
Math.Comput.Sci. (2012) 6:109–120
DOI 10.1007/s11786-012-0117-6 Mathematics in Computer Science

Relations Between Möbius and Coboundary Polynomials

Relinde Jurrius

Received: 15 February 2012 / Revised: 23 May 2012 / Accepted: 30 May 2012 / Published online: 8 July 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract It is known that, in general, the coboundary polynomial and the Möbius polynomial of a matroid do
not determine each other. Less is known about more specific cases. In this paper, we will investigate if it is possible
that the Möbius polynomial of a matroid, together with the Möbius polynomial of the dual matroid, define the
coboundary polynomial of the matroid. In some cases, the answer is affirmative, and we will give two constructions
to determine the coboundary polynomial in these cases.
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1 Introduction

When studying polynomial invariants of matroids, much attention is given to the Tutte polynomial. Many other
polynomials associated to graphs, arrangements, linear codes and matroids turn out to be an evaluation of the Tutte
polynomial, or define the Tutte polynomial. Sometimes the polynomials and the Tutte polynomial determine each
other.

The latter is, for simple matroids, the case with the coboundary polynomial. This polynomial was originally
studied by Crapo [3] in connection with graph coloring. The Möbius polynomial (also known as “Whitney polyno-
mial”) was originally defined by Zaslavsky for hyperplanes [18] and signed graphs [19]. An important property is
that it determines the Whitney numbers. The Möbius polynomial is not equivalent to the Tutte polynomial.

It follows that, in general, the coboundary polynomial and the Möbius polynomial do not determine each other.
Less is known about more specific cases. In this paper, we will investigate if it is possible that the Möbius polynomial
of a matroid, together with the Möbius polynomial of the dual matroid, define the coboundary polynomial of the
matroid. In some cases, the answer is affirmative, and we will give two constructions to determine the coboundary
polynomial in these cases.
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Many concepts that are used in matroid theory have a clear interpretation in coding theory. For understanding
the results about matroid theory, it is not necessary to know this interpretation, but it is included in this paper as a
motivation for the techniques we use. This material is found in Sect. 2, at the end of Sect. 6, and at the beginning
of Sect. 7.

2 Extended Weight Enumerator

Let C be a linear [n, k] code over Fq with generator matrix G. Then we can form the [n, k] code C ⊗ Fqm over
Fqm by taking all Fqm -linear combinations of the codewords in C . We call this the extension code of C over Fqm .
By embedding its entries in Fqm , we find that G is also a generator matrix for the extension code C ⊗ Fqm . This
motivates the usage of U as a variable for qm in the next definition.

Definition 1 The extended weight enumerator is the polynomial

WC (X, Y, U ) =
n∑

w=0

Aw(U )Xn−wY w

where the Aw(U ) are integral polynomials in U and Aw(qm) is the number of codewords of weight w in C ⊗ Fqm .

The Aw(U ) are indeed polynomials of degree k. This follows from [10] and [12, Theorem 1.1]. See also [11]
for more details.

To every linear code C we can associate a matroid, represented by the columns of the generator matrix G. Since
C and all its extension codes C ⊗ Fqm have the same generator matrix, they also have the same matroid associated
to it. It turns out that the extended weight enumerator is completely determined by the Tutte polynomial, and vice
versa. Therefore, we can extend the definition of the extended weight enumerator from codes to matroids in general.
See [11] for details.

3 Matroids and Their Polynomials

Useful reference texts for the topic of matroids are [16] or [14]. More about the theory of geometric lattices and the
Möbius function can be found in [1,11,15]. In [17] the tight connection between matroids and geometric lattices is
discussed.

For a matroid M with rank function r and dual matroid M∗, we will study the following parameters:

• n, the number of elements of M and M∗;
• k, the rank of M ;
• d, the size of the smallest cocircuit in M (i.e., circuit in M∗);
• d∗, the size of the smallest circuit in M (i.e., cocircuit in M∗).

If a matroid is representable over a finite field then there is a linear code associated to it with length n, dimension
k, minimum distance d and dual minimum distance d∗.

Throughout this paper, we will restrict ourselves to simple matroids, i.e., matroids that do not have loops or
parallel elements. Also the dual of a matroid is assumed to be simple. This implies d > 2 and d∗ > 2. In this
case, there is a two-way equivalence between matroids and geometric lattices: we will freely change between these
objects when necessary. So in the following definition of the coboundary polynomial, it would have made sense to
talk about the coboundary polynomial of a matroid, but for the definition the setting of geometric lattices is more
convenient.

Definition 2 Let L be a geometric lattice. The two variable characteristic or coboundary polynomial in the variable
S and U is given by
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χL(S, U ) =
∑

x∈L

∑

x≤y∈L

μ(x, y) Sa(x)Ur(L)−r(y),

where a(x) is the number of atoms a in L such that a ≤ x , and r(y) is the rank of y in L .

For every matroid M , not necessarily simple, the coboundary polynomial of the associated lattice L(M) is deter-
mined by the Tutte polynomial. For simple matroids, this is a two way equivalence: the coboundary polynomial of
L(M) determines the Tutte polynomial of the matroid M . This makes it possible to prove the following theorem:

Theorem 3 Let χM (S, U ) be the coboundary polynomial of a simple matroid M with simple dual M∗. Let
χM∗(S, U ) be the coboundary of M∗. Then

χM∗(S, U ) = (S − 1)nU−r(M)χM

(
S + U − 1

S − 1
, U

)
.

Proof Use the fact that the Tutte polynomial of a matroid and its dual completely determine each other, and apply
the above correspondence with the coboundary polynomial.

One might notice the resemblance between this theorem and the MacWilliams relations from coding theory. In
fact, the coboundary polynomial of a simple matroid is the reciprocal inhomogeneous form of the extended weight
enumerator of this matroid:

χM (S, U ) = SnWM (1, S−1, U ).

This means χi (U ) = An−i (U ). For more details, see [11].
The second polynomial we study, is the Möbius polynomial. It is defined on geometric lattices, but we can

consider this also as a definition for simple matroids.

Definition 4 Let L be a geometric lattice. The two variable Möbius polynomial in the variable S and U is given by

μL(S, U ) =
∑

x∈L

∑

x≤y∈L

μ(x, y) Sr(x)Ur(L)−r(y).

For convenience, we often refer to the coboundary and Möbius polynomial in the following form:

χM (S, U ) =
n∑

i=0

χi (U ) Si , μM (S, U ) =
k∑

i=0

μi (U ) Si .

The polynomial χi (U ) is sometimes referred to as the i -th defect polynomial.

4 Connections

Some natural questions arise about the dependencies between the coboundary polynomial and Möbius polynomial
of a matroid and its dual. First of all, do the coboundary and Möbius polynomial determine each other? The answer
is “no”, even if both the matroid and its dual are simple. Counterexamples can be found in [11, Examples 58 and
60].

In Theorem 3 we saw that the coboundary polynomials of a matroid and its dual are completely determined by
each other. Does such a formula also exists for the Möbius polynomial? To answer this, we need some more theory.

Lemma 5 Let M be a matroid. Then for all elements x ∈ M with r(x) < d∗ −1, we have |x | = r(x). Furthermore,
if M is simple, we have a(x) = r(x) in the corresponding geometric lattice.

Proof By definition, d∗ is the size of the smallest circuit in M and thus the size of the smallest dependent set in M .
It has rank d∗ − 1. This means all elements x ∈ M of rank r(x) < d∗ − 1 are independent and have |x | = r(x).
For simple matroids, |x | = a(x) in the corresponding geometric lattice.
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Proposition 6 Given the Möbius polynomials μM (S, U ) of a matroid. Then we can determine the parameter d∗ of
the matroid M.

Proof The coefficient of the term SiU j in the Möbius polynomial is given by
∑

x∈L
r(x)=i

∑

y∈L
r(y)=k− j

μ(x, y).

These numbers are also known as the doubly-indexed Whitney numbers of the first kind. In the case j = k − i , we
just count the number of elements in L of rank i , i.e., the number of flats of rank i in M . From Lemma 5 it now
follows that for i < d∗ − 1 all elements of rank i are flats, so there are

(n
i

)
of them. For i ≥ d∗ − 1, the number of

flats is strictly smaller then
(n

i

)
. Therefore we can determine d∗ from the Möbius polynomial of M .

In the previously mentioned Example 58 in [11], we have two matroids with the same Möbius polynomial but with
different d. By Proposition 6, this means that their duals cannot have the same Möbius polynomial. This gives a
negative answer to the question in [11, Sect. 10.5] if the Möbius polynomial of a matroid and its dual are determined
by each other.

To summarize, together with Theorem 3 we know the following about the coboundary and Möbius polynomials
of a matroid and its dual:

• The coboundary polynomial χM (S, U ) of a matroid and the coboundary polynomial χM∗(S, U ) of the dual
matroid completely determine each other.

• The Möbius polynomial μM (S, U ) of a matroid does not determine the Möbius polynomial μM∗(S, U ) of the
dual matroid.

• The coboundary polynomial χM (S, U ) does not determine the Möbius polynomial μM (S, U ). The same holds
in the dual case.

• The Möbius polynomial μM (S, U ) does not determine the coboundary polynomial χM (S, U ).

The last three statements also hold in case M and/or M∗ are not simple. In this paper, we will address another
question between dependencies:

Main Question Given the Möbius polynomials μM (S, U ) and μM∗(S, U ) of a matroid and its dual. Do they
determine χM (S, U )?

We will see that, in some cases, the answer is “yes”. Proposition 6 tells us that the Möbius polynomial gives
us information about the dual of the matroid. This is the reason to ask if the Möbius polynomial of the matroid,
together with the Möbius polynomial of its dual, determine the coboundary polynomial.

For completeness, note that μM (S, U ) and μM∗(S, U ) define not only d∗ and d, respectively, but also n and k:
the degree of μM (S, U ) in S is r(M) = k, and the degree of μM∗(S, U ) in S is r(M∗) = n − k.

Theorem 7 Let M be a matroid, and let the Möbius polynomial μM (S, U ) be given. Then part of the coboundary
polynomial χM (S, U ) is determined from this:

χi (U ) =
⎧
⎨

⎩

μi (U ) for i < d∗ − 1
0 for n − d < i < n
1 for i = n.

Proof The first equality follows from Proposition 6, the definition of the Möbius and coboundary polynomial, and
Lemma 5. If d is the smallest size of a cocircuit in M , then n − d is the biggest size of a hyperplane in M and
thus the biggest size of a flat with rank smaller then k in M . This implies the second equality. The third equality is
obvious from the definition of the coboundary polynomial.

Using this theorem, we can determine the value of χi (U ) for (d∗ − 1)+ (d − 1)+ 1 = d∗ + d − 1 values of i . This
leaves n + 1 − (d∗ + d − 1) = n − d − d∗ + 2 of the χi (U ) unknown. We can say the same about the coefficients
χ∗

i (U ) of the coboundary polynomial χM∗(S, U ) of the dual matroid. The idea is to use Theorem 3 to calculate the
missing values of χi (U ) and χ∗

i (U ). We first rewrite Theorem 3 to a more convenient form.
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Proposition 8 Let χi (U ) be the coefficients of the coboundary polynomial of a simple matroid M with simple dual
M∗. Let χ∗

i (U ) be the coefficients of the coboundary of M∗. Then

U v−k
n∑

i=v

(
i

v

)
χi (U ) =

n∑

i=n−v

(
i

n − v

)
χ∗

i (U ), v = 0, . . . , n.

Proof This is obtained by rewriting the formula in Theorem 3. This can be done in the same way as rewriting the
MacWilliams relations from coding theory, see for example [13, Sect. 5.2].

In some cases, the relations from Theorem 7 and Propositions 8 are enough to completely determine the coboun-
dary polynomial χM (S, U ) from the polynomials μM (S, U ) and μM∗(S, U ).

Theorem 9 (Main Theorem) Let M be a matroid with 2(d +d∗) ≥ n +3. Then the Möbius polynomials μM (S, U )

and μM∗(S, U ) determine χM (S, U ).

We give three ways to prove this theorem, exploiting various techniques in matroid theory. The first two proofs
show that the proposed construction, using the duality relations in Proposition 8, indeed works. For the third proof,
we use the theory of zeta polynomials.

5 Independence of Duality Relations

Proof (Main Theorem 9) We try to determine the coboundary polynomials of M and M∗ simultaneously. First we
use Theorem 7 for M and M∗. This gives us the value of χi (U ) for i < d∗ − 1 and i > n − d, and the value of
χ∗

i (U ) for i < d − 1 and i > n − d∗. So we are left with the unknowns

χd∗−1(U ), χd∗(U ), . . . , χn−d(U ), χ∗
d−1(U ), χ∗

d (U ), . . . , χ∗
n−d∗(U ).

This are 2(n − d − d∗ + 2) variables. Proposition 8 gives us n + 1 equations. In order for this system to be solvable,
we need at least as may equations as unknowns. This means

n + 1 ≥ 2(n − d − d∗ + 2)

n + 1 ≥ 2n + 4 − 2(d + d∗)
2(d + d∗) ≥ n + 3.

We now need to show that, given 2(d + d∗) ≥ n + 3, we have enough independent equations. Since all the coef-
ficients of the equations are known, it is possible to do this directly, but that gives lengthy calculations. We will
give a more graphical approach. First, we visualize how Proposition 8 looks like in matrix form. The grey areas are
filled with nonzero entries, the white areas contain only zeros.

From the triangular shape of the matrices, it is clear that they both have full rank–something we could have also
concluded from the fact that the relation in Theorem 3 is a two way equivalence. We order the system now in a way
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that all unknowns are on the left hand side. This means for the first matrix we “cut off” d∗ − 1 columns at the right
of the matrix, and d − 1 at the left, since they correspond to values of i for which χi (U ) is known. For the second
matrix, it is the other way around. Since we assumed 2(d + d∗) ≥ n + 3, we are cutting off at least half of the rows.
The new system looks like this:

The vector on the right hand side is known, and depends on d, d∗ and the two Möbius polynomials. The matrices
both have full rank n − d − d∗ + 2, as is clear from their shape. We can write this as one system by “glueing
together” the matrices on the left hand side.

We need to show that this matrix has full rank. Have a look at the bottom d rows of this matrix. The complete
left side is zero, so we ignore that for a moment. The right side has all entries nonzero, and from Proposition 8 we
know the entries are binomial coefficients:

⎛

⎜⎜⎜⎜⎝

(d−1
d−1

) ( d
d−1

) · · · (n−d∗
d−1

)

...
...

...(d−1
1

) (d
1

) · · · (n−d∗
1

)
(d−1

0

) (d
0

) · · · (n−d∗
0

)

⎞

⎟⎟⎟⎟⎠
.

By the inductive relations between binomial coefficients, we can preform row operations on this matrix to obtain

⎛

⎜⎜⎜⎜⎝

0 0 · · · (n−d−d∗+1
d−1

)

...
...

...

0
(1

1

) · · · (n−d−d∗+1
1

)
(0

0

) (1
0

) · · · (n−d−d∗+1
0

)

⎞

⎟⎟⎟⎟⎠
.

Flipping the matrix upside down, we have obtained the following picture:
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In this picture, we show the case for d < n − d − d∗ + 2. If we had d ≥ n − d − d∗ + 2, we would have obtained
a matrix that was of full rank and we were done. If d∗ ≥ n − d − d∗ + 2, we can change M and M∗ and we are
also done. So from now on, assume d, d∗ < n − d − d∗ + 2.

Call the left and the right half of the matrix L and R. Suppose a linear combination of the columns of the matrix
is zero. Since all columns inside L and inside R are independent, this means we can make a linear combination l
of columns of L and a linear combination r of columns of R that are both nonzero and a nonzero multiple of each
other.

By the shape of L and R, the first d∗ and the last d entries of l and r have to be zero. We will show that the
remaining n − d − d∗ + 1 entries of l and r cannot be multiples of each other.

Crucial in the proof is that all rows of L are multiplied with a different power of U , whereas R is completely
filled with integers. Therefore, any linear combination of columns of R will have the same powers of U involved
in every nonzero entry, even if we take the coefficients of the linear combination to be polynomials in U and U−1.
On the other hand, the entries of l will all have different powers of U involved. The only possibility to cancel this
out, is if we can have only one nonzero entry in l and r, at the same place.

We focus now on the matrix L . It has maximal (column) rank n − d − d∗ + 2. From Proposition 8 we know the
entries are binomial coefficients, with every row multiplied with another (possibly negative) power of U . The first
d∗ rows form a matrix with rank d∗, from the same reasoning we used for the last d rows of R. So if we make a linear
combination of the columns of L where the first d∗ entries are zero, there are n −d −d∗ +2−d∗ = n −d −2d∗ +2
free variables involved. Notice we assumed d∗ < n − d − d∗ + 2, so this number is positive. We can use those free
variables to make more entries of l zero: add one of the middle n − d − d∗ + 1 rows of L as an extra constraint,
and choose one of the free variables in a way that the corresponding entry in l becomes zero. We are left with

n − d − d∗ + 1 − (n − d − 2d∗ + 2) = d∗ − 1 ≥ 2

entries of l that are not zero. They also cannot be zero “by accident” since the middle n − d − d∗ + 1 rows of L
form a matrix of full rank. So l cannot have only one nonzero entry, as was to be shown.

To summarize, we have shown that we can use Theorem 7 and some of the equations in Proposition 8 to find
χM (S, U ) from μM (S, U ) and μM∗(S, U ) if 2(d + d∗) ≥ n + 3.

6 Divisibility Arguments

In the previous section, we directly showed that the construction to determine χM (S, U ), given μM (S, U ) and
μM∗(S, U ) and using Theorem 7 and Proposition 8, indeed works. In this paragraph, we will give a direct proof that
if two matroids have the same Möbius polynomials, and their duals too, then the matroids have the same coboundary
polynomial. Although the proof itself is not constructive, it is a much shorter proof for Theorem 9 and it also shows
why the proposed construction works. The proofs in this subsection are similar to the proof of the Mallows-Sloane
bound given in [8].

Proof (Main Theorem) Let two matroids M1 and M2 have coboundary polynomials χM1 and χM2 (we omit the
(S, U ) part for clarity). Let the Möbius polynomials of the matroids coincide, just as the matroid polynomials of
their duals: so, let μM1 = μM2 and μM∗

1
= μM∗

2
. We will show that if 2(d + d∗) ≥ n + 3, then χM1 = χM2 .
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Using Theorem 7, we see that the coefficients of χM1 and χM2 coincide for i < d∗ − 1 and i > n − d. It follows
that

Sd∗−1 | χM1 − χM2 and degS(χM1 − χM2) ≤ n − d.

Combining this with Theorem 3, we find that

(S + U − 1)d∗−1 | χM∗
1

− χM∗
2

and (S − 1)d | χM∗
1

− χM∗
2
.

If we apply Theorem 7 to the dual matroids, we find that

Sd−1 | χM∗
1

− χM∗
2

and degS(χM∗
1

− χM∗
2
) ≤ n − d∗.

Combining all the divisibilities, we have

(S + U − 1)d∗−1(S − 1)d Sd−1 | χM∗
1

− χM∗
2
,

where the degree of χM∗
1
−χM∗

2
in S is at most n−d∗. For (d∗−1)+d +(d −1) > n−d∗, i.e., for 2(d +d∗) ≥ n+3,

this implies χM∗
1

= χM∗
2

and thus χM1 = χM2 . ��

This proof is a matroid generalization of the following result for codes, that we include here to illustrate the
application of the Main Theorem for codes.

Theorem 10 Let C1 and C2 be two codes with the same length and let d and d∗ be two integers such that
0 < d, d∗ < n. Suppose C1 and C2 have the same number of words of weight w for w < d and w > n − d∗ + 1,
and suppose the dual codes C⊥

1 and C⊥
2 have the same number of words for w < d∗ and w > n − d + 1. If

2(d + d∗) ≥ n + 3, then C1 and C2 have the same weight distribution.

Proof Write the weight enumerator of a code as

WC =
n∑

w=0

Aw Xn−wY w.

Because the weight distributions of the two codes coincide for w < d and n − w < d∗ − 1, we have

Xd∗−1Y d | WC1 − WC2 .

Applying the MacWilliams relations gives

(X + (q − 1)Y )d∗−1 | WC∗
1

− WC∗
2

and (X − Y )d | WC∗
1

− WC∗
2
.

Because the weight distributions of the dual codes coincide for w < d∗ and n − w < d − 1, we have

Xd−1Y d∗ | WC∗
1

− WC∗
2

Combining the divisibilities, we find that

(X + (q − 1)Y )d∗−1(X − Y )d Xd−1Y d∗ | WC∗
1

− WC∗
2
.

The total degree of all terms in WC∗
1
− WC∗

2
is n. So, for (d∗ −1)+d + (d +1)+d∗ > n, i.e., for 2(d +d∗) ≥ n +3,

this implies WC∗
1

= WC∗
2

and thus WC1 = WC2 . ��

Notice that in this theorem d and d∗ do not necessarily have to be the minimum distance and dual minimum
distance of the code. Also, as long as the total length of the four intervals on which the weights agree is big enough,
the theorem holds.
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7 Zeta Polynomials

The two-variable zeta polynomial is extensively studied by Duursma [7], who defined and studied the one-variable
case in [5,6]. We start with the definition from coding theory, to motivate the case of the coboundary polynomial. The
definitions only hold for codes with minimum distance and dual minimum distance at least 3; so the corresponding
matroids are simple.

For the reader not familiar with coding theory, it is possible to directly take Theorem 16 as a definition for the
two-variable zeta polynomial.

Definition 11 Let C be a linear [n, k, d] code over Fq with extended weight enumerator WC (X, Y, U ). The two-
variable zeta polynomial PC (T, U ) of this code is the unique polynomial of degree at most n − d in S such that
the generating function

PC (T, U )

(1 − T )(1 − T U )
(Y (1 − T ) + XT )n

has expansion

· · · + WC (X, Y, U ) − Xn

U − 1
T n−d + · · · .

The quotient ZC (T, U ) = PC (T, U )/((1 − T )(1 − T U )) is called the two-variable zeta function.

The two-variable zeta polynomial and the extended weight enumerator determine each other, see [6,7]. Just as with
the other polynomials, we often refer to the zeta polynomial in the following form:

PC (T, U ) =
r∑

i=0

Pi (U ) T i .

The extended weight enumerator of an MDS code is completely determined by its parameters (see for example
[11,13]). So even if there does not exist an MDS code with parameters [n, k, d], we can formally define its extended
weight enumerator Mn,d . The coefficient of Xn−wY w is
(

n

w

)
(U − 1)

w−d∑

t=0

(−1)t
(

w − 1

t

)
Uw−d−t .

Proposition 12 A code is MDS if and only if PC (T, U ) = 1.

Proof Since we know how the extended weight enumerator of an MDS code looks like, we can proof this Propo-
sition by writing out the generating function from Definition 11 with PC (T, U ) = 1 and see that the coefficient of
T n−d indeed gives the extended weight enumerator of an MDS code.

Theorem 13 The zeta polynomial gives us a way to write the extended weight enumerator on a basis of MDS
weight enumerators:

WC (X, Y, U ) = P0(U ) Mn,d + P1(U ) Mn,d+1 + · · · + Pr (U ) Mn,d+r .

Proof This follows directly from Definition 11 and Proposition 12.

Duursma [7] extended the definition of the zeta polynomial to matroids. Similar to that approach, we can use that
we already extended the definition of the extended weight enumerator to matroids.

Theorem 14 Let M be a matroid with coboundary polynomial χM (S, U ). The two-variable zeta polynomial
PM (T, U ) of this matroid is the unique polynomial of degree at most n − d in T such that the generating function

PM (T, U )

(1 − T )(1 − T U )
(1 + (S − 1)U )n
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has expansion

· · · + χM (S, U ) − Sn

U − 1
T n−d + · · · .

Proof Apply X = 1 and Y = S−1 in the definition of the zeta function and multiply the whole equation with Sn .

Z(T, U ) · (Y (1 − T ) + XT )n = · · · + WC (X, Y, U ) − Xn

U − 1
T n−d + · · ·

Z(T, U ) · Sn · (S−1(1 − T ) + T )n = · · · + WC (1, S−1, U ) − 1

U − 1
SnT n−d

Z(T, U ) · (1 + (S − 1)T )n = · · · + χM (S, U ) − Sn

U − 1
T n−d + · · ·

Proposition 12 and Theorem 13 have a direct analogue for matroids. Let Xn,d be the coboundary polynomial of the
uniform matroid on n elements with rank n − d + 1.

Proposition 15 A matroid is uniform if and only if PM (T, U ) = 1.

Theorem 16 The zeta polynomial gives us a way to write the coboundary polynomial on a basis of coboundary
polynomials of uniform matroids:

χM (S, U ) = P0(U ) Xn,d + P1(U ) Xn,d+1 + · · · + Pr (U ) Xn,d+r .

We need some more properties of the zeta polynomial. The proofs are similar to the case of the one-variable zeta
polynomial as treated in [7].

Proposition 17 The degree of PM (T, U ) in T is n − d − d∗ + 2.

Proof Assume that Pr (U ) is not zero and apply Theorem 16 to the dual matroid M∗. This expression starts with
X∗

n,d∗+r . Since the dual of the uniform matroid is again a uniform matroid, we have X∗
n,d∗+r = Xn,n−d+2+r . So

n + 2 − d − r = d∗ and hence r = n − d − d∗ + 2. ��
Proposition 18 For the two-variable zeta polynomial of a matroid M and dual M∗ we have

PM∗(T, U ) = PM

(
1

T U
, U

)
U n−k+1−d T n−d−d∗+2.

Proof Apply Theorem 3 to the expression in Theorem 16. This gives that χM∗(S, U ) is equal to

(S − 1)nU−k χM

(
S + U − 1

S − 1
, U

)

= (S − 1)nU−k
(

P0(U ) Xn,d

(
S + U − 1

S − 1
, U

)
+ · · · + Pr (U ) Xn,d+r

(
S + U − 1

S − 1
, U

))

= U−k
(

Pr (U ) U n−d−r+1 Xn,n−d+2−r + · · · + P0(U ) U n−d−1 Xn,n−d+2

)

and the Proposition follows.

We are now ready to give an alternative proof of Theorem 9 using the two-variable zeta polynomial.

Proof Main Theorem 9 Our goal is to determine all the coefficients Pj (U ) of the two-variable zeta polynomial,
and thus the coboundary polynomial χM (S, U ). Denote the coefficient of S j in Xn,d by Xn,d, j . We know the exact
value of these coefficients, just like we know the extended weight enumerator of MDS codes:

χ j (U ) =
(

n

j

)
(U − 1)

n− j−d∑

t=0

(−1)t
(

n − j − 1

t

)
U n− j−d−t .
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So we can split up Theorem 16 in n + 1 equations:

χ j (U ) =
n−d−d∗+2∑

i=0

Pi (U ) Xn,d+i, j , j = 0, . . . , n.

Not all of these equations are helpful in determining the Pi (U ). For j < d∗ −1 and j > n −d the χ j (U ) are known
by Theorem 7. In the case n − d < j < n we have χ j (U ) = 0 and also Xn,d+i, j = 0 for all i , so the corresponding
equations just state 0 = 0. For d∗ − 1 ≤ j ≤ n − d we don’t know χ j (U ), so these equations are also not helpful.
We are left with the equations for j < d∗ − 1 and j = n, so d∗ equations in the n − d − d∗ + 3 unknown Pi (U ).

We can do the same for the dual matroid, leading to d equations in the n − d − d∗ + 3 unknown P∗
i (U ). From

Proposition 18 it follows that

P∗
i (U ) = Ui−k−1+d∗

Pn−d−d∗+2−i (U ),

so we can replace the P∗
i (U ) one-to-one by the appropriate Pi (U ). So all together, we have d + d∗ equations in

n − d − d∗ + 3 unknown Pi (U ). To get at least as many equations as unknowns, we need

d + d∗ ≥ n − d − d∗ + 3

2(d + d∗) ≥ n + 3.

This is the same bound we already obtained in Theorem 9.

8 Open Questions

We have seen two methods to determine the coboundary polynomial χM (S, U ) of a matroid from the Möbius
polynomials μM (S, U ) and μM∗(S, U ) of a matroid and its dual. Both methods rely on duality relations, for,
respectively, the coboundary and Tutte polynomial.

Theorem 9 is valid for matroids that are “close” to the uniform matroid. Stated in terms of codes, this means
codes with a minimum distance and dual minimum distance that is high, so the code is “close to MDS”. Examples
of such codes are MDS codes itself (but this is a trivial example, since there is only one uniform matroid given
length and rank) and near-MDS codes, these are codes with d = n − k and d⊥ = k. Also almost-MDS codes with
k ≤ n/2 are in this category. See [4] for more on almost-MDS codes and [9] for more on codes that are close to
MDS. Other specific codes that have 2(d + d∗) ≥ n + 3 are the q-ary Hamming codes (and their duals, the simplex
codes) and the first order q-ary Reed-Muller codes.

A logical question is now: how sharp is the bound in Theorem 9? To look for an example to show the bound is
tight, we need two matroids with the same parameters and 2(d + d∗) < n + 3 that have equal Möbius polynomials
μM (S, U ) and μM∗(S, U ) but different coboundary polynomial χM (S, U ). The smallest case is d = d∗ = 3
(because otherwise the matroid is not simple) and thus n = 10.

An exhaustive computer search on 260 random matrices with the desired parameters and k = 5 did not lead to
such an example. So there is room for improvement on the Main Question.

In Proposition 6.3 of [2] the issue is addressed how many Tutte polynomials there are, given the size and rank
of a matroid. This is done by looking at the affine space generated by the coefficients of the Tutte polynomial, and
determining its dimension. It would be interesting to see if we can do the same thing for the Möbius polynomial,
given n, k, d and d∗. If we determine the dimension of the affine space generated by the coefficients of the Möbius
polynomial of a matroid and its dual, we can compare it to the dimension for the Tutte polynomial. This could give
us more information about the Main Question in general.
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