of objects that is closed under this “truncation
from below”. If we start with a geometric lattice and drop the requirements that it is atomic and that its rank function
is semimodular, we get a poset with rank function; see [1].

Definition 4 Let P be a finite poset with partial order ≤. Then P is called a poset with a rank function if it has a
minimum 0P , a maximum 1P and a rank function rP such that:

• 0P ≤ x ≤ 1P for all x ∈ P ,
• rP (0P ) = 0,
• rP (x) < rP (y) for all x < y in P ,
• rP (x) = rP (y) − 1 if x < y and there is no z such that x < z < y.

Pi is the set of elements x ∈ P such that rP (x) = i . The rank of P is rP (1P ) and is denoted by r(P).

Definition 5 The upper truncation of a poset with rank function P of rank r(P) = r ≥ 1 with partial ordering ≤
has as elements all the elements of P except those of rank r − 1, with the same partial ordering ≤. It is denoted
by τ+(L). The lower truncation of P has as elements all the elements of P except those of rank 1, with the same
partial ordering ≤. It is denoted by τ−(L).

Again, truncating lowers the rank by 1, so τ+(P) and τ−(P) both have rank r − 1. Let L be a geometric lattice
of rank r , and P(L) its associated poset with rank function. Then P(τ (L)) = τ+(P(L)). But it is not true that
τ−(P(L)) is the poset of some sort of truncation of the geometric lattice L , since it is not always the case that the
rank function on τ−(P(L)) is semimodular.
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Example 6 Consider M = U4,4 the the uniform matroid on four elements of rank 4. Let L be the lattice of flats of M ,
and P the associated poset of L with rank function. Consider x = {1, 2} and y = {3, 4} in τ−(P). The meet and join
of x and y in τ−(P) are given by x ∧ y = ∅ and x ∨ y = {1, 2, 3, 4}, respectively. Then rτ−(P)(x) = rτ−(P)(y) = 1
and rτ−(P)(x ∧ y) = 0 and rτ−(P)(x ∨ y) = 3. Hence τ−(P) is not a geometric lattice.

There is a natural way to extend the lattice τ−(L) to a geometric lattice, called Dilworth completion.
See [4, §7.7], [7,10], and [19, §12]. The result of this competition is referred to as the Dilworth truncation of
a lattice. It can be viewed as the smallest geometric lattice that contains τ−(L). Since our techniques for finding
truncation formulas do not apply on the Dilworth truncation, we will not go into the details of its definition.

For every poset P , we can define its inverse poset i(P). This poset contains the same elements as P , but the
order is reversed: x ≥i y in the inverse poset if and only if x ≤ y in the original poset. If P is a finite poset, then
the Möbius function μP (y, x) is well-defined and μi(P)(x, y) = μP (y, x).

If the poset has a minimum and maximum, then the inverse poset has a maximum and minimum: 0P = 1i(P)

and 1P = 0i(P). The rank of the poset and its inverse are the same, and the rank function of the inverse poset is
given by ri(P)(x) = r(P) − rP (x).

Lower truncation can now be described in terms of upper truncation and inversion: the lower truncation of a
poset can be obtained by first inverting the poset, then taking upper truncation, and then inverting back again. On
the other hand, we can obtain upper truncation by first inverting, then taking lower truncation, and then inverting
back again.

3 Representation of a Truncated Matroid

It was shown by Mason [13, §2.4] that if a matroid is representable over a field, then the Dilworth truncation of a
matroid is again representable over an extension of that field. This question for ordinary truncation is addressed in
[4, Prop. 7.4.10]: if M is a matroid that is representable over the field F, then τ(M) is a representable matroid over
a transcendental extension of F. We will give a stronger version of this result.

Example 7 Consider the simplex code C of dimension 3 over the finite field with q elements. This code has length
n = q2 + q + 1 and minimum distance q2. The associated matroid M = MC is by definition representable. The
truncation τ(M) is the uniform matroid U2,n . Now U2,n is representable over Fq if and only if n is at most q + 1.
Therefore τ(M) is representable over any extension of Fq3 but it is not representable over Fq itself.

Theorem 8 Let M be a matroid of rank k on n elements that is representable over a field F.

1. If F is infinite, then τ(M) is representable over F.
2. If F is finite consisting of q elements and m ≥ �logq(

( n
k−1

)
)	 + 1, then τ(M) is representable over Fqm .

Proof Suppose that M is a matroid of rank k on the set E = {1, . . . , n} and M is represented by a k × n matrix
G of rank k over F. A subset I of E is an independent set of M if and only if the columns of G enumerated by I
are independent. Let C be the subspace of F

n generated by the rows of G. Then C has dimension k, since G has
rank k. Let t = n − k. Let H( j1, . . . , jt ) be the t × t matrix obtained from H by taking the columns numbered by
j1, . . . , jt , where 1 ≤ j1 < · · · < jt ≤ n. Let �( j1, . . . , jt ) be the determinant of H( j1, . . . , jt ).

Let I be a basis of τ(M). Let J = E\I . Then |I | = k − 1 and there exists an i in J such that I ∪ {i} is
a basis of M . Hence the columns of H enumerated by J\{i} are independent. Let J = { j1, . . . , jt+1} for some
1 ≤ j1 < · · · < jt+1 ≤ n. Consider the linear function given by:

f I (X1, . . . , Xn) =
t+1∑

s=1

(−1)s�( j1, . . . , ĵs, . . . , jt+1)X js ,

where ( j1, . . . , ĵs, . . . , jt+1) is the t-tuple obtained from ( j1, . . . , js, . . . , jt+1) by deleting the s-th element. There
exists an s such that js = i and the corresponding determinant �( j1, . . . , ĵs, . . . , jt+1) is not zero. Hence the above
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equation is not identically zero and defines a hyperplane HI in F
n with equation f I (X1, . . . , Xn) = 0 for every

basis I of τ(M). Consider the product

f (X1, . . . , Xn) =
∏

I basis of M

fI (X1, . . . , Xn).

So f (X1, . . . , Xn) is a non-zero polynomial. If F is infinite, then this polynomial is not everywhere zero on F
n by

[12, V §4 Corollary 3]. Therefore there exists an element x ∈ F
n such that f (x1, . . . , xn) is not zero.

If F is finite, then F = Fq and we assumed m ≥ �logq(
( n

k−1

)
)	 + 1. So qm >

( n
k−1

)
. Hence

(qm)n >

(
n

k − 1

)
(qm)n−1.

The number of basis of τ(M) is at most
( n

k−1

)
. Therefore F

n
qm has more elements than the union of all hyperplanes

HI with I a basis of τ(M). So there exists an element x ∈ F
n
qm which does not lie in this union.

In both cases an n-tuple x is found, possibly over an extension of F such that f I (x1, . . . , xn) is not zero for
every basis I of τ(M). Let H̃ be the (t + 1) × n matrix obtained by adding to H the row x. Then for every basis
I of τ(M) the columns of H̃ enumerated by the complement of I are independent, because the determinant of the
corresponding square matrix of size t + 1 is equal to f I (x) �= 0.

The conclusion is that the null space of H̃ is a subspace of C of dimension k − 1 that represents τ(M). �

4 Truncation and Polynomial Invariants

For polynomial invariants associated with matroids and geometric lattices, one might ask if we can find the poly-
nomial of their truncation from the polynomial of the original object. The answer is positive for the characteristic
polynomial; see [4, p. 149]. For the rank generating function RM (X, Y ) of a matroid we have the following
Theorem 10, proved by Britz [3, Prop. 15].

Definition 9 Let M = (E, I) be a matroid. The Whitney rank generating function RM (X, Y ) is defined by

RM (X, Y ) =
∑

J⊆E

Xr(E)−r(J )Y |J |−r(J )

and the Tutte-Whitney or Tutte polynomial is defined by

tM (X, Y ) =
∑

J⊆E

(X − 1)r(E)−r(J )(Y − 1)|J |−r(J ).

Therefore

tM (X, Y ) = RM (X − 1, Y − 1).

Theorem 10 (Truncation formula) Let M be a matroid. Then

X · Rτ(M)(X, Y ) = RM (X, Y ) + (XY − 1) · RM (0, Y ).

In this section, we will adjust the question for a generalization of the characteristic polynomial.

Definition 11 Let L be a geometric lattice. The two-variable characteristic or coboundary polynomial in the vari-
ables S and T is given by

χL(S, T ) =
∑

x∈L

∑

x≤y∈L

μL(x, y)SaL (x)T r(L)−rL (y),

where aL(x) is the number of atoms a in L such that a ≤ x , and rL(y) is the rank of y in L .



Truncation Formulas for Invariant Polynomials 125

Theorem 12 Let L be a geometric lattice of rank r ≥ 3. Then

T · χτ(L)(S, T ) = χL(S, T ) + (T − 1) · χL(S, 0)

where a(L) = aL(1) is the number of atoms of L.

Proof The identity is a consequence of Theorem 10 using the c (see [5, p. 605] and [6, Thm. II]):

χL(S, T ) = (S − 1)r(L) · RM(L)

(
T

(S − 1)
, S − 1

)
.

�
Since the coboundary polynomial is equivalent to the rank generating function, it is clear that a truncation for-

mula for the coboundary polynomial should exist. However, the definition of the coboundary polynomial makes it
possible to find a more general idea behind this truncation formula, that can also be adjusted to other polynomial
invariants that are not equivalent to (or determined by) the rank generating polynomial.

Theorem 13 Let f (S, T ) be a polynomial invariant of a matroid, geometric lattice, or poset with rank function
that has rank r and can be written as

f (S, T ) =
r∑

i=0

f j (S)T r− j .

Let f ′ be the polynomial invariant of the truncation of the matroid, geometric lattice, or poset with rank function.
So, we can write

f ′(S, T ) =
r−1∑

i=0

f ′
j (S)T r−1− j .

If the coefficients f j (S) and f ′
j (S) are related via

{
f ′

j (S) = f j (S), for j ≤ r − 2,

f ′
j (S) = f j (S) + f j+1(S), for j = r − 1,

then the following truncation formula holds:

T · f ′(S, T ) = f (S, T ) + (T − 1) · f (S, 0).

Proof The proof is given by rewriting.

T · f ′(S, T ) =
r−1∑

i=0

f ′
j (S)T r− j

=
r−2∑

i=0

f j (S)T r− j + T · ( fr−1(S) + fr (S))

=
r−1∑

i=0

f j (S)T r− j + T · fr (S)

=
r∑

i=0

f j (S)T r− j − fr (S) + T · fr (S)

= f (S, T ) + (T − 1) · f (S, 0).

�
We can use this formula to give a different proof of Theorem 12.
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Proof (Theorem 12) We can not directly apply Theorem 13 to the coboundary polynomial: we will use the following
reduced form, where we delete the highest degree terms in S. Let m be the number of atoms of L and let

χ L(S, T ) = χL(S, T ) − Sm =
r∑

j=0

χ j (S)T r− j ,

where

χ j (S) =
∑

aL (x)=i
i<m

∑

x≤y
rL (y)= j

μL(x, y)Si .

Let the reduced coboundary polynomial of the truncated geometric lattice be given by

χ ′(S, T ) =
r−1∑

i=0

χ ′
j (S)T r−1− j .

We need to show the relations of Theorem 13. Notice that if rL(x) ≤ r − 2, then rL(x) = rτ(L)(x) and aL(x) =
aτ(L)(x). Also, if r(x), r(y) ≤ r − 2, then μL(x, y) = μτ(L)(x, y). Therefore, χ ′

j (S) = χ j (S) for j ≤ r − 2.
It is left to show that χr−1(S) + χr (S) = χ ′

r−1(S), that is,
∑

aL (x)=i
i<m

∑

x≤y
rL (y)=r−1

μL(x, y)Si +
∑

aL (x)=i
i<m

μL(x, 1L)Si =
∑

aτ (L)(x)=i
i<m

μτ(L)(x, yτ(L))Si .

Since aL(x) < m, we have rL(x) < r in every summation. We split into two parts. If rL(x) = r − 1 = rτ(L)(x),
then aτ(L)(x) = m, so the right hand side of the summation is 0. The left hand side of the summation is then equal
to
∑

aL (x)=i
i<m

Si (1 − 1) = 0,

so this cancels out. Now suppose rL(x) = rτ(L)(x) ≤ r − 2. We can drop the first summation and the factor Si ,
because they are the same on both sides. So, we need to show that

∑

x≤y
rL (y)=r−1

μL(x, y) + μL(x, 1L) = μτ(L)(x, yτ(L)).

We will use the induction formula for the Möbius function: for x < y, it holds that
∑

x≤z≤y

μL(x, z) =
∑

x≤z≤y

μL(z, y) = 0.

If we use this on the left hand side, we get
∑

x≤y
rL (y)=r−1

μL(x, y) + μL(x, 1L) =
∑

x≤y
rL (y)=r−1

μL(x, y) −
∑

x≤z<1L

μL(x, z)

= −
∑

x≤z
rL (z)≤r−2

μL(x, z).

The right hand side is equal to

μτ(L)(x, 1τ(L)) = −
∑

x≤z<1τ (L)

μτ(L)(x, z)

= −
∑

x≤z
rτ (L)(z)≤r−2

μτ(L)(x, z)

= −
∑

x≤z
rL (z)≤r−2

μL(x, z)
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We conclude that χr−1(S) + χr (S) = χ ′
r−1(S), so the reduced coboundary polynomial satisfies the conditions

in Theorem 13 and therefore has a truncation formula. Since the term Sm that we omitted does not change under
truncation, we get the truncation formula as is Theorem 12. �
Example 14 The uniform matroid Ur,n has rank generating function

RUr,n (X, Y ) =
r−1∑

i=0

(
n

i

)
Xr−i +

n∑

i=r

(
n

i

)
Y i−r ,

as follows directly from the definitions. Since the coboundary polynomial is defined by the rank polynomial, we
can find the coboundary polynomial of the uniform geometric lattice:

χUr,n (S, T ) =
r−1∑

i=0

(
n

i

)
(S − 1)i T r−i +

n∑

i=r

(
n

i

)
(S − 1)i .

In this form many terms cancel each other. For example U3,7 has coboundary polynomial

χU3,7(S, T ) = S7 + 21S2(T − 1) + 7S(T 2 − 6T + 5) + (T 3 − 7T 2 + 21T − 15).

In the form as above, it is straightforward to verify the truncation formula for the coboundary polynomial for
arbitrary uniform geometric lattices. In case of the lattice U3,7, its truncation U2,7 has coboundary polynomial

χU2,7(S, T ) = S7 + 7S(T − 1) + (T 2 − 7T + 6).

5 Truncation Formula for the Möbius Polynomial

The combinatorial proof for the truncation formula in Theorem 12 is also applicable to other polynomials. We
loosen to the case of posets with rank functions, so we can also address the lower truncation.

Definition 15 Let P be a poset with rank function. The two-variable Möbius polynomial in the variables S and T
is given by

μP (S, T ) =
∑

x∈P

∑

x≤y∈P

μP (x, y)SrP (x)T r(P)−rP (y).

The definition of the Möbius polynomial μP (S, T ) is similar to the one of the coboundary polynomial χL(S, T ).
However, if L is a geometric lattice and P is the poset with rank function associated with L , then χL(S, T ) and
μP (S, T ) do not determine each other. See [8, §8.6] for counterexamples.

Theorem 16 Let P be a poset with rank function of rank r . Then

T · μτ+(P)(S, T ) = μP (S, T ) + (T − 1) · μP (S, 0) + Sr−1T − Sr T .

Proof Just as in the case of the coboundary polynomial, we will use a reduced form of the polynomial to work
with. Let

μP (S, T ) = μP (S, T ) − Sr =
r∑

j=0

μ j (S)T r− j ,

where

μ j (S) =
∑

rP (x)=i
i<r

∑

x≤y
rP (y)= j

μP (x, y)Si .
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Notice that the sets {x ∈ L : aL(x) < m} and {x ∈ L : rL(x) < r} are the same, so the proof that the reduced
Möbius polynomial obeys the constrains in Theorem 13 is exactly the same as in the case of the reduced coboundary
polynomial. Hence the reduced Möbius polynomial has a truncation formula as in Theorem 13. To switch to the
non-reduced Möbius polynomial, −T Sr−1 gets added at the left hand side of the formula, and −Sr − (T − 1)Sr

at the right hand side. This gives the term +Sr−1T − Sr T in the formula. �
Example 17 We consider again the uniform geometric lattice L = Ur,n . For all elements x ∈ Ur,n with rL(x) <

r(L), we have that aL(x) = rL(x). Therefore the coboundary polynomial and the Möbius polynomial differ only
in the leading term: for the coboundary polynomial this is Sn , while for the Möbius polynomial it is Sr(L). For
example, the Möbius polynomial of the geometric lattice U3,7 is equal to

μU3,7(S, T ) = S3 + 21S2(T − 1) + 7S(T 2 − 6T + 5) + (T 3 − 7T 2 + 21T − 15).

The Möbius polynomial of its truncation U2,7 is equal to

μU2,7(S, T ) = S2 + 7S(T − 1) + (T 2 − 7T + 6).

Comparing with Example 14, we see why the term Sr−1T − Sr T is needed in the truncation formula of the Möbius
polynomial.

We would like to mention that it is possible to give a general formula for the Möbius polynomial of a uniform
geometric lattice; see for example §5.5 and Proposition 51 of [8]. Checking the truncation formula directly in the
case of a general uniform geometric lattice is therefore possible, but we leave the rather lengthy calculation to the
reader.

For posets, we can find a similar truncation formula for the lower truncation.

Theorem 18 Let P be a poset with rank function of rank r . Then

S · μτ−(P)(S, T ) = μP (S, T ) + (S − 1) · μP (0, T ) + ST r−1 − ST r .

Proof We prove this formula by using the inverse poset. The Möbius polynomial of the inverse poset i(P) is found
by interchanging the variables in the Möbius polynomial of the original poset P:

μi(P)(S, T ) =
∑

x∈i(P)

∑

y∈i(P)

μi(P)(x, y)Sri(P)(x)T r(i(P))−ri(P)(y)

=
∑

x∈P

∑

y∈P

μP (y, x)Sr−rP (x)T r−(r−rP (y))

=
∑

x∈P

∑

y∈P

μP (x, y)T rP (x)Sr−rP (y)

= μP (T, S).

This makes it possible to derive the formula for lower truncation directly from the formula for upper truncation.
We start with the formula for upper truncation in Theorem 16:

T · μτ+(P)(S, T ) = μP (S, T ) + (T − 1) · μP (S, 0) + Sr−1T − Sr T .

For the inverse of P , the same formula holds:

T · μτ+(i(P))(S, T ) = μi(P)(S, T ) + (T − 1) · μi(P)(S, 0) + Sr−1T − Sr T .

Now we use that τ+(i(P)) = i(τ−(P)) and μi(P)(S, T ) = μP (T, S):

T · μτ−(P)(T, S) = μP (T, S) + (T − 1) · μP (0, S) + Sr−1T − Sr T .

Interchanging S and T gives the formula for lower truncation. �
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6 Truncation Formula for the Spectrum Polynomial

The spectrum polynomial was first introduced in [9]. By a slight change of variables, we get a polynomial on which
we can apply the same technique as before to prove a truncation formula.

Definition 19 Let M be a matroid and L = L(M) its associated geometric lattice. The spectrum polynomial of a
matroid in the variables S and T is given by

SpecM (S, T ) =
∑

x∈L

∑

x≤y∈L

|χ̃(I N (x))| |μL(x, y)| S|x |T rL (y)

where |x | is the number of elements of M that are in the flat x and χ̃ (I N (x)) is the reduced Euler characteristic of
the independence complex of M .

The value of |x | is equal to aL(x) for all flats x if M is a simple matroid. Furthermore, the number of elements
of M that are in the flat x is equal to the number of elements of τ(M) that are in x if r(x) ≤ r(M) − 2.

Let IM be the collection of independent subsets of M . The following formula holds by [2, p. 238]:

|χ̃ (I N (M))| = RM (−1, 0) =
∑

I∈IM

(−1)r(M)−|I |.

Definition 20 Let M be a matroid and L = L(M) its associated geometric lattice. Let

νM (x, y) = (−1)rM (x)μL(x, y) |χ̃ (I N (x))|
and define the reciprocal alternating spectrum polynomial of M by

RaspM (S, T ) =
∑

x∈L

∑

x≤y∈L

νM (x, y)S|x |T r(L)−rL (y).

Notice the similarity to the definition of the coboundary polynomial. The polynomial RaspM (S, T ) is equivalent
to the spectrum polynomial.

Theorem 21 The polynomial RaspM (S, T ) is the reciprocal alternating polynomial of SpecM (S, T ) in T :

RaspM (S, T ) = T r(M) SpecM

(
S,− 1

T

)
.

Proof Let L = L(M). Using the fact that |μ(x, y)| = (−1)r(y)−r(x)μ(x, y) and rewriting gives:

T r(M) SpecM

(
S,− 1

T

)
= T r(M)

∑

x∈L

∑

x≤y∈L

|μL(x, y)| |χ̃ (I N (x))| S|x |(−T −1)r(y)

= T r(M)
∑

x∈L

∑

x≤y∈L

(−1)r(y)−r(x)μL(x, y) |χ̃ (I N (x))| S|x |(−T −1)r(y)

= T r(M)
∑

x∈L

∑

x≤y∈L

(−1)r(x)μL(x, y) |χ̃ (I N (x))| S|x |(T −1)r(y)

=
∑

x∈L

∑

x≤y∈L

νM (x, y) S|x |T r(M)−r(y)

= RaspM (S, T ).

We omit the subscripts L and M by the rank function to emphasize the cryptomorphism between L(M) and M. �
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We need the following computational lemmas about RaspM and νM .

Lemma 22 Let BM be the collection of all bases of a matroid M. Then

RaspM (1, 0) = (−1)r(M)|BM |.
Proof Let I be the set of independent sets of M , and let L = L(M).

RaspM (1, 0) =
∑

x∈L

νM (x, 1L)

=
∑

x∈L

(−1)r(x)μL(x, 1L)
∑

I⊆x
I∈I

(−1)r(x)−|I |

=
∑

I∈I
(−1)−|I | ∑

Ī≤x≤1L

μL(x, 1L)

=
∑

B∈B
(−1)−r(M)

= (−1)−r(M)|BM |
�

Lemma 23 Let M be a matroid and x < y elements of L = L(M). Then νM (x, y) has the following induction
formula:
∑

x≤z≤y

νM (x, z) =
∑

x≤z≤y

νM (z, y) = 0.

Proof For x < y we have

νM (x, y) = (−1)rM (x)|χ̃(I N (x))| μL(x, y)

= (−1)rM (x)|χ̃(I N (x))|
∑

x≤z<y

−μL(x, z)

= −
∑

x≤z<y

νM (x, z).

This implies the given induction formula. �
We can now prove a truncation formula for the polynomial RaspM (S, T ).

Theorem 24 Let M be a matroid of rank r on a set of m elements. Then

T · Raspτ(M)(S, T ) = RaspM (S, T ) + (T − 1) · RaspM (S, 0) − Sm T · RaspM (1, 0).

Proof Just as in the previous cases, we will use a reduced form of the polynomial to work with. Let

RaspM (S, T ) = RaspM (S, T ) − νM (1M , 1M )Sm =
r∑

j=0

Rasp j (S)T r− j ,

where

Rasp j (S) =
∑

|x |=i
i<m

∑

x≤y
rM (y)= j

νM (x, y)Si .
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Notice that the sets {x ∈ M : |x | < m} and {x ∈ M : rM (x) < r} are the same and that Lemma 23 gives the same
induction formula for ν(x, y) as we have for μ(x, y) so again we can copy the previous proofs to show that the
reduced Rasp polynomial obeys the constrains in Theorem 13. Hence the reduced Rasp polynomial has a truncation
formula as in Theorem 13. To switch to the non-reduced Rasp polynomial, −ντ(M)(1τ(M), 1τ(M))Sm T gets added
at the left hand side of the formula, and −νM (1M , 1M )Sm − (T − 1)νM (1M , 1M ) at the right hand side. In total,
we have to add −Sm T times the following:

νM (1M , 1M ) − ντ(M)(1τ(M), 1τ(M)) = (−1)r · 1 ·
∑

I∈IM

(−1)r−|I | − (−1)r−1 · 1 ·
∑

I∈Iτ (M)

(−1)r−1−|I |

= (−1)r

⎛

⎝
∑

I∈IM \BM

(−1)r−|I | +
∑

I∈BM

(−1)r−r +
∑

I∈IM \BM

(−1)r−1−|I |
⎞

⎠

= (−1)r
∑

I∈BM

1 = (−1)r |BM |.

Combining with Lemma 22, the theorem follows. �
The truncation formula for RaspM (S, T ) also makes it possible to determine the spectrum polynomial of a trun-

cated matroid from the spectrum polynomial of the matroid itself. However, if we try to apply Theorem 21 directly
to the truncation formula for RaspM (S, T ), we run into trouble with the terms that have T = 0. To avoid this, notice
that the term RaspM (S, 0) actually means “write RaspM (S, T ) as a polynomial in T and take the coefficient of T 0”.
In terms of the spectrum polynomial, this is “write SpecM (S, T ) as a polynomial in T , take the coefficient of T r(M)

and multiply by (−1)r(M)”. This motivates the following definition.

Definition 25 The polynomials Si (S) are the coefficients of the spectrum polynomial, written as a polynomial
in T :

SpecM (S, T ) =
r(M)∑

i=0

Si (S)T i .

From this definition, it follows that we can write

RaspM (S, T ) =
r(M)∑

i=0

(−1)i Si (S)T r(M)−i .

We use this to prove the truncation formula for the spectrum polynomial.

Theorem 26 Let M be a matroid of rank r on a set of m elements. Then

Specτ(M)(S, T ) = SpecM (S, T ) − T r−1(T + 1) · Sr (S) + Sm T r−1 · Sr (1).

Proof The truncation formula for RaspM (S, T ) can be written as

T · Raspτ(M)(S, T ) = RaspM (S, T ) + (−1)r (T − 1) · Sr (S) − (−1)r Sm T · Sr (1).

Using the equivalence in Theorem 21, we get

T · T r−1 · Specτ(M)

(
S,− 1

T

)
= T r · SpecM

(
S,− 1

T

)
+ (−1)r (T − 1) · Sr (S) − (−1)r Sm T · Sr (1).

Applying the transformation T → − 1
T and multiplying by (−T )r gives the desired truncation formula for the

spectrum polynomial. �
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Example 27 In Examples 14 and 17 we showed truncation formulas for the uniform matroids Ur,n . For the spectrum
polynomial, we will not give a general formula, but demonstrate the truncation formula by mentioning

RaspU3,7
(S, T ) = T 3 − 7T 2 + 21T − 15 − 20S7

SpecU3,7
(S, T ) = 20T 3S7 + 15T 3 + 21T 2 + 7T + 1

and for the truncation

RaspU2,7
(S, T ) = T 2 − 7T + 6 + 15S7

SpecU2,7
(S, T ) = 15T 2S7 + 6T 2 + 7T + 1.

7 Applications and Generalizations

We have given truncation formulas for the coboundary and Möbius polynomial of a geometric lattice and the
spectrum polynomial of a matroid, generalizing the truncation formula of the rank generating polynomial of a
matroid and the characteristic polynomial of a geometric lattice. These formulas trigger a lot of other questions
about their application and possible generalizations. The following list is by no means exhaustive, but it serves as
encouragement and inspiration for further research.

There are several constructions on matroids closely related to the ordinary truncation, for example the previously
mentioned Dilworth truncation, the principal truncation, and weak and strong maps; see [4,7,10,11]. It would be
interesting to see whether truncation-like formulas also exist for these constructions.

Matroids representable over a finite field are closely related to linear codes. We showed that the truncation of a
matroid M that is representable over a finite field is representable over a finite extension of the same finite field.
We gave an upper bound for the extension degree that is needed. However, in practice it is possible that τ(M) is
already representable over a much smaller extension field. By using the extended weight enumerator of linear codes
(see [8]), a polynomial that is equivalent to the rank polynomial, it might be possible to find better bounds for the
representation of τ(M).

The Möbius polynomial determines the Whitney numbers of the first and second kind. These sequences for
geometric lattices are conjectured to be unimodal, by Rota [15], and even log-concave, by Welsh [17]. A recent
overview of the progression on the conjectures can be found in [14, §15.2].

The truncation formula for the Möbius polynomial gives relations between the Whitney numbers of a poset with
rank function P and the Whitney numbers of its truncations τ−(P) and τ+(P). This gives an approach to the proof
of the unimodal conjectures by induction.

We saw that the lower truncation of a geometric lattice does not need to be a geometric lattice. Also, the unimodal
conjectures are not true for posets with rank function in general. So the challenge is to find a class of objects that is
“in between” posets with rank function and geometric lattices: this class needs to be closed under lower truncation,
while still the unimodal property holds. Also, for the induction to work, the smallest cases in this class need to be
proved unimodal.

The spectrum polynomial is in general not determined by the rank generating polynomial of a matroid; see [9].
In order to find counterexamples for the implication in the other direction, we see from the truncation formulas for
the coboundary and rasp polynomial that it is sufficient to find a counterexample with respect to the one variable
polynomials in S setting T = 0.
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