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Abstract
In our research work, we introduce a new class of operators that we call b-
AM-Dunford–Pettis operators. Properties of b-AM-Dunford–Pettis operators, the
relationship between the b-AM-Dunford–Pettis operators and various classes of oper-
ators are investigated. On the other side, our techniques and results will be related
to the lattice structure of the b-AM-Dunford–Pettis operators. For instance, it will be
proved that under certain conditions, the b-AM-Dunford–Pettis opertors verify the
domination properties.

Keywords Banach lattice · b-Order bounded · Order continuous norm

Mathematics Subject Classification 46B42 · 47B60 · 47B65

1 Introduction

Throughout this paper, X , Y will denote Banach spaces, and E, F will express Banach
lattices. BX is the closed unit ball of X . An operator T : X → Y is said compact
(resp. weakly compact) whenever T maps BX onto a norm totally bounded (resp.
weakly relatively compact) subset of Y . Dunford–Pettis operators were introduced by
Grothendieck in [13]. A bounded operator T : X → Y is called Dunford–Pettis if it
maps weakly compact subsets of X into norm compact subsets of Y . Alternatively,
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T carries weakly convergent sequences onto norm convergent sequences. Note that
each compact operator is Dunford–Pettis. But, the converse is not always true. For
instance, the identity of the Banach lattice �1 is Dunford–Pettis, however, it is not
compact (Theorem 4.32 in [1]). These notions coincide when X is reflexive (Theorem
3.40 in [1]). As soon as the order structure is taken into account, some other classes
of operators manifest naturally. In the spirit of compact operators, the class of AM-
compact operators was introduced by Dodds-Fremlin in [11]. A linear operator T
from E to Y is said to be AM-compact if it maps order bounded subsets of E to totally
bounded subsets of Y . Further T is said to be order weakly compact if it maps order
bounded subsets of E into relatively weakly compact subsets of Y (see [10])

Alpay et al. in [3] introduced a new notion of boundedness that generalizes the usual
order boundedness. A subset A of a Banach lattice E is said to be b-order bounded if it
is order bounded in E

′′
(the topological bidual of E). Clearly, order bounded subsets of

E are b-order bounded. The converse is not always true (see Examples 1.2 in [3]). This
notion enriched the study of operators on Banach lattices. Naturally, an operator T
from E into Y is called b-AM-compact whenever T maps each b-order bounded subset
of E into a relatively compact subset of Y . The class of b-AM-compact operators was
elaborated by Aqzzouz.

Referring the reader to Theorem 5.98 in [1], recall that a norm bounded subset A of
X is said to be Dunford–Pettis set whenever every weakly compact operator from X to
Y carries A to a norm relatively compact set of Y .Alternatively, A is a Dunford–Pettis
set if and only if every weakly null sequence ( fn) of X

′
converge uniformly to zero on

the set A, that is sup
x∈A

| fn(x)| → 0 (see [4, Theorem 1]). Next, order Dunford–Pettis

(resp. b-order Dunford–Pettis) operators is defined in [6] (resp. in [14]). An operator
T : E → X is said to be order Dunford–Pettis (resp. b-order Dunford–Pettis) if it
carries each order bounded (resp. b-order bounded) subset of E into a Dunford–Pettis
set of X . We denote by:

• AM(E, F) the class of all AM-compact operators from E to F .
• AMb(E, F) the class of all b-AM-compact operators from E to F .
• D Po(E, F) the class of all order Dunford–Pettis operators from E to F .
• D Pb(E, F) the class of all b-order Dunford–Pettis operators from E to F . Clearly,

AMb(E, F) ⊆ AM(E, F) ⊆ D Po(E, F). Since L1[0, 1] has the Dunford–Pettis
property, it follows that IL1[0,1] is an order Dunford–Pettis operator but not AM-
compact (see in [4]). Also, the following inclusions hold.
AMb(E, F) ⊆ D Pb(E, F) ⊆ D Po(E, F).

Let ( fn) be a sequence of c′
0 = �1 such that fn → 0 in σ(�1, �∞). Since �1 has

the Schur property, then ‖ fn‖ = sup
x∈Bc0

| fn(x)| → 0, which implies that Ic0 is a b-

order Dunford–Pettis operator and not b-AM-compact. In general the inclusion of
D Pb(E, F) in D Po(E, F) is proper (see in Example 3.3 in [14]).

Recently, in [16], Hajji andMahfoudhi introduced the class of LW -compact opera-
tors. An operator T : E → Y is said to be LW -compact if T maps L-weakly compact
subsets of E into relatively compact subsets of Y . It follows from Theorem 2.3 in
[16] and Corollary 5.54 in [1] that T is LW -compact if and only if T carries weakly
compact intervals of E into relatively compact sets of Y .
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Along this line, we define a new class of operators called b-AM-Dunford–Pettis
that extends the class of Dunford–Pettis and b-AM-compact operators. Precisely, it
carries subsets which are both relatively weakly compact and b-order bounded onto
relatively compact subsets. We also attempt to determin some of their properties.
Moreover, we explore the relationship between this class and various classes like
order Dunford–Pettis (resp. b-order Dunford–Pettis) operators. In the same direction,
we show that every Dunford–Pettis operator is b-AM-Dunford–Pettis. On the other
side, a b-AM-Dunford–Pettis operator does not need to be Dunford–Pettis. Detailed
analysis is provided in Example 2.4. In addition, we characterize Banach lattice E
on which each b-AM-Dunford–Pettis operator from E into a Banach space Y is b-
AM-compact. Finally, we highlight that the class of b-AM-Dunford–Pettis operators
between Banach lattices E and F verifies the domination properties, whenever F has
an order continuous norm.

We assume readers are already familiar with the notions of a Riesz space and a
positive operator. For teminology and concepts not explained in this text we refer to
the standard reference [1].

2 b-AM-Dunford–Pettis Operators

Based on the concept of Dunford–Pettis operators and order Dunford–Pettis operators,
we introduce a new class of operators as follows.

Definition 2.1 An operator T from a Banach lattice E into a Banach space Y is said to
be b-AM-Dunford–Pettis, if T carries subsets of E which are both relatively weakly
compact and b-order bounded onto relatively compact subsets of Y .

Note that an order Dunford–Pettis (resp. b-order Dunford–Pettis) operator is not
necessarily b-Dunford–Pettis. And conversely a b-AM-Dunford–Pettis operator is not
necessarily order Dunford–Pettis (resp. b-order Dunford–Pettis). The detail follows.

Example 2.2 Since c
′
0 = �1 has the Schur property, then the identity operator Ic0 is

a b-order Dunford–Pettis operator, and hence order Dunford–Pettis operator. On the
other hand, the standard basis (en)n of c0 is a weakly null sequence and does not have
any convergent subsequences. This implies that Ic0 is not b-AM-Dunford–Pettis.

Example 2.3 Let J be the naturel embedding from L∞[0, 1] into L2[0, 1]. Since J
is weakly compact and L∞[0, 1] has the Dunford–Pettis property, it follows from
Theorem 5.82 in [1] that J is Dunford–Pettis, and hence b-AM-Dunford–Pettis. On
the other hand, since J is not AM-compact (see [18, Example on page 222 ]), it
follows that J is not order Dunford–Pettis (since L2[0, 1] is reflexive), and so it is not
b-order Dunford–Pettis.

Every Dunford–Pettis operator is b-AM-Dunford–Pettis. It is noteworthy that,
in general, a b-AM-Dunford–Pettis operator is not necessarily Dunford–Pettis. The
details follow.

Example 2.4 Let S be an isomorphism from �2 to a subspace of L1[0, 1] (see Corollary
2.77 in [18]). Note that S is b-AM compact (see [18] on page 218) and so is b-AM-
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Dunford–Pettis. However, the linear operator S is not Dunford–Pettis. Otherwise, S
is compact (�2 is reflexive) which Contradicts the fact that S is an isomorphism.

An easy application of Eberlein-S̆mulian theorem ( [1], Theorem 3.40) reveals the
following result.

Lemma 2.5 An operator T : E → Y is b-AM-Dunford–Pettis if and only if
lim

n
‖T xn‖ = 0 holds in Y , for every weakly null b-order bounded sequence (xn)

of E .

Let us recall that an operator T : E → X is said to be b-weakly compact whenever
T carries each b-order bounded subset of E into a relatively weakly compact subset
of X (see in [3]). By Proposition 2.8 in [3], T is b-weakly compact if and only if
each b-order bounded disjoint sequence (xn) in E satisfies lim

n
‖T xn‖ = 0. The next

proposition follows.

Proposition 2.6 Every continuous b-AM-Dunford–Pettis operator T : E → Y is b-
weakly compact.

Proof Let (xn) be a b-order bounded disjoint sequence in E . Then, by [5, Lemma
2.20] we see that (xn) is weakly null. Since T is b-AM-Dunford–Pettis, it follows that
lim

n
‖T xn‖ = 0. The rest of the proof follows from Proposition 2.8 in [3]. �	

Notice that the identity operator I dL1[0,1] : L1[0, 1] −→ L1[0, 1] is b-weakly
compact, but not b-AM-Dunford–Pettis (see Example 2.6 (a) in [3]).

A Banach space X is said to have the Dunford–Pettis property (for short DPP)

if x
′
n(xn) → 0 whenever xn

σ(X ,X ′)−−−−→ 0 and x ′
n

σ(X ′,X)−−−−→ 0. Recall from [18] that a
continuous operator T : X → E is said to be L-weakly compact whenever lim ‖ fn‖ =
0 for every disjoint sequence ( fn)n in the solid hull of T (BX ). Note that the solid hull
of a subset S of E is the following.

Sol(S) = {x ∈ E : ∃a ∈ A with |x | ≤ |a|}.

Note that every b-AM-compact operator is b-AM-Dunford–Pettis. However, the
converse is not always true, as follows from the next example.

Example 2.7 Consider the linear operator T : C[0, 1] → c0 defined for each f ∈
C[0, 1] by

T f =
(∫ 1

0
f (t)rn(t)dt

)+∞

n=1
,

where rn is the n’th Rademacher function on [0, 1]. Note that T is a weakly compact
operator (Example 4.4 in [7]). SinceC[0, 1] has theDPP, it follows fromTheorem5.82
in [1] that T is Dunford–Pettis. Therefore, it is b-AM-Dunford–Pettis. On the other
hand, T is not L-weakly compact (refer back to Example 4.4 in [7]), see Definition
5.59 in [1] for the notion of an L-weakly compact operator. Since c0 has an order
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continuous norm, it follows from [8] that T is not compact, and consequently it is not
b-AM-compact because C[0, 1] is an AM-space with unit, see Definition 4.20 in [1]
for the notion of an AM-space.

A useful characterization of b-AM-Dunford–Pettis operator is exhibited in what
follows.

Theorem 2.8 An operator T from a Banach lattice E into a Banach space X is a b-
AM-Dunford–Pettis operator if and only if T carries b-order bounded weakly Cauchy
sequences of E to norm convergent sequences of Y .

Proof Suppose that T is b-AM-Dunford–Pettis, and let (xn)n be a weakly Cauchy
sequence of E satisfying 0 ≤ xn ≤ x ′′ for all n ∈ N and for some x ′′ ∈ E ′′. If (T xn)n

is not a norm Cauchy sequence of Y , then there is a subsequence (zn)n of (xn)n and

ε > 0 such that ‖T (z2n+1 − z2n)‖ ≥ ε for all n. Next, since z2n+1 − z2n
σ(E,E ′)−−−−→ 0

and 0 ≤ |z2n+1 − z2n| ≤ 2x ′′ for all n ∈ N, it follows from our hypothesis that
‖T z2n+1 − T z2n‖ → 0, which turns out to be contradictory. Hence, (T xn)n is a norm
Cauchy sequence, and thus it is norm convergent. �	

A linear map T between two Banach lattices E and F is said b-order bounded if
it maps b-order bounded subsets of E into b-order bounded subsets of F ( [3]). The
following lemma asserts that a regular operator between two Banach lattices is b-order
bounded.

Lemma 2.9 Let E and F be two Banach lattices, then every regular operator T :
E → F is b-order bounded.

Proof Let A be a b-order bounded subset of E . Now, we claim that T (A) is b-order
bounded subset of F . For this, using the fact that T is regular, it is easy see that
T

′′ : F
′′ → E

′′
is also regular (see [1, Theorem 1.73]). This shown that T

′′
(A) is

order bounded on F
′′
, and hence T (A) is b-order bounded on F, as claimed. �	

However, as Example 2.4 in [3] depicts, the converse is not true. Recall from
Theorem 4.3 in [1], that every positive operator from a Banach lattice to a normed
Riesz space is continuous. In a more general context, we have the following.

Proposition 2.10 Every b-order bounded operator from a Banach lattice E to a
Banach lattice F is continuous.

Proof Let T : E → F be a b-order bounded operator from a Banach lattice E into
a Banach lattice F . Suppose that T is not continuous. Then, there exists a sequence
(xn) ⊆ BE such that ‖T xn‖ ≥ n3 for all n ∈ N. Since E is a Banach lattice, it follows
that x := ∑∞

n=1
|xn |
n2

∈ E . Obviously, −x ≤ xn
n2

≤ x, for n ∈ N
∗. Hence, we infer

that from the b-order boundedness of the operator T , there exists 0 ≤ y
′′ ∈ F

′′
such

that |T ( xn
n2

)| ≤ y
′′
holds for each n ∈ N

∗. As a matter of fact,

n ≤ ‖T (xn)

n2

∥∥∥≤ ‖y
′′∥∥∥ < ∞

holds for each n ∈ N
∗, which is a contradiction. Thus, T must be continuous. �	
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To continue our discussion we need the next definition.

Definition 2.11 A linear operator from a Banach space X into a Banach lattice F is
said to be norm-b-order bounded if it maps norm bounded subsets of X into b-order
bounded subsets in F .

Also, we need the following Lemma.

Lemma 2.12 Let E be a Banach lattice. If (xn)n is a b-order bounded sequence of E,

then the operator S : �1 → E defined by

S((αn)n) =
∞∑

n=1

αn xn

is norm-b-order bounded.

Proof Departing from our hypotheseis, the sequence (xn)n is b-order bounded on E .

Therefore, there exists x
′′ ∈ E

′′
+ such that |xn| ≤ x

′′
for each n. In addition, it is not

difficult to trace that S is well defined. Indeed, for α = (α1, α2, . . .) ∈ �1,

‖Sα‖ =
∥∥∥∥∥

+∞∑
i=1

αi xi

∥∥∥∥∥ ≤
∥∥∥∥∥

+∞∑
i=1

|αi ||xi |
∥∥∥∥∥ ≤

∥∥∥∥∥
+∞∑
i=1

|αi |
∥∥∥∥∥ ‖x

′′ ‖ ≤ ‖α‖1 ‖x
′′ ‖.

To elaborate the proof, we need to show that S is norm-b-order bounded.
Let A be a norm bounded subset of �1, then there exists a real M > 0 such that for
each α = (α1, α2, . . .) ∈ A, we get

‖α‖1 =
+∞∑
i=1

|αi | ≤ M .

This yields

|Sα| =
∣∣∣∣∣
+∞∑
i=1

αi xi

∣∣∣∣∣ ≤
+∞∑
i=1

|αi ||xi | ≤
(+∞∑

i=1

|αi |
)

x
′′ ≤ Mx

′′ ∈ E
′′
.

Thus, S is a norm-b-order bounded operator as desired. �	
A similar result entailed by Theorem 5.81 in [1] is presented in what follows

Theorem 2.13 Let T : E → F be a bounded operator between Banach lattices. Then,
the following statements are equivalent.

(1) T is b-AM-Dunford–Pettis.
(2) For an arbitrary Banach space X and for every norm-b-order bounded weakly

compact operator S : X → E, the operator T S is a compact operator.
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Proof (1) ⇒ (2) Let S : X → E be both weakly compact and norm-b-order bounded
(where X is a Banach space), and let W be a norm bounded subset of X . We infer that
the subset S(W ) is a relatively weakly compact and b-order bounded in E . Hence,
grounded on our hypotheseis, we realize that T S(W ) is a relatively compact subset of
E . This implies that T S is a compact operator, as desired.

(2) ⇒ (1) Let (xn)n be a b-order bounded sequence such that xn
σ(E,E ′)−−−−→ 0.

Lemma 2.12 combined with Theorem 5.26 in [1] is suggestive that the linear operator
S : �1 → E defined by S(α)n = ∑+∞

n=1 αn xn is bothweakly compact and norm-b-order
bounded. Resting upon our hypothesis, we detect that T S is a compact operator. Note
that if (en)n is the sequence of the basic unit vectors of �1, then S(en) = xn holds
for each n. Therefore, in view of the compactness of the operator T S, we notice that
(T S(en))n = (T xn)n is relatively compact. Since (xn)n is a weakly null sequence and
T is continuous then (T xn)n is weakly null. It follows that ‖T xn‖ → 0. Thus, we
deduce that T is a b-AM-Dunford–Pettis operator, and the proof holds. �	

The collection of b-AM-Dunford–Pettis operators from E to Y will be denoted by
D Pb(E, Y ).

Proposition 2.14 Let E and F be Banach lattices, and let Y be a Banach space.

(1) D Pb(E, Y ) is a norm closed vector subspace of L(E, Y ).
(2) If S : E → F is a b-Dunford Pettis operator, then for each bounded operator

T : F → Y , the composed operator T S : E → Y is a b-Dunford Pettis operator.
(3) If T : F → Y is a b-AM-Dunford–Pettis operator, then for each b-order bounded

operator S : E → F, the composed operator T S : E → Y is a b-Dunford Pettis
operator.

Proof (1) To check that the vector subspace of all b-AM-Dunford–Pettis operators
from E to Y is closed, assume that a sequence (Tn)n of b-AM-Dunford–Pettis
operators from E to Y satisfies Tn → T in L(E, Y ). Let A be a subset of E which
is both b-order bounded and relatively weakly compact, and let ε > 0. Observe
that for n big enough,

T (A) ⊂ Tn(A) + εBY .

Since Tn(A) is a norm relatively compact subset of Y , it follows that T (A) is also
a relatively compact subset of Y . This is indicative that T is b-Dunford Pettis.

(2) Let A be a b-order bounded relatively weakly compact subset of E . Since S is
b-AM-Dunford–Pettis and hence S(A) is norm relatively compact in F and T is
continuous, then T S(A) is also a norm relatively compact subset in Y . Hence, T S
is b-AM-Dunford–Pettis.

(3) Let A be a b-order bounded subset of E,which is relativelyweakly compact. Since
S is b-order bounded, then by the continuity of S (Proposition 2.10), we obtain
that S(A) is a b−order bounded and relatively weakly compact subset in F . Now,
as T is b-AM-Dunford–Pettis, T S(A) is norm relatively compact. Therefore, T S
is b-AM-Dunford–Pettis.

�	
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3 b-AM-Compactness of b-AM-Dunford–Pettis Operators

The square of a b-order bounded b-AM-Dunford–Pettis operator is b-AM-compact.
The details are included in the next proposition.

Proposition 3.1 Let E be a Banach lattice and T : E → E be a b-order bounded
operator. If T is b-AM-Dunford–Pettis, then T 2 is b-AM-compact.

Proof Since T : E → E is a b-AM-Dunford–Pettis operator, then T is a b-weakly
compact operator (see Proposition 2.6). Let A be a b-order bounded subset of E,

then T (A) is both b-order bounded and weakly relatively compact subset of E . Thus,
resting on the fact that T is a b-AM-Dunford–Pettis operator, we deduce that T 2(A)

is a relatively compact subset of A. In this way, the proof is finished. �	
We are now in a sound position to present a criterion for b-AM-compactness of b-
AM-Dunford–Pettis operators. Specifically, we shall provide a sufficient condition for
which each b-AM-Dunford–Pettis operator is b-AM-compact.

Theorem 3.2 Let E be a Banach lattice. If E has an order continuous norm, then each
b-AM-Dunford–Pettis operator from E into Y is b-AM-compact for every Banach
space Y .

Proof Assume that T : E → Y is a b-AM-Dunford–Pettis operator. Let A be a b-order
bounded subset of E+, and let (wn) be a disjoint sequence in the solid hull of A. Since
(wn) is also a b-order bounded sequence, it follows from Proposition 2.8 in [3] that
limn ‖T xn‖ = 0. Thus, relying on Theorem 4.36 in [1], for all ε > 0, there exists
some uε ∈ E+ such that

T (A) ⊆ T ([−uε, uε]) + εBY .

Since E has an order continuous norm, then [−uε, uε] is a weakly compact subset
of E (Theorem 4.9 in [1]). Thus, resting upon the fact that T is b-AM-Dunford–Pettis,
we infer that T ([−uε, uε]) is a relatively compact subset of Y . This easily implies that
T (A) is a relatively compact subset of Y (Theorem 3.1 in [1]), and therefore the proof
is finished. �	

A Riesz space E is said to be discrete if it admits a complete disjoint system of
discrete elements, where we say a non zero element x ∈ E is discrete whenever the
ideal generated by x coincide with the vector subspace generated by x . To continue
our discussion we need the following Lemma.

Lemma 3.3 Let E be an infinite dimensional Banach lattice. Then, there exists a pos-
itive b-Dunfor-Pettis operator T : �∞ → E which is not b-AM-compact.

Proof Since (�∞)
′
is not discrete, it follows from Theorem 2.8 in [2] that there exists

a positive Dunford–Pettis operator T from �∞ into E which is not AM-compact. This
implies that T is b-Dunfor-Pettis but not b-AM-compact. �	
Theorem 3.4 Let E be a Dedekind σ -complete Banach lattice. Then, the following
assertions are equivalent.
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(1) The norm of E is order continuous.
(2) Every b-AM-Dunford–Pettis operator T : E → E is b-AM-compact.
(3) Every positive b-AM-Dunford–Pettis operator T : E → E is b-AM-compact.

Proof (1) �⇒ (2) Follows directly from Theorem 3.2.
(2) �⇒ (3) Obvious.
(3) �⇒ (1) Suppose that the norm of E is not order continuous. Since E is Dedekind
σ -complete, it follows fromTheorem4.56 in [1] that there exist a sublattice H ⊂ E and
a lattice isomorphism ψ from H onto �∞. Let ψ̂ : E → �∞ be a positive extension
of ψ to all E (see Exercice 1 page 50 in [18]). By Lemma 3.3, there is a positive
b-Dunfor-Pettis operator S : �∞ → E which is not b-AM-compact. Consider the
product T = Sψ̂. Since ψ̂ is b-order bounded and S is b-Dunfor-Pettis, then T is a
b-AM-Dunford–Pettis operator. On the other hand if T is b-AM-compact, then so is
Sψ. Since ψ is lattice isomorphism, it follows that S is b-AM-compact, which is a
contradiction. This argument shows that T is not b-AM-compact.

�	

4 Domination by b-AM-Dunford–Pettis Operators

Consider two operators 0 ≤ S ≤ T : E → F .The issue concerning finding conditions
under which properties of T , related to the norm topology, will be inherited by S, is
called the domination problem. As far as compact operators are concerned, Dodds and
Fremlin tackled the domination problem in [11]. It was proven that if both E

′
and E

have order continuous norms, every positive operator S on a Banach lattice dominated
by a compact operator, is itself compact. The problem of domination in the class of
weakly compact operators has been handled by Wickstead in [19, 20]. It was shown
that if E

′
or F is order continuous and T is weakly compact, then so is S. In addition,

Kalton and Saab confirmed in [17] that, if F has an order continuous norm, and T is
Dunford–Pettis, then S is also Dunford–Pettis.

Otherwise, in terms of b-order boundedness, the authors in [3] argued that if T is b-
weakly compact, then S is also b-weakly compact. As for the class of b-AM-compact
operators, Cheng and Chen [9] reported that, if the norm of E is order continuous or
E

′
is discrete, and T is b-AM-compact; then so is S. Within this framework, we are

basically concernedwith the domination problem for b-AM-Dunford–Pettis operators.
For this reason, we need to introduce the following approximation result incorporated
in [17] by Kalton and Saab. Let Lr (E, F) denote the class of regular operators from
E into F .

Theorem 4.1 Let E and F be Banach lattices, each with a quasi-interior positive
element. Let T be a positive operator T : E → F and let A ⊂ E, B ⊂ F

′
be

solid bounded sets. Suppose that whenever (an)n and (bn)n are sequences of disjoint
positive elements in A and B respectively, then

(i) T (an) converges weakly to 0.
(ii) T

′
(bn) converges weakly star to 0.

(iii) (T an, bn) converges to 0.
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Suppose further that R, S ∈ Lr (E, F) satisfy |R| ≤ |S| ≤ T in Lr (E, F
′′
).

Then, given ε > 0, there exist M1, . . . , Mk ∈ Lr (E) and L1, . . . , Lk ∈ Lr (F) such
that operator Rε = ∑k

i=1 Li SMi satisfies

|(Ra − Rεa, b)| ≤ ε, ∀a ∈ A, b ∈ B.

Let R : E → F be a positive operator between two Banach lattices dominated by a
b-AM-Dunford–Pettis operator T . Is R then necessarily b-AM-Dunford–Pettis ? The
answer is negative in general. The details are set afterwards.

Example 4.2 There exist two operators 0 ≤ R ≤ T : L1[0, 1] −→ �∞ such that T is
b-AM-Dunford–Pettis but R is not b-AM-Dunford–Pettis.

Proof Let (rn)n be the sequence of Rademacher functions on [0, 1]. That is, rn(t) =
Sign (sin(2nπ t)) for each t ∈ [0, 1]. Let 0 ≤ R ≤ T : L1[0, 1] −→ �∞ be the positive
operators defined in Example 3.1 of [1] by

R f =
(∫ 1

0
f (t)r+

1 (t)dt,
∫ 1

0
f (t)r+

2 (t)dt, . . .

)

and

T f =
(∫ 1

0
f (t)dt,

∫ 1

0
f (t)dt, . . .

)
.

Obviously, T is compact (has rank one) and hence b-AM-Dunford–Pettis. On the
other hand, for each n ∈ N, we record that −1 ≤ rn ≤ 1. Hence, (rn)n is a b-order

bounded sequence in L1[0, 1]. Since for each n ∈ N,we have rn
σ(L1[0,1],(L1[0,1])′ )−−−−−−−−−−−−→ 0

(see [1] on page 345); then, investing the fact that ‖Rrn‖∞ ≥ ∫ 1
0 rn(t)r+

n (t)dt = 1
2 ,

entails that R is not b-AM-Dunford–Pettis. �	
The following result offers a sufficent condition on the Banach lattice, under which

the b-AM-Dunford–Pettis property of a positive operator T will be inherited by any
positive operator smaller than T .

Theorem 4.3 Let E and F be Banach lattices such that F has an order continuous
norm, and let T : E → F be a positive b-AM-Dunford–Pettis operator. If S : E → F
satisfies 0 ≤ S ≤ T , then S itself is b-AM-Dunford–Pettis.

Proof Let (xn)n be a weakly null sequence of E satisfying 0 ≤ xn ≤ x
′′
, for all n ∈ N

and for some x
′′ ∈ E

′′
. Let x = ∑+∞

n=1
|xn |
2n , and consider Ex (resp FT x ) the ideal

generated by x ∈ E (resp T x in F). Clearly, S and T carry Ex into FT x . This means
that we can assume, without loss of generality, that each E and F has a quasi-interior
point. Consider A= Sol ({xn; n}) and B = BF ′ . Let (an)n and (bn)n be two positive
disjoint sequences in A and B, respectively. Based upon Proposition 3.10 in [15],

limn ‖T an‖ = 0, and grounded on Corollary 2.4.3 in [18], T
′
bn

σ(E ′,E)−−−−→ 0. Let ε > 0
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be fixed. Referring to Theorem 4.1, there exist operators M1, . . . , Mn ∈ Lr (E), and
positive operators L1, . . . , Ln ∈ Lr (F) such that

Sε =
k∑

i=1

Li T Mi ,

and

| (Sxn − Sεxn, b) | ≤ ε for every b ∈ B.

Thus,

sup{| (Sxn − Sεxn, b) |} ≤ ε.

This implies that ‖(Sxn − Sεxn‖ ≤ ε. Using Lemma 2.9, we see that Sε is b-AM-
Dunford–Pettis, then it is easy to trace that ‖Sεxn‖ → 0. Consequently, ‖Sxn‖ → 0
and the proof holds. �	

As a consequence, we get the following.

Corollary 4.4 Let E be a Banach lattice, and consider operators 0 ≤ R ≤ T : E →
E. If T is b-AM-Dunford–Pettis, then R2 is b-AM-Dunford–Pettis.

Proof Since T is b-AM-Dunford–Pettis, it follows from in [15, Proposition 3.10] that
T is order weakly compact. According to Theorem I.2 in [12], there exist an order
continuous Banach lattice G, a lattice homomorphism φ : E −→ G and operators
0 ≤ RG ≤ T G : G −→ E, with R = RGφ and T = T Gφ. Note that

0 ≤ φR ≤ φT : E → G.

Since G is order continuous and φT is b-AM-Dunford–Pettis, it follows from
Theorem 4.3 that φR is b-AM-Dunford–Pettis and consequently R2 = RGφR is
b-AM-Dunford–Pettis. �	
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