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Abstract
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1 Introduction

This paper covers a research issue which arises from the following truncated matricial
Hausdorff type moment problem: Given real numbers α and β such that α < β and a
finite sequence (s j )mj=0 of complex q × q matrices, describe the set of all non-negative

Hermitian q × q measures σ which satisfy s j = ∫
[α,β] t

jσ(dt) for every choice of
j ∈ Z0,m . In fact, the solutions σ to this matricial moment problem are in an one-to-
one correspondence with certain holomorphic matrix-valued functions F . The core
objective of our investigations is to characterize the set of all possible values F(w)

which these matrix functions can take at an arbitrarily fixed point w of the open upper
complex half-plane �+.

In the papers [14, 27, 36], theWeyl sets for amatricial truncatedHamburgermoment
problem and a matricial truncated Stieltjes moment problem were determined. The
main goal of this paper is a representation of the correspondingWeyl set for a matricial
truncated Hausdorff moment problem. In contrast to our considerations in the Ham-
burger and Stieltjes case (see [14, 36]), wewant to restrict our following considerations
to the so-called non-degenerate case. It turns out that similar as in the Stieltjes case,
in the Hausdorff case one can represent the corresponding Weyl set as the intersection
of two matrix balls whose parameters are constructed explicitly from the given data.
In order to prove the main results of this work, a couple of statements of a technical
nature are required. For the convenience of the reader, we also find it advantageous to
formulate some results in this work that have been proven elsewhere.

This paper is organized as follows: In Sect. 2, the considered moment problems
are formulated. In Sect. 3, known solvability conditions for the matricial truncated
Hamburger and Hausdorff power moment problems are stated. These necessary and
sufficient conditions for solvability are formulated with the help of classes of spe-
cial sequences of complex matrices that are also essential for us in the following.
In Sect. 4, the Hamburger and the Hausdorff moment problems are transformed into
interpolation problems for special classes of holomorphic matrix functions by means
of integral transformations, as is usually the case. These transformed problems are
the focus of our further considerations. In particular, there we formulate our goal in
detail. In the following sections, several known and new technical tools are provided.
Thus, Sect. 5 is aimed to recall the parameterizations of the classes of sequences of
matrices which play key roles in the matricial Hamburger and Hausdorff moment
problems. In Sect. 6, the parameters introduced for the Hamburger case are combined
with orthogonal matrix polynomials, while in Sect. 7 the corresponding matrix balls
are then explicitly represented with the help of some family of rational matrix func-
tions. In Sect. 8, the classes of sequences of complex matrices, which are relevant for
the Hausdorff moment problem, are linked with orthogonal matrix polynomials. In
Sect. 9, we repeat shortly the Fα,β -transformation for matrix sequences, which was
introduced in [21] and constitutes the elementary step of a Schur algorithm in the
class of [α, β]-non-negative definite sequences. In Sect. 10, special classes of mero-
morphic matrix functions are presented. In Sects. 11 and 12, we prove descriptions of
the solution set of the matricial truncated Hausdorff moment problem. In contrast to
the corresponding parameterization in [23], the corresponding first main result of the
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present paper, proven in Theorem 11.29, contains a representation using orthogonal
matrix polynomials, whereby a certain additional requirement is made. Section13 is
aimed at proving that the interesting set of all possible values of solutions of the (trans-
formed) moment problem is a subset of two matrix balls. In Sects. 14 and 15, the main
concern of the present work is realized, namely the description of the values of the
solutions of the truncated matricial Hausdorff moment problem in the non-degenerate
case.

2 Preliminaries

Let C, R, N0, and N be the set of all complex numbers, the set of all real numbers,
the set of all non-negative integers, and the set of all positive integers, respectively.
For every choice of υ, ω ∈ R ∪ {−∞,∞}, let Zυ,ω be the set of all integers k such
that υ ≤ k ≤ ω. Throughout this paper, if not explicitly mentioned otherwise, let
p, q ∈ N and let κ ∈ N0 ∪ {∞}. If X is a non-empty set, then X p×q stands for
the set of all p × q matrices each entry of which belongs to X , and X p is short for
X p×1. We use C

q×q
� (resp. C

q×q� ) to designate the set of all non-negative Hermitian

(resp. positive Hermitian) complex q × q matrices. Furthermore, let C
q×q
H be the set

of all Hermitian complex q × q matrices. If A and B are complex q × q matrices,
then we will write A � B (or B � A) to indicate that A and B are Hermitian matrices
such that B − A is a non-negative Hermitian matrix. Furthermore, for all A ∈ C

q×q ,
we will use �A and �A to denote the real part of A and the imaginary part of A,
respectively: �A := 1

2 (A + A∗) and �A := 1
2i (A − A∗). If A ∈ C

q×q , then let det A
be the determinant of A. For all A ∈ C

p×q , let ‖A‖ be the operator norm of A.
If (	,A ) is a measurable space, then each σ -additive mapping defined onA with

values in C
q×q
� is called a non-negative Hermitian q × q measure on (	,A ) and

we will use the notation M�
q (	,A ) in order to denote the set of all non-negative

Hermitian q × q measures on (	,A ). If μ = [μ jk]qj,k=1 is a non-negative Her-

mitian q × q measure on (	,A ), then the notation L1(	,A , μ; C) stands for the
set of all Borel measurable functions f : 	 → C that satisfy

∫
	
| f |dν jk < ∞

for all j, k ∈ Z1,q , where ν jk is the variation of the complex measure μ jk . If
f ∈ L1(	,A , μ; C), then let

∫
A f dμ := [∫A f dμ jk]qj,k=1 for each A ∈ A and

we will also write
∫
A f (ω)μ(dω) for this integral. Observe that there are equivalent

criteria for integrability (see, e. g. [36, Lem. B.1] or [24, Rem. 7.1]). Let BR (resp.
BC) be the σ -algebra of all Borel subsets of R (resp. C). For all 	 ∈ BR\{∅}, let
B	 be the σ -algebra of all Borel subsets of 	 and let M�

q (	) be the set of all non-

negative Hermitian complex q × q measures on (	,B	), i. e., M�
q (	) is short for

M�
q (	,B	). For all 	 ∈ BR\{∅}, let M�

q,κ (	) be the set of all σ ∈ M�
q (	)

such that, for all j ∈ Z0,κ , the function f j : 	 → C defined by f j (t) = t j

belongs to L1(	,B	, σ ; C). If μ ∈ M�
q,κ (	), then, for all j ∈ Z0,κ , the matrix

s(μ)
j := ∫

	
t jμ(dt) is called the power moment of μ of order j . Obviously, we have

M�
q (	) = M�

q,0(	) ⊆ M�
q,�(	) ⊆ M�

q,�+1(	) ⊆ M�
q,∞(	) for all � ∈ N0 and
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s(μ)
0 = μ(	) for all μ ∈ M�

q (	). If 	 is bounded, then one can easily see that

M�
q (	) = M�

q,∞(	).
We now state the general form of the moment problems lying in the background of

our considerations:

Problem MP[	; (s j )κj=0,=]: Let κ ∈ N0 ∪ {∞} and let (s j )κj=0 be a sequence of

complex q × q matrices. Parametrize the setM�
q [	; (s j )κj=0,=] of all σ ∈ M�

q,κ (	)

satisfying s(σ )
j = s j for all j ∈ Z0,κ .

Problem MP[	; (s j )mj=0,�]: Let m ∈ N0 and let (s j )mj=0 be a sequence of complex

q × q matrices. Parametrize the set M�
q [	; (s j )mj=0,�] of all σ ∈ M�

q,m(	) for

which the matrix sm − s(σ )
m is non-negative Hermitian and, in the case m ≥ 1, for

which additionally s(σ )
j = s j holds true for all j ∈ Z0,m−1.

Throughout this paper, let α and β be two arbitrarily given real numbers sat-
isfying α < β and let δ := β − α. In what follows, we mainly consider the
Hausdorff moment problem, i. e., the case that 	 is the compact interval [α, β]
of the real axis R. As mentioned above, we have M�

q ([α, β]) = M�
q,∞([α, β]).

Since each solution of MP[[α, β]; (s j )κj=0,=] generates in a natural way solutions
of MP[[α,∞); (s j )κj=0,=], MP[(−∞, β]; (s j )κj=0,=], and MP[R; (s j )κj=0,=], we
will also use results concerning the treatment of these moment problems.

We would like to point out that we are going to apply a somewhat more complex
notation for thematrix polynomials used in thiswork. The reason for this is that simpler
notations for the corresponding polynomials in connection with the Hamburger and
Stieltjes moment problems have already been used by the authors and we want to
avoid any confusion.

3 Solvability Criteria for theMatricial Hamburger and Hausdorff
Power Moment Problems

In order to state solvability criteria of the matricial Hamburger moment problem (	 =
R) and the matricial Hausdorff moment problem (	 = [α, β]), we introduce certain
sets of sequences of complex q × q matrices which are determined by properties of
particular block Hankel matrices built of them.

Let n ∈ N0 and let (s j )2nj=0 be a sequence of complex q × q matrices. Then (s j )2nj=0
is called R-non-negative definite (resp. R-non-positive definite) if the block Hankel
matrix

Hn := [s j+k]nj,k=0 (3.1)

is non-negative Hermitian (resp. positive Hermitian). For all n ∈ N0, we will write
H�

q,2n (resp. H�
q,2n) for the set of all sequences (s j )2nj=0 of complex q × q matri-

ces which are R-non-negative definite (resp. R-positive definite). If n ∈ N0 and if
(s j )2nj=0 ∈ H�

q,2n (resp. (s j )2nj=0 ∈ H�
q,2n), then, for each m ∈ Z0,n , and preceding
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(s j )2mj=0 obviously belongs to H�
q,2m (resp. H�

q,2m). Thus, let H�
q,∞ (resp. H�

q,∞) be
the set of all sequences (s j )∞j=0 of complex q × q matrices such that, for all n ∈ N0,

the sequence (s j )2nj=0 belongs toH�
q,2n (resp.H�

q,2n). Note that in [12] and preceding
publications R-non-negative definite (resp. R-positive definite) sequences of complex
q × q matrices are also said to be Hankel non-negative definite (resp. Hankel positive
definite).

Awell-known solvability criterion for ProblemMP[R; (s j )2nj=0,�] is the following:
Theorem 3.1 Let n ∈ N0 and let (s j )2nj=0 be a sequence of complex q × q matrices.

Then M�
q [R; (s j )2nj=0,�] �= ∅ if and only if (s j )2nj=0 ∈ H�

q,2n.

There are different proofs of Theorem3.1, for example [3, Thm. 3.2], [30, Lem. 4.2],
and [12, Thm. 4.16]. In particular, the proof given in [3] is based on a Schur-type
algorithm as well as a matricial version of the Theorem of Hamburger–Nevanlinna.

For all n ∈ N0, letH�,e
q,2n (resp.H�,e

q,2n) be the set of all sequences (s j )2nj=0 of complex
q × q matrices for which there exist complex q × q matrices s2n+1 and s2n+2 such
that (s j )

2(n+1)
j=0 belongs to H�

q,2n+2 (resp. H�
q,2n+2). Furthermore, for all n ∈ N0,

we will use H�,e
q,2n+1 (resp. H�,e

q,2n+1) to denote the set of all sequences (s j )
2n+1
j=0 of

complex q × q matrices for which there exists a complex q × q matrix s2n+2 such
that (s j )

2(n+1)
j=0 belongs toH�

q,2n+2 (resp.H�
q,2n+2). For each m ∈ N0, the elements of

the set H�,e
q,m are called R-non-negative definite extendable (or Hankel non-negative

definite extendable) sequences. Observe that H�,e
q,2n = H�

q,2n for all n ∈ N0. For

technical reasons, we set H�,e
q,∞ :=H�

q,∞ and H�,e
q,∞ :=H�

q,∞.
Now we can formulate the announced well-known solvability criterion for Prob-

lem MP[R; (s j )κj=0,=]:
Theorem 3.2 ([12, Thm. 4.17]) Let κ ∈ N0 ∪ {∞} and let (s j )κj=0 be a sequence of

complex q × q matrices. ThenM�
q [R; (s j )κj=0,=] �= ∅ if and only if (s j )κj=0 ∈ H�,e

q,κ .

The proof of Theorem 3.2 in [12] is a modification of the proof in [2, Lem. 2.10],
where κ is supposed to be an even non-negative integer. For the case κ = ∞, a proof
of Theorem 3.2 is stated in [15, Thm. 6.6].

In order to formulate a solvability criterion for the matricial Hausdorff power
moment problem, we introduce some further block Hankel matrices. Let (s j )κj=0 be
a sequence of complex p × q matrices. Then let the block Hankel matrices Kn and
Gn be given by Kn := [s j+k+1]nj,k=0 for all n ∈ N0 such that 2n + 1 ≤ κ , and by
Gn := [s j+k+2]nj,k=0 for all n ∈ N0 fulfilling 2n + 2 ≤ κ .

Notation 3.3 Suppose κ ≥ 1 and let (s j )κj=0 be a sequence of complex p × qmatrices.

Then let the sequences (a j )
κ−1
j=0 and (b j )

κ−1
j=0 be given by

a j := − αs j + s j+1 and b j := βs j − s j+1, (3.2)

respectively. Furthermore, if κ ≥ 2, then let the sequence (c j )
κ−2
j=0 be given by

c j := − αβs j + (α + β)s j+1 − s j+2. (3.3)
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To emphasize that a certain (block) matrix X is built from a sequence (s j )κj=0, we

sometimes write X 〈s〉 for X .
Notation 3.4 For each matrix Xk = X 〈s〉

k built from the sequence (s j )κj=0, we denote

(if possible) by Xα,k,• := X 〈a〉
k , by X•,k,β := X 〈b〉

k , and by Xα,k,β := X 〈c〉
k the corre-

sponding matrix built from the sequences (a j )
κ−1
j=0, (b j )

κ−1
j=0, and (c j )

κ−2
j=0 (given by

Notation 3.3) instead of (s j )κj=0, respectively.

In view of Notations 3.3 and 3.4, we get in particular Hα,n,• = −αHn + Kn and
H•,n,β = βHn − Kn for all n ∈ N0 with 2n + 1 ≤ κ and Hα,n,β = −αβHn + (α +
β)Kn − Gn for all n ∈ N0 with 2n + 2 ≤ κ .

Definition 3.5 (cf. [19, Def. 4.2]) Let α, β ∈ R be such that α < β. Then let F�
q,0,α,β

(resp. F�
q,0,α,β ) be the set of all sequences (s j )0j=0 of complex q × q matrices for

which the block Hankel matrix H0 is non-negative (resp. positive) Hermitian, i. e.,
for which s0 ∈ C

q×q
� (resp. s0 ∈ C

q×q� ) holds true. For each n ∈ N, denote by

F�
q,2n,α,β (resp.F�

q,2n,α,β ) the set of all sequences (s j )2nj=0 of complex q × q matrices,
for which the block Hankel matrices Hn and Hα,n−1,β are both non-negative (resp.

positive) Hermitian. For each n ∈ N0, denote by F�
q,2n+1,α,β (resp. F�

q,2n+1,α,β )

the set of all sequences (s j )
2n+1
j=0 of complex q × q matrices for which the block

Hankel matrices Hα,n,• and H•,n,β are both non-negative (resp. positive) Hermitian.

Furthermore, denote by F�
q,∞,α,β (resp. F�

q,∞,α,β ) the set of all sequences (s j )∞j=0

of complex q × q matrices satisfying (s j )mj=0 ∈ F�
q,m,α,β (resp. (s j )mj=0 ∈ F�

q,m,α,β )

for all m ∈ N0. For each τ ∈ N0 ∪ {∞}, the sequences belonging to F�
q,τ,α,β (resp.

F�
q,τ,α,β ) are said to be [α, β]-non-negative definite (resp. [α, β]-positive definite).
The reason for defining F�

q,∞,α,β and F�
q,∞,α,β in the described way can be seen

from Proposition 5.10 below. Note that in [19], the sequences belonging to F�
q,κ,α,β

were called [α, β]-Hausdorff non-negative definite.
A necessary and sufficient condition for the solvability of the Hausdorff power

moment Problem MP[[α, β]; (s j )κj=0,=] is the following:
Theorem 3.6 (cf. [6, Thm. 1.3] and [7, Thm. 1.3]) Let α, β ∈ R be such that α < β,
let κ ∈ N0 ∪ {∞}, and let (s j )κj=0 be a sequence of complex q × q matrices. Then

M�
q [[α, β]; (s j )κj=0,=] �= ∅ if and only if (s j )κj=0 ∈ F�

q,κ,α,β .

At the end of the section, let us observe the following remark.

Remark 3.7 Let (s j )κj=0 ∈ F�
q,κ,α,β and let σ ∈ M�

q [[α, β]; (s j )κj=0,=]. In
view of [16, Prop. B.5], one can easily check the following statements: If κ ≥
1, then μa : B[α,β] → C

q×q given by μa(B) := ∫
B(t − α)σ(dt) belongs to

M�
q [[α, β]; (a j )

κ−1
j=0,=] and μb : B[α,β] → C

q×q defined by μb(B) := ∫
B(β −

t)σ (dt) belongs to M�
q [[α, β]; (b j )

κ−1
j=0,=]. Furthermore, if κ ≥ 2, then μc :

B[α,β] → C
q×q given by μc(B) := ∫

B(β − t)(t − α)σ(dt) belongs to

M�
q [[α, β]; (c j )

κ−2
j=0,=].
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4 Reformulation of the Hamburger and HausdorffMoment Problems

In the following sections, we consider several classes of functions. For this reason, we
introduce some further notation. If G is a non-empty subset of C and if f : G → C is
a complex-valued function, then letZ( f ) := {z ∈ G : f (z) = 0}. Now let G be a non-
empty open subset of C. If g is a complex-valued function meromorphic in G, then we
useH(g) in order to denote the set of all points at which g is holomorphic and we have
Z(g) = {z ∈ H(g) : g(z) = 0}. A p × q matrix-valued function G = [g jk] j=1,...,p

k=1,...,q
is

called meromorphic in G if g jk is meromorphic in G for all j ∈ Z1,p and all k ∈ Z1,q .
In this case, let H(G) := ⋂p

j=1

⋂q
k=1H(g jk). Let �+ := {z ∈ C : �(z) ∈ (0,∞)}

and let �− := {z ∈ C : �(z) ∈ (−∞, 0)}. The class Rq(�+) of all q × q Herglotz–
Nevanlinna functions in �+ consists of all matrix-valued functions F : �+ → C

q×q

which are holomorphic in �+ and which satisfy �F(z) ∈ C
q×q
� for all z ∈ �+.

Detailed observations on matrix-valued Herglotz–Nevanlinna functions can be found
in [16, 25].

For our consideration, the subclass R0,q(�+) of Rq(�+) given by

R0,q(�+) :=
{

F ∈ Rq(�+) : sup
y∈[1,∞)

y‖F(iy)‖ < ∞
}

plays a key role. The functions belonging to R0,q(�+) admit a further integral rep-
resentation. This is a well-known matricial generalization of a classical result due to
Nevanlinna [29]:

Theorem 4.1 (a) For each F ∈ R0,q(�+), there exists a unique σ ∈ M�
q (R) such

that

F(w) =
∫

R

1

x − w
σ(dx) for each w ∈ �+. (4.1)

(b) If σ ∈ M�
q (R), then F : �+ → C

q×q defined by (4.1) belongs toR0,q(�+).

Remark 4.2 If F ∈ R0,q(�+), then the unique σ ∈ M�
q (R) for which (4.1) holds true

is called theR-Stieltjes measure (orR-spectral measure or matricial spectral measure)
of F . We also write σF instead of σ to indicate that σF is the R-Stieltjes measure of
F . Conversely, if σ ∈ M�

q (R) is given, then F : �+ → C
q×q defined by (4.1) is said

to be the R-Stieltjes transform of σ .

Now one can reformulate Problems MP[R; (s j )κj=0,=] and MP[R; (s j )2nj=0,�] in
terms of the following interpolation problems in the class R0,q(�+):

Problem RP[�+; (s j )κj=0,=]: Let κ ∈ N0 ∪ {∞} and let (s j )κj=0 be a sequence of
complex q × q matrices. Parametrize the set R0,q [�+; (s j )κj=0,=] of all matrix-
valued functions F ∈ R0,q(�+) the R-Stieltjes measure of which belongs to

M�
q [R; (s j )κj=0,=].
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Problem RP[�+; (s j )2nj=0,�]: Let n ∈ N0 and let (s j )2nj=0 be a sequence of complex

q × q matrices. Parametrize the set R0,q [�+; (s j )2nj=0,�] of all matrix-valued func-

tions F ∈ R0,q(�+) theR-Stieltjesmeasure ofwhich belongs toM�
q [R; (s j )2nj=0,�].

Kovalishina [27] was the first who gave a parameterization of the solution set of
Problem RP[�+; (s j )2nj=0,�] in the so-called non-degenerate matrix case. Parameter-
izations of the solution sets of the above formulated problems are treated in the general
matrix case in [2–4, 13, 17, 35].

In order to reformulate Problem MP[[α, β]; (s j )κj=0,=] in an analogous form, we
consider the class Rq(C \ [α, β]) of all matrix-valued functions F : C \ [α, β] →
C
q×q which are holomorphic in C \ [α, β] and which satisfy �F(z) ∈ C

q×q
� for

all z ∈ �+ as well as F(x) ∈ C
q×q
� for all x ∈ (−∞, α) and −F(x) ∈ C

q×q
�

for all x ∈ (β,∞). The functions belonging to Rq(C \ [α, β]) admit an integral
representation as well:

Theorem 4.3 ([6, Thm. 1.1]) Let α, β ∈ R be such that α < β. If F ∈ Rq(C \ [α, β]),
then there exists a unique measure σ̈ ∈ M�

q ([α, β]) such that

F(z) =
∫

[α,β]
1

t − z
σ̈ (dt) (4.2)

holds true for all z ∈ C\[α, β]. Conversely, if σ̈ ∈ M�
q ([α, β]), then F : C\[α, β] →

C
q×q defined by (4.2) belongs toRq(C \ [α, β]).

If F ∈ Rq(C \ [α, β]), then the unique non-negative Hermitian measure σ̈ which

belongs to M�
q ([α, β]) and which fulfills (4.2) for all z ∈ C \ [α, β] is called the

R[α, β] -measure of F and will be denoted by σ̈F .
By virtue of Theorem 4.3, ProblemMP[[α, β]; (s j )κj=0,=] admits a reformulation

as an equivalent problem for functions belonging to the class Rq(C \ [α, β]):

Problem FP[[α, β]; (s j )κj=0,=]: Let α, β ∈ R be such that α < β, let κ ∈ N0 ∪ {∞},
and let (s j )κj=0 be a sequence of complex q × q matrices. Parametrize the set
Rq [[α, β]; (s j )κj=0,=] of all F ∈ Rq(C \ [α, β]) with R[α, β]-measure σ̈F belong-

ing toM�
q [[α, β]; (s j )κj=0,=].

In particular, ProblemFP[[α, β]; (s j )κj=0,=] has a solution if and only if Prob-
lem MP[[α, β]; (s j )κj=0,=] has a solution. From Theorems 3.6 and 4.1, one can see
that the set Rq [[α, β]; (s j )κj=0,=] is non-empty if and only if the sequence (s j )κj=0

belongs to F�
q,κ,α,β .

Now we can exactly formulate the main goal of this paper. For each w ∈ �+, we
are going to parametrize the set

{
F(w) : F ∈ Rq [[α, β]; (s j )

m
j=0,=]

}
(4.3)
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where we suppose that an arbitrary m ∈ N0 and an arbitrary sequence (s j )mj=0 ∈
F�
q,m,α,β are given.
At the end of this section, let us observe that in [23, Notation 4.19], from a function

of classRq(C \ [α, β]) the following three additional functions are derived:

Remark 4.4 Let F ∈ Rq(C \ [α, β]) with R[α, β]-measure σ̈F . Then the functions
Fa, Fb, Fc : C \ [α, β] → C

q×q defined by

Fa(z) := (z − α)F(z) + σ̈F ([α, β]), Fb(z) := (β − z)F(z) − σ̈F ([α, β])

and

Fc(z) := (β − z)(z − α)F(z) + (α + β − z)σ̈F ([α, β]) −
∫

[α,β]
t σ̈F (dt) (4.4)

belong to Rq(C \ [α, β]) and μa, μb, and μc, respectively, given in Remark 3.7 are
the corresponding R[α, β]-measures (see [23, Prop. 4.20]).

Remark 4.5 ([23, Rem. 5.11]) Let (s j )κj=0 ∈ F�
q,κ,α,β and let F ∈

Rq [[α, β]; (s j )κj=0,=]. If κ ≥ 1, then Fa ∈ Rq [[α, β]; (a j )
κ−1
j=0,=] and Fb ∈

Rq [[α, β]; (b j )
κ−1
j=0,=]. Moreover, if κ ≥ 2, then Fc ∈ Rq [[α, β]; (c j )

κ−2
j=0,=].

5 Parameterization of Sequences of Matrices Belonging to the
ClassesH�

q,2� andF�
q,�,˛,ˇ

In this section, we recall some results concerning parameterizations of sequences
belonging to subclasses ofH�

q,∞.

Remark 5.1 H�,e
q,2τ = H�

q,2τ ⊆ H�,e
q,2τ ⊆ H�

q,2τ and H�
q,2τ �= H�,e

q,2τ for all τ ∈
N0 ∪ {∞}.

Given m ∈ N and complex matrices A1, A2, . . . , Am which have the same number
of columns (resp. rows), then let

col(A j )
m
j=0 :=

⎡

⎢
⎢
⎢
⎣

A1
A2
...

Am

⎤

⎥
⎥
⎥
⎦

(resp. row(Ak)
m
k=0 := [A1, A2, . . . , Am]).

We will work with Moore–Penrose inverses of complex matrices. If A ∈ C
p×q ,

then there is a unique matrix X ∈ C
q×p such that the four equations AX A = A,

X AX = X , (AX)∗ = AX , and (X A)∗ = X A are fulfilled, namely the Moore–
Penrose inverse X of A. For each A ∈ C

p×q , we use A† to denote the Moore–Penrose
inverse of A.
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Notation 5.2 Let (s j )κj=0 be a sequence of complex p × q matrices. For all �,m ∈ N0

such that � ≤ m ≤ κ , let y�,m := col(s j )mj=� and z�,m := row(sk)mk=�. Let�0 := Op×q

and �n := zn,2n−1H
†
n−1yn,2n−1 for each n ∈ N such that 2n − 1 ≤ κ . For all

n ∈ N0 with 2n ≤ κ , let Ln := s2n − �n . For every choice of n ∈ N fulfilling
2n − 1 ≤ κ , we set �n := zn,2n−1H

†
n−1Kn−1H

†
n−1yn,2n−1. For each n ∈ N fulfilling

2n ≤ κ , let Mn := zn,2n−1H
†
n−1yn+1,2n and Nn := zn+1,2nH

†
n−1yn,2n−1. Furthermore,

let �0 := Op×q and �n := Mn + Nn − �n for all n ∈ N fulfilling 2n ≤ κ .

If
[
A B
C D

]
is the block representation of a complex (p + q) × (r + s)matrix M with

p × r block A, then M/A := D − CA†B is called the Schur complement of A in M .
Wewill workwith this notion in particular with respect of the first block representation
of Hn in the following remark.

Remark 5.3 Suppose κ ≥ 2. For all n ∈ N fulfilling 2n ≤ κ , the block representations
Hn = [ Hn−1 yn,2n−1

zn,2n−1 s2n

]
and Hn = [ y0,n−1 Kn−1

sn zn+1,2n

]
as well as Hn = [ z0,n−1 sn

Kn−1 yn+1,2n

]
and

Hn = [ s0 z1,n
y1,n Gn−1

]
hold true.

Let Hr
p×q,0 :=

{
(s j )0j=0 : s0 ∈ C

p×q
}
. Furthermore, for all τ ∈ N ∪ {∞}, let

Hr
p×q,τ be the set of all sequences (s j )τj=0 of complex p × q matrices such that

R(yn,2n−1) ⊆ R(Hn−1) and N (Hn−1) ⊆ N (zn,2n−1) hold true for all n ∈ N fulfill-
ing 2n − 1 ≤ τ .

Remark 5.4 (cf. [12, Remarks 2.1 and A.3]) H�
q,2τ ⊆ Hr

q×q,2τ for all τ ∈ N0 ∪ {∞}.
Using Notation 5.2, we are able to define the announcedH-parameter sequence of

a given sequence (s j )κj=0 of complex q × q matrices. This notion will play a key role
in our further considerations.

Definition 5.5 ([12, Def. 2.28], [13, Def. 5.5]). Let κ ∈ N0 ∪ {∞} and let (s j )κj=0
be a sequence of complex p × q matrices. For each k ∈ N0 fulfilling 2k ≤ κ , let
h2k := s2k − �k and, for each k ∈ N0 fulfilling 2k + 1 ≤ κ , let h2k+1 := s2k+1 − �k .
Then (h j )

κ
j=0 is called the H-parameter sequence (or sequence of canonical Hankel

parameters) of (s j )κj=0.

In particular, we have

h0 = s0, h1 = s1, and h2 = s2 − s1s
†
0s1. (5.1)

In [12, 15], one can find a couple of results on H-parameters. Here we touch only a
few aspects.

Remark 5.6 Let (s j )κj=0 be a sequence of complex q × q matrices, and let (h j )
κ
j=0 be

the H-parameter sequence of (s j )κj=0. For all m ∈ Z0,κ , then (h j )
m
j=0 coincides with

theH-parameter sequence of (s j )mj=0.

Furthermore, we recall a connection to the Schur complement Ln given by Nota-
tion 5.2 (see also Remark 5.3):
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Remark 5.7 Let the assumptions of Definition 5.5 be fulfilled. In view of Definition 5.5
and Notation 5.2, we have h2n = Ln for all n ∈ N0 fulfilling 2n ≤ κ .

Proposition 5.8 ([12, Prop. 2.30(d)], [15, Prop. 2.15(c)]) Let (s j )2κj=0 be a sequence of

complex q × q matrices with H-parameter sequence (h j )
2κ
j=0. Then (s j )2κj=0 belongs

toH�
q,2κ if and only if h2κ ∈ C

q×q� for all k ∈ Z0,κ and h∗
2k−1 = h2k−1 for all k ∈ Z1,κ .

Nowwe again turn our attention to the setsF�
q,κ,α,β andF�

q,κ,α,β considered above.
For each ρ ∈ N0 ∪ {∞} and each non-empty set X , we denote by Sρ(X ) the set

of all sequences (X j )
ρ
j=0 of elements belonging to X . Obviously, the class F�

q,0,α,β

coincides with the set of all sequences (s j )0j=0 with s0 ∈ C
q×q
� . Furthermore, we have

F�
q,2n,α,β =

{
(s j )

2n
j=0 ∈ H�

q,2n : (c j )
2(n−1)
j=0 ∈ H�

q,2(n−1)

}
(5.2)

and

F�
q,2n,α,β =

{
(s j )

2n
j=0 ∈ H�

q,2n : (c j )
2(n−1)
j=0 ∈ H�

q,2(n−1)

}
(5.3)

for all n ∈ N as well as

F�
q,2n+1,α,β =

{
(s j )

2n+1
j=0 ∈ S2n+1(C

q×q) : {(a j )
2n
j=0, (b j )

2n
j=0} ⊆ H�

q,2n

}
(5.4)

and

F�
q,2n+1,α,β =

{
(s j )

2n+1
j=0 ∈ S2n+1(C

q×q) : {(a j )
2n
j=0, (b j )

2n
j=0} ⊆ H�

q,2n

}
(5.5)

for all n ∈ N0.

Remark 5.9 F�
q,κ,α,β ⊆ F�

q,κ,α,β .

Note that essential parts of the following two propositions, which are proved by
algebraic arguments in [19], can immediately also be obtained from Theorem 3.6 and
Remark 3.7.

Proposition 5.10 ([19, Prop. 7.7]) If (s j )κj=0 ∈ F�
q,κ,α,β , then (s j )mj=0 ∈ F�

q,m,α,β

for all m ∈ Z0,κ . Moreover, if (s j )κj=0 ∈ F�
q,κ,α,β , then (s j )mj=0 ∈ F�

q,m,α,β for all
m ∈ Z0,κ .

In view of Proposition 5.10, we have in particular

F�
q,∞,α,β =

{
(s j )

∞
j=0 ∈ H�

q,∞ : (c j )
∞
j=0 ∈ H�

q,∞
}

=
{
(s j )

∞
j=0 ∈ S∞(Cq×q) : {(a j )

∞
j=0, (b j )

∞
j=0} ∈ H�

q,∞
}

. (5.6)
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Proposition 5.11 ([19, Prop. 9.1]) Let (s j )κj=0 ∈ F�
q,κ,α,β . If κ ≥ 1, then both

sequences (a j )
κ−1
j=0 and (b j )

κ−1
j=0 belong to F�

q,κ−1,α,β . Furthermore, if κ ≥ 2, then

(c j )
κ−2
j=0 ∈ F�

q,κ−2,α,β .

Proposition 5.12 ([19, Prop. 7.10]) F�
q,κ,α,β ⊆ H�,e

q,κ and F�
q,κ,α,β ⊆ H�,e

q,κ .

Proposition 5.13 ([19, Propositions 4.8, 7.7 and 11.12]) Let m ∈ N0 and let (s j )mj=0 ∈
F�
q,m,α,β (resp. F�

q,m,α,β ). For all κ ∈ Zm+1,∞, then there is a sequence (sk)κk=m+1 of

complex q × q matrices such that (s j )κj=0 belongs to F�
q,κ,α,β (resp. F�

q,κ,α,β ).

Definition 5.14 ([19, Definitions 10.3 and 10.11]) Let α, β ∈ R be such that α < β,
let κ ∈ N0 ∪ {∞}, and let (s j )κj=0 be a sequence of complex p × q matrices. In
view of Notations 3.4 and 5.2, then the sequences (A j )

κ
j=0 and (B j )

κ
j=0 given by

A2k := αs2k + �α,k,• and B2k := βs2k − �•,k,β for all k ∈ N0 with 2k ≤ κ and by
A2k+1 := �k+1 and B2k+1 := − αβs2k + (α + β)s2k+1 − �α,k,β for all k ∈ N0 with
2k+1 ≤ κ are called the sequence of left matricial interval endpoints associated with
(s j )κj=0 and [α, β] and the sequence of right matricial interval endpoints associated
with (s j )κj=0 and [α, β], respectively. Furthermore, the sequence (D j )

κ
j=0 given by

D j := B j − A j is said to be the sequence of [α, β]-interval lengths associated with
(s j )κj=0.

By virtue of Notation 5.2 and (5.7), we have in particular

A0 = αs0, B0 = βs0, A1 = s1s
†
0s1, B1 = −αβs0 + (α + β)s1 (5.7)

as well as

D0 = δs0 and D1 = −αβs0 + (α + β)s1 − s1s
†
0s1. (5.8)

Remark 5.15 (cf. [23, Rem. 3.23]) Let (s j )κj=0 be a sequence of complex p × q matri-
ces with sequence of left matricial interval endpoints (A j )

κ
j=0, sequence of right

matricial interval endpoints (B j )
κ
j=0, and sequence of [α, β]-interval lengths (D j )

κ
j=0.

For each k ∈ Z0,κ , thematricesAk ,Bk , andDk are built from thematrices s0, s1, . . . , sk .
In particular, for each m ∈ Z0,κ , the sequence of left matricial interval endpoints,
the sequence of right matricial interval endpoints and the sequence of [α, β]-interval
lengths associated with (s j )mj=0 coincide with (A j )

m
j=0, (B j )

m
j=0, and (D j )

m
j=0, respec-

tively.

Proposition 5.16 ([19, Prop. 10.15]) If (s j )κj=0 ∈ F�
q,κ,α,β , then D j ∈ C

q×q
� for each

j ∈ Z0,κ . Moreover, if (s j )κj=0 ∈ F�
q,κ,α,β , then D j ∈ C

q×q� for each j ∈ Z0,κ .

Definition 5.17 ([19, Def. 10.6]) Let α, β ∈ R be such that α < β, let κ ∈ N0 ∪ {∞},
and let (s j )κj=0 be a sequence of complex p × q matrices. Then the sequence (A j )

κ
j=0

given byA0 := s0 and byA j := s j −A j−1 for j ∈ Z1,κ is called the sequence of lower
Schur complements associated with (s j )κj=0 and [α, β]. Furthermore, if κ ≥ 1, then
the sequence (B j )

κ
j=1 given byB j := B j−1−s j is called the sequence of upper Schur

complements associated with (s j )κj=0 and [α, β].
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In view of (5.7), we have in particular A1 = a0,B1 = b0, and B2 = c0.
Taking into account Notations 3.4 and 5.2, the following remark shows the reason

for choosing the notions introduced in Definition 5.17:

Remark 5.18 ([23, Rem. 3.26]) Let (s j )κj=0 be a sequence of complex p × q matrices.
Then A2n = Ln for all n ∈ N0 with 2n ≤ κ and A2n+1 = Lα,n,• for all n ∈ N0 with
2n + 1 ≤ κ . In particular, if n ∈ N fulfills 2n ≤ κ , then A2n is the Schur complement
of Hn−1 in Hn and, in the case that n ∈ N is such that 2n + 1 ≤ κ , moreover A2n+1
is the Schur complement of Hα,n−1,• in Hα,n,•. Furthermore, B2n+1 = L•,n,β for all
n ∈ N0 with 2n + 1 ≤ κ and B2n+2 = Lα,n,β for all n ∈ N0 with 2n + 2 ≤ κ .
In particular, if n ∈ N fulfills 2n + 1 ≤ κ , then B2n+1 is the Schur complement of
H•,n−1,β in H•,n,β and, if n ∈ N is such that 2n + 2 ≤ κ , then B2n+2 is the Schur
complement of Hα,n−1,β in Hα,n,β .

Now we turn our attention to the Fα,β -parameter sequence, which was studied in
detail in [20].

Definition 5.19 ([20,Def. 6.1]) Letα, β ∈ R be such thatα < β, let κ ∈ N0∪{∞}, and
let (s j )κj=0 be a sequence of complex p × qmatrices. Let the sequence (f j )

2κ
j=0 be given

by f0 :=A0, by f4k+1 :=A2k+1 and f4k+2 :=B2k+1 for all k ∈ N0 with 2k + 1 ≤ κ ,
and by f4k+3 :=B2k+2 and f4k+4 :=A2k+2 for all k ∈ N0 with 2k + 2 ≤ κ . Then we
call (f j )2κj=0 the Fα,β -parameter sequence of (s j )κj=0.

In particular, we have

f0 = s0, f1 = a0 = s1 − αs0, f2 = b0 = βs0 − s1, (5.9)

f3 = c0 = −αβs0 + (α + β)s1 − s2, and f4 = s2 − s1s
†
0s1. (5.10)

The Fα,β -parameter sequence plays in the context of the Hausdorff moment problem
a similar role as the H-parameter sequence in the context of the Hamburger moment
problem.

Proposition 5.20 ([20, Propositions 6.14 and 6.15]) Let (s j )κj=0 be a sequence of

complex q × q matrices. Then (s j )κj=0 ∈ F�
q,κ,α,β if and only if f j ∈ C

q×q
� for all

j ∈ Z0,2κ . Moreover (s j )κj=0 ∈ F�
q,κ,α,β if and only if f j ∈ C

q×q� for all j ∈ Z0,2κ .

Remark 5.21 In view of Definition 5.19, we have {f2m−1, f2m} = {Am,Bm} for all
m ∈ Z1,κ .

Remark 5.22 Let (s j )κj=0 be a sequence of complex p × q matrices with

Fα,β -parameter sequence (f j )
2κ
j=0. From Definition 5.19 and Remark 5.18 one can

easily see that f4n = Ln for all n ∈ N0 fulfilling 2n ≤ κ , that f4n+1 = Lα,n,• and
f4n+2 = L•,n,β for all n ∈ N0 fulfilling 2n + 1 ≤ κ , and that f4n+3 = Lα,n,β for all
n ∈ N0 fulfilling 2n+ 2 ≤ κ hold true, where Ln , Lα,n,•, L•,n,β , and Lα,n,β are given
by Notations 5.2 and 3.4.
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Remark 5.23 ([23, Rem. 3.38]) Let (s j )κj=0 be a sequence of complex p × q matrices

with Fα,β -parameter sequence (f j )
2κ
j=0. Then f0 = s0 and, for each k ∈ Z1,κ , the

matrices f2k−1 and f2k are built only from the matrices s0, s1, . . . , sk . In particular, for
each m ∈ Z0,κ , the Fα,β -parameter sequence of (s j )mj=0 coincides with (f j )

2m
j=0.

Remark 5.24 ([20, Rem. 6.16]) Let (s j )κj=0 be a sequence of complex p × q matrices.
For all k ∈ Z1,κ , then f2k−1 = Dk−1 − f2k .

Remark 5.25 ([20, Rem. 6.18]) Let (s j )κj=0 ∈ F�
q,κ,α,β . Then R(D0) = R(f0) and

N (D0) = N (f0). Furthermore, if κ ≥ 1, then R(D j ) = R(f2 j−1) ∩ R(f2 j ) and
N (D j ) = N (f2 j−1) + N (f2 j ) for all j ∈ Z1,κ and R(D j ) = R(f2 j+1) + R(f2 j+2)

and N (D j ) = N (f2 j+1) ∩ N (f2 j+2) for all j ∈ Z0,κ−1.

6 Orthogonal Matrix Polynomials andH-parameters

Let P be a complex p × q matrix polynomial. Then, for each n ∈ N0, let

Yn(P) := col(A j )
n
j=0 (6.1)

where (A j )
∞
j=0 is the uniquely determined sequence of complex p × q matri-

ces such that P(w) = ∑∞
j=0 w j A j holds true for all w ∈ C. Denote by

deg P := sup
{
j ∈ N0 : A j �= Op×q

}
the degree of P . If k := deg P fulfills k ≥ 0,

then the matrix Ak is called the leading coefficient matrix of P .

Remark 6.1 Let P be a complex q × q matrix polynomial. Then P = EnYn(P)

for all n ∈ N0 fulfilling n ≥ deg P , where En : C → C
q×(n+1)q is defined by

En(z) := [z0 Iq , z1 Iq , z2 Iq , . . . , zn Iq ].
We recall a notion which has been proved to be useful already, e. g., in [15, Sec. 5]

and [14, Sec. 6].

Definition 6.2 Letκ ∈ N0∪{∞} and let (s j )2κj=0 be a sequence of complexq × qmatri-
ces. A sequence (Pk)κk=0 of complex q × q matrix polynomials is called monic right
orthogonal system (short:MROS) of matrix polynomials with respect to (s j )2κj=0, if the
following two conditions hold true:

(I) For each k ∈ Z0,κ , the polynomial Pk has degree k with leading coefficient matrix
Iq .

(II) [Yn(Pj )]∗Hn[Yn(Pk)] = Oq×q for all j, k ∈ Z0,κ with j �= k, where
n := max{ j, k} and the block Hankel matrix Hn is given by (3.1).

Remark 6.3 Let κ ∈ N0 ∪ {∞}, let (s j )2κj=0 be a sequence of complex q × q matrices,

and let (Pk)κk=0 be an MROS of matrix polynomials with respect to (s j )2κj=0. For all

m ∈ Z0,κ , then (Pk)mk=0 is an MROS with respect to (s j )2mj=0.

We are now going to consider sequences (s j )2κj=0 of complex q × q matrices for

which the setM�
q [R; (s j )2κj=0,=] is non-empty. Then the orthogonality condition of
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Definition 6.2 can be rewritten in terms of the corresponding integral with respect to an
arbitrary measure σ belonging toM�

q [R; (s j )2κj=0,=]. In order to do this, we will use
some standard results of the integration theory of non-negative Hermitian measures
(see also Appendix B).

Remark 6.4 ([15, Rem. 6.1]) Let (s j )2κj=0 ∈ H�,e
q,2κ . In view of Theorem 3.2, let σ ∈

M�
q [R; (s j )2κj=0,=].

(a) Let k ∈ Z0,κ . In view of Remark 6.1, then
∫
R
[Ek(t)]∗σ(dt)Ek(t) = Hk . In

particular, the matrix Hk is non-negative Hermitian.
(b) Let P and Q beq × qmatrix polynomials of degrees j and k, respectively. Suppose

that n := max{ j, k} fulfills n ≤ κ . In view of Remark 6.1 and part (a), then it is
readily checked that

∫
R
[P(t)]∗σ(dt)Q(t) = [Yn(P)]∗HnYn(Q).

Remark 6.4 leads to the notion of monic right orthogonal systems of matrix poly-
nomials with respect to non-negative Hermitian measures in a natural way (see, e. g.,
also [15, Def. 6.7]). Supplementary to the definition, an MROS of matrix polynomials
can be characterized as follows:

Remark 6.5 Let (s j )2κj=0 ∈ H�
q,2κ and let (Pk)κk=0 be a sequence of q × q matrix

polynomials. In view of Definition 6.2 we can easily see from [15, Propositions 5.8
and 5.9] that (Pk)κk=0 is an MROS of matrix polynomials with respect to (s j )2κj=0 if
and only if Y0(P0) = Iq and the following condition holds true:

(I) If κ ≥ 1, then, for each k ∈ Z1,κ , the equation [Oq×kq , Iq ]Yk(Pk) = Iq holds true
and the matrix Xk := − [Ikq , Okq×q ]Yk(Pk) fulfills Hk−1Xk = yk,2k−1.

Remark 6.6 Suppose κ ≥ 1. Let (s j )2κj=0 ∈ H�
q,2κ . From [12, Rem. 2.1] one can easily

see then that, for all k ∈ Z1,κ , the set Lk := {
ξk ∈ C

kq×q : Hk−1ξk = yk,2k−1
}
is

non-empty.

For each τ ∈ N0 ∪ {∞}, let

〈〈τ ] := sup {k ∈ N0 : 2k − 1 ≤ τ } . (6.2)

With the help of theH-parameter sequence of a sequence (s j )κj=0 ∈ H�
q,2κ , it is, in

view of [3, Formula (4.14)], possible, to construct recursively an MROS with respect
to (s j )κj=0. This system of matrix polynomials plays an essential role in [13–15, 36].

Definition 6.7 Let κ ∈ N0∪{∞}, let (s j )κj=0 be a sequence of complex q × qmatrices,
and let (h j )

κ
j=0 be the H-parameter sequence of (s j )κj=0. Let a0, b0, c0, d0 : C →

C
q×q be defined by

a0(z) := Oq×q , b0(z) := Iq , c0(z) := Oq×q , and d0(z) := Iq .

If κ ≥ 1, then let a1, b1, c1, d1 : C → C
q×q be given via

a1(z) := h0, b1(z) := z Iq − h†0h1, c1(z) := h0, d1(z) := z Iq − h1h
†
0.
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If κ ≥ 2, then, for all k ∈ Z2,∞ fulfilling 2k − 1 ≤ κ , let ak, bk, ck, dk : C → C
q×q

be defined recursively by

ak(z) := ak−1(z)(z Iq − h†2k−2h2k−1) − ak−2(z)h
†
2k−4h2k−2,

bk(z) := bk−1(z)(z Iq − h†2k−2h2k−1) − bk−2(z)h
†
2k−4h2k−2,

ck(z) := (z Iq − h2k−1h
†
2k−2)ck−1(z) − h2k−2h

†
2k−4ck−2(z),

and

dk(z) := (z Iq − h2k−1h
†
2k−2)dk−1(z) − h2k−2h

†
2k−4dk−2(z).

Regarding (6.2), we call the quadruple [(ak)〈〈κ]
k=0, (bk)

〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0] the R-

quadruple (or canonical quadruple) of matrix polynomials, abbreviating R-QMP,
associated with (s j )κj=0.

Remark 6.8 Under the assumptions of Definition 6.7, for all k ∈ N0 such that 2k−1 ≤
κ , the matrix-valued functions ak , bk , ck , and dk indeed are matrix polynomials, where
the matrix polynomials bk and dk both have degree k and the same leading coefficient
matrix Iq (see also [15, Thm. 5.5]).

Remark 6.9 Let (s j )κj=0 be a sequence of complex q × q matrices, and let

[(ak)〈〈κ]
k=0, (bk)

〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0] be the R-QMP associated with (s j )κj=0.

In view of Remark 5.6 and Definition 6.7, for all m ∈ Z0,κ , then
[(ak)〈〈m]

k=0, (bk)
〈〈m]
k=0, (ck)

〈〈m]
k=0, (dk)

〈〈m]
k=0] is exactly the R-QMP associated with (s j )mj=0.

Proposition 6.10 (cf. [15, Thm. 5.5(a)]) Let (s j )2κj=0 ∈ H�
q,2κ with R-QMP

[(ak)κk=0, (bk)
κ
k=0, (ck)

κ
k=0, (dk)

κ
k=0]. Then (bk)

κ
k=0 is anMROS of matrix polynomials

with respect to (s j )2κj=0.

For each sequence (s j )κj=0 of complex p × q matrices and each m ∈ Z0,κ , let the
block Toeplitz matrices Sm and Sm be given by

Sm :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s0 O O . . . O
s1 s0 O . . . O
s2 s1 s0 . . . O
...

...
...

. . .
...

sm sm−1 sm−2 . . . s0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and Sm :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s0 s1 s2 . . . sm
O s0 s1 . . . sm−1
O O s0 . . . sm−2
...

...
...

. . .
...

O O O . . . s0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In view of [8, Sec. 4] and [22, Notation E.2], we introduce the following notation:

Notation 6.11 Let (s j )κj=0 be a sequence of complex q × q matrices and let P be a
complex q × q matrix polynomial with degree k := deg P satisfying k ≤ κ +1. Then
let P�s� : C → C

q×q be defined by P�s�(z) = Oq×q if k ≤ 0 and by P�s�(z) =
Ek−1(z)[Okq×q , Sk−1]Yk(P) if k ≥ 1.
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Remark 6.12 Under the assumptions of Notation 6.11 we see that P�s� is a matrix
polynomial with deg P�s� ≤ k − 1.

The transformation described in Notation 6.11 fulfills specific linearity properties
(see Appendix C).

Proposition 6.13 ([14, Prop. 6.13]) Let (s j )κj=0 ∈ H�,e
q,κ with associated R-QMP

[(ak)〈〈κ]
k=0, (bk)

〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0]. For all k ∈ N0 with 2k − 1 ≤ κ , then ak = b

�s�
k .

Remark 6.14 ([14, Rem. 6.15]) Let (s j )κj=0 be a sequence of Hermitian complex

q × q matrices and let [(ak)〈〈κ]
k=0, (bk)

〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0] be the R-QMP associ-

ated with (s j )κj=0. Then ck(z) = [ak(z)]∗ and dk(z) = [bk(z)]∗ hold true for every
choice of z ∈ C and k ∈ N0 fulfilling 2k − 1 ≤ κ .

In [12, 14, 15], one can find further results concerning the R-QMP. Moreover, now
we turn our attention to a further system of matrix polynomials which was already
used in [14, Sec. 6].We are going to consider a quadruple of q × q matrix polynomials
which give a connection between the R-QMP associated with (s j )2nj=0 introduced in

Definition 6.7 and the particular sequence (ŝ j )
2n+1
j=0 introduced in [14, Def. 5.5]:

Notation 6.15 Let (s j )κj=0 be a sequence of complexq × qmatriceswithH-parameter

sequence (h j )
κ
j=0 and R-QMP [(ak)〈〈κ]

k=0, (bk)
〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0], where 〈〈κ] is

given in (6.2). Let å1, b̊1, c̊1, d̊1 : C → C
q×q be defined by

å1(z) := h0, b̊1(z) := z Iq , c̊1(z) := h0, and d̊1(z) := z Iq . (6.3)

For all k ∈ Z2,∞ fulfilling 2k − 2 ≤ κ , let åk, b̊k, c̊k, d̊k : C → C
q×q be given by

åk(z) := zak−1(z) − ak−2(z)h
†
2k−4h2k−2,

b̊k(z) := zbk−1(z) − bk−2(z)h
†
2k−4h2k−2,

c̊k(z) := zck−1(z) − h2k−2h
†
2k−4c2k−2(z),

and

d̊k(z) := zdk−1(z) − h2k−2h
†
2k−4d2k−2(z).

Remark 6.16 Let the assumptions of Notation 6.15 be fulfilled. From [14, Def. 5.5 and
Lem. 6.18] then one can easily see that, for all n ∈ N0 fulfilling 2n ≤ κ , the quadruple
[ån+1, b̊n+1, c̊n+1, d̊n+1] is completely determined by the sequence (s j )2nj=0.

Remark 6.17 Under the assumptions ofNotation 6.15, for all k ∈ N0 such that 2k−2 ≤
κ , the matrix-valued functions åk , b̊k , c̊k , and d̊k are matrix polynomials.
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Lemma 6.18 ([14, Lemmata 6.19 and 6.20]) Let (s j )κj=0 ∈ H�,e
q,κ with R-QMP

[(ak)〈〈κ]
k=0, (bk)

〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0]. Then det bk(z) �= 0 and det dk(z) �= 0 hold

true for every choice of k ∈ N0 fulfilling 2k − 1 ≤ κ and for each z ∈ C \ R. More-
over, for all n ∈ N0 fulfilling 2n ≤ κ and all z ∈ C \ R, then det b̊n+1(z) �= 0 and
det d̊n+1(z) �= 0.

Remark 6.19 Let (s j )κj=0 ∈ H�,e
q,κ with R-QMP [(ak)〈〈κ]

k=0, (bk)
〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0]

and let n ∈ N0 be such that 2n−1 ≤ κ . According to Remark 6.8, the functions det bn
and det dn are polynomials for which, in view of Lemma 6.18, the sets Z(det bn) and
Z(det dn) are finite and, in particular, discrete sets fulfilling Z(det bn) ∪Z(det dn) ⊆
R. Consequently, b−1

n and d−1
n are matrix-valued functions meromorphic in C, which

fulfill C \ Z(det bn) ⊆ H(b−1
n ) and C \ Z(det dn) ⊆ H(d−1

n ). Especially, C \ R ⊆
H(b−1

n ) ∩ H(d−1
n ).

Remark 6.20 Let (s j )κj=0 ∈ H�,e
q,κ and let n ∈ N0 be such that 2n ≤ κ . Analogous

to Remark 6.19 and in view of Remark 6.17, the functions det b̊n and det d̊n are
polynomials for which, in view of Lemma 6.18, the respective sets Z(det b̊n) and
Z(det d̊n) are finite and, in particular, discrete sets fulfilling Z(det b̊n) ∪Z(det d̊n) ⊆
R. Consequently, b̊−1

n and d̊−1
n are also matrix-valued functions meromorphic in C

which fulfill C \ Z(det b̊n) ⊆ H(b̊−1
n ) and C \ Z(det d̊n) ⊆ H(d̊−1

n ). In particular,
C \ R ⊆ H(b̊−1

n ) ∩ H(d̊−1
n ).

7 Weyl Matrix Balls of the Truncated Hamburger Moment Problem

In the context of the matricial Hamburger moment problem, for w ∈ �+ the repre-
sentation of the set

{
F(w) : F ∈ R0,q [�+; (s j )

2n
j=0,�]

}
(7.1)

as matrix ball was proved in [14] and is stated in Theorem 7.11 below. This rep-
resentation plays also a key role in our following considerations for constructing a
parameterization of the set (4.3). Let Kp×q := {

K ∈ C
p×q : ‖K‖ ≤ 1

}
. If matrices

M ∈ C
p×q , A ∈ C

p×p, and B ∈ C
q×q are given, then

K(M; A, B) := {
M + AK B : K ∈ Kp×q

}
(7.2)

is called thematrix ball with centerM , left semi-radius A, and right semi-radius B. The
theory of matrix balls goes back to Yu. L. Shmul’yan [34], who, moreover, worked out
the operator case in the context of Hilbert spaces. Observe that the particular case of
matrices is elaborated in [11, Sec. 1.5]. An essential tool to check that theWeyl set (7.1)
can be represented as matrix ball was the following system of rational matrix-valued
functions. This system was studied in [14, Sec. 7] in detail.

Definition 7.1 (see [14, Def. 7.2]) Let κ ∈ N0 ∪ {∞} and let (s j )κj=0 ∈ H�,e
q,κ with

H-parameter sequence (h j )
κ
j=0 andR-QMP [(ak)〈〈κ]

k=0, (bk)
〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0]. Let



Weyl Sets in a Non-degenerate Truncated Matricial… Page 19 of 93    82 

χ−1 : C → C
q×q be defined by χ−1(z) := Oq×q . For all n ∈ N0 such that 2n ≤

κ , let χ2n := h2nb
−1
n b̊n+1. Furthermore, for all n ∈ N0 fulfilling 2n + 1 ≤ κ , let

χ2n+1 := h2nb
−1
n bn+1. Then (χ j )

κ
j=−1 is called the sequence ofχ -functions associated

with (s j )κj=0.

Note that, according to Remark 6.19, the χ -functions defined in Definition 7.1
are well-defined rational matrix-valued functions meromorphic in C. In view of
Definition 6.7, (6.3), (5.1), and the validity of h2k−2h

†
2k−2h2k−1 = h2k−1 and

h2k−1h
†
2k−2h2k−2 = h2k−1 for all k ∈ N fulfilling 2k − 1 ≤ κ (see [14, Rem. 6.21,

(6.14)]), for all z ∈ C, we obtain

χ−1(z) = Oq×q , χ0(z) = zh0 = zs0, and χ1(z) = zh0 − h1 = zs0 − s1.
(7.3)

Remark 7.2 ([14, Rem. 7.3]) Let (s j )κj=0 ∈ H�,e
q,κ with sequence of χ -functions

(χ j )
κ
j=−1 and let m ∈ Z0,κ . Then (s j )mj=0 ∈ H�,e

q,m and (χ j )
m
j=−1 is exactly the

sequence of χ -functions associated with (s j )mj=0.

For each τ ∈ N0 ∪ {∞}, let

〈τ ] := sup {k ∈ N0 : 2k ≤ τ } . (7.4)

Therefore, if m = 2n or m = 2n + 1 for some n ∈ N0, we have 〈m] = n.

Remark 7.3 ([14, Rem. 7.4]) Let (s j )κj=0 ∈ H�,e
q,κ with sequence of χ -functions

(χ j )
κ
j=−1. In view of Definition 7.1 and Remark 6.19, then C \ R ⊆ Z(det b〈m]) ⊆

H(χm) for all m ∈ Z0,κ .

Remark 7.4 ([14, Rem. 7.5]) Let the assumptions of Definition 7.1 be fulfilled. In
view of Remark 6.19, then det bn(z) �= 0 and χ2n(z) = h2n[bn(z)]−1b̊n+1(z) for
all n ∈ N0 such that 2n ≤ κ and all z ∈ C \ R as well as det bn(z) �= 0 and
χ2n+1(z) = h2n[bn(z)]−1bn+1(z) for all n ∈ N0 such that 2n + 1 ≤ κ and all
z ∈ C \ R.

Remark 7.5 ([14, Cor. 7.18]) Let (s j )κj=0 ∈ H�,e
q,κ with sequence of χ -functions

(χ j )
κ
j=−1. Then (�z)−1�χm(z) ∈ C

q×q
� for every choice ofm ∈ Z−1,κ and z ∈ C\R.

Lemma 7.6 ([14, Lemmata 8.3 and 8.5]) Let (s j )κj=0 ∈ H�,e
q,κ with H-parameter

sequence (h j )
κ
j=0, R-QMP [(ak)〈〈κ]

k=0, (bk)
〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0], and sequence of

χ -functions (χ j )
κ
j=−1. Furthermore, let n ∈ N0 be such that 2n ≤ κ and let d̊n+1 be

givenbyNotation6.15.For each z ∈ C\R, thendet([χ2n+1(z)]∗h†2ndn(z)−dn+1(z)) �=
0 and det([χ2n(z)]∗h†2ndn(z) − d̊n+1(z)) �= 0.

Now we introduce the central object of this section, which we need to describe the
set (4.3) as an intersection of matrix balls. Observe that the following constructions
are well defined due to Remarks 6.16 and 7.5 as well as Lemmata 6.18 and 7.6:
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Notation 7.7 Let (s j )κj=0 ∈ H�,e
q,κ with H-parameter sequence (h j )

κ
j=0, R-QMP

[(ak)〈〈κ]
k=0, (bk)

〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0], and sequence of χ -functions (χ j )

κ
j=−1.

(a) For all n ∈ N0 such that 2n ≤ κ , let A2n,B2n,C2n : C \ R → C
q×q be defined

by

A2n(z) := [dn(z)]−1h2n

√
(�z)−1�χ2n(z)

†
,

B2n(z) :=
√

(�z)−1�χ2n(z)
†
h2n[bn(z)]−1,

and

C2n(z) := −
(
[χ2n(z)]∗h†2ndn(z) − d̊n+1(z)

)−1

×
(
[χ2n(z)]∗h†2ncn(z) − c̊n+1(z)

)
.

(b) Supposeκ ≥ 1. For alln ∈ N0 such thatB2n+1 ≤ κ , letA2n+1,B2n + 1,C2n+1 : C\
R → C

q×q be given by

A2n+1(z) := [dn(z)]−1h2n

√
(�z)−1�χ2n+1(z)

†
,

B2n+1(z) :=
√

(�z)−1�χ2n+1(z)
†
h2n[bn(z)]−1,

and

C2n+1(z) := −
(
[χ2n+1(z)]∗h†2ndn(z) − dn+1(z)

)−1

×
(
[χ2n+1(z)]∗h†2ncn(z) − cn+1(z)

)

At first view it looks a bit surprising why the Notation 7.7 is introduced for two
different indices 2n and 2n + 1, because Notation 7.7 will be applied to describe
the Weyl matrix ball associated with a sequence (s j )2nj=0 ∈ H�,e

q,2n . The reason is a
technical one. It turns out soon (see Lemma 7.9 below) that the correspondingmatrices
introduced in parts (a) and (b) of Notation 7.7 coincide. We will express them in terms
of Notation 7.7(a).

Remark 7.8 ([14, Rem. 8.8]) Let (s j )κj=0 ∈ H�,e
q,κ . Regarding Notations 7.7 and 6.15,

then one can see from Remarks 5.6, 6.9 and 7.2, that for each m ∈ Z0,κ , the functions
Am ,Bm , and Cm are only built from the matrices s0, s1, . . . , sm and therefore do not
depend on the matrices s j with j ≥ m + 1.

Nowwe are going to formulate the announced statement containing the coincidence
of the corresponding matrices introduced in Notation 7.7:
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Lemma 7.9 ([14, Lemmata 8.10 and 8.12]) Suppose κ ≥ 1. Let (s j )κj=0 ∈ H�,e
q,κ and

let n ∈ N0 be such that 2n + 1 ≤ κ . Then A2n(z) = A2n+1(z), B2n(z) = B2n+1(z),
and C2n(z) = C2n+1(z) for all z ∈ C \ R.

Remark 7.10 More precisely as stated in Remark 7.8, Lemma 7.9 even shows thatAm ,
Bm , and Cm are independent of the matrices s j with j ≥ 〈m] + 1, where 〈m] is given
by (7.4).

Using Notation 7.7(a), now we are able to formulate the announced result, which
is a generalization of Kovalishina’s result [27, §2], who studied the (non-degenerate)
case that the given sequence (s j )2nj=0 belongs toH�

q,2n :

Theorem 7.11 ([14,Thm.8.7])Let n ∈ N0 and let (s j )2nj=0 ∈ H�,e
q,2n. For eachw ∈ �+,

then

{
F(w) : F ∈ R0,q [�+; (s j )

2n
j=0,�]

}
= K(C2n(w); (w − w)−1A2n(w),B2n(w)),

where A2n, B2n, and C2n are given by Notation 7.7(a).

Note that a further representation of the matrix ball stated in Theorem 7.11 is given
in [14, Thm. 8.26, Prop. 8.27].

8 Orthogonal Matrix Polynomials andF˛,ˇ-parameters

Given a sequence (s j )2κj=0 ∈ H�,e
q,2κ , the sequence (h j )

2κ
j=0 of its H-parameters can

be recovered from a system of monic orthogonal polynomials with respect to some
measure σ belonging toM�

q [R; (s j )2κj=0,=]:

Theorem 8.1 ([15, Thm. 6.9(b1)]) Let κ ∈ N ∪ {∞}, let (s j )2κj=0 ∈ H�,e
q,2κ with

H-parameter sequence (h j )
2κ
j=0, let σ ∈ M�

q [R; (s j )2κj=0,=], and let (Pk)κk=0 be an

MROS of matrix polynomials with respect to (s j )2κj=0. Then
∫
R
[Pk(t)]∗σ(dt)[Pk(t)] =

h2k for all k ∈ Z0,κ and
∫
R
t[Pk(t)]∗σ(dt)[Pk(t)] = h2k−1 for all k ∈ Z1,κ .

From Theorem 8.1 we obtain the following result which shows a first connection
between monic right orthogonal systems of matrix polynomials introduced in Defini-
tion 6.2 and the Fα,β -parameter sequence given in Definition 5.19:

Corollary 8.2 Let (s j )
2κ+2
j=0 ∈ F�

q,2κ+2,α,β withFα,β -parameter sequence (f j )
4κ+4
j=0 and

let σ ∈ M�
q [[α, β]; (s j )

2κ+2
j=0 ,=]. Furthermore, let (Pk)

κ+1
k=0 be an MROS of matrix

polynomials with respect to (s j )
2κ+2
j=0 and let (Ak)

κ
k=0, (Bk)

κ
k=0, and (Ck)

κ
k=0 be an

MROS of matrix polynomials with respect to (a j )
2κ
j=0, to (b j )

2κ
j=0, and to (c j )2κj=0,

respectively. For all k ∈ Z0,κ , then
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∫

[α,β]
(t − α)[Ak(t)]∗σ(dt)[Ak(t)] = f4k+1,

∫

[α,β]
(β − t)[Bk(t)]∗σ(dt)[Bk(t)] = f4k+2,

∫

[α,β]
(β − t)(t − α)[Ck(t)]∗σ(dt)[Ck(t)] = f4k+3, (8.1)

and

∫

[α,β]
[Pk+1(t)]∗σ(dt)[Pk+1(t)] = f4k+4. (8.2)

Proof From Proposition 5.12 we get (s j )
2κ+2
j=0 ∈ H�,e

q,2κ+2. Moreover, using addition-

ally Propositions 5.10 and 5.11, we have {(a j )
2κ
j=0, (b j )

2κ
j=0, (c j )

2κ
j=0} ⊆ H�,e

q,2κ . Let
the measures μ, μa, μb, and μc be given by Remark 3.7. According to Remark 3.7,
then μ and μA, μB, μC : BR → C

q×q defined by μA(M) := μa(M ∩ [α, β]),
μB(M) := μb(M ∩ [α, β]), and μC(M) := μc(M ∩ [α, β]), respectively, fulfill μ ∈
M�

q [R; (s j )
2κ+2
j=0 ,=], μA ∈ M�

q [R; (a j )
2κ
j=0,=], μB ∈ M�

q [R; (b j )
2κ
j=0,=], and

μC ∈ M�
q [R; (c j )2κj=0,=]. Now we consider the case κ ≥ 1. Using Theorem 8.1,

Remarks 5.7 and 5.18 as well as the notations given in Definitions 5.5, 5.14, 5.17 and
5.19, for each k ∈ Z0,κ , we get

∫

[α,β]
[Pk+1(t)]∗σ(dt)[Pk+1(t)] =

∫

R

[Pk+1(t)]∗μ(dt)[Pk+1(t)]
= h2k+2 = Lk+1 = A2k+2 = f4k+4,

where (h j )
2κ+2
j=0 denotes the H-parameter sequence of (s j )

2κ+2
j=0 . Thus, equation (8.2)

is proved. Analogously, if κ ≥ 1, then, using the same arguments and Proposition B.1
additionally, one can check the other three asserted identities by applying Theorem 8.1
to (a j )

2κ
j=0 and μA, to (b j )

2κ
j=0 and μB as well as to (c j )2κj=0 and μC, respectively. If

κ = 0, then, combining Theorem 8.1, Definitions 5.5, 5.14, 5.17 and 5.19 as well as
(5.1), (5.9), (5.10), and [24, Lem. 7.2], the asserted equations followby straightforward
calculations.

Conversely, outgoing from a sequence (s j )
2κ+2
j=0 ∈ F�

q,2κ+2,α,β , one can explicitly

construct MROS of matrix polynomials with respect to (s j )
2κ+2
j=0 , (a j )

2κ
j=0, (b j )

2κ
j=0,

and (c j )2κj=0, respectively, with the help of their respective Fα,β -parameter sequence.
For this reason, we introduce some further matrix polynomials. For each subspace U
of C

q , let PU be the orthogonal projection matrix onto U (see also Remarks A.4 and
A.5).

Notation 8.3 Let (s j )κj=0 be a sequence of complex q × q matrices with

Fα,β -parameter sequence (f j )
2κ
j=0 and sequence of [α, β]-interval lengths (D j )

κ
j=0.
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Then let p̈0, q̈0, p̈1, q̈1, p̈2, q̈2 : C → C
q×q be defined by

p̈0(z) := Iq , q̈0(z) := Oq×q , p̈1(z) := (z − α)Iq , q̈1(z) := f0, (8.3)

p̈2(z) := − (β − z)Iq , and q̈2(z) := f0. (8.4)

Now suppose κ ≥ 1 and let (� j )
κ
j=1 be a sequence of complex q × q matrices. For

each j ∈ Z1,κ , let

A j :=D†
j−1f2 j + PN (D j−1)� j and B j :=D†

j−1f2 j−1 + PN (D j−1)(Iq − � j ).

(8.5)

For all k ∈ Z2,κ+1, then let p̈2k−1, q̈2k−1, p̈2k, q̈2k : C → C
q×q be recursively defined

as follows: If k = 2� with some � ∈ N, then let

p̈4�−1(z) := − (β − z)p̈4�−3(z)A2�−1 + (z − α)p̈4�−2(z)B2�−1, (8.6)

q̈4�−1(z) := − (β − z)q̈4�−3(z)A2�−1 + (z − α)q̈4�−2(z)B2�−1 (8.7)

and

p̈4�(z) := p̈4�−3(z)A2�−1 + p̈4�−2(z)B2�−1, (8.8)

q̈4�(z) := q̈4�−3(z)A2�−1 + q̈4�−2(z)B2�−1. (8.9)

If k = 2� + 1 with some � ∈ N, then let

p̈4�+1(z) := p̈4�−1(z)A2� + (z − α)p̈4�(z)B2�, (8.10)

q̈4�+1(z) := q̈4�−1(z)A2� + (z − α)q̈4�(z)B2� (8.11)

and

p̈4�+2(z) := p̈4�−1(z)A2� − (β − z)p̈4�(z)B2�, (8.12)

q̈4�+2(z) := q̈4�−1(z)A2� − (β − z)q̈4�(z)B2�. (8.13)

Remark 8.4 Let (s j )κj=0 be a sequence of complexq × qmatriceswithFα,β -parameter

sequence (f j )
2κ
j=0. In view of Notation 8.3 and Remarks 5.15 and 5.23, for each k ∈

Z1,κ+1, then p̈2k−1, q̈2k−1, p̈2k , and q̈2k are matrix polynomials which are built only
from the matrices f0, f1, . . . , f2k−2 and, therefore, which depend only on the matrices
s0, s1, . . . , sk−1.

Remark 8.5 Suppose κ ≥ 1. Let (s j )κj=0 be a sequence of complex q × q matrices.
For every choice of � ∈ N such that 2�−1 ≤ κ and for all z ∈ C, then, adding suitable
multiples of (8.6)–(8.13), it is readily checked that

(z − α)p̈4�(z) − p̈4�−1(z) = δp̈4�−3(z)A2�−1,

(z − α)q̈4�(z) − q̈4�−1(z) = δq̈4�−3(z)A2�−1
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and

(β − z)p̈4�(z) + p̈4�−1(z) = δp̈4�−2(z)B2�−1,

(β − z)q̈4�(z) + q̈4�−1(z) = δq̈4�−2(z)B2�−1

hold true. Furthermore, for all � ∈ N such that 2� ≤ κ and for all z ∈ C, straightforward
calculations yield the identities

p̈4�+1(z) − p̈4�+2(z) = δp̈4�(z)B2�, q̈4�+1(z) − q̈4�+2(z) = δq̈4�(z)B2�,

(β − z)p̈4�+1(z) + (z − α)p̈4�+2(z) = δp̈4�−1(z)A2�,

and

(β − z)q̈4�+1(z) + (z − α)q̈4�+2(z) = δq̈4�−1(z)A2�.

Lemma 8.6 Suppose κ ≥ 1. Let (s j )κj=0 be a sequence of complex q × q matrices.
Then A j + B j = Iq and, in particular, A jB j = B jA j hold true for all j ∈ Z1,κ .

Proof In view ofNotation 8.3, one can see fromRemarks 5.24 andA.8, thatA j +B j =
D†

j−1(f2 j + f2 j−1) + PN (D j−1) = D†
j−1D j−1 + (Iq − D†

j−1D j−1) = I and, therefore,

A jB j = A j (Iq − A j ) = A j − A2
j = (Iq − A j )A j = B jA j for all j ∈ Z1,κ .

Lemma 8.7 Suppose κ ≥ 1. Let (s j )κj=0 ∈ F�
q,κ,α,β . For all j ∈ Z1,κ , then D j−1A j =

f2 j , δf2 j−1A j = D j , D j−1B j = f2 j−1, and δf2 jB j = D j as well as, in particular,
f2 j−1A j = f2 jB j .

Proof Let j ∈ Z1,κ . According to Remark 5.25, we have R(D j−1) = R(f2 j ) +
R(f2 j−1) ⊇ R(f2 j ) ∪ R(f2 j−1). Thus, Remark A.1 yields D j−1D

†
j−1f2 j = f2 j and

D j−1D
†
j−1f2 j−1 = f2 j−1. From (8.5) we can conclude D j−1A j = f2 j and D j−1B j =

f2 j−1. Remark 5.25 moreover showsN (D j−1) = N (f2 j−1) ∩N (f2 j ). Consequently,
f2 j−1PN (D j−1) = O and f2 jPN (D j−1) = O . Furthermore, combining [19, Cor. 10.21]

and Remark 5.21 provides δf2 j−1D
†
j−1f2 j = D j and δf2 jD

†
j−1f2 j−1 = D j . In view

of (8.5), this implies δf2 j−1A j = δf2 j−1D
†
j−1f2 j + δf2 j−1PN (D j−1)� j = D j and,

analogously, δf2 jB j = D j . Because of δ > 0, then f2 j−1A j = f2 jB j follows as well.

Remark 8.8 Let (s j )κj=0 be a sequence of complex q × q matrices. In view of Nota-
tion 8.3 and Lemma 8.6, one can inductively see that the following statements hold
true:

(a) For each � ∈ N0 such that 2�−1 ≤ κ , the function p̈4� is a complex q × q matrix
polynomial of degree � with leading coefficient matrix Iq .

(b) For each � ∈ N0 such that 2� ≤ κ , the functions p̈4�+1 and p̈4�+2 are complex
q × q matrix polynomials of degree �+1, where both leading coefficient matrices
coincide with Iq , fulfilling p̈4�+1(α) = Oq×q and p̈4�+2(β) = Oq×q .
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(c) If κ ≥ 1, then, for each � ∈ N0 such that 2� + 1 ≤ κ , the function p̈4�+3 is a
complex q × q matrix polynomial of degree �+2 with leading coefficient matrix
Iq , fulfilling p̈4�+3(α) = Oq×q and p̈4�+4(β) = Oq×q .

Remark 8.9 Let (s j )κj=0 be a sequence of complex q × q matrices. In view of Nota-
tion 8.3, Remark 8.8, and α �= β, the following matrix polynomials can be defined:

(a) For each � ∈ N0 such that 2� − 1 ≤ κ , let r̈� := p̈4�.
(b) For all � ∈ N0 fulfilling 2� ≤ κ , let ẗ� and v̈� be the uniquely determined

q × q matrix polynomials fulfilling p̈4�+1(z) = (z − α)ẗ�(z) and p̈4�+2(z) =
−(β − z)v̈�(z) for all z ∈ C.

(c) Remark 8.8 moreover shows that, for each � ∈ N0 such that 2� + 1 ≤ κ , there
is a unique complex q × q matrix polynomial ẍ� for which p̈4�+3(z) = −(β −
z)(z − α)ẍ� is fulfilled for every choice of z ∈ C.

The matrix polynomials r̈l , ẗl , v̈l , and ẍl , which we introduced in Remark 8.9 and
whose notation we will continue to use, stand in an recursive interrelationship:

Lemma 8.10 Let (s j )κj=0 be a sequence of complex q × q matrices. For all z ∈ C,

then r̈0(z) = ẗ0(z) = v̈0(z) = Iq as well as, in the case κ ≥ 1, moreover

ẍ�−1(z) = ẗ�−1(z)A2�−1 + v̈�−1(z)B2�−1 (8.14)

and

r̈�(z) = (z − α)ẗ�−1(z)A2�−1 − (β − z)v̈�−1(z)B2�−1 (8.15)

for every choice of � ∈ N such that 2� − 1 ≤ κ . Furthermore, if κ ≥ 2, then

ẗ�(z) = −(β − z)ẍ�−1(z)A2� + r̈�(z)B2� (8.16)

and

v̈�(z) = (z − α)ẍ�−1(z)A2� + r̈�(z)B2� (8.17)

hold true for all � ∈ N such that 2� ≤ κ and all z ∈ C.

Proof In view of Remark 8.9, (8.3), and (8.4), we have r̈0(z) = p̈0(z) = Iq , (z −
α)ẗ0(z) = p̈1(z) = (z − α)Iq , and −(β − z)v̈0(z) = p̈2(z) = −(β − z)Iq for all
z ∈ C. Now assume κ ≥ 1 and let � ∈ N be such that 2�− 1 ≤ κ . Taking into account
Remark 8.9 as well as (8.6) and (8.8), we conclude

− (β − z)(z − α)ẍ�−1(z) = p̈4�−1(z)

= −(β − z)p̈4�−3(z)A2�−1 + (z − α)p̈4�−2(z)B2�−1

= −(β − z)(z − α)[ẗ�−1(z)A2�−1 + v̈�−1(z)B2�−1].
(8.18)

Comparing the left-hand side of (8.18)with the right-hand side of (8.18) delivers (8.14).
Equation (8.15) can be seen by r̈�(z) = p̈4�(z) = p̈4�−3(z)A2�−1 + p̈4�−2(z)B2�−1 =
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(z − α)ẗ�−1(z)A2�−1 − (β − z)v̈�−1(z)B2�−1. If κ ≥ 2 and if � ∈ N fulfills 2� ≤ κ ,
then using Remark 8.9 as well as (8.10) and (8.12), we obtain analogously (8.16) and
(8.17).

Remark 8.11 Suppose κ ≥ 1. Let (s j )κj=0 be a sequence of complex q × q matrices. In
view of Lemma 8.10, then it is readily checked that, for all � ∈ N such that 2�−1 ≤ κ

and for all z ∈ C, the equations

(β − z)ẍ�−1(z) + r̈�(z) = δẗ�−1(z)A2�−1 (8.19)

and

(z − α)ẍ�−1(z) − r̈�(z) = δv̈�−1(z)B2�−1 (8.20)

hold true. Moreover, if κ ≥ 2, then Lemma 8.10 immediately implies the identities
v̈�(z) − ẗ�(z) = δẍ�−1(z)A2� and (β − z)v̈�(z) + (z − α)ẗ�(z) = δr̈�(z)B2� for all
� ∈ N such that 2� ≤ κ and all z ∈ C.

Lemma 8.12 Suppose κ ≥ 2 and let (s j )κj=0 be a sequence of complex q × q matrices.
For all � ∈ N such that 2� ≤ κ and all z ∈ C, then

ẗ�(z) = r̈�(z) − ẗ�−1(z)(δA2�−1A2�)

= −(β − z)ẍ�−1(z) + ẗ�−1(z)(δA2�−1B2�) (8.21)

and

v̈�(z) = r̈�(z) + v̈�−1(z)(δB2�−1A2�)

= (z − α)ẍ�−1(z) − v̈�−1(z)(δB2�−1B2�) (8.22)

are valid. For all � ∈ Z2,∞ such that 2� − 1 ≤ κ and all z ∈ C, moreover

ẍ�−1(z) = v̈�−1(z) − ẍ�−2(z)(δA2�−2A2�−1)

= ẗ�−1(z) + ẍ�−2(z)(δA2�−2B2�−1) (8.23)

r̈�(z) = −(β − z)v̈�−1(z) + r̈�−1(z)(δB2�−2A2�−1), (8.24)

and

r̈�(z) = (z − α)ẗ�−1(z) − r̈�−1(z)(δB2�−2B2�−1). (8.25)

Proof We consider an arbitrary z ∈ C. Let � ∈ N be such that 2� ≤ κ . One can easily
see that (8.19) is equivalent to −(β − z)ẍ�−1(z) = r̈�(z) − δẗ�−1(z)A2�−1 which, by
multiplying with A2� from the right, leads to

− (β − z)ẍ�−1(z)A2� = r̈�(z)A2� − δẗ�−1(z)A2�−1A2�. (8.26)
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Multiplying (8.19) from the right by B2� delivers

r̈�(z)B2� = δẗ�−1(z)A2�−1B2� − (β − z)ẍ�−1(z)B2�. (8.27)

In the same manner, by multiplying (8.20) from the right by A2�, we get

(z − α)ẍ�−1(z)A2� = δv̈�−1(z)B2�−1A2� + r̈�(z)A2� (8.28)

and, by multiplying (8.20) from the right by B2�, we obtain

r̈�(z)B2� = (z − α)ẍ�−1(z)B2� − δv̈�−1(z)B2�−1B2�. (8.29)

Lemma 8.10 yields (8.14), (8.15), (8.16), and (8.17). Inserting (8.26) into (8.16), from
Lemma 8.6 we conclude

ẗ�(z) = r̈�(z)(A2� + B2�) − δẗ�−1(z)A2�−1A2� = r̈�(z) − ẗ�−1(z)(δA2�−1A2�).

Analogously, using (8.27) instead of (8.26), we get

ẗ�(z) = −(β − z)ẍ�−1(z)A2� + δẗ�−1(z)A2�−1B2� − (β − z)ẍ�−1(z)B2�

= −(β − z)ẍ�−1(z) + ẗ�−1(z)(δA2�−1B2�).

Hence, (8.21) is proved. The application of (8.28), (8.29), (8.17), and Lemma 8.10
yields analogously (8.22). Nowwe are going to show the remaining equations in (8.23)
and (8.25). For this reason, we consider an arbitrary � ∈ Z2,∞ fulfilling 2� − 1 ≤
κ . Lemma 8.10 shows (8.14) and (8.15). Remark 8.11 yields v̈�−1(z) − ẗ�−1(z) =
δẍ�−2(z)A2�−2 and (β − z)v̈�−1(z)+(z−α)ẗ�−1(z) = δr̈�−1(z)B2�−2, which implies

ẗ�−1(z)A2�−1 = v̈�−1(z)A2�−1 − δẍ�−2(z)A2�−2A2�−1, (8.30)

v̈�−1(z)B2�−1 = δẍ�−2(z)A2�−2B2�−1 + ẗ�−1(z)B2�−1, (8.31)

(z − α)ẗ�−1(z)A2�−1 = δr̈�−1(z)B2�−2A2�−1 − (β − z)v̈�−1(z)A2�−1, (8.32)

and

−(β − z)v̈�−1(z)B2�−1 = (z − α)ẗ�−1(z)B2�−1 − δr̈�−1(z)B2�−2B2�−1. (8.33)

Keeping Lemma 8.6 in mind, inserting (8.30) directly into (8.14) delivers the first
equation in (8.23), and inserting instead (8.31) directly into (8.14) shows analogously
the second one. Combining (8.15) and (8.32) provides (8.24). Inserting (8.33) into
(8.15) implies similarly (8.25).

From Lemma 8.12 we get for every of the four systems of matrix polynomials
3-term recurrence relations:

Lemma 8.13 Suppose κ ≥ 4. Let (s j )κj=0 be a sequence of complex q × q matrices.
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(a) If κ ≥ 5, for every choice of � ∈ Z3,∞ such that 2� − 1 ≤ κ and all z ∈ C, then

r̈�(z) = r̈�−1(z)(z Iq − [α Iq + δ(A2�−3A2�−2 + B2�−2B2�−1)])
− r̈�−2(z)(δ

2B2�−4B2�−3A2�−3A2�−2)

= r̈�−1(z)(z Iq − [β Iq − δ(B2�−3A2�−2 + B2�−2A2�−1)])
− r̈�−2(z)(δ

2B2�−4A2�−3B2�−3A2�−2).

(b) For all � ∈ Z2,∞ such that 2� ≤ κ and all z ∈ C, moreover

ẗ�(z) = ẗ�−1(z)(z Iq − [α Iq + δ(B2�−2B2�−1 + A2�−1A2�)])
−ẗ�−2(z)(δ

2A2�−3A2�−2B2�−2B2�−1)

and

v̈�(z) = v̈�−1(z)(z Iq − [β Iq − δ(B2�−2A2�−1 + B2�−1A2�)])
−v̈�−2(z)(δ

2B2�−3A2�−2B2�−2A2�−1).

(c) If κ ≥ 5, then, for all � ∈ Z2,∞ such that 2� + 1 ≤ κ and all z ∈ C, moreover

ẍ�(z) = ẍ�−1(z)(z Iq − [α Iq + δ(B2�−1B2� + A2�A2�+1)])
−ẍ�−2(z)(δ

2A2�−2A2�−1B2�−1B2�)

and

ẍ�(z) = ẍ�−1(z)(z Iq − [β Iq − δ(A2�−1B2� + A2�B2�+1)])
−ẍ�−2(z)(δ

2A2�−2B2�−1A2�−1B2�).

Proof Let z ∈ C. In order to prove part (a), we suppose κ ≥ 5. Assume that � ∈ Z3,∞
is such that 2� − 1 ≤ κ . According to Lemma 8.12, we know that (8.24) and (8.25)
as well as

v̈�−1(z) = r̈�−1(z) + v̈�−2(z)(δB2�−3A2�−2), (8.34)

ẗ�−1(z) = r̈�−1(z) − ẗ�−2(z)(δA2�−3A2�−2), (8.35)

and

r̈�−1(z) = −(β − z)v̈�−2(z) + r̈�−2(z)(δB2�−4A2�−3)

= (z − α)ẗ�−2(z) − r̈�−2(z)(δB2�−4B2�−3)
(8.36)

hold true. From (8.36) we get

−(β − z)v̈�−2(z)(δB2�−3A2�−2) = r̈�−1(z)(δB2�−3A2�−2)

−r̈�−2(z)(δB2�−4A2�−3)(δB2�−3A2�−2), (8.37)
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and

(z − α)ẗ�−2(z)(δA2�−3A2�−2)

= r̈�−1(z)(δA2�−3A2�−2) + r̈�−2(z)(δB2�−4B2�−3)(δA2�−3A2�−2). (8.38)

In view of (8.24), (8.34), and (8.37), consequently

r̈�(z) = −(β − z)[r̈�−1(z) + v̈�−2(z)(δB2�−3A2�−2)] + r̈�−1(z)(δB2�−2A2�−1)

= r̈�−1(z)(z Iq − [β Iq − δ(B2�−3A2�−2 + B2�−2A2�−1)])
−r̈�−2(z)(δ

2B2�−4A2�−3B2�−3A2�−2),

whereas (8.25), (8.35), and (8.38) yield

r̈�(z) = (z − α)[r̈�−1(z) − ẗ�−2(z)(δA2�−3A2�−2)] − r̈�−1(z)(δB2�−2B2�−1)

= r̈�−1(z)(z Iq − [α Iq + δ(A2�−3A2�−2 + B2�−2B2�−1)])
−r̈�−2(z)(δ

2B2�−4B2�−3A2�−3A2�−2).

Thus part (a) is proved. Using Lemma 8.12, parts (b) and (c) can be checked analo-
gously.

For the special case that α = 0 and β = 1 hold true, in [9, Thm. 4.1], it is shown
that under certain regularity assumptions and in view of (8.5), the specific structure
of the recursion coefficients from Lemma 8.13 is both necessary and sufficient for the
existence of a matrix-valued measure concentrated on the interval [0, 1] for which the
recursive constructed matrix polynomials are orthogonal. In accordance with that, it
is now evident that the corresponding matrix polynomials given in Remark 8.9 are
monic right orthogonal systems, whereby the sequences introduced in Notation 3.3
occur again. We continue to use the notation introduced in (7.4), in order to formulate
the main result of this section:

Theorem 8.14 Let α, β ∈ R be such that α < β, let τ ∈ Z2,∞, and let (s j )τj=0 ∈
F�
q,τ,α,β . Then the sequence (r̈�)

〈τ ]
�=0 formsanMROSofmatrix polynomialswith respect

to (s j )
2〈τ ]
j=0, the sequence (ẗ�)

〈τ−1]
�=0 formsanMROSofmatrix polynomialswith respect to

(a j )
2〈τ−1]
j=0 , the sequence (v̈�)

〈τ−1]
�=0 forms an MROS of matrix polynomials with respect

to (b j )
2〈τ−1]
j=0 , and the sequence (ẍ�)

〈τ−2]
�=0 forms an MROS of matrix polynomials with

respect to (c j )
2〈τ−2]
j=0 .

Proof Let (f j )2τj=0 be the Fα,β -parameter sequence of (s j )τj=0 and let (D j )
τ
j=0 be the

sequence of [α, β]-interval lengths associated with (s j )τj=0. Now our proof is divided
into two parts.
Part 1: First we discuss the case that τ = 2ρ + 2 with some ρ ∈ N0 ∪ {∞}. Then we
first observe that (7.4) yields 〈τ ] = ρ + 1 and 〈τ − 1] = ρ as well as 〈τ − 2] = ρ.
In view of Remark 8.9, from Remark 8.8 we easily see that, for all � ∈ Z0,ρ+1, the
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function r̈� is a matrix polynomial of degree � with leading coefficient matrix Iq and,
for all � ∈ Z0,ρ , the functions ẗ�, v̈�, and ẍ� are all complex matrix polynomials of
degree � with leading coefficient matrix Iq . In particular, for each � ∈ Z1,ρ+1, there
is an r� ∈ C

�q×q such that the block representation

Y�(r̈�) =
[−r�
Iq

]

(8.39)

is valid, where we used the notation given in (6.1). Because of Lemmata 8.10 and
8.6, we obtain r̈1(z) = z(A1 + B1) − (αA1 + βB1) = z Iq − (αA1 + βB1) for
all z ∈ C. Hence, r1 = αA1 + βB1. From Notation 5.2, (5.9), and (3.1) we get
−f1 + y1,1 = −f1 + s1 = αs0 = αH0 and f2 + y1,1 = f2 + s1 = βs0 = βH0. Thus,
in view of Lemma 8.7 and δ �= 0 as well as Remark 8.6, we can conclude

H0r1 = αH0A1 + βH0B1

= (−f1A1 + f2B1) + y1,1(A1 + B1) = δ−1(−D1 + D1) + y1,1 Iq = y1,1.

(8.40)

Now we consider the case ρ ≥ 1. For all � ∈ Z1,ρ , then there are matrices t�, v�,
x� ∈ C

�q×q such that block representations

Y�(ẗ�) =
[−t�
Iq

]

, Y�(v̈�) =
[−v�

Iq

]

, and Y�(ẍ�) =
[−x�

Iq

]

(8.41)

are valid. We are going to prove inductively that

(I�) H 〈a〉
�−1t� = y〈a〉

�,2�−1, H 〈b〉
�−1v� = y〈b〉

�,2�−1, H 〈c〉
�−1x� = y〈c〉

�,2�−1, and H�r�+1 =
y�+1,2�+1 hold true for all � ∈ Z1,ρ .

According to Lemma 8.10, the equations in (8.16) and (8.17) as well as

ẍ�(z) = ẗ�(z)A2�+1 + v̈�(z)B2�+1 (8.42)

and

r̈�+1(z) = (z − α)ẗ�(z)A2�+1 − (β − z)v̈�(z)B2�+1 (8.43)

are valid for all � ∈ Z1,ρ and all z ∈ C. In particular, from (8.16), (8.17), (8.39),
(8.41), (8.42), and (8.43), we get

−t1 = −βA2 − r1B2, −v1 = −αA2 − r1B2, −x1 = −t1A3 − v1B3 (8.44)

and

− r2 =
([

Oq×q

−t1

]

− α

[−t1
Iq

])

A3 −
(

β

[−v1
Iq

]

−
[
Oq×q

−v1

])

B3. (8.45)
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In view of (5.10) as well as Notations 5.2, 3.3 and 3.4, we obtain

f3 + y〈a〉
1,1 = c0 + a1 = βa0 = βH 〈a〉

0 , −f3 + y〈b〉
1,1 = −c0 + b1 = αb0 = αH 〈b〉

0 .

(8.46)

According to Remark 5.3, for all � ∈ Z1,ρ , we have
[ ∗ ∗
K�−1 y�+1,2�

] = H� =[
H�−1 y�,2�−1∗ ∗

]
, consequently, ([O�q×q , I�q ] − α[I�q , O�q×q ])H� = [K�−1, y�+1,2�] −

α[H�−1, y�,2�−1] = [H 〈a〉
�−1, y

〈a〉
�,2�−1] and, analogously, (β[I�q , O�q×q ]−[O�q×q , I�q ])

H� = [H 〈b〉
�−1, y

〈b〉
�,2�−1]. For all � ∈ Z1,ρ , therefore,

H 〈a〉
�−1r� = −[H 〈a〉

�−1, y
〈a〉
�,2�−1]

[−r�
Iq

]

+ y〈a〉
�,2�−1

= (α[I�q , O�q×q ] − [O�q×q , I�q ])H�

[−r�
Iq

]

+ y〈a〉
�,2�−1

(8.47)

and, analogously,

H 〈b〉
�−1r� = −(β[I�q , O�q×q ] − [O�q×q , I�q ])H�

[−r�
Iq

]

+ y〈b〉
�,2�−1. (8.48)

Since (s j )
2ρ+2
j=0 belongs to F�

q,2ρ+2,α,β , from (5.2) and (5.6) we see that (s j )
2ρ+2
j=0

belongs toH�
q,2ρ+2. Thus, because ofRemark5.4, furthermore (s j )

2ρ+2
j=0 ∈ Hr

q×q,2ρ+2.
Consequently, R(y1,1) ⊆ R(H0) and N (H0) ⊆ N (z1,1). In view of Definition 5.19,
we have f4 = A2. Hence, from (8.40), Lemma A.10, and Remark 5.18 we get
H1
[−r1

Iq

] = [ Oq×q
f4

]
. With (8.47) it follows then

H 〈a〉
0 r1 = (α[Iq , Oq×q ] − [Oq×q , Iq ])

[
Oq×q

f4

]

+ y〈a〉
1,1 = −f4 + y〈a〉

1,1, (8.49)

whereas (8.48) yields analogously H 〈b〉
0 r1 = f4 + y〈b〉

1,1. Inserting (8.46) and (8.49) into
(8.44), by using Lemmata 8.7 and 8.6, we obtain that

H 〈a〉
0 t1 = βH 〈a〉

0 A2 + H 〈a〉
0 r1B2 = (f3 + y〈a〉

1,1)A2 + (−f4 + y〈a〉
1,1)B2

= (f3A2 − f4B2) + y〈a〉
1,1(A2 + B2) = y〈a〉

1,1.
(8.50)

From the second equation in (8.44), and Lemmata 8.7 and 8.6, we conclude analo-
gously that

H 〈b〉
0 v1 = y〈b〉

1,1. (8.51)

Since, because of Notation 3.3, for all � ∈ Z1,ρ+1, obviously

H 〈c〉
�−1 = −αH 〈b〉

�−1 + K 〈b〉
�−1 and H 〈c〉

�−1 = βH 〈a〉
�−1 − K 〈a〉

�−1 (8.52)
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are valid, one can verify analogous to (8.47) that the equations

H 〈c〉
�−1v� = (α[I�q , O�q×q ] − [O�q×q , I�q ])H 〈b〉

�

[−v�

Iq

]

+ y〈c〉
�,2�−1 (8.53)

and

H 〈c〉
�−1t� = ([O�q×q , I�q ] − β[I�q , O�q×q ])H 〈a〉

�

[−t�
Iq

]

+ y〈c〉
�,2�−1 (8.54)

hold true for all � ∈ Z1,ρ . Because of Proposition 5.10 as well as (5.4) and (5.6), the

sequences (a j )
2ρ
j=0 and (b j )

2ρ
j=0 both belong toH�

q,2ρ , and, in view of Remark 5.4, to

Hr
q×q,2ρ as well. In particular, we haveR(y〈a〉

1,1) ⊆ R(H 〈a〉
0 ) andN (H 〈a〉

0 ) ⊆ N (z〈a〉
1,1)

as well asR(y〈b〉
1,1) ⊆ R(H 〈b〉

0 ) andN (H 〈b〉
0 ) ⊆ N (z〈b〉1,1). Since Definition 5.19 yields

f5 = A3 and f6 = B3, from (8.50) and (8.51)we can see then by applyingLemmaA.10
and Remark 5.18 that

H 〈a〉
1

[−t1
Iq

]

=
[
Oq×q

f5

]

and H 〈b〉
1

[−v1
Iq

]

=
[
Oq×q

f6

]

. (8.55)

Inserting the first equation of (8.55) in (8.54) for � = 1 yields to

H 〈c〉
0 t1 = ([Oq×q , Iq ] − β[Iq , Oq×q ])

[
Oq×q

f5

]

+ y〈c〉
1,1 = f5 + y〈c〉

1,1.

Analogously, inserting the second equation of (8.55) into (8.53) for � = 1 shows
H 〈c〉
0 v1 = −f6 + y〈c〉

1,1. By multiplying the third equation in (8.44) from the left by

−H 〈c〉
0 and using the recently shown identities, we get by additional application of

Lemmata 8.7 and 8.6 moreover

H 〈c〉
0 x1 = H 〈c〉

0 t1A3 + H 〈c〉
0 v1B3 = (f5 + y〈c〉

1,1)A3 + (−f6 + y〈c〉
1,1)B3 = y〈c〉

1,1. (8.56)

For all � ∈ Z0,ρ , since [H�, y�+1,2�+1] = [y0,�, K�] is valid,we know fromRemark 5.3
that

H�

[
Oq×q

−t�

]

= [H�, y�+1,2�+1]
⎡

⎣
Oq×q

−t�
Iq

⎤

⎦− y�+1,2�+1

= K�

[−t�
Iq

]

− y�+1,2�+1 (8.57)

is fulfilled and, analogously, that

H�

[
Oq×q

−v�

]

= K�

[−v�

Iq

]

− y�+1,2�+1 (8.58)
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holds true. Since, for all � ∈ Z0,ρ , according to Notation 3.3, moreover H 〈a〉
� =

−αH� + K� and H 〈b〉
� = βH� − K� are valid, we get by applying (8.57) that

H�

[
Oq×q

−t�

]

− αH�

[−t�
Iq

]

= (K� − αH�)

[−t�
Iq

]

− y�+1,2�+1

= H 〈a〉
�

[−t�
Iq

]

− y�+1,2�+1 (8.59)

and, by applying (8.58), similarly that

βH�

[−v�

Iq

]

− H�

[
Oq×q

−v�

]

= (βH� − K�)

[−v�

Iq

]

+ y�+1,2�+1

= H 〈b〉
�

[−v�

Iq

]

+ y�+1,2�+1. (8.60)

Looking at the case � = 1 and using (8.55) yields H1
[ Oq×q

−t1

]−αH1
[−t1

Iq

] = [ Oq×q
f5

]−
y2,3 and βH1

[−v1
Iq

]− H1
[ Oq×q

−v1

] = [ Oq×q
f6

]+ y2,3. Consequently, multiplying (8.45)
from the left by −H1 and using additionally Lemmata 8.7 and 8.6 moreover

H1r2 = −
(

H1

[
Oq×q

−t1

]

− αH1

[−t1
Iq

])

A3 +
(

βH1

[−v1
Iq

]

− H1

[
Oq×q

−v1

])

B3

= −
([

Oq×q

f5

]

− y2,3

)

A3 +
([

Oq×q

f6

]

+ y2,3

)

B3

=
[

Oq×q

−f5A3 + f6B3

]

+ y2,3(A3 + B3) = y2,3. (8.61)

Finally, using (8.50), (8.51), (8.56), and (8.61) shows (I1).
Now let ρ ≥ 2 and we assume that (I�−1) is true for some � ∈ Z2,ρ . We are going

to verify (I�). In view of (8.16), (8.17), (8.39), (8.41), (8.42), and (8.43), we have

−t� = −
(

β

[−x�−1
Iq

]

−
[
Oq×q

−x�−1

])

A2� − r�B2�, (8.62)

−v� =
([

Oq×q

−x�−1

]

− α

[−x�−1
Iq

])

A2� − r�B2�,

−x� = −t�A2�+1 − v�B2�+1, (8.63)

and

−r�+1 =
([

Oq×q

−t�

]

− α

[−t�
Iq

])

A2�+1 −
(

β

[−v�

Iq

]

−
[
Oq×q

−v�

])

B2�+1. (8.64)
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Since [H 〈a〉
�−1, y

〈a〉
�,2�−1] = [y〈a〉

0,�−1, K
〈a〉
�−1] as well as [H 〈b〉

�−1, y
〈b〉
�,2�−1] = [y〈b〉

0,�−1, K
〈b〉
�−1]

are valid, we get, analogous to (8.57) and (8.58), the identities

H 〈a〉
�−1

[
Oq×q

−x�−1

]

= K 〈a〉
�−1

[−x�−1
Iq

]

− y〈a〉
�,2�−1 (8.65)

and

H 〈b〉
�−1

[
Oq×q

−x�−1

]

= K 〈b〉
�−1

[−x�−1
Iq

]

− y〈b〉
�,2�−1. (8.66)

Because of Proposition 5.10 and the formulas (5.2) and (5.6), the sequence (c j )
2ρ
j=0

belongs toH�
q,2ρ , and, in view of Remark 5.4, in particular toHr

q×q,2ρ as well. Thus,

R(y〈c〉
�−1,2�−3) ⊆ R(H 〈c〉

�−2) andN (H 〈c〉
�−2) ⊆ N (z〈c〉�−1,2�−3). In view of Definition 5.19,

we have f4�−1 = B2�. Hence, using additionally the induction assumption (I�−1),
we can see then, by applying Lemma A.10 and Remark 5.18, that H 〈c〉

�−1

[−x�−1
Iq

] =
[ O(�−1)q×q

f4�−1

]
holds true. Using additionally (8.65) and (8.52), then

βH 〈a〉
�−1

[−x�−1
Iq

]

− H 〈a〉
�−1

[
Oq×q

−x�−1

]

= (βH 〈a〉
�−1 − K 〈a〉

�−1)

[−x�−1
Iq

]

+ y〈a〉
�,2�−1

= H 〈c〉
�−1

[−x�−1
Iq

]

+ y�,2�−1 =
[
O(�−1)q×q

f4�−1

]

+ y〈a〉
�,2�−1 (8.67)

and, in view of (8.66), moreover

H 〈b〉
�−1

[
Oq×q

−x�−1

]

− αH 〈b〉
�−1

[−x�−1
Iq

]

= (K 〈b〉
�−1 − αH 〈b〉

�−1)

[−x�−1
Iq

]

− y〈b〉
�,2�−1

= H 〈c〉
�−1

[−x�−1
Iq

]

− y�,2�−1 =
[
O(�−1)q×q

f4�−1

]

− y〈b〉
�,2�−1 (8.68)

follow. Because (s j )
2ρ+2
j=0 belongs toHr

q×q,2ρ+2, we haveR(y�,2�−1) ⊆ R(H�−1) and
N (H�−1) ⊆ N (z�,2�−1). In view of f4� = A2�, Remark 5.3, (I�−1), Lemma A.10 and
Remark 5.18 yield H�

[−r�
Iq

] = [ O�q×q
f4�

]
. Inserting the last equation directly into (8.47)

delivers

H 〈a〉
�−1r� = (α[I�q , O�q×q ] − [O�q×q , I�q ])

[
O�q×q

f4�

]

+ y〈a〉
�,2�−1

= −
[
O(�−1)q×q

f4�

]

+ y〈a〉
�,2�−1. (8.69)
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In the same manner, taking into account (8.48), one gets

H 〈b〉
�−1r� = ([O�q×q , I�q ] − β[I�q , O�q×q ])

[
O�q×q

f4�

]

+ y〈b〉
�,2�−1

=
[
O(�−1)q×q

f4�

]

+ y〈b〉
�,2�−1. (8.70)

In view of (8.62), (8.67), and (8.69), Lemmata 8.7 and 8.6 provide

H 〈a〉
�−1t� =

(

βH 〈a〉
�−1

[−x�−1
Iq

]

− H 〈a〉
�−1

[
Oq×q

−x�−1

])

A2� + H 〈a〉
�−1r�B2�

=
([

O(�−1)q×q

f4�−1

]

+ y〈a〉
�,2�−1

)

A2� +
(

−
[
O(�−1)q×q

f4�

]

+ y〈a〉
�,2�−1

)

B2�

=
[

O(�−1)q×q

f4�−1A2� − f4�B2�

]

+ y〈a〉
�,2�−1(A2� + B2�) = y〈a〉

�,2�−1. (8.71)

In view of (8.62), (8.68), and (8.70), Lemmata 8.7 and 8.6 yield analogously H 〈b〉
�−1v� =

y〈b〉
�,2�−1. Since (a j )

2ρ
j=0 belongs to Hr

q×q,2ρ , we have R(y〈a〉
�,2�−1) ⊆ R(H 〈a〉

�−1) and

N (H 〈a〉
�−1) ⊆ N (z〈a〉

�,2�−1). In view of Remark 5.3, f4�+1 = A2�+1, (8.71), LemmaA.10,
and Remark 5.18, we obtain then

H 〈a〉
�

[−t�
Iq

]

=
[
O�q×q

f4�+1

]

. (8.72)

Inserting the last equation into (8.54) delivers

H 〈c〉
�−1t� = ([O�q×q , I�q ] − β[I�q , O�q×q ])

[
O�q×q

f4�+1

]

+ y〈c〉
�,2�−1

=
[
O(�−1)q×q

f4�+1

]

+ y〈c〉
�,2�−1. (8.73)

Since (b j )
2ρ
j=0 ∈ Hr

q×q,2ρ and f4�+2 = B2�+1 are valid, from Remark 5.3, H 〈b〉
�−1v� =

y〈b〉
�,2�−1, Lemma A.10, and Remark 5.18, we analogously get

H 〈b〉
�

[−v�

Iq

]

=
[
O�q×q

f4�+2

]

. (8.74)

Inserting (8.74) into (8.53) yields

H 〈c〉
�−1v� = −

[
O(�−1)q×q

f4�+2

]

+ y〈c〉
�,2�−1. (8.75)
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Now, in view of (8.63), (8.73), and (8.75), applying Lemmata 8.7 and 8.6, we conclude

H 〈c〉
�−1x� = H 〈c〉

�−1t�A2�+1 + H 〈c〉
�−1v�B2�+1

=
[

O(�−1)q×q

f4�+1A2�+1 − f4�+2B2�+1

]

+ y〈c〉
�,2�−1(A2�+1 + B2�+1) = y〈c〉

�,2�−1.

(8.76)

From (8.72) and (8.59) we infer

H�

[
Oq×q

−t�

]

− αH�

[−t�
Iq

]

=
[
O�q×q

f4�+1

]

− y�+1,2�+1. (8.77)

Combining (8.74) and (8.60), we obtain

βH�

[−v�

Iq

]

− H�

[
Oq×q

−v�

]

=
[
O�q×q

f4�+2

]

+ y�+1,2�+1. (8.78)

Now, by virtue of (8.64), (8.77), and (8.78), Lemmata 8.7 and 8.6 provide

H�r�+1

= −
(

H�

[
Oq×q

−t�

]

− αH�

[−t�
Iq

])

A2�+1 +
(

βH�

[−v�

Iq

]

− H�

[
Oq×q

−v�

])

B2�+1

= −
([

O�q×q

f4�+1

]

− y�+1,2�+1

)

A2�+1 +
([

O�q×q

f4�+2

]

+ y�+1,2�+1

)

B2�+1

=
[

O�q×q

−f4�+1A2�+1 + f4�+2B2�+1

]

+ y�+1,2�+1(A2�+1 + B2�+1) = y�+1,2�+1.

(8.79)

From (8.71), H 〈b〉
�−1v� = y〈b〉

�,2�−1, (8.76), and (8.79) finally (I�) follows. Thus, (I�) is
fulfilled for all � ∈ Z1,ρ . Under additional consideration of (8.40), the application of

Remark 6.5 to (s j )
2ρ+2
j=0 and (r̈�)

ρ+1
�=0 , to (a j )

2ρ
j=0 and (ẗ�)

ρ
�=0, to (b j )

2ρ
j=0 and (v̈�)

ρ
�=0,

and to (c j )
2ρ
j=0 and (ẍ�)

ρ
�=0, respectively, finishes the proof in the case that τ is a

positive even integer or τ = ∞.

Part 2: Now assume τ = 2ρ + 1 with some ρ ∈ N. Because of (7.4), we have then
〈τ ] = ρ and 〈τ −1] = ρ as well as 〈τ −2] = ρ−1. According to Remark 8.4, for each
k ∈ Z1,2ρ+1, then the matrix polynomials p̈2k−1, q̈2k−1, p̈2k , and q̈2k are built only by
use of the matrices f0, f1, . . . , f4k−2 and, in view of Remark 5.23, consequently only
depend on the matrices s0, s1, . . . , s2k−1. Thus, in view Remark 8.9, this is also true
for the polynomials r̈k , ẗk−1, v̈k−1, and ẍk−1 constructed from it. Moreover, we have
r̈0 = p̈0 = Iq . Since (s j )

2ρ+1
j=0 belongs toF�

q,2ρ+1,α,β , we know from Proposition 5.13
that there is a sequence (s j )∞j=2ρ+2 of complex q × q matrices such that (s j )∞j=0

belongs to F�
q,∞,α,β . Since the case τ = ∞ is already checked in Part 1 of the proof,

the sequence (r̈�)
∞
�=0 forms an MROS of matrix polynomials with respect to (s j )∞j=0
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and likewise, the sequences (ẗ�)∞�=0, (v̈�)
∞
�=0, and (ẍ�)

∞
�=0 form MROS of matrix

polynomials with respect to (a j )
∞
j=0, (b j )

∞
j=0, and (c j )∞j=0, respectively. Remark 6.3

provides the corresponding result for the subsystems and, in particular, for the case
τ = 2ρ + 1. Hence, the proof of Part 2 is complete as well.

We again turn our attention to thematrix polynomials p̈ j and q̈ j . They are connected
to each other by the transformation described in Notation 6.11.

Lemma 8.15 Let (s j )κj=0 ∈ F�
q,κ,α,β with Fα,β -parameter sequence (f j )

2κ
j=0. For all

j ∈ Z0,2κ+2, let thematrix polynomial Pj : C → C
q×q by given by Pj (w) := wp̈ j (w).

For all z ∈ C, then P
�s�
0 (z) = zp̈�s�

0 (z) + f0 as well as P
�s�
1 (z) = zp̈�s�

1 (z) + f1 and

P
�s�
2 (z) = zp̈�s�

2 (z) − f2 hold true. Moreover, if κ ≥ 1, then P
�s�
3 (z) = zp̈�s�

3 (z) − f3

for each z ∈ C and P
�s�
j (z) = zp̈�s�

j (z) for every choice of j ∈ Z4,2κ+2 and z ∈ C.

Proof Throughout this proof, we consider an arbitrary z ∈ C. In view of Proposi-
tion 5.13 and Remarks 5.23 and 8.4, it is sufficient to consider the case κ = ∞.
Let Q : C → C

q×q be given by Q(w) := w Iq . Because of Notation 6.11, (5.9), and
(5.10), we conclude Q�s�(z) = s0 = f0, Q�a�(z) = a0 = f1, Q�b�(z) = b0 = f2, and
Q�c�(z) = c0 = f3. Taking into account (8.3), we see that P0 = Q. By virtue of Nota-

tion 6.11, we get p̈�s�
0 (z) = Oq×q and P

�s�
0 (z) = Q�s�(z) = f0 = zp̈�s�

0 (z)+f0. Since,
according to (8.3) and (8.4), we have p̈1(w) = (w − α)Iq and p̈2(w) = (w − β)Iq ,
then P1(w) = (w − α)Q(w) and P2(w) = −[(β − w)Q(w)] hold true for all

w ∈ C. Lemma C.3 yields p̈�s�
1 (z) = s0 and p̈�s�

2 (z) = s0 as well as, using

additionally Remark C.1, moreover P
�s�
1 (z) = Q�a�(z) + s0Q(z) and P

�s�
2 (z) =

−[Q�b�(z) − s0Q(z)]. Therefore, P�s�
1 (z) = f1 + zs0 = f1 + zp̈�s�

1 (z) and P
�s�
2 (z) =

−f2 + zs0 = −f2 + zp̈�s�
2 (z). Equation (8.6) implies with (8.3), (8.4), and Lemma 8.6

that p̈3(z) = −(β − z)(z − α)(A1 + B1) = −[(β − z)(z − α)Iq ]. Consequently,
P3(z) = −[(β − z)(z−α)Q(z)]. As a result of Remark C.1 and Lemma C.4, we have

p̈�s�
3 (z) = −[(α+β−z)s0−s1] and P

�s�
3 (z) = −(Q�c�(z)+[(α+β−z)s0−s1]Q(z))

and, hence, P
�s�
3 (z) = −f3 − z[(α + β − z)s0 − s1] = −f3 + zp̈�s�

3 (z). Now we con-
sider an arbitrary � ∈ N. In view of Notation 8.9, we first of all have p̈4� = r̈� and
P4� = wr̈�(w) for all w ∈ C. By virtue of Theorem 8.14, the sequence (r̈k)∞k=0 forms
an MROS of matrix polynomials with respect to (s j )∞j=0. In particular, we know that
the matrix polynomial r̈� is of degree � with leading coefficient matrix Iq . Because of

(5.6), the sequence (s j )∞j=0 belongs toH�
q,∞. Then one can now see from Lemma C.2

in connection with Remark 6.5 that P
�s�
4� (z) = zr̈�s�

� (z) = zp̈�s�
4� (z). In view of Nota-

tion 8.9, we have furthermore

p̈4�+1(w) = (w − α)ẗ�(w) and p̈4�+2(w) = −[(β − w)v̈�(w)] (8.80)

for all w ∈ C. Let T�, V� : C → C
q×q be given by T�(w) := wẗ�(w) and

V�(w) := wv̈�(w). Thus,
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P4�+1(w) = (w − α)T�(w) and P4�+2(w) = −[(β − w)V�(w)] (8.81)

for all w ∈ C. According to Theorem 8.14, the sequence (ẗk)∞k=0 forms an MROS of
matrix polynomials with respect to (a j )

∞
j=0 and the sequence (v̈k)∞k=0 forms anMROS

of matrix polynomials with respect to (b j )
∞
j=0. In particular, the matrix polynomials

ẗ� and v̈� are of degree � and have both the leading coefficient matrix Iq . According

to (5.6), both sequences (a j )
∞
j=0 and (b j )

∞
j=0 belong to H�

q,∞. One can see from

Lemma C.2 in connection with Remark 6.5 that T
�a�
� (w) = wẗ�a�� (w) and V

�b�
� (w) =

wv̈�b�
� (w)hold true for allw ∈ C. Therefore, becauseof (8.81), (8.80), andLemmaC.3,

we obtain

P
�s�
4�+1(z) = T

�a�
� (z) + s0T�(z) = z

[
ẗ�a�� (z) + s0 ẗ�(z)

]
= zp̈�s�

4�+1(z)

and, using additionally Remark C.1, analogously

P
�s�
4�+2(z) = −

[
V

�b�
� (z) − s0V�(z)

]
= z

(
−
[
v̈�b�

� (z) − s0v̈�(z)
])

= zp̈�s�
4�+2(z).

In view of Notation 8.9, we have furthermore p̈4�+3(w) = −[(β − w)(w − α)ẍ�(w)]
for all w ∈ C and with X�(w) := wẍ�(w) then

P4�+3(w) = −[(β − w)(w − α)X�(w)] (8.82)

for all w ∈ C. According to Theorem 8.14, the sequence (ẍk)∞k=0 forms an MROS of
matrix polynomials with respect to (c j )∞j=0. In particular, the matrix polynomial ẍ� is
of degree � and has the leading coefficient matrix Iq . Because of (5.6), the sequence

(c j )∞j=0 belongs toH�
q,∞. One can see fromLemmaC.2 in connectionwithRemark 6.5

that X
�c�
� (z) = zẍ�c�

� (z) holds true. Therefore, because of (8.82), Remark C.1, and

Lemma C.4, we obtain P
�s�
4�+3(z) = −(zẍ�c�

� (z) + [(α + β − z)s0 − s1][zẍ�(z)]) =
zp̈�s�

4�+3(z). Hence, P
�s�
j (z) = zp̈�s�

j (z) for all j ∈ Z4,∞.

Lemma 8.16 Let (s j )κj=0 ∈ F�
q,κ,α,β . Then q̈ j = p̈�s�

j for all j ∈ Z0,2κ+2.

Proof We use the notation given in Lemma 8.15. Our proof works inductively. We
consider an arbitrary z ∈ C. In view of (8.3) and Notation 6.11, we have deg p̈0 = 0

and p̈�s�
0 (z) = Oq×q = q̈0(z). Because of (8.3) and (8.4), moreover p̈1(z) = (z −

α)p̈0(z) and p̈2(z) = (z − β)p̈0(z) are fulfilled. Applying Remark C.1, (8.3) as well
as Lemma 8.15 and the notation given there, leads with the use of Notation 6.11 to

p̈�s�
1 (z) = P

�s�
0 (z) − αp̈�s�

0 (z) = (z − α)p̈�s�
0 (z) + f0 = f0 = q̈1(z) and, analogously,

to p̈�s�
2 (z) = f0 = q̈2(z).
Now let κ ≥ 1. From (8.6) we get p̈3(z) = −βp̈1(z)A1 + P1(z)A1 + P2(z)B1 −

αp̈2(z)B1. Thus, applying Remark C.1 and Lemma 8.15 as well as Lemma 8.7, from
(8.7) and the already shown equations, then we conclude
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p̈�s�
3 (z)

= −
(
βp̈�s�

1 (z) −
[
zp̈�s�

1 (z) + f1

])
A1 +

([
zp̈�s�

2 (z) − f2

]
− αp̈�s�

2 (z)
)
B1

= −[βq̈1(z) − zq̈1(z)]A1 + [zq̈2(z) − αq̈2(z)]B1 + (f1A1 − f2B1)

= −[(β − z)q̈1(z)]A1 + [(z − α)q̈2(z)]B1 = q̈3(z).

Keeping in mind (8.8) and (8.9) and using Remark C.1, then p̈�s�
4 (z) = p̈�s�

1 (z)A1 +
p̈�s�
2 (z)B1 = q̈1(z)A1 + q̈2(z)B1 = q̈4(z) follows as well. Now we suppose that

κ ≥ 2 and that we already know that there is an � ∈ N fulfilling 2� ≤ κ such

that p̈�s�
4m−1 = q̈4m−1 and p̈�s�

4m = q̈4m are valid for all m ∈ Z1,�. From (8.10) and
(8.11) we get p̈4�+1(z) = p̈4�−1(z)A2� + P4�(z)B2� − αp̈4�(z)B2� and p̈4�+2(z) =
p̈4�−1(z)A2� + P4�(z)B2� −βp̈4�(z)B2�. Thus, because of (8.10)–(8.13), Remark C.1,
and Lemma 8.15, we obtain

p̈�s�
4�+1(z) = p̈�s�

4�−1(z)A2� + zp̈�s�
4� (z)B2� − αp̈�s�

4� (z)B2�

= q̈4�−1(z)A2� + (z − α)q̈4�(z)B2� = q̈4�+1(z)

and, analogously, p̈�s�
4�+2(z) = q̈4�+2(z). If 2� + 1 ≤ κ , then (8.6) yields

p̈4�+3(z) = −(β − z)p̈4�+1(z)A2�+1 + (z − α)p̈4�+2(z)B2�+1

= −βp̈4�+1(z)A2�+1 + P4�+1(z)A2�+1 + P4�+2(z)B2�+1 − αp̈4�+2(z)B2�+1.

From (8.8) we conclude p̈4�+4(z) = p̈4�+1(z)A2�+1 + p̈4�+2(z)B2�+1, which, in view
of Remark C.1, Lemma 8.15, and (8.13), implies

p̈�s�
4�+3(z) = −(β − z)p̈�s�

4�+1(z)A2�+1 + (z − α)p̈�s�
4�+2(z)B2�+1

= −(β − z)q̈4�+1(z)A2�+1 + (z − α)q̈4�+2(z)B2�+1 = q̈4�+3(z).

Analogously, in view of (8.9), we get p̈�s�
4�+4(z) = q̈4�+4(z). Therefore, the lemma is

proved inductively.

9 TheF˛,ˇ-transformation for Matricial Sequences

We continue by stating the construction of a certain transformation for sequences of
matrices. This transformation was introduced in [21] and constitutes the elementary
step of a Schur type algorithm in the class of [α, β]-non-negative definite sequences.
Definition 9.1 ([21, Def. 8.8]) Let κ ∈ N0∪{∞}, let (s j )κj=0 be a sequence of complex
p × q matrices, and let β ∈ R. Further, let b−1 := − s0 and, in the case κ ≥ 1, let
(b j )

κ−1
j=0 be given by (3.2). Then we call the sequence (b j )

κ
j=0 defined by b j := b j−1

the (−∞, β] -modification of (s j )κj=0.
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If (s j )κj=0 and (t j )κj=0 are sequences of complex p × q and q × r matrices,
then we use the Cauchy product (x j )κj=0 of (s j )κj=0 and (t j )κj=0 which is given by

x j := ∑ j
�=0 s�t j−�.

Definition 9.2 ([21, Def. 8.14]) Let κ ∈ N ∪ {∞}, let α, β ∈ R be such that α < β,
and let (s j )κj=0 be a sequence of complex p × q matrices. In view of (3.2), denote by

(g j )
κ−1
j=0 the (−∞, β]-modification of (a j )

κ−1
j=0 and by (x j )

κ−1
j=0 the Cauchy product of

(b j )
κ−1
j=0 and (g j )

κ−1
j=0. Then we call the sequence (t j )

κ−1
j=0 given by t j := − a0s

†
0 x ja0

the Fα,β -transform of (s j )κj=0.

Remark 9.3 ([21, Rem. 8.15]) Suppose κ ≥ 1. Let (s j )κj=0 be a sequence of complex

p × q matrices with Fα,β -transform (t j )
κ−1
j=0. Then, for each k ∈ Z0,κ−1, the matrix

tk is built from the matrices s0, s1, . . . , sk+1. In particular, for all m ∈ Z1,κ , the
Fα,β -transform of (s j )mj=0 coincides with (t j )

m−1
j=0 .

We are now going to iterate the Fα,β -transform introduced in Definition 9.2:

Definition 9.4 ([21, Def. 9.1]) Let κ ∈ N0 ∪ {∞}, let α, β ∈ R be such that α < β,
and let (s j )κj=0 be a sequence of complex p × q matrices. Let the sequence (s{0}

j )κj=0

be given by s{0}
j := s j . If κ ≥ 1, then, for all k ∈ Z1,κ , let the sequence (s{k}

j )κ−k
j=0 be

recursively defined to be the Fα,β -transform of the sequence (s{k−1}
j )

κ−(k−1)
j=0 . For all

k ∈ Z0,κ , then we call the sequence (s{k}
j )κ−k

j=0 the k-th Fα,β -transform of (s j )κj=0.

Remark 9.5 ([21, Rem. 9.3]) Let κ ∈ Z0,κ and let (s j )κj=0 be a sequence of complex

p × q matrices with k-thFα,β -transform (u j )
κ−k
j=0. In view of Remark 9.3, we see that,

for each � ∈ Z0,κ−k , the matrix u� is built only from the matrices s0, s1, . . . , s�+k .
In particular, for each m ∈ Zk,κ , the k-th Fα,β -transform of (s j )mj=0 coincides with

(u j )
m−k
j=0 .

Remark 9.6 ([21, Cor. 9.9]) If (s j )κj=0 ∈ F�
q,κ,α,β , then D j = δ−( j−1)s{ j}

0 for all
j ∈ Z0,κ where, as introduced above, δ = β − α.

10 The ClassesPRq(5+) andPRq(C \ [˛,ˇ])
In this section, we consider particular pairs of meromorphic matrix functions, which
are used as parameters in the context of matricial moment problems.

Remark 10.1 The matrix

J̃q :=
[
Oq×q −iIq
iIq Oq×q

]

(10.1)

is a 2q × 2q signature matrix, i. e., J̃ ∗
q = J̃q and J̃ 2q = I2q hold true. Moreover for

every choice of A, B ∈ C
q×q , we have

[
A
B

]∗
(− J̃q)

[
A
B

] = 2�(B∗A). In particular,
[ A
Iq

]∗
(− J̃q)

[ A
Iq

] = 2�(A) is valid for each A ∈ C
q×q .
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Remark 10.2 LetM ∈ C
q×q
H . Then it is readily checked that

[ Iq Oq×q
M Iq

]∗
J̃q
[ Iq Oq×q
M Iq

] =
J̃q and

[ Iq M
Oq×q Iq

]∗
J̃q
[ Iq M
Oq×q Iq

] = J̃q .

For our following considerations, we observe that, for each meromorphic matrix-
valued function F , the set P(F) of all poles of F is discrete.

The following class can be used as set of parameters in the context of the matri-
cial Hamburger moment problem (see, e. g. [13]). Denote by PRq(�+) the set of all
ordered pairs [P; Q] consisting of C

q×q -valued functions P and Q which are mero-
morphic in �+ and for which a discrete subsetD of �+ exists such that the following
three conditions are fulfilled:

(I) P(P) ∪ P(Q) ⊆ D.
(II) rank

[ P(z)
Q(z)

] = q for all z ∈ �+\D.

(III) �([Q(z)]∗P(z)) ∈ C
q×q
� for all z ∈ �+\D.

Observe that the class PRq(�+) can be used as set of parameters to describe the
solution set of the matricial Hamburger moment problem (see, e. g. [13]).

Remark 10.3 Let [P; Q] ∈ PRq(�+) be such that det Q does not vanish identically.
Then one can easily check the well-known fact that the function PQ−1 belongs to
Rq(�+).

If [P; Q] ∈ PRq(�+), then, for each q × q matrix-valued function R meromor-
phic in �+ such that the function det R does not vanish identically, one can see that
the pair [PR; QR] belongs to PRq(�+) as well. Two pairs [P1; Q1], [P2; Q2] ∈
PRq(�+) are said to be equivalent, if there exist a q × q matrix-valued function R
meromorphic in�+ and a discrete subsetD of�+ such that P1, Q1, P2, Q2, and R are
holomorphic in �+ \ D and that det R(w) �= 0 as well as P2(w) = P1(w)R(w) and
Q2(w) = Q1(w)R(w) hold true for each w ∈ �+\D. Indeed, this relation defines
an equivalence relation on PRq(�+). For each [P; Q] ∈ PRq(�+), we denote by
〈[P; Q]〉 the equivalence class generated by [P; Q]. Furthermore, ifM is a subset of
PRq(�+), then let 〈M〉 := {〈[P; Q]〉 : [P; Q] ∈ M}.

Now we want to study special subclasses of the class PRq(�+). For each linear
subspace U of C

q , we again use PU to denote the orthogonal projection matrix onto
U (see also Remarks A.4 and A.5).

Notation 10.4 Let M ∈ C
q×p. We denote by P[M] the set of all pairs [P; Q] ∈

PRq(�+) such that PR(M)P = P is fulfilled.

Observe, if M ∈ C
p×q is such that rank M = q, then P[M] = PRq(�+).

The construction in Notation 10.4 will be used later to treat
Problem MP[R; (s j )2nj=0,�] by choosing M = h2n , where h2n is given by Defini-
tion 5.5.

Now we consider a further class of meromorphic matrix-valued functions, which
is connected with the matricial Hausdorff moment problem (see [23]).

Notation 10.5 (cf. [6, Def. 5.2]) Denote byPRq(C\[α, β]) the set of all ordered pairs
[P; Q] consisting of q × q matrix-valued functions P and Q which are meromorphic
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in C \ [α, β] and for which a discrete subset D of C \ [α, β] exists such that P and Q
are both holomorphic in C \ ([α, β] ∪ D) and that the following two conditions are
fulfilled:

(I) rank
[ P(z)
Q(z)

] = q for each z ∈ C\([α, β] ∪ D).

(II) (�z)−1�((z−α)[Q(z)]∗[P(z)]) ∈ C
q×q
� and (�z)−1�((β − z)[Q(z)]∗[P(z)]) ∈

C
q×q
� for all z ∈ C\(R ∪ D).

For each [P; Q] ∈ PRq(C \ [α, β]), we denote by Ë([P; Q]) the set of all z ∈
C \ ([α, β] ∪ P(P) ∪ P(Q)) satisfying rank

[ P(z)
Q(z)

] �= q.

Two ordered pairs [P; Q] and [S; T ] belonging to PRq(C \ [α, β]) are said to be
equivalent, if there is aC

q×q matrix-valued function Rmeromorphic inC\[α, β] such
that det R does not vanish identically inC\[α, β] and such that S = PR and T = QR
hold true. Indeed, this relations defines an equivalence relation on PRq(C \ [α, β]).
Moreover, let 〈[P; Q]〉 denote the equivalence class of the pair [P; Q] ∈ PRq(C \
[α, β]). For each subsetQ ⊆ PRq(C \ [α, β]), let 〈Q〉 := {〈[S; T ]〉 : [S; T ] ∈ Q} be
the set of all equivalence classes of pairs belonging to Q.

The pairs belonging to a certain subclass of the set PRq(C \ [α, β]) introduced
below generate the equivalence classes, which will be used later as parameters in the
description of the set of all solutions to ProblemFP[[α, β]; (s j )mj=0,=]:
Notation 10.6 ([23, Notation 8.1]) For each M ∈ C

q×q , let P̈[M] be the set of all
pairs [F;G] ∈ PRq(C \ [α, β]) for which there exists a z0 ∈ C\([α, β] ∪ P(F) ∪
P(G) ∪ Ë([F;G])) such that R(F(z0) ⊆ R(M).

Remark 10.7 ([23, Rem. 8.2]) If M ∈ C
q×q fulfills rank M = q, then P̈[M] =

PRq(C \ [α, β]).
The class P̈[M] can be characterized as follows:

Lemma 10.8 ([23, Lem. 8.3]) Let M ∈ C
q×q and let [F;G] ∈ PRq(C\[α, β]). Then

[F;G] ∈ P̈[M] if and only if PR(M)F = F. In this case, R(F(z)) ⊆ R(M) is valid
for z ∈ C \ ([α, β] ∪ P(F)).

11 Description of the Set of Solutions of theMatricial Truncated
HausdorffMoment Problem via Linear Fractional Transformations

In this section, we draw the attention of the reader to certain transformations for matrix
functions, which are closely interrelated to the Fα,β -transformation for sequences of
complex matrices.

Definition 11.1 ([23, Def. 9.1]) Let α, β ∈ R be such that α < β, let D be a non-
empty subset ofC, let F : D → C

p×q be amatrix-valued function, and letM ∈ C
p×q .

Then the pair [G1;G2] given by the matrix-valued functions G1 : D → C
p×q and

G2 : D → C
q×q defined by G1(z) := (β − z)F(z) − M and G2(z) := (β − z)[(z −

α)M†F(z) + PR(M∗)] + δPN (M) is called the Fα,β(M) -transformed pair of F .
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Definition 11.2 ([23, Def. 9.5]) Let α, β ∈ R be such that α < β, let G be a domain of
C, let G1 be a C

p×q -valued function meromorphic in G and let G2 be a C
q×q -valued

function meromorphic in G. Moreover, let M ∈ C
p×q and let the functions g, h : G →

C be given by g(z) := z − α and h(z) := β − z. Furthermore, let F1 := hPR(M)G1 +
MG2 and F2 := − hgM†G1 + hG2. If det F2 does not vanish identically in G, then
we call the (in G meromorphic and C

p×q -valued) function F := F1F
−1
2 the inverse

Fα,β(M) -transform of [G1;G2].
The following complex (p + q) × (p + q)matrix polynomial (see, e. g. [23, Nota-

tion 9.6]) is connected to the inverse Fα,β(M)-transform:

Notation 11.3 Let M ∈ C
p×q . Then let V̈M : C → C

(p+q)×(p+q) be given by

V̈M (z) :=
[

(β − z)PR(M) M
−(β − z)(z − α)M† (β − z)Iq

]

.

We extend the concept used in Definitions 11.1 and 11.2 and Notation 11.3. Now
we want to introduce a transformation depending on two complex matrices A and
M of the same size, which will take in the role of the Hermitian matrices a0 and s0
determined by a given sequence (s j )κj=0 ∈ F�

q,κ,α,β (see (3.2)). Then B := δM − A
and N := A+αM correspond to the matrices b0 and s1, and we have A = −αM + N
and B = βM − N .

Definition 11.4 ([23, Def. 10.1]) Let α, β ∈ R be such that α < β, let D be a non-
empty subset of C, let G : D → C

p×q be a matrix function and let A and M be two
complex p × q matrices. Then we call the matrix function G : D → C

p×q given by
G(z) := AM†[(β − z)F(z) − M]((β − z)[(z − α)F(z) + M])†A the Fα,β(A, M)

-transform of F .

Definition 11.5 ([23, Def. 10.4]) Let α, β ∈ R be such that α < β and let δ := β − α.
LetD be a non-empty subset of C, let G : D → C

p×q be a matrix function, and let A
and M be two complex p × q matrices. Let B := δM − A. Then we call the function
F : D → C

p×q given by

F(z) := − [(β − z)MA†G(z) + A + MPN (A)M
†B]

×((β − z)[(z − α)A†G(z) − M†A] + (z − α)PN (A)M
†B)†

the inverse Fα,β(A, M) -transform of G.

Notation 11.6 Let A, M ∈ C
p×q and let B := δM − A. Then let V̈A,M : C →

C
(p+q)×(p+q) be defined by

V̈A,M (z) :=
⎡

⎣
(β − z)MA† A + MPN (A)M†B

−(β − z)(z − α)A† V22(z)

⎤

⎦ ,

where V22(z) := (β − z)(δPN (M) + M†A) − (z − α)PN (A)M†B.
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Definition 11.7 ([23, Def. 13.1]) Let α, β ∈ R be such that α < β, let D be a non-
empty subset of C, let F : D → C

p×q be a matrix-valued function, and let (s j )κj=0

be a sequence of complex p × q matrices. Let G̈0(F; (s j )κj=0) := F . Recursively, in

view of (3.2), for all k ∈ Z1,κ , we denote by G̈k(F; (s j )κj=0) theFα,β(a{k−1}
0 , s{k−1}

0 )-

transform of G̈k−1(F; (s j )κj=0). Moreover, for all k ∈ Z0,κ , let PG̈k(F; (s j )κj=0)

denote the Fα,β(s{k}
0 )-transformed pair of G̈k(F; (s j )κj=0). For all m ∈ Z0,κ , then we

call PG̈m(F; (s j )κj=0) the m-th Fα,β -transformed pair of F with respect to (s j )κj=0

and G̈m(F; (s j )κj=0) the m-th Fα,β -transform of F with respect to (s j )κj=0.

Remark 11.8 Let (s j )κj=0 be a sequence of complex p × q matrices. In view of Nota-

tion 11.3, for eachm ∈ Z0,κ , then V̈m := V0V1 · · · Vm is a complex matrix polynomial
with deg V̈m ≤ 2(m + 1), where Vm := V̈

s{m}
0

and where, in the case m ≥ 1, moreover

Vk := V̈
a{k}
0 ,s{k}0

for all k ∈ Z0,m−1.

Now we obtain the following description of the set of all solutions to Prob-
lemFP[[α, β]; (s j )mj=0,=] via linear fractional transformation:

Theorem 11.9 ([23, Thm. 14.2]) Let α, β ∈ R be such that α < β, let m ∈ N0,
and let (s j )mj=0 ∈ F�

q,m,α,β . Let V̈m : C → C
2q×2q be given by Remark 11.8 and

Notation 11.3, and let
[
w̃m x̃m
ỹm z̃m

]
be the q × q block representation of the restriction

of V̈m onto C\ [α, β]. If � ∈ 〈P̈[s{m}
0 ]〉 and if [G1;G2] ∈ �, then det(ỹmG1 + z̃mG2)

does not vanish identically inC\[α, β] and the matrix-valued function F := (w̃mG1+
x̃mG2)(ỹmG1 + z̃mG2)

−1 belongs to Rq [[α, β]; (s j )mj=0,=]. Conversely, for each

F ∈ Rq [[α, β]; (s j )mj=0,=], there exists a unique equivalence class � ∈ 〈P̈[s{m}
0 ]〉

such that F = (w̃mG1 + x̃mG2)(ỹmG1 + z̃mG2)
−1 holds true for all [G1;G2] ∈ �,

namely the equivalence class 〈PG̈m(F; (s j )mj=0)〉 of the m-th Fα,β -transformed pair

PG̈m(F; (s j )mj=0) of F with respect to (s j )mj=0.

Proposition 11.27 below shows that the blocks of the q × q block representation

V̈m =
[
wm xm
ym zm

]

of the matrix polynomial V̈m defined in Remark 11.8 and used in

Theorem 11.9, are related to the matrix polynomials p̈ j and q̈ j given in Notation 8.3,
which moreover are transferable to each other (see Lemma 8.16). For now, we want
to factorize V̈m in an alternative way in comparison with Remark 11.8. Therefore, we
deduce a connection between V̈m and V̈m−1, which (considering Theorem 11.9) will
relate the solution sets fulfilling Rq [[α, β]; (s j )mj=0,=] ⊆ Rq [[α, β]; (s j )

m−1
j=0 ,=].

Notation 11.10 Let A, M ∈ C
p×q . Let B := δM − A and let D := AM†B. Then let

ÜA,M : C → C
(p+q)×(p+q) be defined by

ÜA,M (z) :=
[

U11(z) B

−(β − z)(z − α)M†AD† (β − z)(δPN (M) + M†A)

]

,
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where U11(z) := M[(β − z)PR(A∗)M†B + (z − α)PN (A)M†A]D†.

Lemma 11.11 ([23, Lem. 14.10]) Suppose κ ≥ 1. Let (s j )κj=0 ∈ F�
q,κ,α,β . For all

m ∈ Z1,κ , then

V̈m = V̈m−1Üa{m−1}
0 ,s{m−1}

0
. (11.1)

Lemma 11.12 ([23, Lem. 14.12]) Suppose κ ≥ 1. Let (s j )κj=0 ∈ F�
q,κ,α,β with

Fα,β -parameter sequence (f j )
2κ
j=0 and sequence of [α, β]-interval lengths (D j )

κ
j=0.

For all k ∈ Z0,κ−1 and all z ∈ C, then

Ü
a{k}
0 ,s{k}0

(z) =
[
U11(z) U12(z)
U21(z) U22(z)

]

, (11.2)

where

U11(z) = Dk

{

(β − z)f†2k+1f2k+1D
†
kf2k+2

+ (z − α)(Iq − f†2k+1f2k+1)D
†
kf2k+1

}

D†
k+1,

U12(z) = δkf2k+2, U21(z) = −(β − z)(z − α)δ−k+1D†
kf2k+1D

†
k+1,

and

U22(z) = (β − z)δ[(Iq − D†
kDk + D†

kf2k+1].

In some situations, the recursion coefficients A j and B j defined in (8.5) occur
when applying the specific choice � j = Oq×q . In the following, we will again use the
notations introduced in Notation 8.3. Hence, for a given sequence (s j )κj=0 of complex

q × q matrices withFα,β -parameter sequence (f j )
2κ
j=0 and sequence of [α, β]-interval

lengths (D j )
κ
j=0, let in the following the systems (p̈ j )

2κ+2
j=0 and (q̈ j )

2κ+2
j=0 of complex

matrix polynomials be defined recursively in accordance to Notation 8.3, where in the
case κ ≥ 1, we use the special given sequence (� j )

κ
j=1 defined by � j := Oq×q for all

j ∈ Z1,κ . In particular, the sequences (A j )
κ
j=1 and (B j )

κ
j=1 introduced in (8.5) then

admit, for every choice of j ∈ Z1,κ , the representations

A j = D†
j−1f2 j and B j = D†

j−1f2 j−1 + PN (D j−1). (11.3)

Lemma 11.13 Suppose κ ≥ 1. Let (s j )κj=0 ∈ F�
q,κ,α,β with Fα,β -parameter sequence

(f j )
2κ
j=0 and sequence of [α, β]-interval lengths (D j )

κ
j=0. Furthermore, suppose that

k ∈ Z0,κ−1 is such that

Dk(Iq − f†2k+1f2k+1)D
†
kf2k+1D

†
k+1 = O. (11.4)
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For all z ∈ C, then

Ü
a{k}
0 ,s{k}0

(z) =
⎡

⎣
(β − z)DkAk+1D

†
k+1 δkDkAk+1

−(β − z)(z − α)δ−k+1Bk+1D
†
k+1 (β − z)δBk+1

⎤

⎦ .

Proof. Let k ∈ Z0,κ−1 and let z ∈ C. Furthermore, let (11.2) be the q × q block
representation of Ü

a{k}
0 ,s{k}0

(z). Lemma 8.7 yields DkAk+1 = f2k+2. In view of

Lemma 11.12, then U12(z) = δkDkAk+1 follows. Using (11.3), Remark A.8, and
Lemma 11.12, we also get U22(z) = (β − z)δBk+1. From [19, Cor. 10.20] we
obtainN (Dk) ⊆ N (Dk+1). Because of Remarks A.6 and A.3, we haveN (Dk+1)

⊥ =
R(D†

k+1). Since N (PN (Dk )) = N (Dk)
⊥ holds true, Remark A.5 implies R(D†

k+1) =
N (Dk+1)

⊥ ⊆ N (Dk)
⊥ = N (PN (Dk )). Consequently, PN (Dk )D

†
k+1 = O . In view

of (11.3), thus we obtain Bk+1D
†
k+1 = D†

kf2k+1D
†
k+1. Hence, Lemma 11.12 gives

U21(z) = −(β − z)(z − α)δ−k+1Bk+1D
†
k+1. Taking into account Remark A.8 and

PN (Dk )D
†
k+1 = O , we infer D†

kDkD
†
k+1 = (Iq − PN (Dk ))D

†
k+1 = D†

k+1. Proposi-

tion 5.16 shows us that D j ∈ C
q×q
� ⊆ C

q×q
H is valid for all j ∈ Z0,κ , whereas

Proposition 5.20 yields fl ∈ C
q×q
� ⊆ C

q×q
H for all l ∈ Z0,2κ . Thus, Remark A.6

provides us R(D†
k+1) = R(D∗

k+1) = R(Dk+1) and R(f†2k+1) = R(f∗2k+1) =
R(f2k+1). Therefore, since we know R(Dk+1) ⊆ R(f2k+1) from Remark 5.25,
we have then R(D†

k+1) ⊆ R(f†2k+1), which, in view of Remarks A.6 and A.1(a),

implies f†2k+1f2k+1D
†
k+1 = f†2k+1(f

†
2k+1)

†D†
k+1 = D†

k+1. Hence, using additionally

D†
kDkD

†
k+1 = D†

k+1 we conclude f
†
2k+1f2k+1D

†
kDkD

†
k+1 = f†2k+1f2k+1D

†
k+1 = D†

k+1 =
D†
kDkD

†
k+1. Since Remark 5.24 yields that f2k+2 = Dk − f2k+1 is valid, consequently,

the assumption (11.4) shows that

Dkf
†
2k+1f2k+1D

†
kf2k+2D

†
k+1 = Dkf

†
2k+1f2k+1D

†
k(Dk − f2k+1)D

†
k+1

= Dkf
†
2k+1f2k+1D

†
kDkD

†
k+1 − Dkf

†
2k+1f2k+1D

†
kf2k+1D

†
k+1

= DkD
†
kDkD

†
k+1 − DkD

†
kf2k+1D

†
k+1

= DkD
†
k(Dk − f2k+1)D

†
k+1 = DkD

†
kf2k+2D

†
k+1. (11.5)

Using Lemma 11.12 as well as (11.5), (11.4), and (11.3), we get finally

U11(z)

= Dk

[
(β − z)f†2k+1f2k+1D

†
kf2k+2 + (z − α)(Iq − f†2k+1f2k+1)D

†
kf2k+1

]
D†
k+1

= (β − z)Dkf
†
2k+1f2k+1D

†
kf2k+2D

†
k+1

= (β − z)DkD
†
kf2k+2D

†
k+1 = (β − z)DkAk+1D

†
k+1.

If condition (11.4) is satisfied for all k ∈ Z0,κ−1, then we obtain recursively con-
structed systems of complex q × q matrix polynomials given by Notation 8.3 utilizing
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the specific choice � j := Oq×q for all j ∈ Z0,κ . First, we consider a corresponding
subclass:

Notation 11.14 If κ ≥ 1, then letF�,c
q,κ,α,β be the set of all sequences (s j )κj=0 belonging

to F�
q,κ,α,β such that R(f2m−1D†

m) ⊆ R(Dm−1f
†
2m−1) is fulfilled for all m ∈ Z1,κ ,

where (f j )
2κ
j=0 is the Fα,β -parameter sequence and where (D j )

κ
j=0 is the sequence of

[α, β]-interval lengths of (s j )κj=0. Furthermore, let F�,c
q,0,α,β :=F�

q,0,α,β .

The next result shows that the class introduced in Notation 11.14 satisfies the
conditions (11.4) in Lemma 11.13.

Lemma 11.15 Suppose κ ≥ 1. Let (s j )κj=0 ∈ F�
q,κ,α,β and let (f j )

2κ
j=0 be the

Fα,β -parameter sequence aswell as (D j )
κ
j=0 be the sequence of [α, β]-interval lengths

of (s j )κj=0. Furthermore, let m ∈ Z1,κ . Then the following conditions are equivalent:

(i) R(f2m−1D†
m) ⊆ R(Dm−1f

†
2m−1).

(ii) R(D†
m−1f2m−1D†

m) ⊆ R(f†2m−1).

(iii) PR(Dm )f2m−1D
†
m−1PN (f2m−1) = O.

(iv) Dm−1(Iq − f†2m−1f2m−1)D
†
m−1f2m−1D†

m = O.

Proof Because of Propositions 5.16 and 5.20, we see that the matrices M :=Dm−1,
D :=Dm , and A := f2m−1 are all non-negative Hermitian. In particular, Remarks A.7
and A.6 yield then

(M†)∗ = M†, A†(A∗)† = AA+ = A†A, R(A†) = R(A∗) = R(A). (11.6)

Furthermore, Remark 5.25 provides R(A) ⊆ R(M) and R(A∗) ⊆ R(M∗), whereas
Remark A.6 shows that R(A†) ⊆ R(M†). Applying Remark A.1(a), we get then

MM†A = A and M†MA† = M†(M†)†A† = A†. (11.7)

(i) ⇒ (ii) Suppose (i), i. e.,R(AD†) ⊆ R(MA†). Using (11.7), we get

AR(D†) = R(AD†) ⊆ R(MA†) = R(MA†AA†) = (MA†A)R(A†)

and, in view of (11.7) and (11.6), consequently R(M†AD†) = M†AR(D†) ⊆
M†MA†AR(A†) = A†AR(A†) = R(A†). Hence, (ii) holds true.

(ii) ⇒ (i) Assume (ii), i. e., R(M†AD†) ⊆ R(A†). Therefore, M†AR(D†) ⊆
R(A†). Consequently, (11.7) yields R(AD†) = AR(D†) = MM†AR(D†) ⊆
MR(A†) = R(MA†). Thus, (i) is fulfilled.

(ii)⇔ (iv) First assume (ii), i. e.,R(M†AD†) ⊆ R(A). By virtue of Remark A.1(a)
and (11.6), this is equivalent to AA†M†AD† = M†AD†, which, in view of (11.6) is
equivalent to

A†AM†AD† = M†AD†. (11.8)
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Obviously, (11.8) implies

MA†AM†AD† = MM†AD†. (11.9)

Conversely, because of (11.7), equation (11.9) yields

M†AD† = M†MM†AD† = M†MA†AM†AD† = A†AM†AD†,

i. e., (11.8). Clearly, (11.9) is equivalent to M(Iq − A†A)M†AD† = O , i. e., to (iv).
Hence, (ii) holds if and only if (iv) is valid.

(ii) ⇔ (iii) We already know that (ii) is equivalent to (11.8). Hence, (ii) is valid
if and only if (Iq − A†A)M†AD† = O holds true, which is equivalent to (Iq −
A†A)M†AD†D = O . According to Remark A.8, the last equation is equivalent to

PN (A)M
†APR(D∗) = Oq×q . (11.10)

Since all the matrices A, D, and M are Hermitian, one can see by adjoining both
sides of equation (11.10), under consideration of Remarks A.5 and A.7, that (11.10) is
equivalent to PR(D)AM†

PN (A) = Oq×q , i. e., equivalent to (iii). Consequently, (iii)
is necessary and sufficient for (ii).

Remark 11.16 Let the assumptions of Notation 11.14 be fulfilled. In the scalar
case q = 1, we have the validity of f2m−1D

†
m−1 = D†

m−1f2m−1. Conse-

quently, PR(Dm )f2m−1D
†
m−1PN (f2m−1) = PR(Dm )D

†
m−1f2m−1PN (f2m−1) = O . Hence,

Lemma 11.15 yields F�,c
1,κ,α,β = F�

1,κ,α,β .

Proposition 11.17 F�
q,κ,α,β ⊆ F�,c

q,κ,α,β .

Proof The case κ = 0 is trivial because of Remark 5.9 and Notation 11.14. Now
assume κ ≥ 1 and that (s j )κj=0 ∈ F�

q,κ,α,β . According to Proposition 5.20, we have

f j ∈ C
q×q� for all j ∈ Z0,2κ . In particular, from Remark A.6 we get then R(f†j ) =

R(f∗j ) = R(f j ) = C
q for all j ∈ Z0,2κ . Applying Lemma 11.15 yields (s j )κj=0 ∈

F�,c
q,κ,α,β .

Now we introduce a further subclass of F�
q,κ,α,β which turns out to be included in

F�,c
q,κ,α,β and contains on the other side F�

q,κ,α,β .

Notation 11.18 For all τ ∈ N ∪ {∞}, let F�,ld
q,τ,α,β be the set of all sequences

(s j )τj=0 belonging to F�
q,τ,α,β which fulfill R(f2m) ⊆ R(f2m−1) for all m ∈ Z1,τ ,

where (f j )
2τ
j=0 denotes the Fα,β -parameter sequence of (s j )τj=0. Furthermore, let

F�,ld
q,0,α,β :=F�

q,0,α,β .

Remark 11.19 Analogous to the proof of Proposition 11.17 one gets F�
q,κ,α,β ⊆

F�,ld
q,κ,α,β .
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Let U andW be subspaces of the vector spaceC
q . Then we use the notation U +W

to denote the Minkowski sum of the subspaces U andW . We will write 〈·, ·〉E for the
(left) Euclidean inner product in C

q , i. e., for all x, y ∈ C
q , let 〈x, y〉E := y∗x . If M

is a non-empty subspace of C
q , we useM⊥ to denote the orthogonal complement of

M.
The connections described in Remark 5.25 simplify for the subclass F�,ld

q,κ,α,β as
follows:

Lemma 11.20 Let (s j )κj=0 ∈ F�,ld
q,κ,α,β with Fα,β -parameter sequence (f j )

2κ
j=0 and

sequence of [α, β]-interval lengths (D j )
κ
j=0. Then R(D j ) = R(f2 j ) and N (D j ) =

N (f2 j ) for all j ∈ Z0,κ and, in the case κ ≥ 1, moreover R(f2 j+2) ⊆ R(f2 j+1) =
R(D j ) and N (D j ) = N (f2 j+1) ⊆ N (f2 j+2) for all j ∈ Z0,κ−1.

Proof First we observe that Remark 5.25 yieldsR(D0) = R(f0) andN (D0) = N (f0).
If κ = 0, then the proof is complete. Now suppose κ ≥ 1. From Proposition 5.20 we
know that f j ∈ C

q×q
� ⊆ C

q×q
H for all j ∈ Z0,2κ . Since we have R(f2m) ⊆ R(f2m−1)

for all m ∈ Z1,κ by assumption, from Remark A.3 we know then that N (f2m−1) =
N (f∗2m−1) = R(f2m−1)

⊥ ⊆ R(f2m)⊥ = N (f∗2m) = N (f2m) is fulfilled for all
m ∈ Z1,κ as well. Taking into account this, we get from Remark 5.25 the validity
of R(D j ) = R(f2 j−1) ∩ R(f2 j ) = R(f2 j ) and N (D j ) = N (f2 j−1) + N (f2 j ) =
N (f2 j ) for all j ∈ Z1,κ as well as R(D j ) = R(f2 j+1) + R(f2 j+2) = R(f2 j+1) ⊇
R(f2 j+2) and N (D j ) = N (f2 j+1) ∩ N (f2 j+2) = N (f2 j+1) ⊆ N (f2 j+2) for all
j ∈ Z0,κ−1.

Lemma 11.21 F�,ld
q,κ,α,β ⊆ F�,c

q,κ,α,β .

Proof In view of Notations 11.14 and 11.18, we have F�,ld
q,0,α,β = F�

q,0,α,β =
F�,c
q,0,α,β . Now assume κ ≥ 1. Consider an arbitrary sequence (s j )κj=0 belonging

to F�,ld
q,κ,α,β . Let m ∈ Z1,κ . According to Lemma 11.20 and the notation given

there, we have N (Dm−1) = N (f2m−1) and, because of Remark A.8, consequently
PN (Dm−1) = PN (f2m−1) = Iq − f†2m−1f2m−1. Therefore, Dm−1(Iq − f†2m−1f2m−1) =
Dm−1PN (Dm−1) = O . Consequently, Lemma 11.15 provides R(f2m−1D†

m) ⊆
R(Dm−1f

†
2m−1). Since m ∈ Z1,κ was chosen arbitrarily, Notation 11.14 shows then

that (s j )κj=0 belongs to F�,c
q,κ,α,β .

Now we continue to use the notations given in Notation 3.4.

Remark 11.22 Let m ∈ N0 and let (s j )mj=0 ∈ F�
q,m,α,β . From Notation 11.18 and [20,

Prop. 6.13] then one can easily see that the following statements hold true:

(a) If m = 2n with some n ∈ N0 and if moreover, in the case n ≥ 1, the inequal-
ities det Hα,n−1,• �= 0 and det Hα,n−1,β �= 0 hold true, then (s j )2nj=0 belongs to

F�,ld
q,2n,α,β .

(b) Let m = 2n + 1 with some n ∈ N0. Suppose det Hα,n,• �= 0. If n ≥ 1, then
additionally suppose that det Hα,n−1,β �= 0.Then (s j )

2n+1
j=0 belongs toF�,ld

q,2n+1,α,β .
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FromProposition 5.16 and [23, Lem. 3.35]we can see that especially [α, β]-positive
definite sequences (s j )mj=0 ∈ F�

q,m,α,β fulfill the conditions stated in Remark 11.22:

Remark 11.23 Let m ∈ N0 and let (s j )mj=0 ∈ F�
q,m,α,β . In view of Remark 11.19, one

can easily check that the following statements hold true:

(a) Let m = 2n with some n ∈ N0. Suppose det Hn �= 0. If n ≥ 1, then addition-
ally suppose that det Hα,n−1,β �= 0. Then (s j )2nj=0 belongs to F�

q,2n,α,β and, in

particular, to F�,ld
q,2n,α,β .

(b) Let m = 2n + 1 with some n ∈ N0. If n ≥ 1. Suppose det Hα,n,• �= 0
and det H•,n,β �= 0. Then (s j )

2n+1
j=0 belongs to F�

q,2n+1,α,β and, in particular,

to F�,ld
q,2n+1,α,β .

The conditionR(f2m) ⊆ R(f2m−1) stated in Notation 11.18 is equivalent to certain
rank inequalities:

Lemma 11.24 Suppose κ ≥ 1. Let (s j )κj=0 ∈ F�
q,κ,α,β and let m ∈ Z1,κ .

(a) The following statements are equivalent:

(i) R(f2m) ⊆ R(f2m−1).
(ii) rank f2m ≤ rank Dm.
(iii) rank Dm−1 ≤ rank f2m−1.

(b) Condition (i) is valid if and only if the following three conditions are fulfilled:

(iv) If m = 1, then rank H0 ≤ rank Hα,0,•.
(v) If m = 2n+1 for some n ∈ N, then rank Hn + rank Hα,n−1,β ≤ rank Hα,n,• +

rank H•,n−1,β .
(vi) If m = 2n for some n ∈ N, then rank Hα,n−1,•+rank H•,n−1,β ≤ rank Hn−1+

rank Hα,n−1,β .

(c) Suppose (i). Then R(f2m) = R(Dm) and R(f2m−1) = R(Dm−1) and all the
inequalities stated in part (b) are equalities.

Proof Taking into account Remark 5.25, [23, Lem. 3.32], and [20, Prop. 6.13], the
proof is straight forward. We omit the details.

The following example shows that in general F�,ld
q,κ,α,β �= F�,c

q,κ,α,β :

Example 11.25 Let κ = 1 and let the sequence (s j )1j=0 be given by s0 := Iq and
s1 := α Iq . In view of (5.9) and δ > 0, we then have theFα,β -parameters f0 = s0 = Iq ,
f1 = s1 − αs0 = Oq×q , and f2 = βs0 − s1 = δ Iq as well as, in view of (5.8), the
[α, β]-interval lengths D0 = δs0 = δ Iq and D1 = −αβs0 + (α + β)s1 − s1s

†
0s1 =

−αβ Iq + (α + β)α Iq − α2 Iq = Oq×q . Since all Fα,β -parameters of the sequence
(s j )1j=0 are non-negative Hermitian, Proposition 5.20 shows that (s j )1j=0 belongs to

F�
q,1,α,β . Moreover, since f1D

†
1 = Oq×q , the sequence (s j )1j=0 fulfills the condition

R(f1D
†
1) ⊆ R(D0f

†
1) and, hence, in view of Notation 11.14, belongs to F�,c

q,1,α,β .
But since δ > 0, we have R(f2) � R(f1). Hence, in view of Notation 11.18, then

(s j )1j=0 /∈ F�,ld
q,1,α,β .
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Now we give a counterexample which shows, that in general F�,c
q,κ,α,β �= F�

q,κ,α,β :

Example 11.26 Let the sequence (s j )1j=0 be given by s0 := [
1 1
1 3

]
and s1 := [ α α

α 2α+β

]
.

In view of (5.9) and δ > 0, we then have theFα,β -parameters f0 = [
1 1
1 3

]
, f1 = δ

[
0 0
0 1

]
,

and f2 = δ
[
1 1
1 2

]
aswell as with the use of (5.8), the [α, β]-interval lengthsD0 = δ

[
1 1
1 3

]

andD1 = δ2

2

[
0 0
0 1

]
. Since allFα,β -parameters of the sequence (s j )1j=0 are non-negative

Hermitian, Proposition 5.20 shows that (s j )1j=0 belongs to F�
2,1,α,β . On the other

hand, because of f1D
†
1 = 2

δ

[
0 0
0 1

]
and D0f

†
1 = [

0 1
0 3

]
neither R(f1D

†
1) ⊆ R(D0f

†
1) nor

R(f1D
†
1) ⊇ R(D0f

†
1) are fulfilled. Hence, fromNotation 11.14 we conclude (s j )1j=0 /∈

F�,c
2,1,α,β .

For sequences belonging to the subclassF�,c
q,κ,α,β , we get the following q × q block

structure of the 2q × 2q matrix polynomial V̈m introduced in Remark 11.8:

Proposition 11.27 Let (s j )κj=0 ∈ F�,c
q,κ,α,β with sequence of [α, β]-interval lengths

(D j )
κ
j=0. For each m ∈ Z0,κ , let V̈m : C → C

2q×2q be given by Remark 11.8 and
Notation 11.3. Then:

(a) For each n ∈ N0 such that 2n ≤ κ and each z ∈ C, then

V̈2n(z) = −(z − β)nδ

[
−(β − z)q̈4n+1(z)D

†
2n −δ2n−1q̈4n+2(z)

(β − z)p̈4n+1(z)D
†
2n δ2n−1p̈4n+2(z)

]

. (11.11)

(b) If κ ≥ 1, for each n ∈ N0 such that 2n + 1 ≤ κ and each z ∈ C, then

V̈2n+1(z) = (z − β)n+1δ

[
q̈4n+3(z)D

†
2n+1 −δ2n q̈4n+4(z)

−p̈4n+3(z)D
†
2n+1 δ2n p̈4n+4(z)

]

. (11.12)

Proof We consider an arbitrary z ∈ C and set x := z − α as well as y := β − z. We
have (δ−1D0)

† = δD†
0 and, because of Remark A.8, consequently PR(δ−1D0)

= D0D
†
0.

Since we know from (5.8) and (5.9) that D0 = δf0 is valid, we get PR(δ−1D0)
= δf0D

†
0.

Remark 9.6 yields s{0}
0 = δ−1D0. Using additionally Remark 11.8, Notation 11.3 as

well as (8.3) and (8.4), then

V̈0(z) = V0 = V
s{0}0

= V̈δ−1D0
(z) =

[
yPR(δ−1D0)

δ−1D0

−yx(δ−1D0)
† y Iq

]

=
[
yδf0D

†
0 f0

−yxδD†
0 y Iq

]

= −(−y)0δ

[
−yq̈1(z)D

†
0 −δ−1q̈2(z)

yp̈1(z)D
†
0 δ−1p̈2(z)

]

(11.13)

follows. Hence, (11.11) is checked for n = 0. If κ = 0, then the proof is complete.
Now we consider the case κ ≥ 1. In accordance to Notation 8.3, we use par-

ticularly the choice � j := Oq×q for all j ∈ Z1,κ . Thus, the sequences (A j )
κ
j=1
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and (B j )
κ
j=1 defined in (8.5) admit then the representations Am = D†

m−1f2m and

Bm = D†
m−1f2m−1 + PN (Dm−1) for every choice of m ∈ Z1,κ . This implies

D†
m−1Dm−1Am = D†

m−1f2m = Am (11.14)

for all m ∈ Z1,κ . For all m ∈ Z1,κ , from Lemma 11.11 we know that (11.1) is valid.
Since (s j )κj=0 belongs to F�,c

q,κ,α,β , according to Notation 11.14 and Lemma 11.15,

moreoverDm−1(Iq −f†2m−1f2m−1)D
†
m−1f2m−1D†

m = Oq×q holds true. Thus, applying
Lemma 11.13 yields

Ü
a{m−1}
0 ,s{m−1}

0
(z) =

[
yDm−1AmD†

m δm−1Dm−1Am

−yxδ−m+2BmD†
m yδBm

]

(11.15)

for all m ∈ Z1,κ . Using (11.1), (11.13), and (11.15) for m = 1, we get

V̈1(z) = −(−y)0δ

[
−yq̈1(z)D

†
0 −δ−1q̈2(z)

yp̈1(z)D
†
0 δ−1p̈2(z)

][
yD0A1D

†
1 δ0D0A1

−yxδ1B1D
†
1 yδB1

]

= −δ

[
W1 X1
Y1 Z1

]

,

whereW1 := [−yq̈1(z)D
†
0](yD0A1D

†
1)+[−δ−1q̈2(z)](−yxδB1D

†
1) and X1 := [−yq̈1(z)

D†
0](D0A1)+[−δ−1q̈2(z)](yδB1) aswell asY1 := [yp̈1(z)D†

0](yD0A1D
†
1)+[δ−1p̈2(z)]

(−yxδB1D
†
1) and Z1 := [yp̈1(z)D†

0](D0A1)+[δ−1p̈2(z)](yδB1). Applying (11.14) for

m = 1 as well as (8.6)–(8.9), it followsW1 = yq̈4−1(z)D
†
1 and X1 = −yq̈4(z) as well

as Y1 = −yp̈4−1(z)D
†
1 and Z1 = yp̈4(z). Consequently, (11.12) is proved for n = 0.

If κ ≤ 1, then the proof is finished.
Now assume κ ≥ 2. Then there exists a positive integer l with 2l ≤ κ such that

(11.11) and (11.12) are valid for each n ∈ Z0,l−1. We are going to check (11.11) for
n = l. Using (11.1) and (11.15) for m = 2l, we obtain

V̈2l(z) = V̈2l−1(z)Üa{2l−1}
0 ,s{2l−1}

0
(z)

= (−y)lδ

[
q̈4l−1(z)D

†
2l−1 −δ2l−2q̈4l(z)

−p̈4l−1(z)D
†
2l−1 δ2l−2p̈4l(z)

]

×
[

yD2l−1A2lD
†
2l δ2l−1D2l−1A2l

−yxδ−2l+2B2lD
†
2l yδB2l

]

= (−y)lδ

[
W2l X2l
Y2l Z2l

]

, (11.16)
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where

W2l := [q̈4l−1(z)D
†
2l−1](yD2l−1A2lD

†
2l) + [−δ2l−2q̈4l(z)](−yxδ−2l+2B2lD

†
2l),

X2l := [q̈4l−1(z)D
†
2l−1](δ2l−1D2l−1A2l) + [−δ2l−2q̈4l(z)](yδB2l),

Y2l := [−p̈4l−1(z)D
†
2l−1](yD2l−1A2lD

†
2l) + [δ2l−2p̈4l(z)](−yxδ−2l+2B2lD

†
2l),

and

Z2l :=
[
−p̈4l−1(z)D

†
2l−1

]
(δ2l−1D2l−1A2l) + [δ2l−2p̈4l(z)](yδB2l).

In view of 2 ≤ 2l + 1 ≤ κ + 1, (11.14) for m = 2l, (8.10)–(8.13), and (11.16), we
conclude

V̈2l(z) = −(−y)lδ

[
−yq̈4l+1(z)D

†
2l −δ2l−1q̈4l+2(z)

yp̈4l+1(z)D
†
2l δ2l−1p̈4l+2(z)

]

. (11.17)

Hence, (11.11) is proved for n = l. If κ = 2, then the proof is complete.
We consider the case 2l+1 ≤ κ . Using (11.1), (11.17), and (11.15) form = 2l+1,

we get

V̈2l+1(z) = V̈2l(z)Üa{2l}
0 ,s{2l}0

(z)

= −(−y)lδ

[
−yq̈4l+1(z)D

†
2l −δ2l−1q̈4l+2(z)

yp̈4l+1(z)D
†
2l δ2l−1p̈4l+2(z)

]

×
[

yD2lA2l+1D
†
2l+1 δ2lD2lA2l+1

−yxδ−2l+1B2l+1D
†
2l+1 yδB2l+1

]

= −(−y)lδ

[
W2l+1 X2l+1
Y2l+1 Z2l+1

]

,

where

W2l+1 :=
[
−yq̈4l+1(z)D

†
2l

] (
yD2lA2l+1D

†
2l+1

)

+
[
−δ2l−1q̈4l+2(z)

] (− yxδ−2l+1B2l+1D
†
2l+1

)
,

X2l+1 :=
[
−yq̈4l+1(z)D

†
2l

]
(δ2lD2lA2l+1) +

[
−δ2l−1q̈4l+2(z)

] (
yδB2l+1

)
,

Y2l+1 :=
[
yp̈4l+1(z)D

†
2l

] (
yD2lA2l+1D

†
2l+1

)

+
[
δ2l−1p̈4l+2(z)

] (− yxδ−2l+1B2l+1D
†
2l+1

)
,

and

Z2l+1 := [
yp̈4l+1(z)D

†
2l

]
(δ2lD2lA2l+1) + [

δ2l−1p̈4l+2(z)
]
(yδB2l+1).
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Taking into account 2 ≤ 2(l + 1) ≤ κ + 1 as well as (11.14) for m = 2l + 1 and
(8.6)–(8.9), we infer

V̈2l+1(z) = (−y)l+1δ

[
q̈4l+3(z)D

†
2l+1 −δ2l q̈4l+4(z)

−p̈4l+3(z)D
†
2l+1 δ2l p̈4l+4(z)

]

.

Therefore, the assertion is proved inductively.

We have already seen in Remark 8.9 that the matrix polynomials p̈ j are closely
related to theMROS (r̈l)κl=0, (ẗl)

τ
l=0, (ẗvl)

τ
l=0 and (ẗxl)τl=0 with respect to the sequences

(s j )2κj=0, (a j )
2τ
j=0, (b j )

2τ
j=0, and (c j )

2ρ
j=0, respectively, given by Notation 3.3.

Corollary 11.28 Assumeκ ≥ 2. Let (s j )κj=0 ∈ F�,c
q,κ,α,β with sequenceof [α, β]-interval

lengths (D j )
κ
j=0. Then

V̈2n(z)

= −(z − β)nδ

[
−(β − z)[ẗ�a�n (z) + s0 ẗn(z)]D†

2n δ2n−1[v̈�b�
n (z) − s0v̈n(z)]

(β − z)(z − α)ẗn(z)D
†
2n −(β − z)δ2n−1v̈n(z)

]

for every choice of n ∈ N such that 2n ≤ κ and for all z ∈ C as well as

V̈2n+1(z)

= (z − β)n+1δ

[
−(ẍ�c�

n (z) + [(α + β − z)s0 − s1]ẍn(z))D†
2n+1 −δ2n r̈�s�

n+1(z)
(β − z)(z − α)ẍn(z)D

†
2n+1 δ2n r̈n+1(z)

]

for every choice of n ∈ N such that 2n + 1 ≤ κ and for all z ∈ C hold true.

Proof Considering an arbitrary z ∈ C, according to Remark 8.9, we have p̈4l(z) =
r̈l(z) for all l ∈ N0 with 2 l − 1 ≤ κ and, moreover, p̈4l+1(z) = (z − α)ẗl(z)
and p̈4 l+2(z) = −(β − z)v̈l(z) for all l ∈ N0 with 2l ≤ κ as well as p̈4 l+3(z) =
−(β − z)(z − α)ẍl(z) for all l ∈ N0 fulfilling 2l + 1 ≤ κ . Taking into account
Notation 11.14, we see that the sequence (s j )κj=0 belongs to F�

q,κ,α,β . Thus, using

Proposition 8.16, we get q̈4l(z) = p̈�s�
4l (z) = r̈�s�

l (z) for all l ∈ N0 with 2 l − 1 ≤ κ

and all z ∈ C. Remarks 8.8 and 8.9 yield deg ẗl = deg v̈l = l ≥ 1 for all l ∈ N

fulfilling 2l ≤ κ . Because of Proposition 8.16, Lemma C.3, and Remark C.1, we

conclude then q̈4l+1(z) = p̈�s�
4l+1(z) = ẗ�a�l (z) + s0 ẗl(z) and q̈4l+2(z) = p̈�s�

4l+2(z) =
−[v̈�b�

l (z) − s0v̈l(z)] for all l ∈ N such that 2l ≤ κ and all z ∈ C. Moreover,
Remark 8.8 provides deg ẍl = l ≥ 1 for all l ∈ N fulfilling 2l + 1 ≤ κ . Thus, using

Lemmata 8.16 and C.4 and Remark C.1, we recognize that q̈4 l+3(z) = p̈�s�
4 l+3(z) =

−(ẍ�c�
l (z) + [(α + β − z)s0 − s1]ẍl(z)) holds true for all l ∈ N fulfilling 2l + 1 ≤ κ

and all z ∈ C. Applying Proposition 11.27 completes the proof.
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Given arbitrarym ∈ N0 and (s j )mj=0 ∈ F�
q,m,α,β , in [23, Thm. 14.2] a parameteriza-

tion of the set Rq [[α, β]; (s j )mj=0,=] is proved. Under the assumption that the given

sequence (s j )mj=0 belongs to the subclass F�,c
q,m,α,β of F�

q,m,α,β , now we are going to
check a parameterization of the set Rq [[α, β]; (s j )mj=0,=] by the use of orthogonal
matrix polynomials.

In the scalar case q = 1, a parameterization of the solution set of Prob-
lemFP[[α, β]; (s j )mj=0,=] in form of a linear fractional transformation using orthogo-
nal polynomials can be found in [28, Theorems 7.1 and 7.2] for [α, β]-positive definite
sequences (s j )mj=0. For the non-degenerate matrix case (s j )mj=0 ∈ F�

q,m,α,β , in [6,
Thm. 6.12] and [7, Thm. 6.14] parameterizations of the setRq [[α, β]; (s j )mj=0,=] are
derived, using the corresponding systems of Potapov’s fundamental matrix inequali-
ties. Choque Rivero showed in [5, Theorems 3.8 and 3.5] how these parameterizations
can be represented applying orthogonal matrix polynomials. As already mentioned
above, our next goal is to prove parameterizations of the set Rq [[α, β]; (s j )mj=0,=]
in terms of orthogonal matrix polynomials in a more general case, which contains the
non-degenerate case as a special situation.

Letm ∈ N0. Given a sequence (s j )mj=0 ∈ F�
q,m,α,β with sequence of [α, β]-interval

lengths (D j )
m
j=0, Remark 9.6 provides s{m}

0 = δm−1Dm . Since δ > 0 is valid, we

observe that R(s{m}
0 ) = R(Dm) and, taking into account Notation 10.6, moreover

that P̈[s{m}
0 ] = P̈[Dm]. Taking additionally into account Proposition 11.27, then,

using Theorem 11.9, we are able to formulate the main result of this subsection.
Precisely, Theorem 11.29 below points out a parameterization of the solution set
of ProblemFP[[α, β]; (s j )mj=0,=] for sequences belonging to the subclass F�,c

q,m,α,β

utilizing equivalence classes of pairs of P̈[Dm]:
Theorem 11.29 Let α, β ∈ R be such that α < β, let m ∈ N0, and let (s j )mj=0 ∈
F�,c
q,m,α,β with sequence of [α, β]-interval lengths (D j )

m
j=0. Let εm : C → C be

defined by εm(z) := z − β if the integer m is even and by εm(z) := 1 if m is odd. Let
p�
2m+1 := εm p̈2m+1 and q

�
2m+1 := εm q̈2m+1. Furthermore, let p̃2m+1, q̃2m+1, p̃2m+2,

and q̃2m+2 be the restrictions of p
�
2m+1, q

�
2m+1, p̈2m+2, and q̈2m+2 onto C \ [α, β],

respectively.

(a) For all � ∈ 〈P̈[Dm]〉 and all [G1;G2] ∈ �, the function det(p̃2m+1D
†
mG1 −

δm−1p̃2m+2G2) does not vanish identically and F defined by

F = −(q̃2m+1D
†
mG1 − δm−1q̃2m+2G2)(p̃2m+1D

†
mG1 − δm−1p̃2m+2G2)

−1

(11.18)

belongs toRq [[α, β]; (s j )mj=0,=].
(b) For each F ∈ Rq [[α, β]; (s j )mj=0,=], there exists a unique � ∈ 〈P̈[Dm]〉 such

that equation (11.18) holds true for all [G1;G2] ∈ �, namely the equivalence
class � which is generated by the m-th Fα,β -transformed pair PG̈m(F; (s j )mj=0)

of F with respect to (s j )mj=0.
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Proof Let us consider the case thatm = 2n with some non-negative integer n. Because
of the assumption, we have (s j )2nj=0 ∈ F�,c

q,2n,α,β . Thus, by virtue of Notation 11.14, the

sequence (s j )2nj=0 belongs to F�
q,2n,α,β as well. Consequently, Remark 9.6 shows that

s{2n}
0 = δ2n−1D2n holds true, which, because of δ > 0, implies R(s{2n}

0 ) = R(D2n)

and, in view of Notation 10.6, moreover P̈[s{2n}
0 ] = P̈[D2n]. Comparing the notations

given in Theorem 11.9 and Proposition 11.27, we get

w̃2n(z) = −(z − β)nδq̃4n+1(z)D
†
2n, (11.19)

ỹ2n(z) = −(z − β)nδ
[− p̃4n+1(z)

]
D†
2n, (11.20)

x̃2n(z) = −(z − β)nδ
[− δ2n−1q̃4n+2(z)

]
, (11.21)

and

z̃2n(z) = −(z − β)nδ
[
δ2n−1p̃4n+2(z)

]
(11.22)

for all z ∈ C \ [α, β]. Taking into account P̈[s{2n}
0 ] = P̈[D2n], (11.19)–(11.22), and

the fact that −(z − β)nδ �= 0 is valid for all z ∈ C \ [α, β], then the application of
Theorem 11.9 completes the proof in the case of an even non-negative integer m. If
m = 2n + 1 with some non-negative integer n, then we get with the notations given
in Theorem 11.9 and Proposition 11.27 that

w̃2n+1(z) = (z − β)n+1δq̃4n+3(z)D
†
2n+1, (11.23)

ỹ2n+1(z) = −(z − β)n+1δp̃4n+3(z)D
†
2n+1, (11.24)

x̃2n+1(z) = −(z − β)n+1δ2n+1q̃4n+4(z), (11.25)

and

z̃2n+1(z) = (z − β)n+1δ2n+1p̃4n+4(z) (11.26)

are valid for all z ∈ C \ [α, β], so that the assertion can be checked analogously.

Observe that, according to Remark 11.16, in the scalar case q = 1 the statements
of Theorem 11.29 hold true if the given sequence (s j )mj=0 belongs to F�

1,m,α,β instead

F�,c
1,m,α,β .
In [23, Thm. 14.2], we already obtained a result analogous to Theorem 11.29 for an

arbitrarily given sequence (s j )mj=0 belonging toF�
q,m,α,β . (With regard to Theorem3.6,

this concerns the general matrix case.) The new aspect in Theorem 11.29 consists in
a parameterization where orthogonal matrix polynomials are used.
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12 Description of the Values of all Solutions using Independent
Parameters

Let us consider an arbitrary non-negative integerm and an arbitrary sequence (s j )mj=0 ∈
F�
q,m,α,β with sequence of [α, β]-interval lengths (D j )

m
j=0. Obviously, 0 ≤ rank Dm ≤

q holds true. We distinguish the following three cases:

(I) rank Dm = q.
(II) 1 ≤ rank Dm ≤ q − 1.
(III) rank Dm = 0.

It will turn out that the characteristics of the solutions differ. Therefore, in the fol-
lowing, we consider the three cases separately. Our observations are mainly guided
by Theorem 11.29. We start with the non-degenerate case (I). This case can be equiv-
alently characterized using the following:

Remark 12.1 ([23, Rem. 3.67]) Let m ∈ N0 and let (s j )mj=0 ∈ F�
q,m,α,β . Then

(s j )mj=0 ∈ F�
q,m,α,β if and only if rank Dm = q.

Theorem 12.2 Let α, β ∈ R be such that α < β, let m ∈ N0, and let (s j )mj=0 ∈
F�
q,m,α,β . Then all statements of Theorem 11.29 are valid for the classPRq(C\[α, β])

instead of the class P̈[Dm].
Proof From Proposition 11.17 we know that (s j )mj=0 belongs to F�,c

q,m,α,β as well.
According to Remark 12.1, we have rank Dm = q. Consequently, Remark 10.7 yields
P̈[Dm] = PRq(C \ [α, β]). Applying Theorem 11.29 completes the proof.

Nowwe turn our attention to the degenerate, but not completely degenerate case (II).
If the rank r of the matrix Dm = δ−(m−1)s{m}

0 is positive, we are able to specify
parameterizations of the solution set of ProblemFP[[α, β]; (s j )mj=0,=] for a sequence
(s j )mj=0 belonging toF�

q,m,α,β (resp. to the subclassF�,c
q,m,α,β ) by utilizing equivalence

classes of pairs belonging to PRr (C \ [α, β]). To do this, we are mainly guided by
Theorem 11.9 or Theorem 11.29. In order to discuss the situation 1 ≤ r ≤ q − 1, we
use, for two arbitrarily given complexmatrices A and B, the notation A⊕B := [

A O
O B

]
.

Theorem 12.3 Suppose q ≥ 2. Let α, β ∈ R be such that α < β and let
m ∈ N0. Furthermore, let (s j )mj=0 ∈ F�,c

q,m,α,β be such that r := rank Dm fulfills
1 ≤ r ≤ q − 1, where (D j )

m
j=0 is the sequence of [α, β]-interval lengths associated

with (s j )mj=0. Let p̃2m+1, q̃2m+1, p̃2m+2, and q̃2m+2 be defined as in Theorem 11.29.
Let u1, u2, . . . , uq be an orthonormal basis ofCq such that {u1, u2, . . . , ur } ⊆ R(Dm)

and let W := [u1, u2, . . . , uq ]. Then:
(a) For each pair [g1; g2] ∈ PRr (C \ [α, β]), the function

det[p̃2m+1D
†
mW (g1 ⊕ O(q−r)×(q−r)) − δm−1p̃2m+2W (g2 ⊕ Iq−r )]

does not vanish identically.
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(b) For each pair [g1; g2] ∈ PRr (C \ [α, β]), let Sm,W ,[g1;g2] : C \ [α, β] → C
q×q

be defined by

Sm,W ,[g1;g2]
:= − (

q̃2m+1D
†
mW (g1 ⊕ O(q−r)×(q−r)) − δm−1q̃2m+2W (g2 ⊕ Iq−r )

)

×(p̃2m+1D
†
mW (g1 ⊕ O(q−r)×(q−r)) − δm−1p̃2m+2W (g2 ⊕ Iq−r )

)−1
.

Then �m,W : 〈PRr (C \ [α, β])〉 → Rq [[α, β]; (s j )mj=0,=] given by

�m,W (〈[g1; g2]〉) := Sm,W ,[g1;g2]

is well defined and bijective.

Proof Since (s j )mj=0 ∈ F�,c
q,m,α,β is supposed, Notation 11.14 provides (s j )mj=0 ∈

F�
q,m,α,β as well. Thus, Remark 9.6 yields s{m}

0 = δm−1Dm , and, consequently,

R(s{m}
0 ) = R(Dm). Comparing the notations given in Theorem 11.9 and Proposi-

tion 11.27, and in the formulation of Theorem 12.3 above, we get (11.19), (11.20),
(11.21), and (11.22) for all z ∈ C \ [α, β] in the case that m = 2n with some non-
negative integer n. If m = 2n + 1 with some non-negative integer n, then (11.23),
(11.24), (11.25), and (11.26) hold true for all z ∈ C \ [α, β]. Thus, applying [23,
Thm. 14.5] completes the proof.

Note that the so-called completely degenerate case (III), i. e., if Dm = Oq×q holds
true, is considered in [19,Def. 10.24] and leads to an interesting subclass of [α, β]-non-
negative definite sequences:Letm ∈ N0 and let (s j )mj=0 ∈ F�

q,m,α,β . Then the sequence

(s j )mj=0 is called [α, β] -completely degenerate if Dm = Oq×q . Denote by F�,cd
q,m,α,β

the set of all sequences (s j )mj=0 ∈ F�
q,m,α,β which are [α, β]-completely degenerate.

If (s j )mj=0 ∈ F�,cd
q,m,α,β , then ProblemFP[[α, β]; (s j )mj=0,=] admits a unique solu-

tion:

Theorem 12.4 Let α, β ∈ R be such that α < β, let m ∈ N0, and let (s j )mj=0 ∈
F�,cd
q,m,α,β . Let p̃2m+2 and q̃2m+2 be the restrictions of p̈2m+2 and q̈2m+2 ontoC\[α, β],

respectively. Then det p̃2m+2 does not vanish identically in C \ [α, β] and

Rq [[α, β]; (s j )
m
j=0,=] = {−q̃2m+2p̃

−1
2m+2}. (12.1)

Proof From [23, Thm. 14.6] and the notation given in Theorem 11.9 we know that
det z̃m does not vanish identically in C \ [α, β] and that Rq [[α, β]; (s j )mj=0,=] =
{x̃m z̃−1

m }. If m = 2n with some non-negative integer n, then the comparison of Theo-
rem 11.9 and Proposition 11.27, and Theorem 11.29 yields (11.21) and (11.22) for all
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z ∈ C \ [α, β], which consequently shows that

(x̃m z̃
−1
m )(z)

= (− (z − β)nδ
[− δ2n−1q̈4n+2(z)

])(− (z − β)nδ
[
δ2n−1p̈4n+2(z)

])−1

= −(q̃2m+2p̃
−1
2m+2)(z)

for all z ∈ C \ ([α, β] ∪ Z(det z̃m)). In view of Rq [[α, β]; (s j )mj=0,=] = {x̃m z̃−1
m },

then (12.1) follows, because Z(det z̃m) is a discrete subset of C \ [α, β]. The case
that m = 2n + 1 with some non-negative integer n can be treated analogously, using
(11.25) and (11.26).

13 Description of the Values of the Solutions of the Truncated
Matricial HausdorffMoment Problem in the Non-degenerate Case
and CorrespondingMatrix Balls

This section and the following two sections are aimed at proving that, for every choice
of α, β ∈ R such that α < β, a positive integer m, a sequence (s j )mj=0 belong-

ing to F�
q,m,α,β , and w ∈ �+, the set

{
F(w) : F ∈ Rq [[α, β]; (s j )mj=0,=]

}
can be

represented as intersection of two matrix balls, where the respective parameters are
constructed explicitly by the given data. Initiated by investigations due to Weyl in
[37], where concepts of nested families of certain sets were studied in the context of
differential equations of second order, Krein andNudelman in [28] as well as Akhiezer
in [1] served contributions to this theory in the scalar case.

In the following, we continue to assume that κ ∈ N0 ∪ {∞}, that α and β are
real numbers such that α < β, and that δ := β − α. Furthermore, we are going to
use Notation 3.3 again. In view of Remarks 8.8 and 8.9, we introduce the following
notation.

Notation 13.1 Let (s j )κj=0 be a sequence of complex q × q matrices. For all l ∈ N0

such that 2 l − 1 ≤ κ , let öl := r̈�s�
l . If κ ≥ 1, for all l ∈ N0 such that 2 l ≤ κ ,

let ül := ẗ�a�l and ẅl := v̈�b�
l . Furthermore, if κ ≥ 2, then, for all l ∈ N0 such that

2l + 1 ≤ κ , let ÿl := ẍ�c�
l .

The matrix polynomials defined in Notation 13.1 can be linked with the matrix
polynomials p̈ j and q̈ j defined in Notation 8.3 as well:

Lemma 13.2 Let (s j )κj=0 ∈ F�
q,κ,α,β . Then:

(a) p̈4 l(z) = r̈l(z) and q̈4 l(z) = öl(z) for all l ∈ N0 such that 2l − 1 ≤ κ and all
z ∈ C.

(b) p̈4l+1(z) = (z − α)ẗl(z) and p̈4 l+2(z) = −(β − z)v̈l(z) for all l ∈ N0 such that
2l ≤ κ and all z ∈ C.

(c) If κ ≥ 1, then p̈4 l+3(z) = −(β−z)(z−α)ẍl(z) for all l ∈ N0 such that 2l+1 ≤ κ

and all z ∈ C.
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(d) If κ ≥ 2, then q̈4l+1(z) = ül(z) + s0 ẗl(z) and q̈4 l+2(z) = −[ẅl(z) − s0v̈l(z)] for
all l ∈ N such that 2l ≤ κ and all z ∈ C.

(e) If κ ≥ 3, then q̈4l+3(z) = −(ÿl(z)+[(α +β − z)s0 − s1]ẍl(z)) for all l ∈ N such
that 2l + 1 ≤ κ and all z ∈ C.

Proof Using Remarks 8.9, C.1 and 8.8, Lemmata C.3 and C.4 as well as Proposi-
tion 8.16, the assertions can be proved by straightforward calculations. We omit the
details.

In the first part of this section, we derive for the non-degenerate situation in Lem-
mata 13.5, 13.6 and 13.9 multiplicative relationships between the 2q × 2q matrix
polynomials defined in Notation 13.3 below. Here, V̈m is a matrix polynomial, which
is related to a parameterization of the setRq [[α, β]; (s j )mj=0,=] (cf. Theorem 11.29),
whereas the matrix polynomials V2n+1, Va,2t+1, Vb,2u+1, and Vc,2v+1 are related
to parameterizations of the sets R0,q [�+; (s j )

2n+1
j=0 ,=], R0,q [�+; (a j )

2t+1
j=0 ,=],

R0,q [�+; (b j )
2u+1
j=0 ,=], and R0,q [�+; (c j )

2v+1
j=0 ,=], respectively (see also Theo-

rem 8.14).

Notation 13.3 Let (s j )κj=0 be a sequence of complex q × q matrices with

Fα,β -parameter sequence (f j )
2κ
j=0 and sequence of [α, β]-interval lengths (D j )

κ
j=0.

For each l ∈ N0 such that 2l + 1 ≤ κ , let the matrix polynomials r̈l , ẗl , v̈l , and ẍl be
given by Remark 8.9 and let ül , ẅl , ÿl , and öl be given by Notation 13.1. In the case
κ ≥ 1, let the sequences (A j )

κ
j=1 and (B j )

κ
j=1 be defined by (8.5).

(a) For all n ∈ N0 such that 2n ≤ κ , let V̈2n : C → C
2q×2q be given by

V̈2n(z) :=
[
−(β − z)q̈4n+1(z)D

†
2n −δ2n−1q̈4n+2(z)

(β − z)p̈4n+1(z)D
†
2n δ2n−1p̈4n+2(z)

]

.

(b) If κ ≥ 1, then, for all n ∈ N0 such that 2n+1 ≤ κ , letV2n+1, V̈2n+1,Uc,2n,U2n :
C → C

2q×2q be given by

V2n+1(z) :=
[
−ön(z)f

†
4n −ön+1(z)

r̈n(z)f
†
4n r̈n+1(z)

]

,

V̈2n+1(z) :=
[

q̈4n+3(z)D
†
2n+1 −δ2n q̈4n+4(z)

−p̈4n+3(z)D
†
2n+1 δ2n p̈4n+4(z)

]

,

Uc,2n(z) :=
[

δ2n−1 Iq −δ2n−1D2nA2n+1

(z − α)D†
2n (z − α)B2n+1

]

,

and

U2n(z) :=
[

δ2n−1 Iq δ2n−1D2nA2n+1

−(β − z)D†
2n (β − z)B2n+1

]

.
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(c) If κ ≥ 2, then, for all n ∈ N0 such that 2n+2 ≤ κ , letVa,2n+1,Vb,2n+1,Ua,2n+1,

Ub,2n+1 : C → C
2q×2q be given by

Va,2n+1(z) :=
[
−ün(z)f

†
4n+1 −ün+1(z)

ẗn(z)f
†
4n+1 ẗn+1(z)

]

,

Vb,2n+1(z) :=
[
−ẅn(z)f

†
4n+2 −ẅn+1(z)

v̈n(z)f
†
4n+2 v̈n+1(z)

]

,

Ua,2n+1(z) :=
[

δ2n Iq −δ2nD2n+1A2n+2

(z − α)D†
2n+1 (z − α)B2n+2

]

,

and

Ub,2n+1(z) :=
[

δ2n Iq δ2nD2n+1A2n+2

−(β − z)D†
2n+1 (β − z)B2n+2

]

.

(d) If κ ≥ 3, then, for all n ∈ N0 such that 2n + 3 ≤ κ , let Vc,2n+1 : C → C
2q×2q be

given by

Vc,2n+1(z) :=
[
−ÿn(z)f

†
4n+3 −ÿn+1(z)

ẍn(z)f
†
4n+3 ẍn+1(z)

]

.

Lemma 13.4 Suppose κ ≥ 1 and let (s j )κj=0 ∈ F�
q,κ,α,β . Furthermore, let (� j )

κ
j=1 be

a sequence of complex q × q matrices and let the sequences (A j )
κ
j=1 and (B j )

κ
j=1 be

defined by (8.5). Then detD j �= 0 is fulfilled for all j ∈ Z0,κ . Moreover,A j = D−1
j−1f2 j

and B j = D−1
j−1f2 j−1 hold true for all j ∈ Z1,κ .

Proof Proposition 5.16 shows that D j ∈ C
q×q� is valid for each j ∈ Z0,κ . Therefore,

we have detD j �= 0 for all j ∈ Z0,κ . Thus, PN (D j−1) = Oq×q for all j ∈ Z1,κ .

Consequently, using (8.5), we getA j = D−1
j−1f2 j andB j = D−1

j−1f2 j−1 for all j ∈ Z1,κ .

Lemma 13.5 Let n ∈ N and let (s j )
2n+1
j=0 ∈ F�

q,2n+1,α,β . For all z ∈ C, then

− δ2n−1(β − z)(z − α)Vc,2n−1(z) = �(z)V̈2n(z)Uc,2n(z) (13.1)

and

δ2n−1(β − z)V2n+1(z) = V̈2n(z)U2n(z), (13.2)

where

�(z) :=
[

(β − z)(z − α)Iq (α + β − z)s0 − s1
O Iq

]

. (13.3)
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Proof Our proof is divided into four parts. Let z ∈ C.
Part 1: Lemma 13.4 yields detD2n �= 0. Notation 8.3 provides

p̈4n+3(z) = −(β − z)p̈4n+1(z)A2n+1 + (z − α)p̈4n+2(z)B2n+1, (13.4)

q̈4n+3(z) = −(β − z)q̈4n+1(z)A2n+1 + (z − α)q̈4n+2(z)B2n+1, (13.5)

p̈4n+4(z) = p̈4n+1(z)A2n+1 + p̈4n+2(z)B2n+1, (13.6)

and

q̈4n+4(z) = q̈4n+1(z)A2n+1 + q̈4n+2(z)B2n+1, (13.7)

whereas Remark 8.5 delivers

(β − z)p̈4n+1(z) + (z − α)p̈4n+2(z) = δp̈4n−1(z)A2n, (13.8)

(β − z)q̈4n+1(z) + (z − α)q̈4n+2(z) = δq̈4n−1(z)A2n, (13.9)

and

p̈4n+1(z) − p̈4n+2(z) = δp̈4n(z)B2n, q̈4n+1(z) − q̈4n+2(z) = δq̈4n(z)B2n .

(13.10)

Remark 5.22 shows Lα,n−1,β = f4n−1 and Ln = f4n and, moreover, according to
Lemma 8.7, the equations δf4n−1A2n = D2n and δf4nB2n = D2n hold true. In view of
detD2n �= 0, then det Lα,n−1,β �= 0 and det Ln �= 0 as well as

δA2nD
†
2n = L†

α,n−1,β and δB2nD
†
2n = L†

n (13.11)

hold true. Furthermore, Lemma 13.2 provides

p̈4n−1(z) = −(β − z)(z − α)ẍn−1(z), p̈4n+3(z) = −(β − z)(z − α)ẍn(z)
(13.12)

and

p̈4n(z) = r̈n(z), p̈4n+4(z) = r̈n+1(z), q̈4n(z) = ön(z), q̈4n+4(z) = ön+1(z)

(13.13)

as well as

q̈4n+3(z) + [(α + β − z)s0 − s1]ẍn(z) = −ÿn(z). (13.14)

Part 2: In the next step, we are going to prove the validity of the equation

q̈4n−1(z) + [(α + β − z)s0 − s1]ẍn−1(z) = −ÿn−1(z). (13.15)
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First, we consider the case n = 1. Notation 8.3 provides

q̈3(z) = −(β − z)q̈1(z)A1 + (z − α)q̈2(z)B1, q̈1(z) = f0, q̈2(z) = f0. (13.16)

Moreover, according to Lemma 13.4, the inequality detD0 �= 0 and the equations
A1 = D−1

0 f2 and B1 = D−1
0 f1 hold true. By virtue of (5.9) and (5.8), we obtain then

det(δs0) �= 0 and f0D
−1
0 = s0(δs0)−1 = 1

δ
Iq . Taking additionally into account (13.16)

and (5.9), we get then q̈1(z)A1 = f0D
−1
0 f2 = 1

δ
(βs0 − s1) and q̈2(z)B1 = f0D

−1
0 f1 =

1
δ
(s1 − αs0). Thus, using (13.16), we conclude

q̈3(z) = −(β − z)
1

δ
(βs0 − s1) + (z − α)

1

δ
(s1 − αs0)

= −[(α + β − z)s0 − s1]. (13.17)

Applying Lemma 8.6, we infer p̈3(z) = −(β − z)(z − α)A1 − (z − α)(β − z)B1 =
−(β − z)(z − α)Iq . Consequently, Remark 8.9(c) delivers ẍ0(z) = Iq . Therefore,

using Notations 13.1 and 6.11, we obtain ÿ0(z) = ẍ�c�
0 (z) = I

�c�
q (z) = Oq×q . Taking

additionally into account (13.17), we get then q̈3(z) + [(α + β − z)s0 − s1]ẍ0(z) =
Oq×q = −ÿ0(z). Hence, equation (13.15) is verified in the case n = 1. If n ≥ 2, then
Remark 5.9 and Lemma 13.2 yield (13.15).
Part 3: In the following, we want to verify (13.1). Because of detD2n �= 0, we have

D†
2nD2nA2n+1 = A2n+1. (13.18)

Using Notation 13.3, (13.18), (13.9), (13.5), (13.8), (13.4), and (13.11), we observe
that

V̈2n(z)Uc,2n(z)

=
[
−(β − z)q̈4n+1(z)D

†
2n −δ2n−1q̈4n+2(z)

(β − z)p̈4n+1(z)D
†
2n δ2n−1p̈4n+2(z)

]

×
[

δ2n−1 Iq −δ2n−1D2nA2n+1

(z − α)D†
2n (z − α)B2n+1

]

= δ2n−1

[
−δq̈4n−1(z)A2nD

†
2n −q̈4n+3(z)

δp̈4n+1(z)A2nD
†
2n p̈4n+3(z)

]

= δ2n−1

[
−q̈4n−1(z)L

†
α,n−1,β −q̈4n+3(z)

p̈4n−1(z)L
†
α,n−1,β p̈4n+3(z)

]

is valid. Therefore, using additionally (13.12), (13.15), (13.14) aswell asNotation13.3,
we get

�(z)V̈2n(z)Uc,2n(z) = �(z)δ2n−1

[
−q̈4n−1(z)L

†
α,n−1,β −q̈4n+3(z)

p̈4n−1(z)L
†
α,n−1,β p̈4n+3(z)

]
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= −δ2n−1(β − z)(z − α)

[
Yn−1(z)L

†
α,n−1,β Yn(z)

ẍn−1(z)L
†
α,n−1,β ẍn(z)

]

= −δ2n−1(β − z)(z − α)

[−ÿn−1(z)L
†
α,n−1,β −ÿn(z)

ẍn−1(z)Lα,n−1,β ẍn(z)

]

= −δ2n−1(β − z)(z − α)Vc,2n−1(z),

where Y�(z) := q̈4�+3(z) + [(α + β − z)s0 − s1]ẍ�(z) for � = n − 1, n.
Part 4: Finally, wewant to verify (13.2). Using Notation 13.3, (13.18), (13.10), (13.7),
(13.10), (13.6), (13.11), (13.13), and (13.13), we see that

V̈2n(z)U2n(z)

=
[
−(β − z)q̈4n+1(z)D

†
2n −δ2n−1q̈4n+2(z)

(β − z)p̈4n+1(z)D
†
2n δ2n−1p̈4n+2(z)

]

×
[

δ2n−1 Iq δ2n−1D2nA2n+1

−(β − z)D†
2n (β − z)B2n+1

]

= δ2n−1(β − z)

[
−[q̈4n+1(z) − q̈4n+2(z)]D†

2n −Qn(z)
[p̈4n+1(z) − p̈4n+2(z)]D†

2n Pn(z)

]

= δ2n−1(β − z)

[
−δq̈4n(z)B2nD

†
2n −q̈4n+4(z)

δp̈4n(z)B2nD
†
2n p̈4n+4(z)

]

= δ2n−1(β − z)

[
−q̈4n(z)L

†
n −q̈4n+4(z)

p̈4n(z)L
†
n p̈4n+4(z)

]

= δ2n−1(β − z)

[
−ön(z)L

†
n −ön+1(z)

r̈n(z)L
†
n r̈n+1(z)

]

= δ2n−1(β − z)V2n+1(z),

where Qn(z) := q̈4n+1(z)A2n+1 + q̈4n+2(z)B2n+1 and Pn(z) := p̈4n+1(z)A2n+1 +
p̈4n+2(z)B2n+1.

Lemma 13.6 Suppose that κ ≥ 1 and that (s j )κj=0 ∈ F�
q,κ,α,β . For all z ∈ C, then

− δ−1(β − z)(z − α)Iq = �(z)V̈0(z)Uc,0(z) (13.19)

and, in particular, detUc,0(z) �= 0, and further

δ−1(β − z)V1(z) = V̈0(z)U0(z), (13.20)

where �(z) is given via (13.3).

Proof Since (s j )κj=0 belongs to F�
q,κ,α,β , from Proposition 5.10 and the definition of

the setF�
q,0,α,β we see that s0 belongs toC

q×q� . In particular, det s0 �= 0. Thus, because

of (5.8), we have D0 = δs0 and D†
0 = δ−1s−1

0 . Using (8.5) and (5.9), we conclude
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moreover A1 = δ−1s−1
0 (βs0 − s1) and B1 = δ−1s−1

0 (s1 − αs0). We consider now an
arbitrary z ∈ C. Thus, in view of Notation 13.3 as well as (8.3) and (8.4), it follows

V̈0(z) = −δ−1

[
(β − z)Iq s0

−(β − z)(z − α)s−1
0 (β − z)Iq

]

, (13.21)

Uc,0(z) = δ−1

[
Iq −(βs0 − s1)

(z − α)s−1
0 (z − α)s−1

0 (s1 − αs0)

]

, (13.22)

and

U0(z) = δ−1

[
Iq βs0 − s1

−(β − z)s−1
0 (β − z)s−1

0 (s1 − αs0)

]

. (13.23)

Combining (13.21) and (13.22), we see that

V̈0(z)Uc,0(z) = −δ−1

[
Iq (z − α − β)s0 + s1
O (β − z)(z − α)Iq

]

holds true. Hence, (13.19) can be easily checked, which implies detUc,0(z) �= 0. From
Lemma 13.2, (5.9), and (8.3) we infer ö0(z)f

†
0 = q̈0(z)s

†
0 = O and, taking additionally

into account (8.9) and (8.4), moreover ö1(z) = q̈4(z) = q̈1(z)A1 + q̈2(z)B1 =
δ−1(βs0 − s1) + δ−1(s1 − αs0) = s0. By virtue of Remark 8.9, (8.8), (8.3), (8.4), and
(5.9), we obtain r̈0(z) = p̈0(z) = Iq and

r̈1(z) = p̈4(z) = p̈1(z)A1 + p̈2(z)B1

= δ−1(z − α)(β Iq − s−1
0 s1) − δ−1(β − z)(s−1

0 s1 − α Iq) = z Iq − s−1
0 s1.

Thus, in view of Notation 13.3 and (5.9), we conclude

V1(z) =
[
−ö0(z)f

†
0 −ö1(z)

r̈0(z)f
†
0 r̈1(z)

]

=
[

O −s0
s−1
0 z Iq − s−1

0 s1

]

. (13.24)

Multiplying the matrices stated in (13.21) and (13.23) and comparing with (13.24)
yields (13.20).

Remark 13.7 Let n ∈ N0 and let (s j )
2n+1
j=0 ∈ F�

q,2n+1,α,β . Since Lemma 13.4 provides
detD2n �= 0, Lemma 8.6 and straightforward calculations provide

U2n(z) =
[
δ2n−1 Iq Oq×q

Oq×q (β − z)Iq

] [
Iq Oq×q

−D†
2n Iq

] [
Iq D2nA2n+1

Oq×q Iq

]

,

Uc,2n(z) =
[
δ2n−1 Iq Oq×q

Oq×q (z − α)Iq

] [
Iq Oq×q

D†
2n Iq

] [
Iq −D2nA2n+1

Oq×q Iq

]

,
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and, in particular, detU2n(z) = δ(2n−1)q(β − z)q and detUc,2n(z) = δ(2n−1)q(z−α)q

for all z ∈ C.

Thematrix polynomialsUa,2n+1 andUb,2n+1 admit special decompositions aswell:

Remark 13.8 Let n ∈ N0 and let (s j )
2n+2
j=0 ∈ F�

q,2n+2,α,β . Since Lemma 13.4 provides
detD2n+1 �= 0, Lemma 8.6 and straightforward calculations yield

Ua,2n+1(z) =
[
δ2n Iq Oq×q

Oq×q (z − α)Iq

] [
Iq Oq×q

D†
2n+1 Iq

] [
Iq −D2n+1A2n+2

Oq×q Iq

]

,

Ub,2n+1(z) =
[
δ2n Iq Oq×q

Oq×q (β − z)Iq

] [
Iq Oq×q

−D†
2n+1 Iq

] [
Iq D2n+1A2n+2

Oq×q Iq

]

,

and, in particular, detUa,2n+1(z) = δ2nq(z − α)q and detUb,2n+1(z) = δ2nq(β − z)q

for all z ∈ C.

Lemma 13.9 Let n ∈ N0 and let (s j )
2n+2
j=0 ∈ F�

q,2n+2,α,β . For all z ∈ C, then

δ2n(z − α)Va,2n+1(z) =
[
(z − α)Iq s0
Oq×q Iq

]

V̈2n+1(z)Ua,2n+1(z) (13.25)

and

δ2n(β − z)Vb,2n+1(z) =
[
(β − z)Iq −s0
Oq×q Iq

]

V̈2n+1(z)Ub,2n+1(z). (13.26)

Proof. Our proof is divided into four parts. Let z ∈ C.
Part 1: Lemma 13.4 yields detD2n+1 �= 0. Notation 8.3 provides

p̈4n+5(z) = p̈4n+3(z)A2n+2 + (z − α)p̈4n+4(z)B2n+2, (13.27)

q̈4n+5(z) = q̈4n+3(z)A2n+2 + (z − α)q̈4n+4(z)B2n+2, (13.28)

p̈4n+6(z) = p̈4n+3(z)A2n+2 − (β − z)p̈4n+4(z)B2n+2, (13.29)

and

q̈4n+6(z) = q̈4n+3(z)A2n+2 − (β − z)q̈4n+4(z)B2n+2, (13.30)

whereas Remark 8.5 delivers

(z − α)p̈4n+4(z) − p̈4n+3(z) = δp̈4n+1(z)A2n+1, (13.31)

(z − α)q̈4n+4(z) − q̈4n+3(z) = δq̈4n+1(z)A2n+1, (13.32)

(β − z)p̈4n+4(z) + p̈4n+3(z) = δp̈4n+2(z)B2n+1, (13.33)

and

(β − z)q̈4n+4(z) + q̈4n+3(z) = δq̈4n+2(z)B2n+1. (13.34)
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Let (fk)
4n+4
k=0 be the Fα,β -parameter sequence of (s j )

2n+2
j=0 . Lemma 8.7 shows that

δf4n+1A2n+1 = D2n+1 and δf4n+2B2n+1 = D2n+1. In view of detD2n+1 �= 0, then
det f4n+1 �= 0 as well as det f4n+2 �= 0 and, thus,

δA2n+1D
†
2n+1 = f†4n+1 and δB2n+1D

†
2n+1 = f†4n+2 (13.35)

follow. Furthermore, from Lemma 13.2 we know that

p̈4n+1(z) = (z − α)ẗn(z), p̈4n+5(z) = (z − α)ẗn+1(z), (13.36)

p̈4n+2(z) = −(β − z)v̈n(z), p̈4n+6(z) = −(β − z)v̈n+1(z), (13.37)

q̈4n+5(z) = ün+1(z) + s0 ẗn+1(z), q̈4n+6(z) = −[ẅn+1(z) − s0v̈n+1(z)]. (13.38)

Part 2: In the next step of the proof, we are going to prove that

q̈4n+1(z) − s0 ẗn(z) = ün(z) and q̈4n+2(z) − s0v̈n(z) = −ẅn(z) (13.39)

are fulfilled. First, we consider the case n = 0. In view of Notation 8.3, we have
p̈1(z) = (z − α)Iq and p̈2(z) = −(β − z)Iq as well as q̈1(z) = f0 and q̈2(z) = f0.
Consequently, Notation 8.3 and Remark 8.9(b) deliver ẗ0(z) = Iq and v̈0(z) = Iq .

Thus, using Notations 13.1 and 6.11, we conclude ü0(z) = ẗ�a�0 (z) = I
�a�
q (z) = Oq×q

and ẅ0(z) = v̈�b�
0 (z) = I

�b�
q (z) = Oq×q . Consequently, taking additionally into

account (5.9), we get q̈1(z) − s0 ẗ0(z) = f0 − s0 Iq = Oq×q = ü0(z) and q̈2(z) −
s0v̈0(z) = f0 − s0 Iq = Oq×q = −ẅ0(z). Hence, the equations in (13.39) are verified
in the case n = 0.

Now assume n ≥ 1. Because of Remark 5.9, the sequence (s j )
2n+2
j=0 belongs in

particular to F�
q,2n+2,α,β . Therefore, Lemma 13.2(d) yields (13.39).

Part 3: In the following, we want to verify (13.25). Using Notation 13.3, detD2n+1 �=
0, (13.32), (13.28), (13.31), (13.27), and (13.35), we get

V̈2n+1(z)Ua,2n+1(z)

=
[

q̈4n+3(z)D
†
2n+1 −δ2n q̈4n+4

−p̈4n+3(z)D
†
2n+1 δ2n p̈4n+4

][
δ2n Iq −δ2nD2n+1A2n+2

(z − α)D†
2n+1 (z − α)B2n+2

]

= δ2n

[
[q̈4n+3(z) − (z − α)q̈4n+4(z)]D†

2n+1 −Qn(z)
−[p̈4n+3(z) − (z − α)p̈4n+4(z)]D†

2n+1 Pn(z)

]

= δ2n

[
−δq̈4n+1(z)A2n+1D

†
2n+1 −q̈4n+5(z)

δp̈4n+1(z)A2n+1D
†
2n+1 p̈4n+5(z)

]

= δ2n

[
−q̈4n+1(z)L

†
α,n,• −q̈4n+5(z)

p̈4n+1(z)L
†
α,n,• p̈4n+5(z)

]

,

where Qn(z) := q̈4n+3(z)A2n+2+(z−α)q̈4n+4(z)B2n+2 andwhere Pn(z) := p̈4n+3(z)
A2n+2 + (z − α)p̈4n+4(z)B2n+2. Thus, using additionally (13.36), (13.39), (13.38),
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and Notation 13.3, we obtain then

[
(z − α)Iq s0
Oq×q Iq

]

V̈2n+1(z)Ua,2n+1(z)

= δ2n
[
(z − α)Iq s0
Oq×q Iq

][−q̈4n+1(z)f
†
4n+1 −q̈4n+5(z)

p̈4n+1(z)f
†
4n+1 p̈4n+5(z)

]

= δ2n(z − α)

[
−[q̈4n+1(z) − s0 ẗn(z)]f†4n+1 −[q̈4n+5(z) − s0 ẗn+1(z)]

ẗn(z)f
†
4n+1 ẗn+1(z)

]

= δ2n(z − α)

[
−ün(z)f

†
4n+1 −ün+1(z)

ẗn(z)f
†
4n+1 ẗn+1(z)

]

= δ2n(z − α)Va,2n+1(z).

Part 4: Finally, we want to check (13.26). Setting Rn(z) := q̈4n+3(z)A2n+2 − (β −
z)q̈4n+4(z)B2n+2 and Sn(z) := p̈4n+3(z)A2n+2 − (β − z)p̈4n+4(z)B2n+2 and using
Notation 13.3, detD2n+1 �= 0, (13.34), (13.30), (13.33), (13.29), and (13.35), we
observe that

V̈2n+1(z)Ub,2n+1(z)

=
[

q̈4n+3(z)D
†
2n+1 −δ2n q̈4n+4(z)

−p̈4n+3(z)D
†
2n+1 δ2n p̈4n+4(z)

][
δ2n Iq δ2nD2n+1A2n+2

−(β − z)D†
2n+1 (β − z)B2n+2

]

= δ2n

[
[q̈4n+3(z) + (β − z)q̈4n+4(z)]D†

2n+1 Rn(z)
−[p̈4n+3(z) + (β − z)p̈4n+4(z)]D†

2n+1 −Sn(z)

]

= δ2n

[
δq̈4n+2(z)B2n+1D

†
2n+1 q̈4n+6(z)

−δp̈4n+2(z)B2n+1D
†
2n+1 −p̈4n+6(z)

]

= δ2n

[
q̈4n+2(z)f

†
4n+2 q̈4n+6(z)

−p̈4n+2(z)f
†
4n+2 −p̈4n+6(z)

]

.

Thus, applying additionally (13.37), (13.39), and (13.38) as well as Notation 13.3, we
conclude finally

[
(β − z)Iq −s0
Oq×q Iq

]

V̈2n+1(z)Ub,2n+1(z)

= δ2n
[
(β − z)Iq −s0
Oq×q Iq

][
q̈4n+2(z)f

†
4n+2 q̈4n+6(z)

−p̈4n+2(z)f
†
4n+2 −p̈4n+6(z)

]

= δ2n(β − z)

[
[q̈4n+2(z) − s0v̈n(z)]f†4n+2 q̈4n+6(z) − s0v̈n+1(z)

v̈n(z)f
†
4n+2 v̈n+1(z)

]

= δ2n(β − z)

[
−ẅn(z)f

†
4n+2 −ẅn+1(z)

v̈n(z)f
†
4n+2 v̈n+1(z)

]

= δ2n(β − z)Vb,2n+1(z).
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We continue our investigations with an interesting result regarding the sequences
(a j )

2κ
j=0 and (b j )

2κ
j=0 given via (3.2) built from a [α, β]-positive definite sequence

(s j )
2κ+1
j=0 of complex q × q matrices:

Lemma 13.10 Assume κ ≥ 1 and let (s j )
2κ+1
j=0 ∈ F�

q,2κ+1,α,β . Then the sequence

(a j )
2κ
j=0 belongs to H�

q,2κ and (ẗ�)κ�=0 is the uniquely determined MROS of matrix

polynomials with respect to (a j )
2κ
j=0. Moreover, the sequence (b j )

2κ
j=0 belongs toH�

q,2κ
and (v̈�)

κ
�=0 is the uniquely determined MROS of matrix polynomials with respect to

(b j )
2κ
j=0.

Proof The representation of the class F�
q,2κ+1,α,β given in (5.5) delivers

{(a j )
2κ
j=0, (b j )

2κ
j=0} ⊆ H�

q,2κ . Because of Remark 5.9, we have (s j )
2κ+1
j=0 ∈

F�
q,2κ+1,α,β . Theorem 8.14 provides that the sequence (ẗ�)κ�=0 (resp. (v̈�)

κ
�=0) forms

an MROS of matrix polynomials with respect to (a j )
2κ
j=0 (resp. (b j )

2κ
j=0). Applying

[15, Prop. 5.6(b)] completes the proof.

Lemma 13.11 Let τ ∈ N0 ∪ {∞} be such that κ ≤ τ and let (s j )2τj=0 ∈ F�
q,2τ,α,β .

(a) Let [(ak)κk=0, (bk)
κ
k=0, (ck)

κ
k=0, (dk)

κ
k=0] be the R-QMP associated with (s j )2κj=0.

Then bk(z) = r̈k(z) and ak(z) = ök(z) for all k ∈ Z0,κ and all z ∈ C.
(b) Suppose κ ≥ 1. Let [(ac,k)κ−1

k=0 , (bc,k)
κ−1
k=0 , (cc,k)

κ−1
k=0 , (dc,k)

κ−1
k=0 ] be the R-QMP

associated with (c j )
2κ−2
j=0 . Then bc, j (z) = ẍ j (z) and ac, j (z) = ÿ j (z) for all

j ∈ Z0,κ−1 and all z ∈ C.

Proof Proposition 5.10 yields (s j )mj=0 ∈ F�
q,m,α,β for all m ∈ Z0,2τ and, in view of

(5.3) and Remark 5.1, consequently, (s j )2mj=0 ∈ H�
q,2m ⊆ H�,e

q,2m ⊆ H�
q,2m for all

m ∈ Z0,τ .
(a) From Theorem 8.14 we know that (r̈k)κk=0 forms anMROS of matrix polynomi-

als with respect to (s j )2κj=0. On the other hand, Proposition 6.10 yields that (bk)
κ
k=0 is

an MROS of matrix polynomials with respect to (s j )2κj=0. Applying [15, Prop. 5.6(b)],
then we can conclude bk(z) = r̈k(z) for all k ∈ Z0,κ and all z ∈ C. Using Proposi-

tion 6.13 and Notation 13.1, then we get ak = b
�s�
k = r̈�s�

k = ök for all k ∈ Z0,κ .
(b) According to Theorem 8.14, the sequence (ẍk)

κ−1
k=0 forms an MROS of matrix

polynomials with respect to (c j )
2κ−2
j=0 . Since (s j )2κj=0 belongs to F�

q,2κ,α,β , from (5.3)

we see that (c j )
2κ−2
j=0 belongs to H�

q,2κ−2. Thus, Remark 5.1 provides (c j )
2κ−2
j=0 ∈

H�,e
q,2κ−2 ⊆ H�

q,2κ−2. Consequently, Proposition 6.10 yields that (bc,k)
κ−1
k=0 is anMROS

of matrix polynomials with respect to (c j )
2κ−2
j=0 . Applying [15, Prop. 5.6(b)], we

obtain bc,k(z) = ẍk(z) for every choice of k ∈ Z0,κ−1 and z ∈ C. Using Propo-

sition 6.13 and Notation 13.1, we get finally ac,k = b
�c�
c,k = ẍ�c�

k = ÿk for all
k ∈ Z0,κ−1.

Lemma 13.12 Let τ ∈ N0 ∪ {∞} be such that κ ≤ τ and let (s j )
2τ+1
j=0 ∈ F�

q,τ+1,α,β .
Further, let [(aa,k)κk=0, (ba,k)

κ
k=0, (ca,k)

κ
k=0, (da,k)

κ
k=0] be the R-QMP associated with
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(a j )
2κ
j=0 and let [(ab,k)κk=0, (bb,k)

κ
k=0, (cb,k)

κ
k=0, (db,k)

κ
k=0] be the R-QMP associated

with (b j )
2κ
j=0. For every choice of k ∈ Z0,κ and z ∈ C, then ba,k(z) = ẗk(z) and

aa,k(z) = ük(z) as well as bb,k(z) = v̈k(z) and ab,k(z) = ẅk(z).

Proof Proposition 5.10 yields (s j )mj=0 ∈ F�
q,m,α,β for all m ∈ Z0,2τ+1. From

Lemma 13.10 we know that {(a j )
2κ
j=0, (b j )

2κ
j=0} ⊆ H�

q,2κ , that (ẗ�)
κ
�=0 is the uniquely

determined MROS of matrix polynomials with respect to (a j )
2κ
j=0, and that (v̈�)

κ
�=0

is the uniquely determined MROS of matrix polynomials with respect to (b j )
2κ
j=0.

Remark 5.1 yields then {(a j )
2κ
j=0, (b j )

2κ
j=0} ⊆ H�,e

q,2κ ⊆ H�
q,2κ , which, by virtue of

Proposition 6.10, implies that (ba,k)
κ
k=0 is an MROS of matrix polynomials with

respect to (a j )
κ
j=0 and that (bb,k)

κ
k=0 is an MROS of matrix polynomials with respect

to (b j )
κ
j=0. Consequently, ba,k(z) = ẗk(z) and bb,k(z) = v̈k(z) for all k ∈ Z0,κ and all

z ∈ C. Using Proposition 6.13, we get aa,k = b
�a�
a,k = ẗ�a�k and ab,k = b

�b�
b,k = v̈�b�

k for
all k ∈ Z0,κ . Thus, fromNotation13.1we see thataa,k(z) = ük(z) andab,k(z) = ẅk(z)
are proved for all k ∈ Z0,κ and all z ∈ C.

Lemma 13.13 Supposeκ ≥1.Let(s j )κj=0∈H�,e
q,κ, let [(ak)〈〈κ]

k=0, (bk)
〈〈κ]
k=0, (ck)

〈〈κ]
k=0, (dk)

〈〈κ]
k=0]

be the R-QMP associated with (s j )κj=0, and let n ∈ N0 be such that 2n + 1 ≤ κ . Fur-

thermore, let S, T ∈ C
q×q be such that the three conditions

(I) rank
[
S
T

] = q,
(II) �(T ∗S) � Oq×q ,
(III) R(S) ⊆ R(Ln)

are fulfilled. For all w ∈ �+, then det[bn(w)L†
n S + bn+1(w)T ] �= 0.

Proof Let w ∈ �+. Consider an arbitrary v ∈ N (bn(w)L†
n S + bn+1(w)T ). Then

[bn(w)L†
n S + bn+1(w)T ]v = O. (13.40)

Part 1: Lemma 6.18 provides det bn(w) �= 0 and det bn+1(w) �= 0. Combin-
ing Remarks 7.4 and 5.7 and using the notations given there, we get χ2n+1(w) =
Ln[bn(w)]−1[bn+1(w)]. Thus, the multiplication of Ln[bn(w)]−1 to the left side of
(13.40) implies LnL

†
n Sv + Ln[bn(w)]−1bn+1(w)T v = O , which is equivalent to

LnL
†
n Sv + χ2n+1(w)T v = O . Taking into account condition (III) and applying

Remark A.1, we can rewrite the last equation to

Sv + χ2n+1(w)T v = O. (13.41)

Themultiplication of (13.41) with v∗T ∗ from the left yields v∗T ∗Sv+v∗T ∗χ2n+1(w)

T v = 0. By virtue of Remark A.2, consequently,

v∗�(T ∗S)v + v∗T ∗�(χ2n+1(w))T v = �(v∗T ∗Sv + v∗T ∗χ2n+1(w)T v) = 0.

(13.42)
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Part 2: Our next goal is to prove, for all n ∈ N0 fulfilling 2n + 1 ≤ κ , that

�(χ2n+1(w)) � �(w)Ln � O. (13.43)

If n = 0, then (7.3) provides χ1(w) = ws0 − s1. From Notation 5.2, (s j )κj=0 ∈
H�,e

q,κ , and Remark 5.3, we get L0 = H0 = s0 � O and s∗
1 = s1, which implies

�(s1) = O and, consequently, �(χ1(w)) = �(ws0 − s1) = �(w)s0 = �(w)L0 � O .
Now assume n ≥ 1. From Remarks 5.7 and 6.14 and [14, Cor. 7.22] we conclude then

�(χ2n+1(w)) = [�(w)]Ln + Ln[bn(w)]−1bn−1(w)L†
n−1[�χ2n−1(w)]

×L†
n−1[bn−1(w)]∗[bn(w)]−∗Ln .

Because of (s j )κj=0 ∈ H�,e
q,κ , from [15, Propositions 2.10(b) and 2.15(b)] and

Remark 5.7 we get Ln ∈ C
q×q
� and, according to Remark A.9, then L†

n ∈ C
q×q
� ⊆

C
q×q
H . Since w belongs to �+, Remark 7.5 provides �(χ2n−1(w)) ∈ C

q×q
� . Conse-

quently, (13.43) holds true.
Part 3: Under guidance of condition (II), from (13.42) and (13.43) we infer

0 = v∗�(T ∗S)v + v∗T ∗�(χ2n+1(w))T v ≥ v∗T ∗�(χ2n+1(w))T v

≥ v∗T ∗[�(w)Ln]T v ≥ 0.

and, hence,�(w)v∗T ∗LnT v = v∗T ∗[�(w)Ln]T v = 0. Consequently, in view ofw ∈
�+ and Ln ∈ C

q×q
� , we get LnT v = O , i. e., T v ∈ N (Ln). Since the combination

of [14, Prop. 7.19] and Remark 5.7 providesN (χ2n+1(w)) = N (h2n) = N (Ln), this
implies χ2n+1(w)T v = O . Thus, from (13.41) we observe Sv = O .
Part 4: Regarding Sv = O , we see that (13.40) simplifies to bn+1(w)T v = O and,
since det bn+1(w) �= 0 is valid as well, we conclude T v = O . Using additionally
Sv = O , then

[
S
T

]
v = O follows. Because of condition (I), this implies v = O . The

proof is finished.

Now we introduce particular matrix balls (see also (7.2)).

Notation 13.14 Let (s j )κj=0 ∈ F�
q,κ,α,β and let w ∈ �+. For each n ∈ N0 such that

2n ≤ κ , let A2n , B2n , and C2n be given by Notation 7.7(a) and let

K2n(w) :=K(C2n(w); (w − w)−1A2n(w),B2n(w)).

If κ ≥ 1, then, for all n ∈ N0 fulfilling 2n + 1 ≤ κ , letAα,2n,•,Bα,2n,•,Cα,2n,• : C \
R → C

q×q andA•,2n,β ,B•,2n,β ,C•,2n,β : C\R → C
q×q be defined byNotations 3.4

and 7.7(a) and let

Ka,2n(w) := 1

w − α

[
K(Cα,2n,•(w); (w − w)−1Aα,2n,•(w),Bα,2n,•(w)) − s0

]
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and

Kb,2n(w) := 1

β − w

[
K(C•,2n,β(w); (w − w)−1A•,2n,β(w),B•,2n,β(w)) + s0

]
.

If κ ≥ 2, then, for all n ∈ N0 such that 2n+ 2 ≤ κ , letAα,2n,β ,Bα,2n,β ,Cα,2n,β : C \
R → C

q×q be defined by Notations 3.4 and 7.7(a) and let

Kc,2n(w)

:= 1

(β − w)(w − α)

{
K(Cα,2n,β(w); (w − w)−1Aα,2n,β(w),Bα,2n,β(w))

−(α + β − w)s0 + s1
}
.

Lemma 13.15 Let (s j )κj=0 ∈ F�
q,κ,α,β and let F ∈ Rq [[α, β]; (s j )κj=0,=]. Further-

more, let n ∈ N0 be such that 2n ≤ κ . For all w ∈ �+, then (s j )2nj=0 ∈ H�,e
q,2n and

F(w) ∈ K2n(w).

Proof Proposition 5.10 delivers (s j )2nj=0 ∈ F�
q,2n,α,β . Hence, according to [19,

Prop. 7.10], the sequence (s j )2nj=0 belongs to H�,e
q,2n . Since F belongs to

Rq [[α, β]; (s j )κj=0,=], because of Theorem 4.3 and the definition of the set

Rq [[α, β]; (s j )κj=0,=], we have σ̈F ∈ M�
q [[α, β]; (s j )κj=0,=]. Let f be the restric-

tion of F onto �+. Then according to F ∈ Rq(C \ [α, β]) and [23, Def. 4.4,
Lem. 4.12], we know that f ∈ R0,q(�+) and that the R-Stieltjes measure σ f of f
fulfills σ f (R\[α, β]) = Oq×q and σ f (B) = σ̈F (B) for all B ∈ B[α,β]. Thus, in view
of σ̈F ∈ M�

q [[α, β]; (s j )κj=0,=], we obtain s j = ∫
[α,β] x

j σ̈F (dx) = ∫
R
x jσ f (dx)

for all j ∈ Z0,κ . Consequently, σ f ∈ M�
q [R; (s j )κj=0,=]. Hence, in particular, we

get σ f ∈ M�
q [R; (s j )2nj=0,�]. Therefore, f ∈ R0,q [�+; (s j )2nj=0,�]. Thus, tak-

ing into account (s j )2nj=0 ∈ H�,e
q,2n , Theorem 7.11 yields f (w) ∈ K(C2n(w); (w −

w)−1A2n(w),B2n(w)), i. e., f (w) ∈ K2n(w) for all w ∈ �+. Since f is the restric-
tion of F onto �+, the proof is complete.

Theorem 13.16 Suppose κ ≥1. Let (s j )κj=0∈F�
q,κ,α,β , let F ∈Rq [[α, β]; (s j )κj=0,=],

and let w ∈ �+.

(a) Let n ∈ N0 be such that 2n + 1 ≤ κ . Then the sequences (a j )
2n
j=0 and (b j )

2n
j=0

given by (3.2) both belong to H�,e
q,2n and the matrix F(w) belongs to Ka,2n(w) ∩

Kb,2n(w).
(b) Let κ ≥ 2 and let n ∈ N0 be such that 2n + 2 ≤ κ . Then the sequence (c j )2nj=0

given by (3.3) belongs toH�,e
q,2n and the matrix F(w) belongs toKc,2n(w).

Proof Since F belongs toRq [[α, β]; (s j )κj=0,=], the correspondingR[α, β]-measure
σ̈F fulfills σ̈F ([α, β]) = s0 and

∫
[α,β] x σ̈F (dx) = s1.
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(a) In view of σ̈F ([α, β]) = s0, Remark 4.4 delivers

F(w) = 1

w − α
[Fa(w) − s0] and F(w) = 1

β − w
[Fb(w) + s0]. (13.44)

We know from Proposition 5.10 that (s j )
2n+1
j=0 ∈ F�

q,2n+1,α,β . Moreover, by

assumption and Rq [[α, β]; (s j )κj=0,=] ⊆ Rq [[α, β]; (s j )
2n+1
j=0 ,=], we have F ∈

Rq [[α, β]; (s j )
2n+1
j=0 ,=]. Therefore, Remarks 4.4 and 4.5 yield Fa ∈

Rq [[α, β]; (a j )
2n
j=0,=] and Fb ∈ Rq [[α, β]; (b j )

2n
j=0,=]. Furthermore, taking into

account (s j )
2n+1
j=0 ∈ F�

q,2n+1,α,β , Proposition 5.11 shows that {(a j )
2n
j=0, (b j )

2n
j=0} ⊆

F�
q,2n,α,β . In view of Notation 13.14, the application of Lemma 13.15 pro-

vides {(a j )
2n
j=0, (b j )

2n
j=0} ⊆ H�,e

q,2n as well as Fa(w) ∈ K(Cα,2n,•(w); (w −
w)−1Aα,2n,•(w),Bα,2n,•(w)) and Fb(w) ∈ K(C•,2n,β(w); (w − w)−1

A•,2n,β(w),B•,2n,β(w)). Thus, (13.44) yields F(w) ∈ 1
w−α

[K(Cα,2n,•(w); (w −
w)−1Aα,2n,•(w),Bα,2n,•(w)) − s0] and F(w) ∈ 1

β−w
[K(C•,2n,β(w); (w − w)−1

A•,2n,β(w),B•,2n,β(w)) + s0]. In view of Notation 13.14, part (a) is verified.
(b) In view of σ̈F ([α, β]) = s0 and

∫
[α,β] x σ̈F (dx) = s1, Remark 4.4 provides

F(w) = 1

(β − w)(w − α)
[Fc(w) − (α + β − w)s0 + s1]. (13.45)

We know from Proposition 5.10 that (s j )
2n+2
j=0 ∈ F�

q,2n+2,α,β . By assumption and

Rq [[α, β]; (s j )κj=0,=] ⊆ Rq [[α, β]; (s j )
2n+2
j=0 ,=],wehave F ∈ Rq [[α, β]; (s j )

2n+2
j=0 ,=].

Therefore, Remarks 4.4 and 4.5 deliver Fc ∈ Rq [[α, β]; (c j )2nj=0,=]. Furthermore,

taking into account (s j )
2n+2
j=0 ∈ F�

q,2n+2,α,β , Proposition 5.11 shows (c j )2nj=0 ∈
F�
q,2n,α,β . In view of Notation 13.14, applying Lemma 13.15 provides thus (c j )2nj=0 ∈

H�,e
q,2n aswell as Fc(w) ∈ K(Cα,2n,β(w); (w−w)−1Aα,2n,β(w),Bα,2n,β(w)). Finally,

(13.45) yields then F(w) ∈ 1
(β−w)(w−α)

[K(Cα,2n,β(w); (w−w)−1Aα,2n,β(w),Bα,2n,β

(w)) − (α + β − w)s0 + s1]. In view of Notation 13.14, part (b) is verified as well.

14 Weyl Sets in the Case of an Even Number of PrescribedMatricial
Moments

In this section, we work out an explicit representation of the set{
F(w) : F ∈ Rq [[α, β]; (s j )κj=0,=]

}
in the case of an even number of prescribed

matricial moments, i. e., in the situation that κ is an odd positive integer.

Proposition 14.1 Let n ∈ N0, let (s j )
2n+1
j=0 ∈ F�

q,2n+1,α,β and let w ∈ �+. Further-
more, let X ∈ Ka,2n(w) ∩ Kb,2n(w). Then there is a rational matrix-valued function
F belonging toRq [[α, β]; (s j )

2n+1
j=0 ,=] such that X = F(w).
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Proof Our proof is divided into seven parts.

Part 1: By virtue of [19, Prop. 11.12], there exists a sequence (s j )∞j=2n+2 of complex
q × q matrices such that (s j )∞j=0 ∈ F�

q,∞,α,β . Consequently, (s j )
m
j=0 ∈ F�

q,m,α,β for

all m ∈ N0 and, in view of Remark 5.9, then (s j )mj=0 ∈ F�
q,m,α,β for all m ∈ N0.

Lemma 13.10 yields {(a j )
2m
j=0, (b j )

2m
j=0} ⊆ H�

q,2m for all m ∈ N0. Thus, Remark 5.1

provides {(a j )
2m−1
j=0 , (b j )

2m−1
j=0 } ⊆ H�,e

q,2m−1 for all m ∈ N and {(a j )
2m
j=0, (b j )

2m
j=0} ⊆

H�,e
q,2m ⊆ H�

q,2m for all m ∈ N0.

Part 2: In view of Part 1, Lemma 7.9 provides Aα,2n,•(w) = Aα,2n+1,•(w) as well
as Bα,2n,•(w) = Bα,2n+1,•(w), and Cα,2n,•(w) = Cα,2n+1,•(w). Consequently, we
see then from the assumption X ∈ Ka,2n(w), Notation 13.14, and the definition of a
matrix ball that there exists a contractive complex q × q matrix Ca such that

(w − α)X + s0 = Cα,2n+1,•(w) + (w − w)−1Aα,2n+1,•(w)CaBα,2n+1,•(w). (14.1)

In view of Definition 7.1 and the notion of orthogonal projection matrices introduced
in Remark A.4, let

Ea := − [χα,2n+1,•(w)]∗, Ba := �(Ea), Pa := PR(Ba), Qa := PN (Ba). (14.2)

Taking into account Part 1, Remark 7.5 provides 1
�(w)

�(χα,2n+1,•(w)) � O . By virtue
of (14.2) and Remark A.2, we have

Ba = �(Ea) = �(χα,2n+1,•(w)). (14.3)

Therefore, from (14.3) and w ∈ �+, we conclude Ba � O . Let

Sa := Ea

√
Ba

† − E∗
a

√
Ba

†
CaPa and Ta :=√

Ba
† −√

Ba
†
CaPa + Qa. (14.4)

Under guidance of Part 1, [14, Prop. 7.19] and Remark 5.7 yield the validity of

R([χα,2n+1,•(w)]∗) = R(χα,2n+1,•(w)) = R(�(χα,2n+1,•(w))) = R(Lα,n,•)

and

N ([χα,2n+1,•(w)]∗) = N (χα,2n+1,•(w)) = N (�(χα,2n+1,•(w))) = N (Lα,n,•),

which, in compliance with (14.2) and (14.3), implies

R(Ea) = R(E∗
a ) = R(Ba) = R(Lα,n,•) (14.5)

and

N (Ea) = N (E∗
a ) = N (Ba) = N (Lα,n,•). (14.6)
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Hence, in view of (14.2), Ba � O , (14.5), (14.4), and Ca ∈ Kq×q , we can apply [14,
Lem. A.26] and get

rank

[
Sa
Ta

]

= q, PaSa = Sa = SaPa, TaPa = Ta − Qa, (14.7)

√
Ba

†
(Sa − EaTa)(Sa − E∗

a Ta)
†
√
Ba = PaCaPa, and �(T ∗

a Sa) � O. (14.8)

Because of (14.2), (14.5), and (14.6), we obtain

Pa = PR(Ba) = PR(Lα,n,•) and Qa = PN (Ba) = PN (Lα,n,•). (14.9)

Thus, taking into account (14.7), (14.9), Remark A.5, and (14.5), we infer R(Sa) =
R(PaSa) ⊆ R(Pa) = R(PR(Lα,n,•)) = R(Lα,n,•). Taking additionally into account
Part 1, Lemma 13.12, (14.7), (14.8) as well as Lemma 13.13, we conclude that
Ra := ẗn(w)L†

α,n,•Sa + ẗn+1(w)Ta fulfills det Ra �= 0. Because of Part 1, Remark 5.7,
(14.9), (14.8), (14.7) and under guidance of Lemma 13.12, now we can apply [14,
Prop. 8.18] and get

−[ün(w)L†
α,n,•Sa + ün+1(w)Ta]R−1

a

= Cα,2n+1,•(w) + (w − w)−1Aα,2n+1,•(w)KaBα,2n+1,•(w), (14.10)

where the matrix �(χα,2n+1,•(w)) is non-negative Hermitian and where

Ka :=√�(χα,2n+1,•(w))
†
(Sa + [χα,2n+1,•(w)]∗Ta)

×(Sa + χα,2n+1,•(w)Ta)
†
√�(χα,2n+1,•(w))

is a contractive matrix. Using (14.3) and (14.2), we see that Ka = √
Ba

†
(Sa −

EaTa)(Sa − E∗
a Ta)

†√Ba. From Part 1, Proposition 5.8, and Remark 5.7 we know
that det Lα,n,• �= 0, which, applying (14.9), delivers Pa = Iq . Hence, (14.8) yields
to Ka = PaCaPa = Ca. Taking additionally into account (14.1), equation (14.10)
simplifies to

−
[
ün(w)L†

α,n,•Sa + ün+1(w)Ta
]
R−1
a

= Cα,2n+1,•(w) + (w − w)−1Aα,2n+1,•(w)CaBα,2n+1,•(w)

= (w − α)X + s0.

(14.11)

Let (fk)
4n+2
k=0 be the Fα,β -parameter sequence of (s j )

2n+1
j=0 . In view of (14.11),

Remark 5.22, and Notation 13.3, one can see that

[
(w − α)X + s0

Iq

]

=
[−[ün(w)L†

α,n,•Sa + ün+1(w)Ta]R−1
a

RaR−1
a

]

=
[
−[ün(w)L†

α,n,•Sa + ün+1(w)Ta]
ẗn(w)L†

α,n,•Sa + ẗn+1(w)Ta

]

R−1
a
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=
[
−ün(w)f†4n+1 −ün+1(w)

ẗn(w)f†4n+1 ẗn+1(w)

][
Sa
Ta

]

R−1
a = Va,2n+1(w)

[
Sa
Ta

]

R−1
a .

(14.12)

Part 3:Since δ > 0 andw−α �= 0 aswell as det Ra �= 0 are valid, usingNotation 13.3,
we can define

W := (w − α)−1δ−2nUa,2n+1(w)

[
Sa
Ta

]

R−1
a . (14.13)

Let W = [
Y
Z

]
be the q × q block representation of W . Applying the representation

of Ua,2n+1 stated in Remark 13.8, we observe

[
Y
Z

]

= W =
[
(w − α)−1 Iq Oq×q

Oq×q δ−2n Iq

] [
Iq Oq×q

D†
2n+1 Iq

]

×
[

Iq −D2n+1A2n+2
Oq×q Iq

] [
Sa
Ta

]

R−1
a . (14.14)

Combining (14.14) and (14.7) results in

rank

[
Y
Z

]

= rank

[
Sa
Ta

]

= q. (14.15)

In view of Part 1, Lemma 13.4 delivers detD2n+1 �= 0 and A2n+2 = D−1
2n+1f4n+4.

Moreover, Part 1 and Proposition 5.20 yield f4n+4 ∈ C
q×q� . Consequently, in particular

± D2n+1A2n+2 ∈ C
q×q
H . (14.16)

Moreover, since (s j )
2n+1
j=0 belongs toF�

q,2n+1,α,β , from Proposition 5.16 we know that

D2n+1 ∈ C
q×q� ⊆ C

q×q
� . By virtue of Remark A.9, hence, we obtainD†

2n+1 ∈ C
q×q
� ⊆

C
q×q
H . Taking into account D†

2n+1 ∈ C
q×q
H and Remark 10.2, it follows

[
Iq Oq×q

±D†
2n+1 Iq

]∗
J̃q

[
Iq Oq×q

±D†
2n+1 Iq

]

= J̃q , (14.17)

where J̃q is given by (10.1), and, because of (14.16), furthermore

[
Iq ∓D2n+1A2n+2

Oq×q Iq

]∗
J̃q

[
Iq ∓D2n+1A2n+2

Oq×q Iq

]

= J̃q . (14.18)

In view of (10.1), we conclude

[
Iq Oq×q

Oq×q δ−2n Iq

]∗
J̃q

[
Iq Oq×q

Oq×q δ−2n Iq

]

= δ−2n J̃q . (14.19)
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Moreover, one can easily see from (14.14) that

[
(w − α)Y

Z

]

=
[

Iq Oq×q

Oq×q δ−2n Iq

] [
Iq Oq×q

D†
2n+1 Iq

]

×
[

Iq −D2n+1A2n+2
Oq×q Iq

] [
Sa
Ta

]

R−1
a (14.20)

holds true. Now, using (14.20), (14.19), (14.17), and (14.18), we conclude

[
(w − α)Y

Z

]∗
(− J̃q)

[
(w − α)Y

Z

]

= δ−2n R−∗
a

[
Sa
Ta

]∗
(− J̃q)

[
Sa
Ta

]

R−1
a .

Consequently, by virtue of Remarks 10.1 and A.2, (14.8), and δ > 0, we get

�((w − α)Z∗Y ) = δ−2n R−∗
a [�(T ∗

a Sa)]R−1
a � O. (14.21)

In view of Part 1, Lemma 13.9 provides

δ2n(w − α)Va,2n+1(w) =
[
(w − α)Iq s0

Oq×q Iq

]

V̈2n+1(w)Ua,2n+1(w). (14.22)

Taking into account (14.13), (14.22), and (14.12), we infer

[
(w − α)Iq s0

Oq×q Iq

]

V̈2n+1(w)

[
Y
Z

]

=
[
(w − α)Iq s0

Oq×q Iq

]

V̈2n+1(w)((w − α)−1δ−2nUa,2n+1(w)

[
Sa
Ta

]

R−1
a )

= Va,2n+1(w)

[
Sa
Ta

]

R−1
a =

[
(w − α)X + s0

Iq

]

=
[
(w − α)Iq s0

Oq×q Iq

] [
X
Iq

]

,

which implies

V̈2n+1(w)

[
Y
Z

]

=
[
X
Iq

]

. (14.23)

Part 4: In view of Part 1, Lemma 7.9 providesA•,2n,β(w) = A•,2n+1,β(w) as well as
B•,2n,β(w) = B•,2n+1,β(w), and C•,2n,β(w) = C•,2n+1,β(w). Thus, we see from the
assumption X ∈ Kb,2n(w), Notation 13.14, and the definition of amatrix ball that there
is a contractive complex q × q matrix Cb such that (β −w)X − s0 = C•,2n+1,β(w)+
(w−w)−1A•,2n+1,β(w)CbB•,2n+1,β(w). Let Eb := −[χ•,2n+1,β(w)]∗, Bb := �(Eb),
Pb := PR(Bb), and Qb := PN (Bb). Taking into account Part 1, Remarks 7.5 and A.2
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yield Bb � O . Let Sb := Eb
√
Bb

† − E∗
b

√
Bb

†
CbPb and Tb := √

Bb
† − √

Bb
†
CbPb +

Qb. Analogous to Part 2 of the proof we get then

�(T ∗
b Sb) � Oq×q , (14.24)

that the matrix Rb := v̈n(w)L†
•,n,β Sb + v̈n+1(w)Tb is invertible, and that

[
(β − w)X − s0

Iq

]

= Vb,2n+1(w)

[
Sb
Tb

]

R−1
b (14.25)

holds true.
Part 5: We know from Part 1 and Lemma 13.9 that

δ2n(β − w)Vb,2n+1(w) =
[
(β − w)Iq −s0

Oq×q Iq

]

V̈2n+1(w)Ub,2n+1(w) (14.26)

is fulfilled and, in view of δ > 0 and β − w �= 0, from the assumption (s j )
2n+1
j=0 ∈

F�
q,2n+1,α,β and Remark 13.8 that detUb,2n+1(w) = δ2nq(β −w)q �= 0 is valid. Thus,

using (14.25), (14.23), and (14.26), we observe

Vb,2n+1(w)

[
Sb
Tb

]

R−1
b =

[
(β − w)X − s0

Iq

]

=
[
(β − w)Iq −s0

Oq×q Iq

] [
X
Iq

]

=
[
(β − w)Iq −s0

Oq×q Iq

]

V̈2n+1(w)

[
Y
Z

]

= δ2n(β − w)Vb,2n+1(w)[Ub,2n+1(w)]−1
[
Y
Z

]

.

(14.27)

Let P◦
n,−1 := Iq , P◦

n,l := PR(L•,l,β ) for all l ∈ Z0,n , and P◦
n,n+1 := Oq×q . According

to Part 1, Proposition 5.8, and Remark 5.7, for all l ∈ Z0,n , we have L•,l,β ∈ C
q×q�

and, consequently, PR(L•,l,β ) = Iq . Consequently, P◦
n,l = Iq for all l ∈ Z−1,n and

P◦
n,n+1 = Oq×q . Summarizing, we get

[
P◦
n,n O
O

∑n+1
k=0 z

k(P◦
n,n−k − P◦

n,n−k+1)

]

= I2q (14.28)

for all z ∈ C. From Notation 13.3 and Remark 5.22 we conclude

Vb,2n+1(z) =
[
−ẅn(z)L

†
•,n,β −ẅn+1(z)

v̈n(z)L
†
•,n,β v̈n+1(z)

]

(14.29)

for all z ∈ C. Taking into account Part 1, Remark 5.7, Lemma 13.12, (14.29), and
[14, Prop. 6.24], we see from [13, Lem. 7.6] and (14.28) that there is a complex
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2q × 2q matrixW such thatWVb,2n+1(w) = I2q . Taking into account (14.27), then

[
Y
Z

]

= (β − w)−1δ−2nUb,2n+1(w)

[
Sb
Tb

]

R−1
b (14.30)

follows.Using (14.30), Part 1, and the representation ofUb,2n+1 stated inRemark 13.8,
we infer

[
(β − w)Y

Z

]

=
[

Iq Oq×q

Oq×q δ−2n Iq

] [
Iq Oq×q

−D†
2n+1 Iq

]

×
[

Iq D2n+1A2n+2
Oq×q Iq

] [
Sb
Tb

]

R−1
b . (14.31)

Applying (14.31), (14.19), (14.17), and (14.18), we observe that

[
(β − w)Y

Z

]∗
(− J̃q)

[
(β − w)Y

Z

]

= δ−2n R−∗
b

[
Sb
Tb

]∗
(− J̃q)

[
Sb
Tb

]

R−1
b .

Thus, from Remark 10.1, (14.24), Remark A.2, and δ > 0 we get

�((β − w)Z∗Y ) = δ−2n R−∗
b [�(T ∗

b Sb)]R−1
b ∈ C

q×q
� . (14.32)

Consequently, using additionally (14.21), it follows

�(Z∗Y ) = 1

δ
[�((β − w)Z∗Y ) + �((w − α)Z∗Y )] ∈ C

q×q
� . (14.33)

Part 6: Let H := (Y †)∗[�(Z∗Y )]Y †. Furthermore, let η, θ : C → C
q×q be given

by η(z) :=Y and θ(z) := w−z
�(w)

HY + Z for all z ∈ C. In view of (14.33), then [36,
Lem. 8.5] provides that η and θ are holomorphic in C, that

η(w) = Y and θ(w) = Z (14.34)

hold true, and that

rank

[
η(z)
θ(z)

]

= rank

[
Y
Z

]

, (14.35)

�((z − α)[θ(z)]∗η(z)) = �(z)

�(w)
�((w − α)Z∗Y ), (14.36)

and

�((z − β)[θ(z)]∗η(z)) = �(z)

�(w)
�((w − β)Z∗Y ) (14.37)
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are valid for all z ∈ C. Then the functions φ,ψ : C \ [α, β] → C
q×q given by

φ(z) := η(z) and ψ(z) := θ(z) are holomorphic in C \ [α, β] and fulfill rank[ φ(z)
ψ(z)

] =
rank

[ η(z)
θ(z)

] = rank
[
Y
Z

] = q for all z ∈ C \ [α, β], by virtue of (14.35) and (14.15),
whereas (14.36) and (14.21) show that

�((z − α)[ψ(z)]∗φ(z))

�(z)
= �((z − α)[θ(z)]∗η(z))

�(z)
= �((w − α)Z∗Y )

�(w)
∈ C

q×q
� ,

and further (14.37) and (14.32) deliver

�((β − z)[ψ(z)]∗φ(z))

�(z)
= �((β − z)[θ(z)]∗η(z))

�(z)
= �((β − w)Z∗Y )

�(w)
∈ C

q×q
�

for all z ∈ C\R. Consequently, Notation 10.5 yields [φ;ψ] ∈ PRq(C\[α, β]). Since
detD2n+1 �= 0 implies PR(D2n+1) = Iq and, therefore, PR(D2n+1)φ = φ, Lemma 10.8
shows then that [φ;ψ] ∈ P̈[D2n+1]. Since (s j )

2n+1
j=0 belongs to F�

q,2n+1,α,β , then

Remark 11.19 provides that (s j )
2n+1
j=0 ∈ F�,ld

q,2n+1,α,β and, by virtue of Lemma 11.21,

then (s j )
2n+1
j=0 ∈ F�,c

q,2n+1,α,β .
Part 7: Now we can finish the proof with a final step. Let p̃4n+3, q̃4n+3, p̃4n+4, and
q̃4n+4 be the restrictions of p̈4n+3, q̈4n+3, p̈4n+4, and q̈4n+4 ontoC\[α, β], respectively.
Using (14.23), (14.34), and Notation 13.3, we obtain

[
X
Iq

]

= V̈2n+1(w)

[
Y
Z

]

= V̈2n+1(w)

[
η(w)

θ(w)

]

= V̈2n+1(w)

[
φ(w)

ψ(w)

]

=
[

q̃4n+3(w)D†
2n+1φ(w) − δ2n q̃4n+4(w)ψ(w)

−p̃4n+3(w)D†
2n+1φ(w) + δ2n p̃4n+4(w)ψ(w)

]

.

(14.38)

Because of (s j )
2n+1
j=0 ∈ F�,c

q,2n+1,α,β and [φ;ψ] ∈ P̈[D2n+1], we know from Theo-
rem 11.29 that

F := − (q̃4n+3D
†
2n+1φ − δ2n q̃4n+4ψ)(p̃4n+3D

†
2n+1φ − δ2n p̃4n+4ψ)−1 (14.39)

belongs to Rq [[α, β]; (s j )
2n+1
j=0 ,=]. Finally, the combination (14.39) and (14.38)

shows F(w) = X I−1
q = X .

Finally, now we are able to prove the main result of this section. It contains
a description of the set of all values of the functions attained from the reformu-
lated version FP[[α, β]; (s j )κj=0,=] of the matricial Hausdorff moment problem
MP[[α, β]; (s j )κj=0,=] in the case that the number of given matricial moments is
even. As already mentioned, the set admits a representation as intersection of matrix
balls.
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Theorem 14.2 Let α, β ∈ R be such that α < β, let n ∈ N0, and let (s j )
2n+1
j=0 ∈

F�
q,2n+1,α,β . For all w ∈ �+, then

{
F(w) : F ∈ Rq [[α, β]; (s j )

2n+1
j=0 ,=]

}
= Ka,2n(w) ∩ Kb,2n(w),

where Ka,2n(w) and Kb,2n(w) are given by Notation 13.14, respectively.

Proof Apply Theorem 13.16(a) and Proposition 14.1.

15 Weyl Sets in the Case of an Odd Number of PrescribedMatricial
Moments

In the last sections, we worked out an explicit representation of the set{
F(w) : F ∈ Rq [[α, β]; (s j )κj=0,=]

}
in the case that κ is an odd positive integer

(see Theorem 14.2). Now we turn our attention to the case that κ is an even positive
integer. We again use Notation 13.14, in order to formulate a result which is similar
to Proposition 14.1. The proof is similar as well, however, a couple of details differ.
That’s why, we also state the proof.

Proposition 15.1 Let n ∈ N, let (s j )2nj=0 ∈ F�
q,2n,α,β , and let w ∈ �+. Furthermore,

let X ∈ K2n(w) ∩ Kc,2n−2(w). Then there is a rational matrix-valued function F
belonging toRq [[α, β]; (s j )2nj=0,=] such that F(w) = X.

Proof Our proof is divided into seven parts. In the first three parts of the proof, we
consider the case that n is an arbitrary non-negative integer.
Part 1: According to [19, Prop. 11.12], there is a sequence (s j )∞j=2n+1 of com-
plex q × q matrices such that (s j )∞j=0 belongs to F�

q,∞,α,β , i. e., such that (s j )mj=0 ∈
F�
q,m,α,β for all m ∈ N0. In view of Remark 5.9, in particular, (s j )mj=0 ∈ F�

q,m,α,β

for all m ∈ N0. From Definition 3.5 as well as (5.3) and Remark 5.1, for all
m ∈ N0, we get then {(s j )2mj=0, (c j )

2m
j=0} ⊆ H�

q,2m ⊆ H�
q,2m and, consequently,

{(s j )mj=0, (c j )
m
j=0} ⊆ H�,e

q,m .
Part 2: Using the assumption X ∈ K2n(w), Notation 13.14, and the definition of
a matrix ball, we see that there is a contractive complex q × q matrix C such that
X = C2n(w)+ (w−w)−1A2n(w)CB2n(w). By virtue of Part 1 and Lemma 7.9 then

X = C2n+1(w) + (w − w)−1A2n+1(w)CB2n+1(w) (15.1)

follows. In view of Definition 7.1 and Remark A.4, we set

E := − [χ2n+1(w)]∗, B := �E, P := PR(B), and Q := PN (B). (15.2)

Taking into account Part 1, Remark 7.5 yields (�w)−1�χ2n+1(w) � O . Obviously,
Remark A.2 provides

B = �E = �χ2n+1(w), (15.3)
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which, because of w ∈ �+, implies B � O . Let

S := E
√
B
† − E∗√B

†
CP and T := √

B
† − √

B
†
CP + Q. (15.4)

In view of Part 1, [14, Prop. 7.19], and Remark 5.7 as well as (15.2) and (15.3), we
conclude

R(E) = R(E∗) = R(B) = R(Ln), N (E) = N (E∗) = N (B) = N (Ln).

(15.5)

Consequently, taking into account (15.2), B � O , (15.4), (15.5), and C ∈ Kq×q ,
applying [14, Lem. A.26] provides

rank

[
S
T

]

= q, PS = S = SP, T P = T − Q,

(15.6)
√
B
†
(S − ET )(S − E∗T )

√
B = PCP, and �(T ∗S) � O. (15.7)

Because of (15.2) and (15.5), we have

P = PR(B) = PR(Ln) and Q = PN (B) = PN (Ln). (15.8)

Thus, using (15.6), (15.8),RemarkA.5, and (15.5),wegetR(S) = R(PS) ⊆ R(P) =
R(PR(B)) = R(B) = R(Ln). Taking additionally into account Part 1, Lemma 13.11,
(15.6), (15.7), and Lemma 13.13, we see that R := r̈n(w)L†

n S + r̈n+1(w)T fulfills
det R �= 0. Because of Part 1, Remark 5.7, (15.8), w ∈ �+, (15.7), (15.6) as well as
det R �= 0 and Lemma 13.11, now we can apply [14, Prop. 8.18] in order to obtain

−[ön(w)L†
n S + ön+1(w)T ]R−1

= C2n+1(w) + (w − w)−1A2n+1(w)KB2n+1(w) (15.9)

where the matrix �χ2n+1(w) is non-negative Hermitian and where the matrix

K :=√�χ2n+1(w)
†
(S + [χ2n+1(w)]∗T )(S + χ2n+1(w)T )†

√�χ2n+1(w)

is contractive. Using (15.3) and (15.2), it follows

K = √
B
†
(S − ET )(S − E∗T )†

√
B. (15.10)

From Part 1, Proposition 5.8, and Remark 5.7 we know that det Ln �= 0 holds true,
which, because of (15.8) implies P = Iq . Thus, (15.7) and (15.10) give K = PCP =
C . Combining (15.1) and (15.9), we get then −[ön(w)L†

n S + ön+1(w)T ]R−1 = X .
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Consequently, from Remark 5.22 and Notation 13.3(b) we see that

[
X
Iq

]

=
[
−[ön(w)L†

n S + ön+1(w)T ]
r̈n(w)L†

n S + r̈n+1(w)T

]

R−1

=
[
−ön(w)f†4n −ön+1(w)

r̈n(w)f†4n r̈n+1(w)

][
S
T

]

R−1 = V2n+1(w)

[
S
T

]

R−1 (15.11)

is fulfilled, where (f j )
∞
j=0 is the Fα,β -parameter sequence of (s j )∞j=0.

Part 3: Since δ > 0 and β −w �= 0 as well as det R �= 0 are valid, taking into account
Notation 13.3(b), we can define

W := δ−2n+1(β − w)−1U2n(w)

[
S
T

]

R−1 (15.12)

and choose the q × q block representation W = [
Y
Z

]
of W . In view of Remark 13.7,

we conclude then
[
Y
Z

]

= W =
[
(β − w)−1 Iq O

O δ−2n+1 Iq

]

M (15.13)

where

M :=
[

Iq O
−D†

2n Iq

] [
Iq D2nA2n+1
O Iq

] [
S
T

]

R−1. (15.14)

Combining (15.14), (15.13), and (15.6), we see that rank
[
Y
Z

] = rank
[
S
T

] = q holds
true. Because of Part 1, Lemma 13.4 provides detD2n �= 0 and A2n+1 = D−1

2n f4n+2,
whereas Part 1 and Proposition 5.20 show that f4n+2 belongs to C

q×q� . In view
of (15.7), the same arguments as in Part 3 of the proof of Proposition 14.1 yield
{D2n,D

†
2n,D2nA2n+1} ⊆ C

q×q
H ,

[
Iq O

±D†
2n Iq

]∗
J̃q

[
Iq O

±D†
2n Iq

]

= J̃q , (15.15)

[
Iq ∓D2nA2n+1
O Iq

]∗
J̃q

[
Iq ∓D2nA2n+1
O Iq

]

= J̃q , (15.16)

[
Iq O
O δ−2n+1 Iq

]∗
J̃q

[
Iq O
O δ−2n+1 Iq

]

= δ−2n+1 J̃q , (15.17)

and, consequently,

�((β − w)Z∗Y ) = δ−2n+1R−∗[�(T ∗S)]R−1 � O. (15.18)

Because of Part 1, using Lemma 13.6 in the case n = 0 and Lemma 13.5 in the case
n ≥ 1, we have δ2n−1(β −w)V2n+1(w) = V̈2n(w)U2n(w). Combining the foregoing
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equation with (15.11) and (15.12) yields

[
X
Iq

]

= δ−2n+1(β − w)−1V̈2n(w)U2n(w)

[
S
T

]

R−1

= V̈2n(w)W = V̈2n(w)

[
Y
Z

]

. (15.19)

In the following Parts 4–7, we suppose that n ≥ 1.
Part 4: In view of Part 1, from Lemma 7.9 we get Aα,2n−2,β(w) = Aα,2n−1,β(w),
Bα,2n−2,β(w) = Bα,2n−1,β(w), and Cα,2n−2,β(w) = Cα,2n−1,β(w). Hence, from the
assumption X ∈ Kc,2n−2(w), Notation 13.14, and the definition of a matrix ball we
see that there exists a contractive complex q × q matrix Cc such that

(β − w)(w − α)X + (α + β − w)s0 − s1
= Cα,2n−1,β(w) + (w − w)−1Aα,2n−1,β(w)CcBα,2n−1,β(w).

Let Ec := − [χα,2n−1,β(w)]∗, Bc := �Ec, Pc := PR(Bc), and Qc := PN (Bc). Taking
into account Part 1, w ∈ �+, and Remarks 7.5 and A.2, we infer Bc � O . Let
Sc := Ec

√
Bc

†−E∗
c
√
Bc

†
CcPc andTc := √

Bc
†−√

Bc
†
CcPc+Qc.Analogous toPart 2

of the proof we get then �(T ∗
c Sc) � O , that the matrix Rc := ẍn−1(w)L†

α,n−1,β Sc +
ẍn(w)Tc is invertible, and that

[
(β − w)(w − α)X + (α + β − w)s0 − s1

Iq

]

= Vc,2n−1(w)

[
Sc
Tc

]

R−1
c .

(15.20)

Part 5: In view of Part 1, from Lemma 13.5 we get that (13.1) holds true for z = w,
whereas Remark 13.7 shows that detUc,2n(w) = δ(2n−1)q(w − α)q �= 0. Using
additionally det Rc �= 0, (15.20), and (15.19), we conclude then

Vc,2n−1(w)

[
Sc
Tc

]

R−1
c =

[
(β − w)(w − α)Iq (α + β − w)s0 − s1

O Iq

][
X
Iq

]

=
[

(β − w)(w − α)Iq (α + β − w)s0 − s1
O Iq

]

V̈2n(w)

[
Y
Z

]

= −δ2n−1(β − w)(w − α)Vc,2n−1(w)[Uc,2n(w)]−1
[
Y
Z

]

. (15.21)

Let P�
n−1,−1 := Iq , P�

n−1,� := PR(Lα,�,β ) for all � ∈ Z0,n−1, and P�
n−1,n := Oq×q . From

Part 1, Proposition 5.20, and Remark 5.22 we know that Lα,�,β ∈ C
q×q� and, conse-

quently, PR(Lα,�,β ) = Iq hold true for all � ∈ Z0,n−1. Thus,

[
P�
n−1,n−1 O
O

∑n
k=0 z

k(P�
n−1,n−1−k − P�

n−1,n−k)

]

= I2q (15.22)
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for all z ∈ C. From Notations 13.3 and 3.3 and Remarks 5.7 and 5.22 we get

Vc,2n−1(z) =
[
−ÿn−1(z)L

†
α,n−1,β −ÿn(z)

ẍn−1(z)L
†
α,n−1,β ẍn(z)

]

for all z ∈ C. Hence, in view of Part 1, Lemma 13.11, and [14, Prop. 6.24], using [13,
Lem. 7.6] and (15.22), we see that there exists a complex 2q × 2q matrix Wc such
that WcVc,2n−1(w) = I2q . Thus, from (15.21) we see that

[
Y
Z

]

= −δ−(2n−1)(β − w)−1(w − α)−1Uc,2n(w)

[
Sc
Tc

]

R−1
c (15.23)

is valid. Using (15.23) and Remark 13.7, we obtain

[
(w − α)Y

Z

]

= −δ−(2n−1)(β − w)−1(w − α)−1
[
(w − α)Iq O

O Iq

]

×
[
δ2n−1 Iq O

O (w − α)Iq

] [
Iq O
D†
2n Iq

] [
Iq −D2nA2n+1
O Iq

] [
Sc
Tc

]

R−1
c

= −(β − w)−1
[
Iq O
O δ−2n+1 Iq

] [
Iq O
D†
2n Iq

] [
Iq −D2nA2n+1
O Iq

] [
Sc
Tc

]

R−1
c . (15.24)

Taking into account (15.24), (15.17), (15.15), and (15.16), we can conclude

[
(w − α)Y

Z

]∗
(− J̃q)

[
(w − α)Y

Z

]

= |β − w|−2δ−2n+1R−∗
c

[
Sc
Tc

]∗
(− J̃q)

[
Sc
Tc

]

R−1
c .

Because of Remark 10.1, �(T ∗
c Sc) � O , Remark A.2, and δ > 0, then

�((w − α)Z∗Y ) = |β − w|−2δ−2n+1R−∗
c [�(T ∗

c Sc)]R−1
c � O (15.25)

follows. Since

δ−1[�((β − w)Z∗Y ) + �((w − α)Z∗Y )] = �(Z∗Y ) (15.26)

holds true, from (15.18) and (15.25) then we infer �(Z∗Y ) � O .

Part 6: Because of Part 1, Remark 11.19, and Lemma 11.21, we have (s j )2nj=0 ∈
F�,ld
q,2n,α,β ⊆ F�,c

q,2n,α,β . Let φ,ψ : C \ [α, β] → C
q×q be given by φ(z) := Y and

ψ(z) := w−z
�(w)

HY + Z , where H := (Y †)∗[�(Z∗Y )]Y †. Using �(Z∗Y ) � O and [36,
Lem. 8.5], one can check analogous to Part 6 of the proof of Proposition 14.1 that
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φ(w) = Y and ψ(w) = Z hold true and that the pair [φ;ψ] belongs to the class
P̈[D2n].
Part 7: Let ε2n : C → C be given by ε2n(z) := z − β. Let p̃4n+1, q̃4n+1, p̃4n+2,
and q̃4n+2 be the restrictions of the functions p

�
4n+1 := ε2n p̈4n+1, q

�
4n+1 := ε2n q̈4n+1,

p̈4n+2, and q̈4n+2 onto C \ [α, β], respectively. By virtue of (15.19), φ(w) = Y ,
ψ(w) = Z , and Notation 13.3, we can conclude

[
X
Iq

]

= V̈2n(w)

[
Y
Z

]

= V̈2n(w)

[
φ(w)

ψ(w)

]

=
[

q̃4n+1(w)D†
2nφ(w) − δ2n−1q̃4n+2(w)ψ(w)

−p̃4n+1(w)D†
2nφ(w) + δ2n−1p̃4n+2(w)ψ(w)

]

. (15.27)

Because of (s j )2nj=0 ∈ F�,c
q,2n,α,β and [φ;ψ] ∈ P̈[D2n], Theorem 11.29 shows that

F := − (q̃4n+1D
†
2nφ − δ2n−1q̃4n+2ψ)(p̃4n+1D

†
2nφ − δ2n−1p̃4n+2ψ)−1 (15.28)

belongs toRq [[α, β]; (s j )2nj=0,=]. Combining (15.27) and (15.28) yields finally X =
X I−1

q = F(w).

Now we obtain a description of the set of all values of the functions attained from
the reformulated version FP[[α, β]; (s j )κj=0,=] of the matricial Hausdorff moment
problem in the case that κ is an even positive integer.

Theorem 15.2 Letα, β ∈ Rbe such thatα < β. Let n ∈ Nand let (s j )2nj=0 ∈ F�
q,2n,α,β .

For each w ∈ �+, then
{
F(w) : F ∈ Rq [[α, β]; (s j )

2n
j=0,=]

}
= K2n(w) ∩ Kc,2n−2(w),

where K2n(w) and Kc,2n−2(w) are given by Notation 13.14.

Proof Combine Lemma 13.15, Theorem 13.16(b), and Proposition 15.1.

Finally, now we turn our attention to case that only the matrix moment s0 is pre-
scribed to obtain a result analogous to Theorems 14.2 and 15.2. In other words, a
sequence (s j )2nj=0 ∈ F�

q,2n,α,β with n = 0 is given. We will see that the result is dif-
ferent in comparison to Theorem 15.2 where it is supposed that n is a positive integer.
The corresponding proofs are similar. However, several details are different as well.
We again use the notation given in Notation 13.14. Furthermore, for every choice of
s0 ∈ C

q×q and z ∈ C, let

F•(z) := {
X ∈ C

q×q : �((β − z)(z − α)X − zs0) � Oq×q
}
. (15.29)

Proposition 15.3 Let (s j )κj=0 ∈ F�
q,κ,α,β and let F ∈ Rq [[α, β]; (s j )κj=0,=]. For

each w ∈ �+, then F(w) ∈ K0(w) ∩ F•(w).
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Proof We consider an arbitrary w ∈ �+. From Lemma 13.15 we know that
F(w) belongs to K0(w). Since F ∈ Rq [[α, β]; (s j )κj=0,=] is supposed, the
R[α, β]-measure σ̈F of F fulfills σ̈F ([α, β]) = s0. Remark 4.4 yields that Fc given
by (4.4) belongs toRq(C \ [α, β]). In particular, �Fc(w) � O . Moreover, in view of
(4.4), we can conclude

�Fc(w) = �
(

(β − w)(w − α)F(w) + (α + β − w)s0 −
∫

[α,β]
t σ̈F (dt)

)

.

Because of (s j )κj=0 ∈ F�
q,κ,α,β , we have s0 ∈ C

q×q
H . Furthermore, [18, Rem. A.4]

provides �(
∫
[α,β] t σ̈F (dt)) = O . Consequently, we obtain �Fc(w) = �((β −w)(w−

α)F(w) − ws0). Thus, F(w) belongs toF•(w) as well.

Proposition 15.4 Let (s j )0j=0 ∈ F�
q,0,α,β , let w ∈ �+, and let X ∈ K0(w) ∩ F•(w).

Then there exists a rational matrix-valued function F ∈ Rq [[α, β]; (s j )0j=0,=] such
that F(w) = X.

Proof We use parts of the proof of Proposition 15.1 and the notations (with n = 0)
applied there. The proof of Proposition 15.1 shows that there exists a sequence (s j )∞j=1

of complex q × q matrices such that (s j )mj=0 ∈ F�
q,m,α,β and (s j )2mj=0 ∈ H�

q,2m are
valid for all m ∈ N0 and that

�((β − w)Z∗Y ) � O (15.30)

and
[
X
Iq

]

= V̈0(w)

[
Y
Z

]

(15.31)

hold true. Let S• := (β − w)(w − α)X + (α + β − w)s0 − s1 and let T• := Iq . Obvi-
ously, rank

[ S•
T•
] = q. Since (s j )2j=0 belongs to H�

q,2, we have {s0, s1} ⊆ C
q×q
H .

Consequently, �((α + β − w)s0) = �(−ws0) and �s1 = O . Thus, the assumption
X ∈ F•(w) provides

�(T ∗• S•) = �((β − w)(w − α)X − ws0) � O. (15.32)

Using (13.3), (15.31), and Lemma 13.6, we conclude

[
S•
T•

]

= �(w)

[
X
Iq

]

= �(w)V̈0(w)

[
Y
Z

]

= −δ−1(β − w)(w − α)[Uc,0(w)]−1
[
Y
Z

]

,

which implies

[
Y
Z

]

= −δ(β − w)−1(w − α)−1Uc,0(w)

[
S•
T•

]

(15.33)
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and, in particular, rank
[
Y
Z

] = rank
[ S•
T•
] = q. Taking into account (15.33) and

Remark 13.7, we get

[
(w − α)Y

Z

]

= −δ(β − w)−1(w − α)−1
[
(w − α)Iq O

O Iq

]

Uc,0(w)

[
S•
T•

]

= −(β − w)−1
[
Iq O
O δ Iq

] [
Iq O
D†
0 Iq

] [
Iq −D0A1
O Iq

] [
S•
T•

]

and, because of
[ Iq O
O δ Iq

]∗
J̃q
[ Iq O
O δ Iq

] = δ J̃q as well as (15.15) and (15.16), therefore

[
(w − α)Y

Z

]∗
J̃q

[
(w − α)Y

Z

]

= δ|β − w|−2
[
S•
T•

]∗
J̃q

[
S•
T•

]

.

Consequently, by virtue of Remark 10.2 and (15.32), we obtain then

�((w − α)Z∗Y ) = δ|β − w|−2�(T ∗• S•) � O. (15.34)

Because of Part 1, Remark 11.19 and Lemma 11.21, we have (s j )0j=0 ∈ F�,ld
q,0,α,β ⊆

F�,c
q,0,α,β . Let φ,ψ : C\[α, β] → C

q×q be given by φ(z) := Y andψ(z) := w−z
�(w)

HY +
Z , where H := (Y †)∗[�(Z∗Y )]Y †. Since (15.26) is valid, from (15.30) and (15.34)
we see that �(Z∗Y ) � O holds true. Proposition 5.16 yields detD0 �= 0. Using [36,
Lem. 8.5], then one can check analogous to Part 6 of the proof of Proposition 14.1 that
φ(w) = Y and ψ(w) = Z are fulfilled and that the pair [φ;ψ] belongs to P̈[D0]. Let
ε0 : C → C be given by ε0(z) := z − β, and let p̃1, q̃1, p̃2, and q̃2 be the restrictions
of the functions p�

1 := ε0p̈1, q
�
1 := ε0q̈1, p̈2, and q̈2 onto C \ [α, β], respectively. By

virtue of (15.31), φ(w) = Y , ψ(w) = Z , and Notation 13.14, we conclude that
(15.27) holds true for n = 0. In view of (s j )0j=0 ∈ F�,c

q,0,α,β and [φ;ψ] ∈ P̈[D0],
Theorem 11.29 shows that F := − (q̃1D

†
0φ − δ−1q̃2ψ)(p̃1D

†
0φ − δ−1p̃2ψ)−1 belongs

toRq [[α, β]; (s j )0j=0,=]. Thus, (15.27) for n = 0 provides X = X I−1
q = F(w).

Now we are able to prove the announced result in the case that exactly one matrix
moment is prescribed.

Theorem 15.5 Let α, β ∈ R be such that α < β and let (s j )0j=0 ∈ F�
q,0,α,β . For each

w ∈ �+, then
{
F(w) : F ∈ Rq [[α, β]; (s j )

0
j=0,=]

}
= K0(w) ∩ F•(w),

where K0(w) and F•(w) are given by Notation 13.14 and (15.29), respectively.

Proof Use Propositions 15.3 and 15.4.
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Appendix A: Some Facts onMatrix Theory

Remark A.1 ([10]) Let A ∈ C
p×q .

(a) For B ∈ C
p×m , then R(B) ⊆ R(A) if and only if AA†B = B.

(b) For C ∈ C
n×q , then N (A) ⊆ N (C) if and only if CA†A = C .

Remark A.2 Let A ∈ C
q×q . Then �(A∗) = �(A) and �(A∗) = −�(A). Moreover,

�(BAB∗) = B[�(A)]B∗ and �(BAB∗) = B[�(A)]B∗, for all B ∈ C
p×q .

Remark A.3 Let A ∈ C
p×q . Then R(A∗) = [N (A)]⊥ and N (A∗) = [R(A)]⊥.

Remark A.4 Let U be a subspace of C
q . Then there exists a unique matrix PU ∈ C

q×q

such that both PU x ∈ U and x −PU x ∈ U⊥ are fulfilled for each x ∈ C
q . This matrix

PU is called the orthogonal projection matrix onto U . In particular, PUu = u for all
u ∈ U . A complex q × q matrix P is said to be an orthogonal projection matrix, if
there exists a subspace U ∈ C

q such that P = PU . In this case, the subspace U is
uniquely determined.

Remark A.5 Let U be a subspace of C
q and let P ∈ C

q×q . Then P = PU if and only
if the three conditions P2 = P , P∗ = P , and R(P) = U are fulfilled. Moreover,
N (PU ) = U⊥ is valid.

Remark A.6 Let A ∈ C
p×q . Then (A†)† = A, (A†)∗ = (A∗)†, (AA∗)† = (A†)∗A†,

(A∗A)† = A†(A∗)†, A† = A∗(AA∗)†, A† = (A∗A)†A∗, N (A†) = N (A∗), and
R(A†) = R(A∗).

http://creativecommons.org/licenses/by/4.0/
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Remark A.7 Let A ∈ C
q×q . Then A∗ = A if and only if (A†)∗ = A†. Furthermore, if

A∗ = A, then AA† = A†A.

Remark A.8 Let A ∈ C
p×q . ThenPR(A) = AA†,PN (A) = Iq−A†A,PR(A∗) = A†A,

and PN (A∗) = Ip − AA†.

Remark A.9 Let A ∈ C
q×q . Then A ∈ C

q×q
� if and only if A† ∈ C

q×q
� . If A ∈ C

q×q
� ,

then
√
A
† = √

A† and A
√
A
† = √

A = √
A
†
A.

Lemma A.10 Let M = [
A B
C D

]
be the block representation of a complex

(p + q) × (r + s) matrix M with p × r block A fulfilling R(B) ⊆ R(A) and
N (A) ⊆ N (C) and let M/A := D − CA†B. Then M

[−X
Is

] = [ Op×s
M/A

]
holds true

for all X ∈ C
r×s such that AX = B. Furthermore, [−Z , Iq ]M = [Oq×r , M/A] is

valid for all Z ∈ C
q×p such that Z A = C.

Proof. Remark A.1 yields AA†B = B and CA†A = C . For all X ∈ C
r×s with

AX = B, we get then

M

[−X
Is

]

=
[
A B
C D

] [−X
Is

]

=
[
B − AX
D − CX

]

=
[

B − AX
D − CA†AX

]

=
[

B − B
D − CA†B

]

=
[
Op × s
M/A

]

.

Analogously, for all Z ∈ C
q×p such that Z A = C , we obtain

[−Z , Iq ]M = [C − Z A, D − Z B] = [C − Z A, D − Z AA†B] = [Oq×r , M/A].

Appendix B: Some Remarks on Non-negative HermitianMeasures

For the convenience of the reader, we give some facts on the integration theory of
non-negative Hermitian measures, which was developed by Kats [26] and Rosenberg
[31–33] (see also [11, Sec. 2.2]). Let Bp×q be the σ -algebra of all Borel subsets of

C
p×q . Let (	,A) be a measurable space and let μ = [μ jk]qj,k=1 ∈ M�

q (	,A).
For every choice of j, k ∈ Z1,q , then the complex measure μ jk is absolutely con-
tinuous with respect to the trace measure τ := trμ of μ. The matrix-valued function
μ′

τ := [ dμ jk
dτ ]qj,k=1 built by the corresponding Radon–Nikodym derivatives ofμ jk with

respect to τ is well defined up to sets of zero τ -measure. Let � : 	 → C
p×q be an

A-Bp×q -measurable function and let� : 	 → C
r×q be anA-Br×q -measurable func-

tion. Then the pair [�;�] is said to be left-integrable with respect to μ if �μ′
τ�

∗
belongs to [L1(	,A, τ ; C)]p×r . In this case, let

∫
A �dμ�∗ := ∫

A �μ′
τ�

∗dτ for all
A ∈ A.

Proposition B.1 Let (	,A) be a measurable space and let μ ∈ M�
q (	,A). Let

f ∈ L1(	,A, μ; C) be such that f (	) ⊆ [0,∞). Then μ f : A → C
q×q given by

μ f (A) := ∫
A f dμ belongs toM�

q (	,A) and the following statements hold true:
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(a) Let� : 	 → C
p×q be anA-Bp×q -measurable function and let� : 	 → C

r×q be
an A-Br×q -measurable function. Then the following statements are equivalent:

(i) The pair [�;�] is left-integrable with respect to μ f .
(ii) The pair [ f �;�] is left-integrable with respect to μ.
(iii) The pair [�; f �] is left-integrable with respect to μ.

(b) If (i) holds true, then

∫

A
�dμ f �

∗ =
∫

A
( f �)dμ�∗ =

∫

A
�dμ( f �)∗ for all A ∈ A.

Proposition B.1 can be easily proved by application of [24, Prop. 7.4]. We omit the
details.

Appendix C: Matrix Polynomials of Second Kind

Remark C.1 ([22, Rem. E.3]). Let (s j )κj=0 be a sequence of complex q × q matrices
and let P and Q be two complex q × q matrix polynomials, each having degree not
greater than κ + 1. Then (P + Q)�s� = P�s� + Q�s�. Furthermore, (PA)�s� = P�s�A
for all A ∈ C

q×q and, in particular, (λP)�s� = λP�s� for all λ ∈ C.

Lemma C.2 ([22, Lem. E.4]) Let (s j )κj=0 be a sequence of complex q × q matrices,
let k ∈ N with 2k − 1 ≤ κ , and let P be a complex q × q matrix polynomial of
degree k and with leading coefficient matrix Iq such that Yk(P) admits the represen-

tation Yk(P) = [−Xk
Iq

]
with some matrix Xk fulfilling Hk−1Xk = yk,2k−1 (see also

(6.1)). Then the matrix polynomial Q : C → C
q×q given by Q(w) := wP(w) fulfills

Q�s�(z) = zP�s�(z) for all z ∈ C.

Lemma C.3 (cf. [22, Lem. E.5]) Let (s j )κj=0 be a sequence of complex q × q matrices
and let P be a complex q × q matrix polynomial such that k := deg P fulfills k ≤ κ .
Then:

(a) Let Q : C → C
q×q be defined by Q(z) := (z − α)P(z). Then deg Q ≤ κ + 1. If

k ≤ 0, then Q�s� = s0P. If k ≥ 1, then Q�s� = P�a� + s0P where (a j )
κ−1
j=0 is

defined in (3.2).
(b) Let R : C → C

q×q be defined by R(z) := (β − z)P(z). Then deg R ≤ κ + 1. If
k ≤ 0, then R�s� = −s0P. If k ≥ 1, then R�s� = P�b� − s0P where (b j )

κ−1
j=0 is

defined in (3.2).

The proof of Lemma C.3 consists in straightforward calculations. We omit the
details.

Lemma C.4 Let (s j )κj=0 be a sequence of complex q × q matrices and let P be a
complex matrix polynomial such that k := deg P fulfills k ≤ κ − 1. Furthermore, let
S : C → C

q×q be given by S(z) := (β − z)(z − α)P(z). Then deg S ≤ κ + 1 and the
following statements hold true:
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(a) If k = −∞, then S�s� = Oq×q for all z ∈ C.
(b) If k = 0, then S�s� = ([α + β − z]s0 − s1)P(z) for all z ∈ C.
(c) If k ≥ 1, then S�s� = P�c�(z) + ([α + β − z]s0 − s1)P(z) for all z ∈ C, where

the sequence (c j )
κ−2
j=0 is defined by (3.3).

Lemma C.4 can be proved analogous to [8, Lem. 11.1]. We omit the details.
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