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Abstract We present a framework for validated numerical computations with real functions. The framework is
based on a formalisation of abstract data types for basic floating-point arithmetic, interval arithmetic and function
models based on Banach algebra. As a concrete instantiation, we develop an elementary smooth function calculus
approximated by sparse polynomial models. We demonstrate formal verification applied to validated calculus by
a formalisation of basic arithmetic operations in a theorem prover. The ultimate aim is to develop a formalism
powerful enough for reachability analysis of nonlinear hybrid systems.
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1 Introduction

In this paper, we present a framework for developing and verifying validated numerical calculations with real
functions. By a validated computation, we mean that the result is presented as a set of possible solutions which is
guaranteed to contain the exact mathematical answer. By verification, we mean that the algorithms and implemen-
tation themselves are proven to be correct.

The scope of this paper is to consider a function calculus. We assume the existence of a floating-point number type
supporting rounded arithmetical operations and develop algorithms for the basic operations on functions, including
addition, multiplication, composition and comparison. We first give a mathematical definition of the algorithms
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used and prove their correctness, and then formalise the algorithms within the framework of the theorem-proving
tool Coq [16] and use Coq to prove correctness.

In order to facilitate the verification procedure, we split the design into layers. In each layer, the concrete
implementations are shown to satisfy abstract axioms, which are then used in the verification of the higher layers.
Not only does this approach simplify the structure of the proofs, it also means that different implementations of the
same abstract data type can easily be supported; one need only show that the new data type satisfies the required
axioms, and it can then be used in subsequent computations without having to re-prove correctness of dependent
algorithms. The lowest layer is that of floating-point arithmetic, for which we assume the existence of an imple-
mentation. The next layer is that of function algebras, for which we axiomatise abstract operations and show that
our polynomial models satisfy the axioms. We also give examples of operations at a higher layer, in which we show
how to solve algebraic and differential operations using purely the abstract operations at the numeric and function
layers.

To place our goals in a consistent framework, we give an axiom-schema for validated computing, which is simply
a formalisation of the requirement that the result of any computation is a set which is guaranteed to contain the
mathematically exact answer.

The original motivation for this paper was to support the development and verification of Ariadne, a tool for
the analysis of nonlinear hybrid systems. Since hybrid systems are frequently used in modelling safety-critical
embedded-systems, it is vital to be certain that the results of the numerical calculations are correct, notably that
round-off and truncation errors are properly accounted-for. The tool needs to evaluate arithmetic, algebraic and
transcendental functions, find the solution of ordinary differential equations and solve algebraic equations, and
each of these operations needs to be performed over a range of different parameters and states. The results of this
paper are the first part of such a verification, in which we analyse the algorithms for the functional operations
needed.

The paper is organised as follows. In Sect. 2 we give an axiom-schema for validated computation. In Sect. 3
we apply this axiom-schema to floating-point and interval arithmetic, and in Sect. 4 to various abstract algebras,
including function algebras. In Sect. 5 we develop a concrete representation of a real function algebra based on
polynomial models. In Sect. 6 we show how to compute solutions to differential and algebraic equations using
only the abstract operations on function algebras. In Sect. 7, we show how the correctness of the operations on
polynomial models can be proved using the theorem-prover Coq. Finally, in the appendix we give real C++ and
Coq code used, respectively, to implement and validate the polynomial models.

2 Axiom Schema for Validated and Approximate Computation

Without attempting to present a complete list, we distinguish five distinct paradigms in designing numeric libraries.

Axiomatic The formal mathematical notion of the correct answer, not necessarily computable.
Symbolic The exact answer x is given with a finite symbolic description.
Effective Given an accuracy n, an approximation a to the result can be output with error 2−n . However, to specify

the answer completely requires an infinite amount of data.
Validated A set x̂ of possible exact answers. May be specified by a pair (a, e), where a is an approximation to the

exact answer x with error e, or an over-approximation u satisfying u > x .
Approximate An approximation a is given to the exact answer.

In general, the lower an item is on the list above, the less information is provided about the solution, but the faster
the computations can be performed (in general). Most numerical methods in use today use the approximate com-
putational paradigm; no guarantees are given about the accuracy of the result, and the user must trust the results
of the computations. The symbolic paradigm is implemented in packages for symbolic algebra. The effective and
validated paradigms are closely related; in both cases a set of values is given which is guaranteed to contain the exact
answer; in the validated paradigm, a single approximation is given, whereas in the effective paradigm, the result
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can be given to an arbitrary specified accuracy. The effective paradigm is usually more appropriate for functional
languages, and the validated paradigm for imperative languages.

In many cases, it is useful to mix these paradigms; for example, symbolic computation may be used to simplify
the problem before reverting to approximate computation, or the results of an approximate computation may be
used to precondition or hot-start a validated computation.

Most numerical computation is currently performed using approximate operations. Given an uncountable set X ,
we represent selected elements of X by elements of a countable set ˜X . We write x̃ � x if x̃ ∈ ˜X denotes x ∈ X , and
set ı(x̃) = x . Frequently, ˜X will be a subset of X , and ı(·) an injection, but there are important examples where this
is not the case, e.g. IEEE floating-point formats have separate elements +0.0 and −0.0 denoting the real number
0. By a slight abuse of notation, we henceforth write x̃ = x rather than x̃ � x .

An approximate version of an operator op : X1 × · · · × Xn → X0 is a function õp : ˜X1 × · · · × ˜Xn → ˜X0 such
that

ı(x̃i ) ≈ xi for i = 1, . . . , n implies ı(õp(x̃1, . . . , x̃n)) ∼ op(x1, . . . , xn). (2.1)

We write x̃ ≈ x to suggest ı(x̃) is ‘very close’ to x , and x̃ ∼ x if ı(x̃) is merely ‘close’ to x ; formally however there
are no restrictions. In other words, there is the argument is close to the exact argument, then the result ‘should’ be
close to the exact result. Formally, there are no guarantees on the result, which may in some cases be so inaccurate
as to be useless or even misleading.

When performing validated computations on an uncountable set X , we aim to compute a subset of X which
is guaranteed to contain the exact result. Hence the result of a validated computation will be an element x̂ of a
countable subset ̂X of P(X), and must satisfy x̂ � x , where x is the exact result. Alternatively, we can take ̂X to
be a general countable set, and define a modelling or realisation relation |� on ̂X × X , writing x̂ |� x rather than
x̂ � x .

Definition 2.1 (Modelling relations) Let X be a set, ̂X a countable set, and |� be a binary relation (called ‘realises’
or ‘models’) between ̂X and X such that for any x ∈ X , there exists x̂ ∈ ̂X such that x̂ |� x . Frequently, ̂X will
consist of subsets of X , with x̂ |� x ⇐⇒ x̂ � x ; in this case we use � and |� interchangeably.

We impost the following axiom-schema for validated computation:

Definition 2.2 (Axiom-schema for validated computation) Let Xi be a class of mathematical objects, and ̂Xi be a
countable set, and a |�i a binary relation between ̂Xi and Xi . Then an operator ôp : ̂X1 × · · · × ̂Xn → ̂X0 is a
validated version of op : X1 × · · · × Xn → X0 if

x̂i |�i xi for i = 1, . . . , n implies ôp(x̂1, . . . , x̂n) |�0 op(x1, . . . , xn). (2.2)

Note that the relations x̂i |�i xi are merely used to define the axioms, and are not required to be computable.
An important property is when one model gives more information than another.

Definition 2.3 (Refinement) Let |� be a modelling between ̂X and X , and x̂1, x̂2 ∈ ̂X . We say x̂1 refines x̂2, denoted
x̂1 ≺ x̂2 if x̂1 |� x �⇒ x̂2 |� x .

Notation When dealing with mathematical statements, given an object x of a set X , we will use x̃ to denote an
approximation to x in ˜X , and x̂ to denote a validated model of x in ̂X . When dealing with implementations, we will
use x to denote a concrete object of class X, and ı(x) or x to denote the mathematical object it represents.

Given some guarantees on the result, approximate computation on countable sets can be used to implement
validated computations. Consider countable sets ˜Xi such that each xi ∈ ˜Xi represents an element ı(xi ) of Xi . Given
a function f : X1 × · · · × Xn → X0, a version of f is a function f� : ˜X1 × · · · × ˜Xn → ˜X0 satisfying some
axiom-schema giving conditions on the result. We are interested in versions satisfying following axiom schema:

Exact fe(x̃1, . . . , x̃n) = f (x1, . . . , xn).
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Upward/downward If X0 is a partially ordered set, fd(x̃1, . . . , x̃n) ≤ f (x1, . . . , xn) ≤ fu(x̃1, . . . , x̃n).
Nearest If X0 is a metric space and ˜X0 is compact, ∀x̃0 ∈ ˜X0, d( fn(x̃1, . . . , x̃n), f (x1, . . . , xn)) ≤
d(x̃0, f (x1, . . . , xn)).
Approximate fa(x̃1, . . . , x̃n) ≈ f (x1, . . . , xn).

Note that in an approximate version fa of a function f , no guarantees at all are given on the error.

3 Floating-Point and Interval Arithmetic

In this section we describe axioms for floating-point and interval arithmetic, which describe approximate and
validated real numbers.

3.1 Floating-Point Data Type

We describe our axiomatisation of an abstract data type for the floating-point numbers: we introduce a type F

(represented in code by the class Float) together with some of the basic IEEE-754 operations. Let us point out
the fact that operations with various rounding mode are directly added to the signature of our abstract data type.
For instance there are three addition operations +u,+d and +n for summing up two floating-point numbers using,
respectively, upwards, downwards and to-nearest rounding. In future work, we plan to extend our axiomatisation
to a library compatible with IEEE-754 specification of the basic operations (+,×,−,÷) and the recommended
elementary functions. At the moment we only handle operations that are necessary in formalising the proofs for
arithmetic on function approximations.

Our axiomatisation includes a type F together with the binary operations +u,+d ,+n,×u,×d ,×n , the exact
unary operation−e and the exact constants 0e and 1e. We additionally include upward division by natural numbers
÷u , an exact absolute value function | · |e and an exact less-than-or-equal-to comparison operator ≤e. Additional
operations could of course be axiomatised in a similar way, but these are the only operations we need to develop the
calculus of polynomial models. Note that currently F is not handled as a bounded set and that there is no reciprocal
and no symbols for NaN and ±Inf. (These will be added in the future.)

The axiomatisation is based on the existence of a function ı : F −→ R. The rest of the axioms will govern the
arithmetic operations in F and are stated in terms of the injection ı .

The complete axioms are given in Sect. 7.1, and follow the schema shown below, withx,y,z taken to be elements
of F.

Constants ı(0e) = 0 and ı(1e) = 1.
Exact ∀x, ı(−ex) = −ı(x) and ı(|x|e) = |ı(x)|.
Downward ∀x,y, ı(x �d y) ≤ ı(x) � ı(y).
Upward ∀x,y, ı(x �u y) ≥ ı(x) � ı(y).
Nearest ∀x,y,z, d(ı(x �n y), ı(x) � ı(y)) ≤ d(ı(z), ı(x) � ı(y)).
Division ∀x, m m > 0 �⇒ ı(x÷u m) ≤ ı(x)÷ 2.
Comparison ∀x,y, x ≤e y ⇐⇒ ı(x) ≤ ı(y).

Note that here the distance function d is evaluated in R, and has no computational meaning. Subtraction −u/d/n

can be defined in terms of the primitives +u/d/n and −e. The IEEE-754 specifies two representations ±0 of the
mathematical 0; either can be used as the constant 0e in our axiomatisation.

We will later need the following result:

Lemma 3.1 For any binary operation � on R, we have

2d(ı(x �n y), ı(x) � ı(y)) ≤ ı((x �u y)−u (x �d y))
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and

d(ı(x �n y), ı(x) � ı(y)) ≤ ı(((x �u y)−u (x �d y))÷u 2).

Proof By the axiom-schema for nearest rounding, we have d(x �n y, x � y) ≤ d(x �u/d y, x � y). Taking the
definition d(x, y) = |x − y|, and the axioms |x | = x for x ≥ 0 and |x | = −x for x ≤ 0, combined with the
axiom-schema for upward/downward rounding, we have d(x �u y, x � y) = |x �u y − x � y| = x �u y − x � y
and d(x �d y, x � y) = |x �d y − x � y| = −(x �d y − x � y) = x � y − x �d y. Hence 2d(x �n y, x � y) ≤
d(x �u y, x � y)+d(x �d y, x � y) = (x �u y− x � y)+ (x � y− x �d y) = (x �u y)− (x �d y) ≤ (x �u y)−u (x �d y).

��
In fact, the above result holds for any operation defined on a partially ordered metric space which has approximate
versions that satisfy the upward/downward and nearest axiom schemes.

The upper reals The following statement asserts that the positive floating-point numbers with upper-rounded addi-
tion and multiplication (F+, 0e, 1e,+u,×u) form a validated implementation of (R+, 0, 1,+,×) under the mod-
elling relationship x |�≥ x ⇐⇒ ı(x) ≥ x .

Theorem 3.2 Consider the relationship F |�� R
+ defined by a |�� x ⇐⇒ ı(a) ≥ x. Then +u and ×u are

validated versions of + and ×.

Proof Since + and × are each monotonic in both variables, we have ı(x) ≥ x and ı(y) ≥ y implies ı(x+u y) ≥
ı(x)+ ı(y) ≥ x + y and ı(x×u y) ≥ ı(x)× ı(y) ≥ x × y. Hence x+u y |�� x + y and x×u y |�� x × y as
required. ��

3.2 Interval Arithmetic

Let X be a countable subtype of R. Then an interval in R with endpoints in X is represented by a pair 〈l, u〉 with
l, u ∈ X. For I ∈ I and x ∈ R we take I � x to mean ı(l) ≤ x ≤ ı(u), where ı( · ) denotes the mapping of X into R.
In Ariadne, the type of intervals of real numbers is implemented a class Interval whose endpoints are elements
of the class Float.1

Given a function f : R
n → R, an interval extension [ f ] or f̂ of f is simply a validated version of f . In other

words:

Axiom 3.3 (Interval extension) Let f : R
n −→ R be a continuous function. Then a function [ f ] : I

n −→ I is an
interval extension of f if whenever (x1, . . . , xn) ∈ R

n are such that xi ∈ Ii for all i = 1, . . . , n, then

f (x1, . . . , xn) ∈ [ f ](I1, . . . , In).

It is well-known that the rounded floating-point operations can be used to implement interval arithmetic. Denoting
the interval extension of � by �̂, we have:

Negation ̂− [l, u] = [−e u, −e l]
Addition [l1, u1] ̂+ [l2, u2] = [l1 +d l2, u1 +u u2]
Subtraction [l1, u1] ̂− [l2, u2] = [l1 −d u2, u1 −u l2]
Multiplication [l1, u1] ̂× [l2, u2] = [mine{l1 ×d l2, l1 ×d u2, u1 ×d l2, u1 ×d u2},

maxe{l1 ×u l2, l1 ×u u2, u1 ×u l2, u1 ×u u2}]
Reciprocal ̂1/ [l, u] = [1e ÷d u, 1e ÷u l] if 0 �∈ [l, u], otherwise [−∞,+∞] .

Multiplication can be implemented more efficiently by first testing the signs of the li , ui .

1 More generally, it would be possible to use a template Interval<X> to denote intervals with endpoints in X. The parameter X can be
instantiated by instances of Float or Rational. Instantiating by floats leads to a more efficient numerics library while instantiating
by rational numbers results in a better accuracy.
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4 Validated Function Algebras

In this section we discuss the various operations needed for a validated function calculus, and introduce the algebraic
structures which formalise these operations, together with their validated counterparts. In an implementation, the
algebraic structures themselves provide abstract interfaces which can be implemented in various ways by concrete
data types for validated and approximate computations.

4.1 (Unital) Banach Algebra

An algebra over R is a set A with operations scalar multiplication · : R × A → A, addition + : A × A → A

and multiplication × : A × A → A satisfying standard axioms. Note that negation can be defined using scalar
multiplication as −a = (−1) · a. An algebra is associative if multiplication is associative, and commutative if
additionally multiplication is commutative. In a validated algebra ̂A, the scalar multiplication operator can be taken
to be a function I×̂A → ̂A, i.e. we use I for R̂.

A unital algebra is an algebra with a unit 1 satisfying 1× a = a × 1 = a for all a ∈ A. For a function algebra
with pointwise operations, the unit is given by the constant function with value 1. The real numbers embed in a
unital algebra by taking c �→ c · 1. In a validated unital algebra, the embedding R → A should be such that 1̂ |� 1.

In a normed algebra, every element a has a norm, denoted ||a|| or nrm(a) satisfying ||s ·a|| = |s|||a||, ||a1+a2|| ≤
||a1|| + ||a2|| and ||a1 × a2|| ≤ ||a1|| ||a2||. In a unital normed algebra, we additionally have ||1|| = 1. In applica-
tions, it is usually only necessary to compute an upper bound for the norm, hence for an effective normed algebra,
the norm should be a computable function A → R

+
>, where R

+
> denotes the positive real numbers with the upper-

topology/representation. In a validated normed algebra, we need only define a function || · ||u or nrmu : A → F

such that nrmu(x) ≥ ||a|| for any a.
Finally, as well as the unital element, we need to be able to define the unit ball as an element of the validated

version of the algebra. This means, we require an element Ê ∈ ̂A such that ||a|| ≤ 1 �⇒ a ∈ Ê , or equivalently,
Ê ⊃ E where E = {a ∈ A | ||a|| ≤ 1}.

To summarise, in a validated normed unital Banach algebra ̂A, we have operations:

Definition 4.1 (Validated Unital Banach algebra)

Unit Î ∈ ̂A such that 1 ∈ Î .
Ball Ê ∈ ̂A such that B(0, 1) ⊂ Ê .
Scale ·̂ : I×̂A → ̂A.
Addition ̂+ : ̂A×̂A → ̂A.
Multiplication ̂× : ̂A×̂A → ̂A.
Norm || · ||u : ̂A → F.

Alternatively, the Unit and Scale operations can be replaced with the operation

Constant c : I → ̂A.

The main use of the unital Banach algebra abstraction is that we can evaluate analytic functions on a Banach
algebra.

Example The exponential function is defined by exp(x) = ∑∞
n=0 xn/n!. We therefore have || exp(a) − ∑N

n=0

an/n!|| = ||∑∞
n=N+1 an/n!|| ≤ ∑∞

n=N+1 ||a||n/n!. Hence exp(a) ∈ ∑N
n=0 an/n! + B(0,

∑∞
n=N+1 ||a||n/n!).

Taking validated operations, we obtain

exp(â) = Î ̂+ â ̂+ 1

2
·̂ â ̂× â ̂+ · · · ̂+ 1

N ! ·̂ âN
̂+

( ∞
∑

n=N+1

||a||n/n!
)

· ̂E ⊃
N

∑

n=0

an

n! + B

(

0,

∞
∑

n=N+1

||a||n/n!
)

where
∑

u denotes summation with upward rounding.
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If multiplication is commutative (as is the case with a function algebra), we can choose a scalar c minimising
||a − c||. Then exp(a) = exp(c) exp(a − c) has faster convergence. Additionally, we have exp(a) = exp(a/2n)2n

,
again yielding faster convergence.

Example Similarly, we can consider the reciprocal function. For simplicity, we compute 1/(1− x) = ∑∞
n=0 xn =

∑N−1
n=0 xn+x N (

∑∞
n=0 xn). Hence the norm of 1/(1−x)−∑N−1

n=0 xn is bounded by ||x N ||/(1−||x ||) ≤ ||x ||N /(1−
||x ||) if ||x || < 1.

Note that it may be the case that the computed ||x̂ ||u > 1 even though ||x || < 1 whenever x̂ |� x . In this case, it
is impossible to compute 1/(1− x̂), even though 1/(1− x) is defined for all x .

4.2 Evaluation Algebra

Recall from Definition 2.2 that the axiom for a validated version f̂ of a function f : X1 × · · · × Xn → Y is
that f̂ : ̂X1 × · · · × ̂Xn → ̂Y satisfies f̂ (x̂1, . . . , x̂n) |� f (x1, . . . , xn) whenever x̂i |� xi for all i = 1, . . . , xn .
In practice, we often wish to define a type modelling functions X1 × · · · × Xn → Y without giving a canonical
evaluation operation. For example, there are many interval evaluation algorithms for polynomial functions, some
of which are faster, others more accurate.

Let F denote the type of continuous functions X1 × · · · × Xn → Y . Define the evaluation operator eval :
F × X1 × · · · × Xn → Y by

eval( f, x1, . . . , xn) = f (x1, . . . , xn). (4.1)

Let ̂F be a countable set representing validated functions with a modelling relation |� between ̂F and F . By apply-
ing the axiom-schema for validated computation given in Definition 2.2, we find that a validated version of the
evaluation operator must satisfy

êval( f̂ , x̂1, . . . , x̂n) |� f (x1, . . . , xn) whenever f̂ |� f and x̂i |� xi for i = 1, . . . , n. (4.2)

This allows for different implementations of the evaluation operator on the same validated function type. Taking ̂Y
to be a subset of Y and ̂Xi to be subsets of Xi , we equivalently have

êval( f̂ , x̂1, . . . , x̂n) ⊃ { f (x1, . . . , xn) | f =| f̂ and xi ∈ x̂i for i = 1, . . . , n}
The conditions for a validated version ôp on functions of an operator op, and of the composition operator, are also
easily deduced from the definitions.

The observant reader will have noticed that we have two notions of a validated version of a function f :
X1 × · · · × Xn → Y . The first can be considered a canonical notion; a validated version of f is a function
f̂ : ̂X1 × · · · × ̂Xn → ̂Y such that f̂ (x̂1, . . . , x̂n) |� f (x1, . . . , xn) whenever x̂i |� xi for i = 1, . . . , n. A second
possibility is to define a custom type ̂F and a custom modelling relation |� between ̂F and the type F of (continuous)
functions X1 × · · · × Xn . In this latter case, we should also define at least one custom evaluation operator, whereas
in the former case, there is a canonical evaluation operator given by

eval( f̂ , x̂1, . . . , x̂n) = f̂ (x̂1, . . . , x̂n) (4.3)

which satisfies (4.2) by definition. In the rest of this paper, we shall denote by single italic letters f̂ functions in a
custom function space ̂F , and by roman abbreviations ôp validated versions of functions ̂X1 × · · · × ̂Xn → ̂Y .

As well as the evaluation operator, there are other important operations on function spaces. Given functions
f j : X1 . . . , Xn → Y j and an operator op : Y1 × · · · × Ym → Z , we define op( f1, . . . , fm) : X1 × · · · × Xm → Z
pointwise by

op( f1, . . . , fm)(x1, . . . , xn) = op( f (x1, . . . , xn), . . . , fm(x1, . . . , xn)). (4.4)

For example, taking op to be addition add(y1, y2) = y1 + y2, we obtain

add( f1, f2)(x1, . . . , xn) = ( f1 + f2)(x1, . . . , xn) = f1(x1, . . . , xn)+ f2(x1, . . . , xn).
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We can also define a composition operator on function spaces by

comp(g, f1, . . . , fm)(x1, . . . , xn) = g( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) (4.5)

Finally, we can define constant functions

cnst(y)(x1, . . . , xn) = y (4.6)

and, if Xi = Y also projection or coordinate functions

proj[i](x1, . . . , xn) = xi (4.7)

We call the algebraic structure containing constant, projection, evaluation and composition functions, as well as
operators on functions, an evaluation algebra. The main operations on an evaluation algebra together with their
properties are:

Definition 4.2 (Validated evaluation algebra)

Evaluation êval : ̂F × ̂X1 × · · · × ̂Xn → ̂Y satisfying êval( f̂ , x̂1, . . . , x̂n) |� f (x1, . . . , xn) whenever f̂ |� f
and x̂i |� xi .
Operators ôp : ̂F1×· · ·× ̂Fn satisfying ôp( f̂1, . . . , f̂n) |� op( f1, . . . , fn) for any op : Y1×· · ·×Yn . ; necessarily
then ôp( f̂1, . . . , f̂n)(x̂) |� op( f1(x), . . . , fn(x))

Composition ĉomp : ̂F × ̂G1 × · · · × ̂Gn → ̂H satisfying ĉomp( f̂ , ĝ1, . . . , ĝn) |� f ◦ (g1, . . . , gn) whenever
f̂ |� f and ĝi |� gi .

We also often use the following constructors

Constants ĉnst : ̂Y → ̂F such that ĉnst(ŷ)(x1, . . . , xn) = ŷ.
Projection If the type Y is the same as Xi , also p̂roj[i] = π̂i ∈ ̂F given by p̂roj[i](x̂1, . . . , x̂n) = x̂i .

4.3 Differential Algebra

A differential algebra is an algebra A with a linear differential operator ∂ : A → A satisfying the Leibniz rule
∂(a1×a2) = ∂a1×a2 + a1×∂a2. In a unital differential algebra, we always have ∂(1) = 0. Often, we have several
differentials ∂i such that ∂i∂ j = ∂ j∂i . We say an element c is constant if ∂i c = 0 for all i ; in most important cases
the constant elements are the scalar multiples of the unit. We say an element xi is a coordinate if ∂i xi = 1 and
∂ j xi = 0 for i �= j .

An antidifferential
∫

is a right inverse to the differential ∂ , so is defined by ∂
∫

f = f . In the presence of multiple
commuting differentials, we require ∂ j

∫

i 1 = 0 whenever i �= j , so
∫

i 1 is a coordinate function xi .
When working with the function algebra C∞(Rn;R), canonical antidifferentials are given by the definite integrals

(∫

i f
)

(x1, . . . , xn) =
xi

∫

0

f (x1, . . . , xi−1, ξ, xi+1, . . . , xn) dξ.

Further, the integral is defined on C(Rn;R) and is continuous in the topology of uniform convergence on compact
sets.

While differentials of functions defined symbolically are easy to compute using the Leibniz rule, the derivative
is discontinuous in the uniform topology. Consider an element f̂ of a validated function type with f̂ |� f ⇐⇒
| f̂ (x)− f (x)| ≤ ε for x ∈ [−1,+1]. By taking f (x) = ε sin(x/δ) we have f ′(x) = (ε/δ) cos(x/δ), so || f ′|| = ε/δ

which can be made arbitrarily large. However, ‘on average’, the fluctuations of f are approximately zero, so the
zero function is a good weak derivative of f . We now formalise this notion in a way which can be used in the
solution of algebraic equations.

We first need to define a special class of modelling relations. A function model f̂ ∈ ̂F is a uniform function model
if there exists an exact function f̃ and a constant ē ≥ 0 such that f̂ |� f ⇐⇒ sup{d( f (x), f̃ (x)) | x ∈ D} ≤ ē.
We say that f̃ is the centre of f̂ .
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Definition 4.3 (Weak derivative) Let f̂ be a uniform function model and f̃ be the centre of f̂ . Then ĝ is weak
derivative of f̂ if ĝ |� ∂ f̃ /∂xi .

In other words, ĝ is a validated version of the exact derivative of f̃ , where f̃ is the centre of the uniform model
f̂ . If f̂ were to consist only of functions of the form f (x) = f̃ (x) + c for |c| ≤ ē, then ĝ would model ∂ f/∂xi

for all f =| f̂ . Since f̂ consists of functions f (x) = f̃ (x)+ ε(x) where ε is merely continuous, ∂ f/∂xi may have
arbitrarily large values. However, ĝ captures some “average” variation of f , in the sense that there is antiderivative
∫ xi ĝdxi which is uniformly ē-close to f .

Note that the condition of Definition 4.3 is stronger than saying ∃ f =| f̂ , ĝ |� ∂ f/∂xi , but weaker than saying
∀ f =| f̂ , ĝ |� ∂ f/∂xi . In Sect. 6.2 we will show how to use the weak derivative in the solution of algebraic equations.

To summarise, the main operations on a validated differential algebra are:

Definition 4.4 (Validated differential algebra)

Antiderivative
∫

i : ̂F → ̂F .

If ̂F is a set of uniform function models of the form f̂ |� f ⇐⇒ || f − f̃ ||D ≤ ē, then also

Weak derivative ∂i : ̂F → ̂F such that ∂i f̂ |� ∂ f̃ /∂xi .

5 Polynomial Models

The Taylor models of [13] provide an approximation of continuous functions by polynomials along with bounds
or enclosures of the approximation and roundoff errors. We use the terminology ‘polynomial model’ rather than
‘Taylor model’ since the polynomial that we use in the approximation of a function f need not approximate the
Taylor expansion of f . The advantage is that by giving a more relaxed notion of a model we get a more general
function calculus. This will increase the robustness of our library with respect to possible changes and allow for
possible use of alternative bases. A possible example would be the recent validated version of [7] which are useful
for efficient evaluation of transcendental functions [17] or ODE solving [12]. Results on the correctness of Taylor
model calculus were given in [15].

Formally, we can represent a polynomial p in n variables with coefficients in X by a list of pairs 〈αi , ai 〉 where
αi ∈ N

n and ai ∈ X, i.e. as an element of (Nn ×X)∗. The evaluation operator on (Nn ×R)∗ ×R
n is given by taking

eval(p, x) =
k

∑

i=1

ai xαi . (5.1)

for p ∈ (Nn × R)k . By a slight abuse of notation, we henceforth write
∑k

i=1 ai xαi for the polynomial defined
by the list [〈αi , ai 〉]ki=1. Here we use the convention that αi := (αi,1, . . . , αi,n) and write xαi as a shorthand for
x

αi,1
1 · · · xαi,n

n . Note that different lists may define the same polynomial function. We denote the set of all polynomials
over R

n with coefficients in X by Pn[X].
We define a polynomial model as a pair 〈p, e〉, where p is a multivariate polynomial with coefficients in F, and

e ∈ F
+ is an error bound. We will sometimes write p(x)± e for the polynomial model 〈p, e〉. We denote the set of

all polynomial models by ̂P .
Let E be the unit domain [−1,+1]n , and C(E;R) denote the set of continuous real-valued functions on E . We

say that a polynomial model f̂ = 〈p, e〉 models a function f : E → R, denoted 〈p, e〉 |� f , if

∀x ∈ E, |ı(p)(x)− f (x)| ≤ ı(e), (5.2)

where ı(p)(x) is evaluated exactly; ı(p)(x) = ∑k
i=1 ı(ai )xαi . It can be seen that for a given g ∈ C(E;R), by

taking e ∈ F such that ‖g‖∞ ≤ ı(e) we have

{ f ∈ C(E;R)| ‖ f ‖∞ ≤ e} � g.
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Hence this predicate gives rise to a complete modelling relation between ̂P and C(E;R) in the sense of Defini-
tion 2.1.

It is clear that given a function f ∈ C(E;R) there are many polynomial models 〈p, e〉 which model f . Some of
these are more convenient or more efficient to work with than others. Given a total order on N

n , we say a polynomial
p(x) = ∑

ai xαi is sorted if αi ≤ α j whenever i ≤ j . We say p has unique coefficients if αi = α j whenever
i = j . Clearly, we can always convert a list describing a polynomial to a sorted version. If arithmetic on coefficients
is exact, then we can additionally convert a polynomial to a form with unique coefficients. Additionally, we can
always obtain a simpler representation by removing some terms from p and accounting for them in the error e. We
call such an operation sweeping.

We therefore consider the following simplifying operations on polynomials and polynomial models:

Sort sort(〈p, e〉) is sorted.
Unique uniq(〈p, e〉) has unique coefficients.
Sweep sweep(〈p, e〉) has no more coefficients than 〈p, e〉.
Each of the operations should preserve the modelling relation; equivalently, it should be a validated version of the
identity.

In the remainder of this section we provide validated versions of the following functions operating on C(E;R),
i.e. we define corresponding operations on ̂P . To be complete, one has to prove that they satisfy the Definition 2.2.
As such proofs follow a similar pattern we only show the proofs in few selected cases.

Constructors unit 1, coordinate xi , ball 0± 1.
Evaluation f, x �→ f (x)

Norm || f || = supx∈E | f (x)|.
Codomain [ f (E)] ⊃ { f (x) | x ∈ E}.
Arithmetic scalar multiplication c · f , sum f1 + f2, product f1 × f2.
Composition f, g �→ f ◦ g.
Antidifferentiation

∫

f dxi =
∫ xi

ai
f (x1, . . . , xi−1, w, xi+1, . . . , xn)dw.

Weak differentiation f̂ = { f | supx∈D | f (x)− p(x)| ≤ e} �⇒ ∂i f̂ = ∂i p.
Refinement f̂1 ≺ f̂2 �⇒ ( f̂1 |� f �⇒ f̂2 |� f ).

In particular, the polynomial models form a validated unital Banach algebra, with unit the constant model 1, and
ball 0± 1, a validated evaluation algebra, and a validated differential algebra.

For the arithmetic operations and composition, we shall only work with sorted polynomial with unique coeffi-
cients, and this property will be preserved.

5.1 Simplification Operations

We begin with a generally useful lemma.

Lemma 5.1 Suppose 〈p, e〉 and 〈p′, e′〉 are polynomial models, and there exists a constant δ ∈ R such that
|ı(p)(x) − ı(p′)(x)| ≤ δ whenever x ∈ E, and e′ ≥ e + δ. Then 〈p, e〉 ≺ 〈p′, e′〉, equivalently, 〈p, e〉 |� f �⇒
〈p′, e′〉 |� f .

Proof If 〈p, e〉 |� f , then | f (x)− p(x)| ≤ e for all x ∈ E . Then | f (x)− p′(x)| ≤ | f (x)− p(x)|+|p(x)− p′(x)| ≤
e + δ = e′ for all x ∈ E . ��
5.1.1 Sorting

It is clear that sorting the coefficients of a polynomial does not change the evaluation or the modelling relationship.

Lemma 5.2 sort(〈p, e〉) |� f (x) ⇐⇒ 〈p, e〉 |� f (x).
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5.1.2 Unique

Let p = ∑i=k
i=1 ai xαi and suppose p has sorted coefficients. Then we define the unique coefficients operator by

uniq(〈p, e〉) =

⎧

⎪

⎨

⎪

⎩

〈p, e〉 if k = 0, 1;
a1xα

1 + uniq(〈∑k
j=2 a j xα

j , e〉) if k = 1 or α1 �= α2;
uniq(〈(a1 +n a2)xα2 +∑k

j=3 a j xα j , e +u ((a1 +u a2)−u (a1 +l a2))÷u 2〉) if α1 = α2.

Lemma 5.3 uniq(〈p, e〉) |� f (x).

Proof It suffices to consider the final case. Let p′ = (a1+n a2)xα2+∑k
j=3 a j xα j and e′ = e+((a1+u a2)−u (a1+l

a2))÷u 2. Set α = α1. Then |p′(x)− p(x)| = |(a1 +n a2)xα − (a1xα + a2xα)| = |((a1 +n a2)− (a1 + a2))xα| ≤
|(a1 +n a2)− (a1 + a2))||xα| ≤ |(a1 +n a2)− (a1 + a2))|. By Lemma 3.1, we have |(a1 +n a2)− (a1 + a2))| ≤
((a1 +u a2)−u (a1 +l a2))÷u 2, and the result follows from Lemma 5.1. ��

5.1.3 Sweep

Let p = ∑i=k
i=1 ai xαi . Then we define the sweep operator by sweep(〈p, e〉, j) = 〈p′, e′〉 where

p′(x) =
k

∑

i=1
i != j

ai xαi ; e′ = e +u |a j |e.

Lemma 5.4 sweep(〈p, e〉) |� f (x).

Proof Then |p(x)− p′(x)| ≤ |a j xα j | ≤ |a j ||xα j | = |a j |. The result follows from Lemma 5.1. ��

5.2 Constructors

Constructors provide the basis of our function calculus by providing polynomial models out of other existing objects.
There are many possible constructors definable. Here we show the implementation of the most useful ones. The
proof that they satisfy Definition 2.2 is trivial.

Unit We have that 〈[〈(0, . . . , 0), 1e〉], 0e〉 |� f (x) := 1.
Coordinate For each j ≤ n we have that 〈[〈(0, . . . , 1, . . . , 0), 1e〉], 0e〉 |� f (x1, . . . , xn) := x j .
Ball We have that 〈[], 1e〉 |� f (x) ⇐⇒ sup{| f (x)| | x ∈ E} ≤ 1.

We can define an interval constant function for ĉ = [l, u] ∈ I as ĉ �→ 〈m, r〉 where m = (l +n u)÷n 2 and r =
max(m −u l, u −u m). Using the unit and ball constructions, this becomes m · 1+ r · (0± 1).

5.3 Evaluation

The definition of the modelling relationship for 〈p, e〉 made use of the exact evaluation for the injection ı(p) of
p ∈ Pn[F] into Pn[R]. The formula (5.1) defines a simple evaluation scheme, but there are many other evaluation
schemes, notably Horner’s rule, which give the same answer when computed using exact arithmetic, but may be
more efficient or give more accurate results when computed using interval arithmetic. Rather than focus on the
correctness of a single evaluation algorithm, we give a result which yields correctness for any evaluation algorithm.
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Theorem 5.5 Suppose eval is an algorithm for evaluating polynomials with real coefficients which uses only the
arithmetical operators+,−,× and rational constants. Then applying eval to the evaluation of Pn[F] on I

n gives
a validated evaluation operator êval : Pn[F] × I

n → I which is correct in the sense that êval(p, x̂) |� ı(p)(x)

whenever x̂ |� x.
Further, if f̂ = 〈p, e〉 is a polynomial model, then defining êval( f̂ , x̂) = êval(p, x̂) + [−e,+e] is a correct

evaluation scheme for polynomial models and interval vectors.

Proof For a floating-point polynomial p, applying the evaluation algorithm yields eval(p, x) := eval(ı(p), x) =
ı(p)(x). Replacing x by x̂ gives êval(p, x̂) := eval(p, x̂) |� eval(ı(p), x) whenever x̂ |� x . If 〈p, e〉 |� f , then
for any x ∈ R

n, | f (x)− ı(p)(x)| ≤ e, so f (x) ∈ ı(p)(x)+ [−e,+e] ⊂ êval(p, x̂)+ [−e,+e] whenever x̂ |� x .
��

In fact, it suffices in Theorem 5.5 to consider evaluation for polynomials with rational coefficients on Q
n since

only arithmetical operations are used. Note that we allow an algorithm to use information about structural zeroes,
but not branching based on a comparison x ≥ 0.

Corollary 5.6 The direct evaluation scheme

êval(〈p, e〉, x̂) = [−e,+e] +
k

∑

i=1

[ai , ai ]
n

∏

j=1

x̂
αi, j
j

is a correct validated evaluation operator for polynomial models acting on interval vectors.

In practice, an evaluation algorithm based on Horner’s scheme is often used. By Theorem 5.5, in order to prove
correctness of a particular implementation, we need only prove correctness of the scheme using standard exact
arithmetic. A simplified version of the algorithm used in Ariadne is given in Appendix A.2

5.4 Norm and Codomain

Define a validated norm n̂rm : ̂P → F by

n̂rm

(

k
∑

i=1

ai xαi ± e

)

=
k

∑

u

i=1
|ai | +u e.

Note that this is the extension of function nrm defined in Sect. 5.5.4 from polynomials to polynomial models.

Lemma 5.7 n̂rm〈p, e〉 ≥ || f || whenever 〈p, e〉 |� f

Proof For any f =| 〈p, e〉, we have f (x) = p(x)+ d(x) with |d(x)| ≤ e for all x . Then

|| f (x)|| = sup
{∣

∣

∣

∑

ı(ai )xαi + d(x)

∣

∣

∣ | x ∈ X
}

≤
∑

|ı(ai )||x |αi + ||d||
≤

∑

|ı(ai )| + e ≤ ∑

u |ai | +u e = n̂rm〈p, e〉.
��

Note that this upper bound for the norm may not be a good over-approximation to the supremum norm. For example,
taking p = −1+ 2x2 and e = 0, we have n̂rm〈p, e〉 = 3 but || f || = sup{|p(x)| | x ∈ E} = 1.

As an immediate corollary, we obtain an interval over-approximation to the range of any f =| 〈p, e〉. Define a
validated codomain function as

ĉodom〈p, e〉 = [−n̂,+n̂] where n̂ = n̂rm(〈p, e〉).
Corollary 5.8 ĉodom〈p, e〉 ⊃ f (E) whenever 〈p, e〉 |� f
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5.5 Arithmetic

The functions in this section provide a basic (polynomial) arithmetic module for polynomial models. The two main
functions are sum and product. While most of the other functions below can be considered as special case of sum
and product, evidently it is more efficient to have specialised implementation for them. In fact our implementation
of multiplication uses the implementation of scalar and monomial operations.

5.5.1 Multiplication by Unit Monomial

Let p = ∑i=k
i=1 ai xαi . Suppose 〈p, e〉 |� f andα ∈ N

n . Then we define the unit monomial multiplication xα〈p, e〉 :=
〈xα · p, e〉 where

xα · p :=
i=k
∑

i=1

ai xα+αi .

Lemma 5.9 xα〈p, e〉 |� xα f (x).

Proof Given x ∈ E set pα := xα · p. Then we have |pα(x) − xα f (x)| ≤ |xα| · |p(x) − f (x)| ≤ e., i.e.
〈pα, e〉 |� xα f (x). ��

5.5.2 Scalar Multiplication

Let p = ∑i=k
i=1 ai xαi . Suppose 〈p, e〉 |� f and c ∈ F. Then we define the scalar multiplication c〈p, e〉 := 〈c · p, e′〉

where

c · p :=
k

∑

i=1

(c ×n ai )xαi ,

e′ := |c|e ×u e +u

k
∑

u

i=1
(c ×u ai −u c ×d ai )÷u 2.

Here the notation
∑

uk
i=1 xi is used to denote x1 +u · · · +u xk .

Lemma 5.10 c〈p, e〉 |� ı(c) f (x).

Proof Given x ∈ E set pc := c · p. First note that

|ı(c)p(x)− pc(x) | =
∣

∣

∣

∣

∣

k
∑

i=1

(ı(c)ı(ai )− ı(c ×n ai ))xαi

∣

∣

∣

∣

∣

≤
k

∑

i=1

|ı(c)ı(ai )− ı(c ×n ai )| |xαi |

≤
k

∑

i=1

|ı(c)ı(ai )− ı(c ×n ai ) | ≤
k

∑

i=1

ı((c ×u ai −u c ×d ai )÷u 2)

≤ ı

(

k
∑

u

i=1
(c ×u ai −u c ×d ai )÷u 2

)

,

where the last two step are obtained by applying, respectively, Lemma 3.1 and axiom flt_add_u. Then we have

|pc(x)− ı(c) f (x)| ≤ |ı(c)| · | f (x)− p(x)| + |ı(c)p(x)− pc(x)|

≤ |ı(c)|ı(e)+ ı

(

k
∑

u

i=1
(c ×u ai −u c ×d ai )÷u 2

)



450 P. Collins et al.

≤ ı(|c|e)ı(e)+ ı

(

k
∑

u

i=1
(c ×u ai −u c ×d ai )÷u 2

)

≤ ı

(

|c|e ×u e +u

k
∑

u

i=1
(c ×u ai −u c ×d ai )÷u 2

)

,

where in the last two steps the axioms flt_abs_e, flt_mul_u and flt_add_u are applied. ��

5.5.3 Sum

The simplest way to define the sum operator on polynomials is to catenate the lists of index–coefficient pairs, sort
and make them unique.

〈p1, e1〉 + 〈p2, e2〉 = uniq sort(〈cat(p1, p2), e1 +u e2〉)
If p1 = ∑ k1

i=1 ai xαi and p2 = ∑ l
j=1 b j xβ j are sorted with unique coefficients, we can define p1+n p2 recursively

by

k
∑

i=1

ai xαi +n

l
∑

j=1

b j xβ j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑ k
i=1 ai xαi if l = 0;

∑ l
j=1 b j xβ j if k = 0;

a1xα1 + (∑ k
i=2 ai xαi +n

∑ l
j=1 b j xβ j

)

if α1 < β1;
b1xβ1 + (∑ k

i=1 ai xαi +n
∑ l

j=2 b j xβ j
)

if α1 > β1;
(a1 +n b1)xα1 + (∑ k

i=2 ai xαi +n
∑ l

j=2 b j xβ j
)

if α1 = β1.

Then we define the sum on ̂P as 〈p1, e1〉 + 〈p2, e2〉 := 〈p′, e′〉 where p′ = p1 +n p2 and

e′ := e1 +u e2 +u

i, j=k,l
∑

i, j=1
αi=β j

(ai +u b j −u ai +d b j )÷u 2.

Lemma 5.11 〈p1, e1〉 + 〈p2, e2〉 |� f1 + f2.

Proof Given x ∈ E , set p+ := p1 +n p2. First note that

|p1(x)+ p2(x)− p+(x) | =

∣

∣

∣

∣

∣

∣

∣

∣

∑

αi=βi
ai ,bi �=0

(ı(ai )+ ı(bi )− ı(ai+nbi ))xαi

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

αi=βi
ai ,bi �=0

| ı(ai )+ ı(bi )− ı(ai+nbi ) | |xα
i |

≤
∑

αi=βi
ai ,bi �=0

|ı(ai )+ ı(bi )− ı(ai+nbi ) |

≤
∑

αi=βi
ai ,bi �=0

ı((ai +u bi −u ai +d bi )÷u 2)

= ı

⎛

⎜

⎝

∑

u

αi=βi
ai ,bi �=0

(ai +u bi −u ai +d bi )÷u 2

⎞

⎟

⎠
,

where the last two steps are obtained by applying, respectively, Lemma 3.1 and axiom flt_add_u.
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Hence by using the above inequality and applying axiom flt_add_u we have

|p+(x)− ( f1(x)+ f2(x))| ≤ | f1(x)− p1(x)| + | f2(x)− p2(x)| + |(p1(x)+ p2(x))− p+(x)|

≤ ı(e1)+ ı(e2)+ ı

⎛

⎜

⎝

∑

u

αi=βi
ai ,b1 �=0

(ai +u bi −u ai +d bi )÷u 2

⎞

⎟

⎠

≤ e1 +u e2 +u
∑

u

αi=βi
ai ,b1 �=0

(ai +u bi −u ai +d bi )÷u 2.

��

5.5.4 Product

So far we have defined the operations by directly constructing a polynomial model from scratch, by showing what
the sparse polynomial component and the error component should be. In principle it is possible to define the product
of two polynomial models too in this way, by using the convolution product. However in the n-dimensional case,
assessing the error using this approach is not efficient. So we define the product in terms of simpler arithmetic
operations.

First, given a sparse polynomial p = ∑i=k
i=1 ai xαi we define

nrm(p) :=
k

∑

u

i=1
|ai |e.

Note that for x ∈ E we have |p(x)| ≤ nrm(p) because of axiom flt_add_u.
Next let p1 = ∑i=k

i=1 ai xαi and p2 = ∑i=l
i=1 bi xβi and assume 〈p1, e1〉 |� f1 and 〈p2, e2〉 |� f2.

Lemma 5.12 Let di (x) := fi (x)− pi (x). Then

〈0̄, e1×unrm(p2)+u e2×unrm(p1)+u e1×ue2〉 |� d1 p2 + d2 p1 + d1d2,

where 0̄ is the constant zero polynomial.

Proof Given x ∈ E we have

|0− d1(x)p2(x)+ d2(x)p1(x)+ d1(x)d2(x)| ≤ ı(e1)|p2(x)| + ı(e2)|p1(x)| + |ı(e1)ı(e2)|
≤ ı(e1)ı(nrm(p2))+ ı(e2)ı(nrm(p1))+ ı(e1)ı(e2)

≤ ı(e1×unrm(p2)+u e2×unrm(p1)+u e1×ue2);
where in the last step axioms flt_add_u and flt_mul_u are used. ��

The next operation that we need is a polynomial multiplication that outputs a polynomial model. We define
{

0̄×P p2 := 0̄;
p1 ×P p2 := a1 · xα1 · 〈p2, 0e〉 + (

∑ k
i=2 ai xαi )×P p2.

Note that this operation, which is defined recursively here, can be understood as the product of two polynomial
models whose error is 0e.

Lemma 5.13 p1 ×P p2 |� p1 p2.

Proof We proceed by induction on the length (i.e. number of distinct coefficients) of p1. The base case p1 = 0̄
vacuously holds. For the induction step assume p1 = ı(a1)xα1 + p′1 such that p′1 ×P p2 |� p′1 p2. Then

p1 ×P p2 = a1 · xα1 · 〈p2, 0e〉 + p′1 ×P p2
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Note that 〈p2, 0e〉 |� p2 and hence by Lemmas 5.10 and 5.9 we have a1xα1〈p2, 0e〉 |� ı(a1)xα1 p2. The conclusion
follows form this and the induction hypothesis, by applying Lemma 5.11. ��

Finally we can define the product of two polynomial models:

〈p1, e1〉 × 〈p2, e2〉 := p1 ×P p2 + 〈0̄, e1×unrm(p2)+u e2×unrm(p1)+u e1×ue2〉.
Lemma 5.14 〈p1, e1〉 × 〈p2, e2〉 |� f1 f2.

Proof Taking di as in Lemma 5.12, note that f1 f2 = p1 p2+d1 p2+d2 p1+d1d2. So we can rewrite the right hand
side accordingly. The conclusion then follows by applying Lemmas 5.11–5.13. ��

5.6 Composition

Having defined arithmetical operators on polynomial models, we can define composition in a similar way to eval-
uation. Indeed, we can define evaluation on any algebra over R, and apply this to the algebra C(Rn;R) to prove
computability.

Theorem 5.15 Let eval be an evaluation algorithm for Pn[R] on R
n using only rational constants, addition

and multiplication. Let A be any algebra over R, and ̂A be a validated version of A. Then eval yields a correct
validated evaluation êval : ̂P ×̂A

n → ̂A.

Proof The algorithm eval can be used to evaluate Pn[R] on A
n . The result follows since ̂A is a validated model

of A with the required operations. ��
Using Lemmas 5.11, 5.13, and 5.14 we immediately obtain the a validated function composition:

Corollary 5.16 Let eval be an evaluation algorithm for Pn[R] on R
n using only rational constants, addition and

multiplication. Let ĝi = 〈qi , di 〉 be polynomial models such that ĝ |� gi for i = 1, . . . , n, and f̂ = 〈p, e〉 |� f be
a polynomial model. Then the evaluation algorithm eval on p applied to (〈q1, d1〉, . . . , 〈qn, dn〉 induces a validated
composition operator ĉomp : ̂P × ̂Pn → ̂P by ( f̂ , (ĝ1, . . . , ĝn)) �→ eval(p, (ĝ1, . . . , ĝn))+ [−e,+e].

5.7 Antidifferentiation

let μ j be the j th unit basis multi-index (μ j ) j = 1, (μ j )k = 0 otherwise. Then the formula for the exact antidiffer-
entiation operator on polynomials is

∫

j

k
∑

i=1

ai xαi =
k

∑

i=1

ai

αi, j + 1
xαi+μ j .

Let p = ∑i=k
i=1 ai xαi . Then we define the antidifferential

∫

j 〈p, e〉 := 〈p′, e′〉 where

p′ :=
k

∑

i=1

(

ai ÷n (αi, j+1)
)

xαi+μ j ,

e′ := e +u
1

2 e
×u

k
∑

u

i=1

(

ai ÷u (αi, j+1)−u ai ÷d (αi, j+1)
)

.

Lemma 5.17 If 〈p, e〉 |� f , then
∫

j 〈p, e〉 |� ∫

j f.
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Proof Given x ∈ E note that | f (x)− p(x)| ≤ e, |x j | ≤ 1 and |xα| ≤ 1 for all multi-indices α. We then have
∣

∣

∣

∣

∣

∣

x j
∫

0

p(x1, . . . , w j , . . . , xn) dw j −
k

∑

i=1

(

ai ÷n (αi, j+1)
)

xαi+μ j

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

k
∑

i=1

(

ı(ai )/(αi, j+1)− ı(ai ÷n (αi, j+1))
)

xαi

∣

∣

∣

∣

∣

≤
k

∑

i=1

∣

∣ı(ai )/(αi, j+1)− ı(ai ÷n (αi, j+1))
∣

∣

≤ 1

2 e
×u

k
∑

u

i=1

(

ı(ai )÷u (αi, j+1)−u ai ÷d (αi, j+1)
)

and
∣

∣

∣

∣

∣

∣

x j
∫

0

f (x1, . . . , w j , . . . , xn) dw j −
x j

∫

0

p(x1, . . . , w j , . . . , xn) dw j

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

x j
∫

0

| f (x1, . . . , w j , . . . , xn)− p(x1, . . . , w j , . . . , xn)| dw j

∣

∣

∣

∣

∣

∣

≤ |x j | sup
x∈E

| f (x)− p(x)| ≤ e.

Hence || ∫ j f − p′|| ≤ e′ as required. ��

5.8 Weak Differentiation

Define the weak differential ∂̂ j 〈p, e〉 := 〈p′, e′〉 where

p′ :=
k

∑

i=1
αi, j �=0

(

ai ×n αi, j
)

xαi−μ j , e′ := 1

2 e
×u

k
∑

u

i=1
αi, j �=0

(

ai ×u αi, j −u ai ×d αi, j
)

.

Lemma 5.18 If 〈p, e〉 |� f , then ∂̂ j 〈p, e〉 |� ∂̂ j f.

Proof An exact formula for the derivative of p is

∂ j

k
∑

i=1

ai xαi =
k

∑

i=1
αi, j �=0

aiαi, j xαi−μ j .

The result follows since ∂̂ j 〈p, e〉 = ∂̂ j 〈p, 0〉 |� ∂ j ı(p). ��

5.9 Refinement

Recall from Definition 2.3 that f̂1 refines f̂2, denoted f̂1 ≺ f̂2, if f̂1 |� f �⇒ f̂2 |� f . Define a validated
refinement operator by ̂rfn(〈p1, e1〉, 〈p2, e2〉) if n̂rm(p1̂−p2)+u e1 ≤ e2.
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Lemma 5.19 If ̂rfn(〈p1, e1〉, 〈p2, e2〉), then 〈p1, e1〉 ≺ 〈p2, e2〉.
Proof Suppose f =| 〈p1, e1〉. Then || f − p2|| ≤ ||p1 − p2|| + || f − p1||. Since subtraction is correct, we have
̂sub(〈p1, 0〉, 〈p2, 0〉) |� p1 − p2, so ||p1 − p2|| ≤ n̂rm(p1̂−p2). Thus || f − p2|| ≤ n̂rm(p1̂−p2) +u e1 ≤ e2.
Hence f =| 〈p2, e2〉. ��

Note that ̂rfn(〈p1, e1〉, 〈p2, e2〉) is allowed to return false even if 〈p1, e1〉 ≺ 〈p2, e2〉. It is unreasonable to
expect to be able to efficiently implement an exact version of ≺, since this relies on computing ||p1 − p2|| exactly.
In practice, it suffices to have the sufficient condition for refinement defined above.

5.10 Abstraction

We consider a simple form of abstraction, namely a sweep operation, in which terms are discarded independently.
Let π : N

n × F → B. Define sweep(〈p, e〉, J ) = 〈∑ j :¬π(a j ,α j )
α j xa j , e +u

∑

u
j :π(a j ,α j )

|alpha j |〉 The sweep
operation reduces the number of terms in the polynomial by discarding according to some predicate π depending on
the Typical predicates are to remove terms under some threshold, π(a, α) = (α < δ) or above some fixed degree,
π(a, α) = (|a| > m).

6 Applications of Validated Arithmetic

6.1 Solution of Ordinary Differential Equations

The Picard operator for the solution of an ordinary differential equation ẋ = f (x) is defined by the iteration

φn+1(x, t) = x +
t

∫

0

f (φn(x, s)) ds.

The only operators needed to iterate the Picard operator on domain D for time interval [0, h] are:

• The coordinate functions xi over D × [0, h].
• Composition of functions f ◦ φn .
• The antiderivative operator

∫ t
0 · · · ds

• The addition operator +.

Additionally, we need to give an initial condition φ0 and a termination condition.
There are two possible approaches to computing a validated version φ̂ of the exact flow φ using the Picard

operator:

1. Pre-compute a bounding box B for the solution, and take φ̂0 to be a function model such that B ⊂ φ̂0(x, t) for
all x ∈ D and t ∈ [0, h]. Then any φ̂m models the solution.

2. Hot-start the solution by computing an approximate solution φ̃ and approximate error bound ε̃, and using φ̃±kε̃

as the initial φ̂0. During the iteration, attempt to validate φ̂n+1 refines φ̂n Then φ̂m models the solution φ for all
m > n. Usually, if φ̂1 does not refine φ̂0, a different constant multiplier for the error will be chosen.

The first approach is guaranteed to succeed, since the bounding box ensures that φ̂0 |� φ. In the second approach,
it may be possible to accelerate the computation by choosing a good initial solution, but the approach may fail if it
the result cannot be validated.

6.2 Solution of Algebraic Equations

Let f ∈ C1(Rn;Rn). Define the set of differentiably transverse zeros of f as

Zdiff ( f ) = {x ∈ R
n | f (x) = 0 and D f (x) is non-singular}.



A Validated Real Function Calculus 455

The interval Newton operator is one of the main tools to compute Zdiff ( f ). Let X ∈ I
n and x ∈ X ∩F

n , and define

N (X) = x − [D f (X)]−1 f (x) (6.1)

where [D f (X)] = hull{D f (x) | x ∈ X} is the interval hull of the set of Jacobian matrices of f over X . It can be
shown that if N (X) ⊂ X , then f has a unique zero in X , and if N (X) ∩ X = ∅, then f has no zeros in X . A proof
is given in Appendix B.

Note that the interval Newton operator relies on computing the Jacobian matrix of f , which, as remarked in
Sect. 4.3, cannot be carried out for function models based on uniform approximation.

We can instead use a more general version of the Newton operator which is valid for continuous functions
f ∈ C(Rn;Rn). Take any p ∈ C1(Rn;Rn) and set e(x) = f (x) − p(x) so e ∈ C(Rn;Rn). Define the perturbed
interval Newton operator by

N ( f, p, X) = x − [Dp(X)]−1(p(x)+ e(X)). (6.2)

We can show that if f has a zero at x∗ ∈ X , then x∗ ∈ N ( f, p, X). Further,

Theorem 6.1 If N ( f, p, X) ⊂ X, then f has a zero X.

We can use this result to compute zeros of function models. If p is differentiable and f̂ = { f | supx∈D | f (x) −
p(x)| ≤ ε}, define the weak derivative D f̂ to be ̂D p. Define

N ( f̂ , X) = x − [D f̂ (X)]−1( f̂ (x)). (6.3)

Corollary 6.2 If N ( f̂ , X) ⊂ X, then any f =| f̂ has a zero in X.

Hence the weak derivative of f̂ can be used to find sets containing a zero of any f =| f̂ .

Example Let f (x) = x3, which has a non-transverse zero at x = 0. By taking p(x) = x , we have e(x) = x3 − x .
Take X = [−1, 1] and x = 0. Then we have p(0) = 0, Dp(X) = {1} and e(X) = [−2/3

√
3,+2/3

√
3], yielding

x − 〈Dp(X)〉−1(p(x) + e(X)) = [−2/3
√

3,+2/3
√

3] ≈ [−0.385,+0.385] ⊂ X . This is a numerical proof that
f has a zero in [−1,+1].

7 From Validation to Formal Verification

We present an account of a validated calculus that is implemented in Ariadne. A path for future work would be to
go one step further and apply formal verification to obtain a higher level of assurance about the correctness of the
computations in Ariadne. Such high level assurance would be very beneficial for safety critical application domains
such as aviation or medicine. In order to achieve high level assurance one has to resort to formal method techniques
to verify the design patterns as well the actual code of the implementation.

The usual way of verifying hybrid systems is to apply model checking to hybrid automata, e.g. based on methods
such as the predicate abstraction [1]. In practice this approach is helpful in verifying several types of properties of
systems, however there are circumstances where model checking can be prone to state explosion. Still, a satisfactory
level of assurance can be achieved by combining model-checking with theorem proving in the logically rich envi-
ronment of a theorem prover. This enables one to validate the correctness of model checking algorithms. Further
on, one can enhance and simplify model checking algorithms by proving properties about classes of systems such
as modular decomposition and symmetry reduction.

Another reason to use a logical framework is the generic structure of the Ariadne. As is evident by our modular
treatment of effective, validated and approximate data structures in the previous section, the Ariadne’s template
library can be viewed as a hierarchical mathematical structure. Hence by applying tools that have an expressive
language allows to deal with mathematical subtleties in verification of our tool.

In the long run we plan to take this approach: we use theorem proving tools, model-checkers and logical frame-
works to offer the user a high-level of assurance. Such an endeavour is a multilayer task but we can identify two
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main tasks: (1) verifying Ariadne’s primitives for function calculus (Ariadne’s kernel), which are currently based
on polynomial models; (2) verifying Ariadne’s algorithms for reachability analysis.

These two task certainly aim at different type of problems. Problem (1) roughly consists of verifying the material
we have introduced in this article. Such a verification is tantamount to a rigorous analysis of the proofs. Fortunately
this need be done only once: when we have checked that all the error analysis in our function calculus is correct,
we are sure that the implemented C++ library makes the right decision with respect to round-off errors.

Problem (2) on the other hand is more complex and in some sense open-ended. For each particular property of
hybrid systems and for each invocation of any algorithm to solve that we should provide a certificate of the correct-
ness alongside the answer. Any solution to this problem either would be an ever evolving formal verification suite
on its own, or more practically, it will require introducing annotations and assertions inside the C++ code of each
algorithm. In the latter case a platform would be used to statically generate proof obligations from the assertions
and feed them to a theorem prover using as much automation as possible. Experience in a context related to ours,
namely verification of floating point C programs[4,3], using the Frama-C platform [10] indicates that this approach
is in principle feasible. In the future work we plan to investigate applying this approach for tackling problem (2).

Here we focus on problem (1); as our verification tool we use Coq which is an integrated theorem prover and a
logical framework that is also capable of formalising mathematics [16]. This means that in addition to the model
checking of hybrid automata, we can use Coq to verify the algorithms for approximating elementary functions
and for numerical differentiation and ultimately for solving ODEs. Ultimately this will result in a hybrid systems
analyser embedded in Coq. This analyser will enable the user to state and prove properties by model checking or
other techniques and it will use the Ariadne tool as an oracle for computations.

In this section one way of (partially) tackling problem (1) in Coq by formalising the algorithms for basic oper-
ations on polynomial models from Sect. 5 considered as sparse polynomials with floating-point coefficients. The
correctness proofs will be based on the abstract data type of floating point numbers that was introduced in Sect. 3.

We base the presentation on a syntax based on Coq language which is based on the constructive type theory.
However the reader unfamiliar with type theory should be able to follow the exposition. One point to bear in mind
is that f x and f x y denote function applications f (x) and f (x, y), respectively. All the results in this section
are (formalised) Coq version of the material in the earlier sections. In fact the mathematical proofs above are more
legible than Coq proof scripts. So in general we refrain from giving the proofs. Also most of the details of the
implementation are given in the appendix, however the main definitions and auxiliary lemmas used in the main
proofs are presented. The complete Coq formalisation including all the proofs is available for download at http://
www.cwi.nl/~milad/programs/coq/PolynomialModels1D.tar.gz.

7.1 Floating-Point Data Type in Coq

The abstract data type of Float can be readily translated to Coq in several ways. We capture the data type, para-
metrised by a carrier set, as a record type.2 This means that our type Float, will be an abstract data type that
contains a carrier set crr, denoted F, with some operations and satisfying some axioms.3

The type R from the standard library of Coq is used as the type of idealised real numbers. This means that they are
assumed, non-constructively, to provide a model of real numbers, but we cannot use them for actual computations.
They are only used in our meta reasoning about the correctness of the validations.

We assume the existence of a function inj : F −→ R which we treat as an injection of the floats into the reals.
As in Sect. 3.1, the axioms govern the arithmetic operations in F and are stated in terms of ı . Again subtraction, <

and division by integers are defined operations.
We can instantiate this abstract data type by providing suitable candidates for F and the required operations and

proving the axioms, although this is not needed in current project. Nevertheless the concrete type in [11] provides

2 Alternatively one could use module types or type classes. But records suffice for our purpose.
3 Given F:Float we usually identify F with its carrier set. In Coq this is achieved by using a coercion.

http://www.cwi.nl/~milad/programs/coq/PolynomialModels1D.tar.gz
http://www.cwi.nl/~milad/programs/coq/PolynomialModels1D.tar.gz
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instances for these axioms. Furthermore, certain subsets of 32-bit or 64-bit floating point numbers (e.g. normalised
numbers and excluding NaN and ±Inf) can be shown to satisfy our axioms. Other possible instantiations are
rational numbers, p-adic numbers, axiomatic real numbers form the standard library of Coq and, constructive exact
real numbers.

The Float record is defined by the following operations and axioms:
Record Float : Type :=
{ crr :> Set
; inj : crr -> R
; zero_exact : crr
; one_exact : crr
; add_up : crr -> crr -> crr
; add_down : crr -> crr -> crr
; add_near : crr -> crr -> crr
; neg_exact : crr -> crr
; sub_up := fun x y : crr => add_up x (neg_exact y)
; abs_exact : crr -> crr
; mul_up : crr -> crr -> crr
; mul_down : crr -> crr -> crr
; mul_near : crr -> crr -> crr
; ndiv_up : crr -> nat -> crr
; div2_up := fun x : crr => ndiv_up x 2

; flt_zero: inj zero_exact = 0
; flt_one: inj one_exact = 1
; flt_neg: forall x, inj(neg_exact x) = - inj(x)
; flt_abs: forall x, inj(abs_exact x) = Rabs ( inj(x) )
; flt_add_u: forall x y, (inj x) + inj(y) <= inj(add_up x y)
; flt_add_d: forall x y, inj(add_down x y) <= inj(x) + inj(y)
; flt_add_n : forall x y z,

Rabs ( inj(add_near x y) - (inj(x) + inj(y))) <=
Rabs (inj(z) - (inj(x) + inj(y)))

; flt_mul_u: forall x y, inj(x) * inj(y) <= inj(mul_up x y)
; flt_mul_d: forall x y, inj(mul_down x y) <= inj(x) * inj(y)
; flt_mul_n : forall x y z,

Rabs ( inj(mul_near x y) - (inj(x) * inj(y))) <=
Rabs (inj(z) - (inj(x) * inj(y)))

; flt_ndiv_u: forall x m, 0<m -> inj(x) / m <= inj (ndiv_up x m)
}.

It will also be useful to add functions explicitly giving the error bounds of Lemma 3.1.
Definition add_err_bnd x y := div2_up ( sub_up (add_up x y) (add_down x y) ).
Definition mul_err_bnd x y := div2_up ( sub_up (mul_up x y) (mul_down x y) ).

Having implemented the axioms, we can proceed to prove properties of this data type. This means that we derive
properties for any type F satisfying the axiomatisation. For example we can prove, progressively, the following
lemmas about addition. Note that the last one corresponds with Lemma 3.1.

Lemma flt_add_n_u_abs: forall x y, Rabs( inj(add_near x y) - (inj(x)+inj(y)) ) <=
Rabs (inj(add_up x y) - (inj(x)+inj(y))).

Lemma flt_add_n_d_abs: forall x y, Rabs( inj(add_near x y) - (inj(x)+inj(y)) ) <=
Rabs(inj(x)+inj(y) - inj(add_down x y) ).

Lemma flt_add_n_u: forall x y, Rabs( inj(add_near x y) - (inj(x)+inj(y)) ) <=
inj(add_up x y) - (inj(x)+inj(y)).

Lemma flt_add_n_d: forall x y, Rabs( inj(add_near x y) - (inj(x)+inj(y)) ) <=
inj(x)+inj(y) - inj(add_down x y).

Lemma flt_add_n_u_d_R: forall x y, Rabs( inj(add_near x y) - (inj(x)+inj(y)) ) <=
(1/2)*( inj(add_up x y) - inj(add_down x y) ).

Lemma flt_add_n_u_d: forall x y, Rabs( inj(add_near x y)- (inj(x)+inj(y)) ) <=
(1/2)* inj(sub_up (add_up x y) (add_down x y)).

Lemma flt_add_n_u_d_div2: forall x y, Rabs( inj(add_near x y) - (inj(x)+inj(y)) ) <=
inj(div2_up(sub_up (add_up x y) (add_down x y))).
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Remark 7.1 For technical reasons, the real Coq code is slightly more complicated; we need to add statements of
the form

Implicit Arguments inj_R [f].
Implicit Arguments add_near [f].

to allow Float to be used as an abstract data type, and change the statement of the Lemmas slightly to ensure that
the arguments represent the same type of Float

Lemma flt_mul_n_u_d_div2: forall {F:Float} x y,
Rabs ( (@inj_R F (mul_near x y)) - ((inj_R x)*(inj_R y)) )

<= inj_R (div2_up (sub_up (mul_up x y) (mul_down x y))).

7.2 Polynomial Models in Coq

As polynomial models are closely related to Taylor models, relevant to our work is the rigorous proof of correctness
of Makino–Berz algorithms [13] in [15]. Inspecting through the proofs in Sect. 5 and those in [15] one can see that
core arguments are the same. So this section can be seen as formalising the proofs from [15] in Coq. Hence our
work is related to several other developments of Taylor models in theorem provers: in Coq [18] using as coefficients
the constructive real numbers; or in PVS [8] or HOL Light [9] using rational interval arithmetic. In contrast in our
work we use floating-point coefficients. As pointed out in [18] this makes the formalisation more cumbersome but it
enables us to be as close to the actual Ariadne kernel as possible. Regarding floating points, we restricted ourselves
to an abstract data type covering only the most general properties that we needed for our function calculus. Much
work has been done on concrete implementations of floating point arithmetic and their properties in Coq in [11]
and more recently by Boldo et al. [2,5].

An alternative approach would be to use the formalisation of floating-point arithmetic being developed in the
Flocq project [6]. We have decided not to use this approach since we can achieve the required results on polynomial
models with only the relatively small number of operations used here. However, it would also be interesting to
prove our results using Flocq, which provides handling of ±∞ and NaN.

The remainder of the section is presented for a type Float that satisfies the axioms in Sect. 7.1. All the Coq
functions and theorems that we present are parametrised with respect to this type Float.

First we need a type for univariate sparse polynomials with coefficients in Float, which is simply a list of
(N, F)-pairs

list (nat * Float)

consisting of degrees and coefficients, i.e. a list [〈n0, a0〉, . . . , 〈nk−1, ak−1〉] is intended to denote the symbolic4

polynomial a0xn0 + · · · + ak−1xnk−1 where ai ∈ F. We define an inductive predicate is_sorted(p) specifying
that p is sorted with respect to the degrees.

Inductive is_sorted {A:Type} : list (nat * A) -> Prop :=
| is_sorted_nil : is_sorted nil
| is_sorted_one : forall m a, is_sorted (cons (m,a) nil)
| is_sorted_cons : forall m (a:A) xs a0, head xs = Some a0 -> (m<fst a0) ->

is_sorted xs -> is_sorted (cons (m,a) xs).

A polynomial model is a pair composed of such a sparse polynomial and a floating-point error bound.

Record PolynomialModel := { polynomial :> list (nat * Float)
; error: Float
}.

4 This is symbolic because the evaluation can be done in several ways, on R or F, and using various rounding modes.
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In order to capture the modelling relation in (5.2) we need to define how to axiomatically evaluate a polynomial.
Note that the evaluation of p(x) in (5.2) does not have to be a computable evaluation; rather it is a semantic notion
relating a family of polynomial with a function approximated by them. Since our goal is merely to prove the cor-
rectness with respect to the modelling relation, at this we do not need a computable notion of evaluation that we
introduced in Sect. 4.2.

So we define the axiomatic evaluation of a polynomial p at a given point x ∈ [−1, 1] in the straightforward
recursive way (by descending degrees), using arithmetic operations in R.

Fixpoint ax_eval_polynomial (p: list(nat * Float)) (x: R) } : R :=
match p with
| nil => 0
| (n,a) :: q => inj(a)*xˆ(n) + ax_eval_polynomial q x
end.

Here (n,a) :: q denotes the case where p is a list with the first element (n,a) (which is a pair describing a
monomial) and the tail q which is another (possibly empty) list containing the remaining coefficients.

Note in particular that in axiomatic evaluation the error of a polynomial model does not play a role. This is
another difference between our polynomial models and traditional Taylor models.5

Then the binary predicate models between a polynomial model 〈p, e〉 and a function f : R −→ R specifies
that f is approximated by p with error ε on interval [−1, 1] (cf. the containment property in [15]).

Definition models t f := forall x, -1 <= x <= 1 ->
Rabs( (ax_eval_polynomial t.(polynomial) x) - f(x) ) <= inj(t.(error)).

It is immediate that two extensionally equal functions can be substituted in a modelling relation, a property that
we will repeatedly use in our Coq proofs:

Lemma models_extensional: forall t f1 f2, models t f1 -> ( forall x, f1 x = f2 x )
-> models t f2.

Furthermore we can prove that the real image of the error is positive:

Lemma polynomial_model_error_nonneg: forall t f, models t f -> 0 <= inj(t.(error)).

The definition of some basic polynomial models, namely the zero model and constant model is given in Sect. 7.2.1.
An important construct on polynomial models is the tail constructor, which constructs the polynomial model
∑ k

i=2 ai xni ± e.

Definition tail_polynomial_model t : PolynomialModel :=
match t with
| {| polynomial:= nil |} => zero_polynomial_model
| {| polynomial:= (n,a) :: q; error:= e |}

=> {| polynomial:= q; error := e |}
end.

Our first correctness theorem shows the semantics of the tail constructor:

Theorem tail_polynomial_model_correct: forall t f, models t f ->
forall n a q, t.(polynomial) = (n,a) :: q ->

models (tail_polynomial_model t) ( fun x => f(x) - inj(a)*xˆn).

This format will be repeated in all the coming correctness theorems.

5 However, this apparent discrepancy is rather superficial. The actual notion of evaluation in Taylor models corresponds with our
computable evaluation of section (4.1).
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7.2.1 Constructors for Polynomial Models

We define the following constructors on polynomial models.

Definition zero_polynomial_model : PolynomialModel :=
{| polynomial := nil; error:= zero_exact |}.

Definition unit_polynomial_model : PolynomialModel :=
{| polynomial := (0,one_exact) :: nil; error:= zero_exact |}.

Definition coordinate_polynomial_model : PolynomialModel :=
{| polynomial := (1,one_exact) :: nil; error := zero_exact |}.

Definition ball_polynomial_model : PolynomialModel :=
{| polynomial := nil; error := one_exact |}.

Definition constant_polynomial_model (a:Float) : PolynomialModel :=
{| polynomial := (0,a) :: nil; error := zero_exact |}.

To prove correctness of these constructors, we need to show that the results model the correct functions, e.g.

Theorem unit_polynomial_model_correct: models unit_polynomial_model ( fun x => 1).

7.2.2 Norm of a Polynomial Model

A validated norm of a polynomial model can be defined in terms of the polynomial part and the uniform error part.
An over-approximation to the norm of the polynomial is defined recursively:

Fixpoint norm_polynomial_up (p: list (nat * Float)) : Float :=
match p with
| nil => zero_exact
| (n,a) :: q => add_up (abs_exact a) (norm_polynomial_up q)
end.

Definition norm_polynomial_model t :=
add_up (norm_polynomial_up t.(polynomial)) t.(error).

Correctness of the norm is provided by the following theorem.

Theorem norm_polynomial_model_correct: forall t f
models t f ->

forall x : R, -1 <= x <= 1 -> Rabs (f x) <= ifr(norm_polynomial_model t).

7.3 Arithmetic of Polynomial Models

We show the formalisation of the basic arithmetic operations on polynomial models, namely multiplication by a
unit monomial, scalar multiplication by a float, and addition.

7.3.1 Scaling by a Unit Monomial

The simplest case is the multiplication by a unit monomial xn . This is a function

power_polynomial_model : N −→ PolynomialModel −→ PolynomialModel

We define this function in terms of the corresponding function on lists.
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Fixpoint power_polynomial n p : list (nat * Float) :=
match p with
| nil => nil
| (m,a) :: q => ( n+m , a) :: power_polynomial n q
end.

We can show that this function preserves sorting of the polynomial.

Lemma power_polynomial_sorted: forall n p,
is_sorted p -> is_sorted (power_polynomial n p).

The definition of power_polynomial_model is then

Definition power_polynomial_model n t : PolynomialModel :=
{| polynomial := power_polynomial n t.(polynomial)
; error := t.(error) |}.

The correctness of the definition is proved in the theorem below.

Theorem power_polynomial_model_correct: forall n t f,
models t f -> models (power_polynomial_model n t) ( fun x => xˆn*f(x)).

7.3.2 Scalar Multiplication

Likewise the scalar multiplication is a function

scale_polynomial_model : F −→ PolynomialModel −→ PolynomialModel

that corresponds with the one defined in Sect. 5.5.2. Here we have to define the sparse polynomial and the error
component of the scaled polynomial model. The first component is defined using an auxiliary recursive function
scale_polynomial_near that in the recursion step maps a polynomial given as (n,a)::q to (n,mul_near c

a)::scale_polynomial_near c q where c is the scaling factor.

Fixpoint scale_polynomial_near c p : list (nat * Float) :=
match p with
| nil => nil
| (n,a) :: q => ( n , mul_near c a) :: scale_polynomial_near c q
end.

We can prove by induction on the structure of the polynomial (which is merely a list), that the operation
scale_polynomial_near outputs a polynomial that is sorted with respect to the degrees.

Lemma scale_polynomial_near_sorted: forall c p,
is_sorted p -> is_sorted (scale_polynomial_near c p).

The error component of the scaled polynomial is the function scale_polynomial_near_error defined as
follows.

Definition scale_polynomial_near_error c : list (nat * Float) -> Float :=
fold_right
( fun na => add_up (mul_err_bnd c (snd na)) )
zero_exact.

Here scale_polynomial_near_error calculates the sum
∑

u(c ×u ai −u c ×d ai )÷u 2 using a right fold.
The error component of the polynomial model is then

Definition scale_polynomial_model_error c t : Float :=
add_up (mul_up (abs_exact c) t.(error))

(scale_polynomial_near_error c t.(polynomial)).

These lead to the definition of the scaled model as follows.
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Definition scale_polynomial_model c t : PolynomialModel :=
{| polynomial := scale_polynomial_near c t.(polynomial)
; error := scale_polynomial_model_error c t |}.

The semantics of this operation with respect to the modelling relation is captured by the following correctness
theorem (cf. Lemma 5.10).

Theorem scale_polynomial_model_correct: forall c t f,
models t f -> models (scale_polynomial_model c t) ( fun x => inj(c) * f(x)).

7.3.3 Addition

Addition of polynomial models is implemented as an operation:

add_polynomial_models : PolynomialModel −→ PolynomialModel −→ PolynomialModel

The polynomial component needs an auxiliary function that adds up two polynomials using add_near. This is
listed as the Coq function add_polynomials_near. Using a curried version of this alongside a lemma stating the
sortedness of the sum we can form the polynomial component of the sum: the reason why we need to take a single
argument p1p2 rather than two arguments p1 and p2 is that the well-foundedness of the function requires recursion
on a single argument.

Function add_polynomials_near (p1p2: list (nat * Float) * list (nat * Float))
{measure ( fun l1l2 => (length (fst l1l2) + length (snd l1l2))) p1p2}

: list (nat * Float) :=
match p1p2 with
| (nil, nil) => nil
| (nil, (n2,a2)::q2) => (n2,a2)::q2
| ((n1,a1) :: q1, nil) => (n1,a1)::q1
| ((n1,a1) :: q1 , (n2,a2)::q2) =>

match lt_eq_lt_dec n1 n2 with
| inleft (left _) => (n1,a1) :: add_polynomials_near (q1,(n2,a2)::q2)
| inleft (right _) => (n1,add_near a1 a2) :: add_polynomials_near (q1,q2)
| inright _ => (n2,a2) :: add_polynomials_near ((n1,a1)::q1,q2)
end

end.

For calculating the error we use the following function that recursively outputs the list containing the summands
(ai +u bi −u ai +d bi )÷u 2 corresponding to the common degrees (cf. 5.5.3).

Function add_polynomials_near_errors (p1p2: list (nat * Float) * list (nat * Float))
{measure ( fun l1l2 => (length (fst l1l2) + length (snd l1l2)))}

: list (nat * Float) :=
match p1p2 with
| (nil, nil) => nil
| (nil, (n2,a2)::q2) => nil
| ((n1,a1)::q1, nil) => nil
| ((n1,a1)::q1, (n2,a2)::q2) =>

match lt_eq_lt_dec n1 n2 with
| inleft (left _) => add_polynomials_near_errors (q1,(n2,a2)::q2))
| inleft (right _) => (n1,add_err_bnd a1 a2)

:: add_polynomials_near_errors (q1,q2)
| inright _ => add_polynomials_near_errors ((n1,a1)::q1,q2)
end

end.

The error of the polynomial addition is computed by summing the errors of the original terms.

Definition sum_add_up : list(nat * Float) -> Float :=
fold_right ( fun na => add_up (snd na)) zero_exact.
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Then we can sum up the elements of the output list using add_up to obtain the error component.

Definition add_polynomial_models_error t1 t2 : Float :=
add_up (add_up t1.(error) t2.(error))

(sum_add_up (add_polynomials_near_errors (t1.(polynomial),t2.(polynomial)))).

The sum of the two polynomial models is then defined as

Definition add_polynomial_models t1 t2 : PolynomialModel :=
{| polynomial:= add_polynomials_near (t1.(polynomial),t2.(polynomial))
; error:=add_polynomial_models_error t1 t2 |}.

We can show that the polynomial addition preserves sorting.

Lemma add_polynomials_sorted : forall p1 p2, is_sorted p1 -> is_sorted p2 ->
is_sorted (add_polynomials_near (p1,p2)).

The correctness theorem for addition, i.e. the formalised version of 5.11, is the following.

Theorem add_polynomial_models_correct:
forall t1 t2 f1 f2, models t1 f1 -> models t2 f2 ->

models (add_polynomial_models t1 t2) ( fun x => f1(x) + f2(x)).

7.3.4 Multiplication

The multiplication of polynomial models can be defined in terms of other operations. We first define multiplication
of a polynomial model by a polynomial in term of multiplication by monomials axn .

Definition multiply_monomial_polynomial_model n a t :=
scale_polynomial_model a (power_polynomial_model n t).

Fixpoint multiply_polynomial_polynomial_model p t :=
match p with
| nil => zero_polynomial_model
| (n,a) :: q =>

add_polynomial_models
( multiply_monomial_polynomial_model a n t )
( multiply_polynomial_polynomial_model q t )

end.

We also need multiplication by an error bound, which is a special case of the polynomial model 0± e.

Definition multiply_error_polynomial_model e t :=
| polynomial:= nil; error:=mul_up e (norm_polynomial_model t) |.

The multiplication operation is then:

Definition multiply_polynomial_models t1 t2 :=
add_polynomial_models

(multiply_polynomial_polynomial_model t1.(polynomial) t2)
(multiply_error_polynomial_model t1.(error) t2).

The correctness result is formalised as follows:

Theorem multiply_polynomial_models_correct: forall t1 t2 f1 f2,
models t1 f1 -> models t2 f2 ->

models (multiply_polynomial_models t1 t2) ( fun x => f1(x) * f2(x)).

This finishes the Coq formalisation of basic arithmetic operations and their machine-checked correctness proofs.
We emphasise that such a restricted (one-dimensional) version of our polynomial model calculus is really just the
beginning of a much larger verification endeavour that we sketched in the beginning of this section. Still, our formal-
isation shows that the axiomatisation for the floating point structure are indeed enough for basic validated arithmetic.
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In fact by inspecting the Coq code one can observe that the axiom flt_one is not necessary for basic arithmetic that
we implemented. Furthermore the axiom flt_add_n can be replaced by weaker statement flt_add_n_u_abs
that was presented as lemma in Sect. 7.1. Likewise, the axioms flt_ndiv_n and flt_ndiv_d are not used in
our development. In fact the binary operation ndiv, division of float by arbitrary natural number, is needed later on
for antidifferentiation (Sect. 5.7): if we restrict ourselves to basic arithmetic we could replace ndiv and its three
axioms by a constant 1

2 e ∈ F and an axiom ı
( 1

2 e

) = 1
2 .
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Appendix A: Ariadne C++ Code

A.1 Additions and Scalar Multiplication

PolynomialModel add(const PolynomialModel& x, const PolynomialModel& y)
{

PolynomialModel r(x.arguement_size());
set_rounding_upward();
Float te=0.0;
PolynomialModel::const_iterator xiter=x.begin();
PolynomialModel::const_iterator yiter=y.begin();
while(xiter!=x.end() && yiter!=y.end()) {

if(xiter->index()<yiter->index()) {
r.append(xiter->index(),xiter->coefficient());
++xiter;

} else if(yiter->index()<xiter->index()) {
r.append(yiter->index(),yiter->coefficient());
++yiter;

} else {
assert(xiter->index()==yiter->index());
const Float& xv=xiter->coefficient();
const Float& yv=yiter->coefficient();
set_rounding_upward();
Float u=xv+yv;
Float ml=-xv; ml-=yv;
te+=(u+ml);
set_rounding_to_nearest();
Float c=xiter->coefficient()+yiter->coefficient();
if(c!=0) { r.append(xiter->index(),c); }
++xiter; ++yiter;

}
}

while(xiter!=x.end()) {
r.append(xiter->index(),xiter->coefficient());
++xiter;

}
while(yiter!=y.end()) {

r.append(yiter->index(),yiter->coefficient());
++yiter;

}

set_rounding_upward();
r.error()=x.error();
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r.error()+=y.error();
r.error()+=(te/2);
set_rounding_to_nearest();

}

void _scal_approx(PolynomialModel& r, const Float& c)
{

Float& re=r.error();
set_rounding_upward();
Float u,ml;
Float te=0; // Twice the maximum accumulated error
Float pc=c;
Float mc=-c;
for(PolynomialModel::const_iterator riter=r.begin(); riter!=r.end(); ++riter) {

const Float& rv=riter->coefficient();
u=rv*pc;
ml=rv*mc;
te+=(u+ml);

}
re*=abs(c);
re+=te/2;

set_rounding_to_nearest();
Float m=c;
for(PolynomialModel::iterator riter=r.begin(); riter!=r.end(); ++riter) {

riter->coefficient()*=m;
}
return;

}

A.2 Evaluation Using Horner’s Rule

The following algorithm [14] evaluates a polynomial using Horner’s rule, assuming terms are ordered reverse-lex-
icographically. In other words, the term in xα precedes that in xβ if, and only if, for some j, α j > β j and αi < βI

for all i < j .

template<class X, class Y>
Y horner_evaluate(const Polynomial<X>& p, const Vector<Y>& x)
{

typedef typename Polynomial<X>::const_iterator const_iterator;
Y z=x[0]*0; // The zero element of the ring Y
array<Y> r(p.argument_size(),z); // An array of working ‘‘registers’’

const_iterator iter=p.begin();
const uint n=p.argument_size();
uint k=n; // The current working register
uint j=k; // The lowest register containing a non-zero value
MultiIndex na=iter->index().begin(); // The values of the next multi-index
MultiIndex a=na;
X c=iter->coefficient();
++iter;
while(iter!=p.end()) {

na=iter->index().begin();
k=n-1;
while(a[k]==na[k]) { --k; }

// Set r[k]=(((c+r[0])*x[0]ˆa[0]+r[1])
// *x[1]ˆa[1]+...+r[k])*x[k]ˆ(a[k]-na[k])
Y t=c;
for(uint i=0; i!=min(j,k); ++i) {
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for(uint ii=0; ii!=a[i]; ++ii) {
t=t*x[i];

}
}
for(uint i=min(j,k); i!=k; ++i) {

t=t+r[i];
for(uint ii=0; ii!=a[i]; ++ii) {

t=t*x[i];
}
r[i]=z;

}
if(j<=k) {

t=t+r[k];
}
for(uint ii=na[k]; ii!=a[k]; ++ii) {

t=t*x[k];
}
r[k]=t;
j=k;
c=iter->coefficient();
a=na;
++iter;

}
// Set r=(((c+r[0])*x[0]ˆa[0]+r[1])*x[1]ˆa[1]+...+r[n-1])*x[n-1]ˆ(a[n-1])
Y t=c;
for(uint i=0; i!=j; ++i) {

for(uint ii=0; ii!=a[i]; ++ii) {
t=t*x[i];

}
}
for(uint i=j; i!=n; ++i) {

t=t+r[i];
for(uint ii=0; ii!=a[i]; ++ii) {

t=t*x[i];
}

}
return t;

}

Appendix B: The Perturbed Interval Newton Operator

Theorem B.1 Let f ∈ C(Rn;Rn), p ∈ C1(Rn;Rn) and X ⊂ R
n be convex and compact. Let Np be the operator

defined by

Np( f, X, p, x) = x − 〈Dp(X)〉−1(p(x)+ e(X)). (B.1)

where e(x) = f (x)− p(x). If f has a zero at x∗ ∈ X then x∗ ∈ Np( f, X, p, x), and if Np( f, X, p, x) ⊂ X, then
f has a zero X.

In the proof we will need the difference operator

Dp(x1, x2) =
1

∫

0

Dp((1− s)x1 + sx2)ds (B.2)

which is easily seen to satisfy

p(x1)− p(x2) = Dp(x1, x2) (x1 − x2) (B.3)
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by the mean value theorem. By definition, if X is convex, then Dp(x1, x2) ∈ conv{Dp(x) | x ∈ X} = 〈Dp(X)〉
for any x1, x2 ∈ X .

Proof Suppose x∗ is a zero of f . Then p(x∗) = f (x∗) − e(x∗) = −e(x∗), so p(x∗) − p(x) = −e(x∗) − p(x).
Then Dp(x∗, x)(x∗ − x) = −e(x∗)− p(x), so x∗ = x − Dp(x∗, x)−1(p(x)+ e(x∗)). Taking convex hulls yields
x∗ ∈ x − 〈Dp(X)〉−1(p(x)+ e(X)) = Np( f, X, p, x) as required.

Suppose Np( f, X, p, x) ⊂ X . Fix x ∈ X and define the Newton-like function n(z) = z − Dp(x, z)−1 f (z), so
that n(z) = z ⇐⇒ f (z) = 0. For z ∈ X ,

n(z) = z − Dp(x, z)−1(p(z)+ e(z)) = z − Dp(z, x)−1(p(x)+ Dp(z, x)(z − x)+ e(z))

= z − (z − x)− Dp(z, x)−1(p(x)+ e(z)) = x − Dp(z, x)−1(p(x)+ e(z))

∈ x − 〈Dp(X)〉−1(p(x)+ e(X)) = Np( f, X, p, x).

Hence n(X) ⊂ X , so n is a function mapping a compact convex subset of R
n into itself, so has a fixed point x∗

which is a zero of f . ��
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