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Abstract
A sequence of operators Tn from a Hilbert space H to Hilbert spaces Kn which is
nondecreasing in the sense of contractive domination is shown to have a limit which
is still a linear operator T from H to a Hilbert space K. Moreover, the closability
or closedness of Tn is preserved in the limit. The closures converge likewise and
the connection between the limits is investigated. There is no similar way of dealing
directly with linear relations. However, the sequence of closures is still nondecreasing
and then the convergence is governed by the monotonicity principle. There are some
related results for nonincreasing sequences.
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1 Introduction

Let Tn ∈ L(H,Kn), n ∈ N, be a sequence of linear operators from a Hilbert space H
to a Hilbert space Kn , which satisfy

dom Tn+1 ⊂ dom Tn and ‖Tn f ‖ ≤ ‖Tn+1 f ‖, f ∈ dom Tn+1. (1.1)

Here and elsewhere the notation L(H,K) indicates the class of all linear relations
between the Hilbert spaces H and K. It will be shown that there exists a limit of this
sequence, namely a linear operator T ∈ L(H,K), whose domain is given by

dom T =
{

ϕ ∈
⋂
n∈N

dom Tn : sup
n∈N

‖Tnϕ‖ < ∞
}

,

while, furthermore,

‖Tn f ‖ ↗ ‖T f ‖ for all f ∈ dom T .

The limit is uniquely determined up to partial isometries. Moreover, it will be shown
that closability and closedness of the operators Tn are preserved in the limit. The
main idea about the existence of the limit is the notion of a representing map that
was described by Szymański [14]. In the present paper the emphasis is on how to
construct the limit of the sequence of operators and to discuss analogous sequences
of linear relations. There is a close connection with similar convergence results in the
context of nonnegative forms by Simon [13] (see also [12]), but the details will be
left for a treatment in [9] in terms of Lebesgue decompositions and Lebesgue type
decompositions of semibounded forms.

The monotonicity in (1.1) can also be discussed for the case of linear relations
Tn ∈ L(H,Kn) by requiring that Tn+1 contractively dominates Tn , i.e., there are
contractions Cn ∈ L(Hn+1,Hn) which satisfy

CnTn+1 ⊂ Tn . (1.2)

Likewise, this kind of monotonicity is preserved under closures T ∗∗
n and under taking

regular parts Tn,reg of the relations Tn (see below). In general there is no convergence
result as for operators.However, the regular parts Tn,reg forma nondecreasing sequence
of closable operators (as in (1.1)) and one may apply the above mentioned results
for operators. Thanks to the condition (1.2) the sequence of nonnegative selfadjoint
relations T ∗

n T
∗∗
n is nondecreasing in the usual sense and the monotonicity principle

may be applied. This connects the various forms of convergence.
As mentioned above, in the present paper regular parts of operators or relations

play an important role. The regular part Treg of a linear relation T ∈ L(H,K) shows
up in its Lebesgue decomposition, as follows

T = Treg + Tsing with Treg = (I − P)T , Tsing = PT ,
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where P stands for the orthogonal projection from K onto mul T ∗∗; see [4, 5]. Hence
Treg is a closable operator, while Tsing is singular in the sense that its closure in the
graph sense is the product of closed linear subspaces; note in particular that ran Treg ⊥
mul T ∗∗. The regular part Treg is the largest closable operator that is dominated by T
in the sense of contractive domination. There is an interplay with the closure T ∗∗ of
T , given by the formula

(T ∗∗)reg = (Treg)
∗∗, (1.3)

seeSect. 1. If the relation T is closed, thenmul T ∗∗ = mul T and Treg is the usual closed
orthogonal operator part of T , often denoted by Top. In this case, clearly, Treg ⊂ T
and T has the decomposition

T = Treg +̂ ({0} × mul T ),

where the sum is componentwise. Note that the left-hand side of the identity (1.3)
stands for the orthogonal operator part of T ∗∗. In the general case the following
identity

T ∗T ∗∗ = (Treg)
∗(Treg)∗∗

expresses the nonnegative selfadjoint relation on the left-hand side in terms of a similar
product of closable operators.

The case of a sequence of nonincreasing linear operators will also be discussed with
the same methods. Now closability is not preserved so that the main result is about a
nonincreasing sequence of closed linear operators.

The paper is organized as follows. In Sect. 2 there is brief review of the notion
of contractive domination for relations and operators. For the convenience of the
reader the relevant facts for the monotonicity principle are reviewed in Sect. 3. The
representing map is discussed in Sect. 4 in an appropriate context. The convergence
results are treated next. The general case of sequences of linear operators can be found
in Sect. 5, the special case of sequences of closable operators is treated in Sect. 6,
and the general case of sequences of linear relations is given in Sect. 7. In this last
section one can also find the connection with the monotonicity principle. In Sect. 8
a simple example shows the different behaviours of the various sequences that have
been considered. The approximation of closed linear operators is considered in Sect. 9.
A brief discussion about nonincreasing sequences of linear operators or relations can
be found in Sect. 10. Finally, in Sect. 11 there is a collection of facts concerning the
regular part of the relations T ∗T and T ∗T ∗∗ which are used throughout this paper.

In the present paper the interest is in monotone sequences of linear operators or
relations in a Hilbert space. The above mentioned results have a close connection to
work on sequences of operators in the literature; see [11], [12, Supplement to VIII.7],
and [13]. The presentwork also connects sequenceswhich aremonotone in the sense of
contractive domination with the monotonicity principle in its version for semibounded
selfadjoint relations [2]. Related results in the context of sequences of semibounded
quadratic forms will be discussed in [9] (including the connections to [13] and [1]).
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2 Contractive Domination for Linear Relations

The notion of domination for linear relations was introduced in [6]. The definition and
some basic properties are given here. The notationB(H,K)will be used to indicate the
class of all bounded everywhere defined linear operators between the Hilbert spaces
H and K.

Definition 2.1 Let HA, HB , and H be Hilbert spaces, let A ∈ L(H,HA) and let B ∈
L(H,HB). Then B is said to contractively dominate A, denoted by A ≺c B, if there
exists a contraction C ∈ B(HB,HA) such that

CB ⊂ A. (2.1)

It follows from C ∈ B(HB,HA) that CB = {{ f ,C f ′} : { f , f ′} ∈ B}. Therefore,
(2.1) implies

{
dom B ⊂ dom A, ker B ⊂ ker A,

C(ran B) ⊂ ran A, C(mul B) ⊂ mul A.
(2.2)

Observe that Definition 2.1 implies that the contraction C ∈ B(HB,HA) is only fixed
as a mapping form ran B to ran A. In fact, the boundedness of C implies that C takes
ran B into ran A. Hence, it may and will be assumed that

C((ran B)⊥) = {0}.

Note that if A and B are linear relations which satisfy B ⊂ A, then B contractively
dominates A with C = Iran B . In particular, A contractively dominates A∗∗. Finally,
the notion of contractive domination is transitive:

A ≺c B and B ≺c C ⇒ A ≺c C .

If A ≺c B with a contraction C ∈ B(HB,HA), then it follows from (2.1) and [2,
Proposition 1.3.9] that

A∗ ⊂ B∗C∗ and CB∗∗ ⊂ A∗∗. (2.3)

In other words, the second inclusion in (2.3) shows that the contractive domination
in (2.1) is preserved with the same operator C . In particular, if A ≺c B, then the
following inclusions are valid: ran A∗ ⊂ ran B∗ and dom B∗∗ ⊂ dom A∗∗. Recall that
in the particular case when A and B in Definition 2.1 are linear operators it is possible
to give an equivalent characterization of contractive domination: A ≺c B if and only
if

dom B ⊂ dom A and ‖A f ‖ ≤ ‖B f ‖, f ∈ dom B.
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The following result shows that contractive domination is preserved by the regular
parts. This observation goes back to [13] for the case of nonnegative forms and to [4].
Furthermore, it is shown that there is a converse statement in the case of closed linear
relations.

Lemma 2.2 Let A ∈ L(H,HA) and B ∈ L(H,HB) be linear relations. Then

A ≺c B ⇒ Areg ≺c Breg.

Moreover, if the linear relations A and B are closed, then

A ≺c B ⇔ Areg ≺c Breg.

Proof Assume thatCB ⊂ Awith a contractionC ∈ B(HB,HA). By (2.2) the operator
C maps mul B∗∗ into mul A∗∗. Let PB be the orthogonal projection onto mul B∗∗
and let PA be the orthogonal projection onto mul A∗∗. Let { f , f ′} ∈ B and write
{ f , f ′} = { f , (I − PB) f ′ + PB f ′} (i.e., the Lebesgue decomposition of B). Here
PB f ′ ∈ mul B∗∗ and one concludes that

{ f ,C f ′} = { f ,C(I − PB) f ′ + CPB f ′} ∈ A,

where CPB f ′ ∈ mul A∗∗. Now observe that

{ f , (I − PB) f ′} ∈ Breg and { f , (I − PA)C(I − PB) f ′} ∈ Areg.

Equivalently, this leads to [(I−PA)C]Breg ⊂ Areg, and since (I−PA)C is a contraction
this implies Areg ≺c Breg.

Let A ∈ L(H,HA) and B ∈ L(H,HB) be closed linear relations. Then Areg
and Breg, belonging to B(HA,HB), are the closed linear operator parts. Assume
the inequality Areg ≺ Breg. Then there exists a contraction C ∈ B(HB,HA) such
that CBreg ⊂ Areg. Without loss of generality one may take C� (ran Breg)

⊥ = 0.
Then, in particular, C� ran PB = {0} and it follows from the Lebesgue decomposition
B = Breg + Bsing that

CB = CBreg ⊂ Areg.

Since A is closed, one sees that Areg ⊂ A. Therefore, CB ⊂ A and A ≺c B. ��
The equivalence in the above theorem is restricted to closed linear relations. By

modifying the notion of domination the condition that the relations are closed can be
relaxed by introducing a weaker form of the Lebesgue decomposition; cf. [4, 10].

Contractive domination of closed linear relations can be characterized in terms
of the corresponding nonnegative selfadjoint relations; see [6, Theorem 4.4]. Recall
from [2, Definition 5.2.8] that two nonnegative relations H1 and H2 in L(H) satisfy
H1 ≤ H2 when

dom H
1
2
2 ⊂ dom H

1
2
1 and ‖(H1,reg)

1
2 f ‖ ≤ ‖(H2,reg)

1
2 f ‖, f ∈ dom H

1
2
2 . (2.4)
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With this definition the following theorem is clear.

Theorem 2.3 Let A ∈ L(H,HA) and B ∈ L(H,HB) be closed linear relations. Then
the following statements are equivalent

(i) A∗A ≤ B∗B;
(ii) A ≺c B or, equivalently, Areg ≺c Breg.

Proof Let H1 = A∗A and H2 = B∗B. By Lemma 11.2 it follows that there exist
partial isometries U1 ∈ L(HA,H) and U2 ∈ L(HB,H), such that.

⎧⎨
⎩dom H

1
2
1 = dom A, (H1,reg)

1
2 = U1Areg,

dom H
1
2
2 = dom B, (H2,reg)

1
2 = U2Breg.

Therefore by means of (2.4) this shows that A∗A ≤ B∗B, i.e., H1 ≤ H2, is equivalent
to the assertions {

dom B ⊂ dom A,

‖Aregh‖ ≤ ‖Bregh‖, h ∈ dom B.

In other words, the inequality A∗A ≤ B∗B in (i) is equivalent to the inequality
Areg ≺c Breg in (ii). ��

This characterization makes it possible to apply the monotonicity principle in the
next section.

3 TheMonotonicity Principle

A linear relation H ∈ L(H) is called the strong graph limit of a sequence of linear
relations Hn ∈ L(H), n ∈ N, if for each {h, h′} ∈ H there exists a sequence {hn, h′

n} ∈
Hn such that {hn, h′

n} → {h, h′}; see [2, Definition 1.9.1]. The strong graph limit
is automatically closed, see [2, p. 80]. Clearly, if all Hn are symmetric, then H is
symmetric. In particular, if all Hn are nonnegative, then H is nonnegative.

Lemma 3.1 Let Hn ∈ L(H) be a sequence of nonnegative selfadjoint relations and let
its strong graph limit H∞ be nonnegative and selfadjoint. Then for every f ∈ dom H∞
there exists a sequence fn ∈ dom Hn such that

fn → f and ‖(Hn,reg)
1
2 fn‖ → ‖(H∞,reg)

1
2 f ‖.

Proof Let A ∈ L(H) be any nonnegative selfadjoint relation with square root A
1
2 .

Recall that mul A
1
2 = mul A, so that (A

1
2 )reg = (Areg)

1
2 . If { f , f ′} ∈ A, then there

exists an element h ∈ H such that { f , h} ∈ A
1
2 and {h, f ′} ∈ A

1
2 , which gives

( f ′, f ) = ‖h‖2. (3.1)
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Since h ∈ dom A
1
2 ⊂ (mul A)⊥, one sees that h = (Areg)

1
2 f . Therefore, it is clear

that (3.1) may be written as

( f ′, f ) = (Areg f , f ) = ‖(Areg)
1
2 f ‖2. (3.2)

Now let f ∈ dom H∞, then { f , f ′} ∈ H∞ for some f ′ ∈ H. By the strong graph
convergence there exists a sequence { fn, f ′

n} ∈ Hn such that fn → f and f ′
n → f ′.

Therefore, by definition, there exist elements hn ∈ H such that

{ fn, hn} ∈ (Hn)
1
2 and {hn, f ′

n} ∈ (Hn)
1
2 ,

and, likewise, there exists an element h ∈ H such that

{ f , h} ∈ (H∞)
1
2 and {h, f ′} ∈ (H∞)

1
2 .

Then clearly

‖hn‖2 = ( f ′
n, fn) → ( f ′, f ) = ‖h‖2,

or, equivalently, using (3.2),

‖(Hn,reg)
1
2 fn‖ → ‖(H∞,reg)

1
2 f ‖.

��
In the case of a nondecreasing sequence of nonnegative selfadjoint relations Hn

there is a much stronger result. First observe that

Hm ≤ Hn ⇔ (Hm)
1
2 ≺c (Hn)

1
2 ,

due to Theorem 2.3, so that if Hn is nondecreasing, one also has

(Hm,reg)
1
2 ≺c (Hn,reg)

1
2 .

The following monotonicity principle will be recalled from [3, Theorem 3.5], [2,
Theorem 5.2.11].

Theorem 3.2 Let Hn ∈ L(H) be a sequence of nonnegative selfadjoint relations and
assume they satisfy

Hm ≤ Hn, m ≤ n.

Then there exists a nonnegative selfadjoint relation H∞ ∈ L(H) with

Hn ≤ H∞, n ∈ N.
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In fact, Hn → H∞ in the strong resolvent sense or, equivalently, in the strong graph
sense. Moreover, the square root of H∞ satisfies

dom (H∞)
1
2 =

{
ϕ ∈

⋂
n∈N

dom (Hn)
1
2 : sup

n∈N
‖(Hn,reg)

1
2 ϕ‖ < ∞

}
(3.3)

and, furthermore,

‖(Hn,reg)
1
2 ϕ‖ ↗ ‖(H∞,reg)

1
2 ϕ‖, ϕ ∈ dom (H∞)

1
2 . (3.4)

Note that the multivalued parts of the relations Hn in Theorem 3.2 form a nonde-
creasing sequence. Of course, if all relations Hn in Theorem 10.1 are operators, then
the limit H∞ may still be a linear relation with a nontrivial multivalued part; see the
example below.

Example 3.3 Let A ∈ L(H) be a nonnegative selfadjoint operator or relation. Then it
is clear that the sequence Hn = nA of nonnegative selfadjoint operators or relations
is nondecreasing. Hence there exists a nonnegative selfadjoint relation H∞ such that
Hn → H∞ is the strong graph sense. To determine H∞, let { f , g} ∈ H∞, then there
exists a sequence { fn, gn} ∈ Hn such that fn → f and gn → g. Here gn = nhn
with { fn, hn} ∈ A and, clearly, hn → 0. Since A is closed, this implies { f , 0} ∈ A.
Furthermore, note that hn ∈ ran A ⊂ (ker A)⊥. Hence gn ∈ (ker A)⊥ which implies
g ∈ (ker A)⊥. Therefore, it follows that

H∞ = ker A × (ker A)⊥,

since both relations are selfadjoint. Furthermore one has dom (H∞)
1
2 = ker A and

(H∞)reg = ker A × {0} (as in (3.3) and (3.4)).

For sequences of closed relations which are nondecreasing in the sense of domina-
tion there are close connections with Theorem 3.2 via Theorem 2.3.

4 Semi-inner Products and RepresentingMaps

Let H be a Hilbert space with inner product (·, ·) and let D ⊂ H be a linear subspace
which is provided with a semi-inner product (·, ·)+. In the following lemma it will be
shown that such a subspace is generated by a so-called representingmap. The assertion
is inspired by [14].

Lemma 4.1 Let H be a Hilbert space with inner product (·, ·). LetD ⊂ H be a linear
subspace which is provided with a semi-inner product (·, ·)+. Then there exists a
representing map T ∈ L(H,K), where K is a Hilbert space, such that

(ϕ, ψ)+ = (Tϕ, Tψ)K, ϕ, ψ ∈ D = dom T .
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If T ′ ∈ L(H,K′), where K′ is a Hilbert space, is another representing map with
dom T ′ = D, then there exists a partial isometry V ∈ B(K,K′) with initial space
ran T and final space ran T ′, such that T ′ = VT .

Proof Let N be the set of neutral elements inD:

N = {
ϕ ∈ D : (ϕ, ϕ)+ = 0

}
.

Due to the Cauchy-Schwarz inequality the spaceN is linear. Hence, onemay introduce
an inner product on the quotient space D/N by

[ϕ + N, ψ + N] = (ϕ, ψ)+, ϕ, ψ ∈ D.

The completion of this quotient space is indicated by K, so that K is a Hilbert space.
Denote the inner product on K by (·, ·)K, so that (ϕ +N, ψ +N)K = [ϕ +N, ψ +N]
for ϕ,ψ ∈ D. Next define the operator T from D ⊂ H to K by

Tϕ = ϕ + N, ϕ ∈ D.

Then it follows that

(Tϕ, Tψ)K = [ϕ + N, ψ + N] = (ϕ, ψ)+, ϕ, ψ ∈ D,

which is the first assertion of the lemma.
If T ′ ∈ L(H,K′), where K′ is a Hilbert space, is another representing map with

dom T ′ = D, then

(T ′ϕ, T ′ψ) = (ϕ, ψ)+, ϕ, ψ ∈ D = dom T ′.

Then the linear relation V from K to K′, defined by

{{Tϕ, T ′ϕ} : ϕ ∈ D
}
,

is an isometric operator from ran T onto ran T ′, which can be extended as an isometric
operator from ran T onto ran T ′, such that T ′ f = VT f holds for all f ∈ D. To get
the desired partial isometry V it remains to continue the isometric map to (ran T )⊥ as
a zero mapping. This gives the desired result. ��

Let D ⊂ H be a linear subspace as in Lemma 4.1. A sequence ϕn ∈ D is said to
converge to ϕ ∈ H in the sense of D, in notation ϕn →D ϕ, if

ϕn → ϕ in H and ‖ϕn − ϕm‖+ → 0.

Then D is called closable if for any sequence ϕn ∈ D one has

ϕn →D 0 ⇒ ‖ϕn‖+ → 0,
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and, likewise, D is called closed if for any sequence ϕn ∈ D one has

ϕn →D ϕ ⇒ ϕ ∈ D and ‖ϕn − ϕ‖+ → 0.

These definitions take a more familiar form in terms of the representing map T in
Lemma 4.1 One sees immediately for a sequence ϕn ∈ D that

ϕn →D ϕ ⇔ ϕn → ϕ in H and ‖T (ϕn − ϕm)‖ → 0.

Therefore,D is closable if and only if T is closable, and, likewise,D is closed if and
only if T is closed.

An example of a representing map appears in the following construction that will
be used in [8]. Let A ∈ B(K) be a nonnegative contraction in a Hilbert space K. The

range space A = ran A
1
2 , as a subspace of K, is provided with the semi-inner product

(A
1
2 h, A

1
2 k)A = (πh, πk)K, h, k ∈ K, (4.1)

where π is the orthogonal projection in K onto ran A
1
2 = (ker A

1
2 )⊥. Then it is clear

that the operator T ∈ L(K,H) defined by

A
1
2 h �→ πh, h ∈ H,

with dom T = A, is actually a representing map as follows from (4.1).

5 Nondecreasing Sequences of Linear Operators

It will be shown that a sequence of linear operators, that is nondecreasing in the sense
of contractive domination, as in Definition 2.1, has a linear operator as limit. The limit
will be constructed by means of representing maps. Moreover, it will be shown that
closability and closedness of the operators are preserved in the limit.

Theorem 5.1 Let Tn ∈ L(H,Kn), whereKn are Hilbert spaces, be a sequence of linear
operators which satisfy

Tm ≺c Tn, m ≤ n. (5.1)

Then there exists a linear operator T ∈ L(H,K), where K is a Hilbert space, such
that

dom T =
{

ϕ ∈
⋂
n∈N

dom Tn : sup
n∈N

‖Tnϕ‖ < ∞
}

(5.2)

and which satisfies

Tn ≺c T and ‖Tnϕ‖ ↗ ‖Tϕ‖, ϕ ∈ dom T . (5.3)
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Moreover, the following statements hold:

(a) if Tn is closable for all n ∈ N, then T is closable;
(b) if Tn is closed for all n ∈ N, then T is closed.

Proof Let Tn be a sequence of operators that satisfies (5.1). Then it is seen by Cauchy’s
inequality that the right-hand side D in (5.2) is a linear space. Next the existence of
the operator T will be shown. For each ϕ ∈ D define

‖ϕ‖+ = sup
n∈N

‖Tnϕ‖.

Then ‖·‖+ is clearly a well defined seminorm onD and let (·, ·)+ be the corresponding
semi-inner product. ByLemma4.1 there exists a linear operator T defined on dom T =
D ⊂ H to a Hilbert space K such that

(ϕ, ψ)+ = (Tϕ, Tψ), ϕ ∈ D.

This shows the assertion in (5.3).

(a) Assume that Tn , n ∈ N, is closable. To show that T is closable, it suffices to show
that T = Treg. By (5.3) one has

Tn ≺c T .

Hence there exist contractions Cn ∈ B(K,Kn), such that CnT ⊂ Tn for all n ∈ N.
This implies that

CnT
∗∗ ⊂ T ∗∗

n ;

see (2.3). In particular, if {0, ϕ} ∈ T ∗∗, then {0,Cnϕ} ∈ T ∗∗
n , so that Cnϕ = 0.

Thus one concludes that mul T ∗∗ ⊂ kerCn . Let P be the orthogonal projection
from K onto mul T ∗∗, then Cn P = 0. By means of the Lebesgue decomposition
T = (I − P)T + PT , this leads to

CnTreg = Cn(I − P)T = Cn[(I − P)T + PT ] = CnT ⊂ Tn .

Hence, CnTreg ⊂ Tn for all n ∈ N and thus

‖Tnϕ‖ = ‖CnTregϕ‖ ≤ ‖Tregϕ‖ ≤ ‖Tϕ‖, ϕ ∈ dom T . (5.4)

Taking the supremum over n ∈ N in (5.4) and combining with (5.3) gives

‖Tϕ‖ = ‖Tregϕ‖, ϕ ∈ dom T .

This implies that Tsing = 0 and hence T is closable.
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(b) Assume that Tn , n ∈ N, is closed. To show that T is closed, let ϕn be a sequence
in dom T such that

ϕn → ϕ in H and T (ϕn − ϕm) → 0 in K. (5.5)

Due to (5.3) one sees that Tk(ϕn − ϕm) → 0. Since for each k ∈ N the operator
Tk is closed one obtains that ϕ ∈ dom Tk and Tk(ϕn − ϕ) → 0 as n → ∞. In
particular, ϕ ∈ ⋂

n∈N dom Tn . In order to verify that ϕ ∈ dom T , first observe that
the inequality

|‖Tϕn‖ − ‖Tϕm‖| ≤ ‖T (ϕn − ϕm)‖,

implies, via (5.5), that supm∈N ‖Tϕm‖ < ∞. Now it follows from Tnϕm → Tnϕ
and (5.3) that

‖Tnϕ‖ = lim
m→∞ ‖Tnϕm‖ ≤ lim

m→∞ ‖Tϕm‖ ≤ sup
m∈N

‖Tϕm‖ < ∞.

Since this holds for all n ∈ N, one concludes that supn∈N ‖Tnϕ‖ < ∞. Therefore,
ϕ ∈ dom T . Since by (a) the operator T is closable, it now follows from (5.5) that
T is closed.

��
The existence of the limit in Theorem 6.1 has been established; however it is

clear that there is no uniqueness. In fact, this question has been already addressed
in Lemma 4.1. The corollary below is easily verified directly.

Corollary 5.2 Assume the conditions from Theorem 5.1 and let T ∈ L(H,K) be the
limit. If T ′ ∈ L(H,K′), where K′ is a Hilbert space, is another limit with dom T ′ =
dom T , then there exists a partial isometry V ∈ B(K,K′) with initial space ran T and
final space ran T ′, such that T ′ = VT .

The following simple result is that an operator that dominates the sequence also
dominates the limit. This fact will have important consequences.

Corollary 5.3 Assume the conditions from Theorem 5.1 and let T ′ ∈ L(H,K′), where
K′ is a Hilbert space, be a linear operator. Then

Tn ≺c T
′, n ∈ N ⇒ T ≺c T

′.

Proof The inequality Tn ≺c T ′ implies that dom T ′ ⊂ dom Tn and ‖Tnϕ‖ ≤ ‖T ′ϕ‖
for ϕ ∈ dom T ′. Since this holds for all n ∈ N, one sees that

dom T ′ ⊂ dom T and ‖Tϕ‖ = sup
n∈N

‖Tnϕ‖ ≤ ‖T ′ϕ‖, ϕ ∈ dom T ′,

in other words T ≺ T ′. ��
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6 Nondecreasing Sequences of Closable Operators

It is a consequence of Theorem 5.1 that a sequence of closable linear operators which
satisfy (5.1) has a closable limit. The description of the limit of the closures is of
interest.

Proposition 6.1 Let Tn ∈ L(H,Kn), where Kn are Hilbert spaces, be a sequence of
linear operators for which (5.1) holds and assume that Tn, n ∈ N, is closable. Let T
be the closable limit of Tn in (5.2) and (5.3). Then the closures T ∗∗

n ∈ L(H,Kn) of Tn
satisfy

T ∗∗
m ≺c T

∗∗
n , m ≤ n, and T ∗∗

n ≺c T
∗∗. (6.1)

Consequently, there exists a closed linear operator S ∈ L(H,Kc), where Kc is a
Hilbert space, such that

dom S =
{

ϕ ∈
⋂
n∈N

dom T ∗∗
n : sup

n∈N
‖T ∗∗

n ϕ‖ < ∞
}

(6.2)

and which satisfies

T ∗∗
n ≺c S ≺c T

∗∗ and ‖T ∗∗
n ϕ‖ ↗ ‖Sϕ‖, ϕ ∈ dom S. (6.3)

In fact, dom T ∗∗ ⊂ dom S, while ‖Sϕ‖ = ‖T ∗∗ϕ‖ for all ϕ ∈ dom T ∗∗.
Proof The sequence Tn is assumed to satisfy (5.1), thus it follows that T ∗∗

m ≺c T ∗∗
n for

m ≤ n, by (2.3). Moreover, by Theorem 5.1 one has Tn ≺c T , so that also T ∗∗
n ≺c T ∗∗

by (2.3). Hence (6.1) holds and, in particular, Theorem 5.1 may be applied to the
sequence of closed operators T ∗∗

n .
Recall fromTheorem5.1 that the right-hand side in (6.2) is a linear space.Moreover,

by the same theorem there exists a closed linear operator S defined on dom S in (6.2)
for which (6.3) holds; observe that S ≺c T ∗∗ by Corollary 5.3.

Now it follows from (5.3) and (6.3) that ‖Tϕ‖ = ‖Sϕ‖ for all ϕ ∈ dom T . Here
the operator S is closed and T is closable, and S ≺c T ∗∗ means that CT ∗∗ ⊂ S for
some contraction C ∈ B(K,Kc). One concludes that ‖Sϕ‖ = ‖CT ∗∗ϕ‖ = ‖T ∗∗ϕ‖
holds in fact for all ϕ ∈ dom T ∗∗. ��

A special case of Theorem 5.1, where all Tn are bounded everywhere defined
operators, is worth mentioning separately.

Corollary 6.2 Let Tn ∈ B(H,Kn), where Kn are Hilbert spaces, such that

‖Tmϕ‖ ≤ ‖Tnϕ‖, ϕ ∈ H, m ≤ n.

Then there exists a closed linear operator T ∈ L(H,Kc), where Kc a Hilbert space,
such that

dom T =
{
ϕ ∈ H : sup

n∈N
‖Tnϕ‖ < ∞

}
(6.4)
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and which satisfies

Tn ≺c T and ‖Tnϕ‖ ↗ ‖Tϕ‖, ϕ ∈ dom T . (6.5)

Proof This is just an application of Theorem 5.1, as
⋂∞

n=1 dom Tn = H. Hence there
exists a linear operator T ∈ L(H,K) for which (6.4) and (6.5) hold. Since Tn ∈
B(H,Kn) one observes that Tn , n ∈ N, is closed, which implies that T is closed. ��
Remark 6.3 If in Corollary 6.2 one has supn∈N ‖Tn‖ < ∞, then dom T = H and
T ∈ B(H,K) by the closed graph theorem. However, if supn∈N ‖Tn‖ = ∞, then by the
uniform boundedness principle there is an element ϕ ∈ H for which supn∈N ‖Tnϕ‖ =
∞ and dom T is a proper subset of H. Note that dom T is closed if and only if T is a
bounded operator.

7 Nondecreasing Sequences of Linear Relations

In this section the emphasis will be on nondecreasing sequences of linear relations
in the general case, i.e., the relations are not necessarily operators or not necessarily
closed.However, also the regular parts and the closures formnondecreasing sequences.
In particular, one may apply Theorem 2.3, which leads to a connection with the mono-
tonicity principle in Theorem 3.2.

Let Tn ∈ L(H,Kn), where Kn are Hilbert spaces, be a sequence of linear relations
which satisfy

Tm ≺c Tn m ≤ n. (7.1)

Observe that the regular parts Tn,reg ∈ L(H,Kn) of the relations Tn are closable
operators which satisfy

Tm,reg ≺c Tn,reg, m ≤ n, (7.2)

see Lemma 2.2. Hence, by Theorem 5.1, there exists a closable linear operator Tr ∈
L(H,Kr), where Kr is a Hilbert space, such that

dom Tr =
{

ϕ ∈
⋂
n∈N

dom Tn : sup
n∈N

‖Tn,regϕ‖ < ∞
}

(7.3)

and which satisfies

Tn,reg ≺c Tr and ‖Tn,regϕ‖ ↗ ‖Trϕ‖, ϕ ∈ dom Tr. (7.4)

Moreover, the closures (Tn,reg)
∗∗ ∈ L(H,Kn) are closed linear operatorswhich satisfy

(Tm,reg)
∗∗ ≺c (Tn,reg)

∗∗, m ≤ n, and (Tn,reg)
∗∗ ≺c (Tr)

∗∗, (7.5)
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see Proposition 6.1. By the same proposition, there exists a closed linear operator
Sr ∈ L(H,Kc), where Kc is a Hilbert space, such that

dom Sr =
{

ϕ ∈
⋂
n∈N

dom T ∗∗
n : sup

n∈N
‖(Tn,reg)

∗∗ϕ‖ < ∞
}

(7.6)

and which satisfies

(Tn,reg)
∗∗ ≺c Sr ≺c (Tr)

∗∗ and ‖(Tn,reg)
∗∗ϕ‖ ↗ ‖Srϕ‖, ϕ ∈ dom Sr. (7.7)

In fact, dom (Tr)∗∗ ⊂ dom Sr, while ‖Srϕ‖ = ‖(Tr)∗∗ϕ‖ for ϕ ∈ dom (Tr)∗∗.

It follows from (7.1) that the closures T ∗∗
n ∈ L(H,Kn) of Tn are closed relations

which satisfy

T ∗∗
m ≺c T

∗∗
n m ≤ n, (7.8)

see (2.3). Of course, by Lemma 2.2 also the regular parts of Tn satisfy such an inequal-
ity; but this gives again (7.5), due to the identity

((Tn)
∗∗)reg = (Tn,reg)

∗∗,

see (1.3). Since the relation T ∗∗
n ∈ L(H,Kn) is closed, it follows that the product

Hn = T ∗
n T

∗∗
n ∈ L(H)

is a nonnegative selfadjoint relation and by Theorem 2.3 one sees that (7.8) implies

Hm ≤ Hn, m ≤ n.

Thus according to Theorem 3.2 there exists a nonnegative selfadjoint relation H∞ ∈
L(H)which is the limit of the relations Hn in the strong resolvent sense or, equivalently,
in the strong graph sense.

Theorem 7.1 Let Tn ∈ L(H,Kn), whereKn are Hilbert spaces, be a sequence of linear
relations which satisfy (7.1). Let H∞ ∈ L(H) be the nonnegative selfadjoint relation,
which is the limit of the nondecreasing sequence of nonnegative selfadjoint relations
T ∗
n T

∗∗
n ∈ L(H). Then H∞ satisfies

dom (H∞)
1
2 =

{
ϕ ∈

⋂
n∈N

dom T ∗∗
n : sup

n∈N
‖(Tn,reg)

∗∗ϕ‖ < ∞
}

(7.9)

and, furthermore,

(Tn,reg)
∗∗ϕ‖ ↗ ‖(H∞,reg)

1
2 ϕ‖, ϕ ∈ dom (H∞)

1
2 . (7.10)
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Moreover, the limit Sr ∈ L(H,Kc) of the sequence (Tn,reg)
∗∗ ∈ L(H,Kn) in (7.6) and

(7.7) satisfies

‖(Tn,reg)
∗∗ϕ‖ ↗ ‖Srϕ‖, ϕ ∈ dom Sr = dom (H∞)

1
2 . (7.11)

Consequently, there exists a partial isometry U ∈ L(Kc,H) such that

(H∞,reg)
1
2 = USr and H∞,reg = (Sr)

∗Sr. (7.12)

Proof It is clear that the product Hn = T ∗
n T

∗∗
n ∈ L(H) is a nonnegative selfadjoint

relation. Furthermore, the closures T ∗∗
n of Tn satisfy the inequalities (7.8). Therefore,

the nonnegative selfadjoint relations Hn = T ∗
n T

∗∗
n ∈ L(H) form a nondecreasing

sequence thanks to Theorem 2.3. Thus by Theorem 3.2 there exists a nonnegative
selfadjoint relation H∞ such that (3.3) and (3.4) hold. Remember that

Hn = T ∗
n T

∗∗
n = (Tn,reg)

∗(Tn,reg)
∗∗,

so that there exists a partial isometry Un ∈ L(Kn,H), such that

(Hn,reg)
1
2 = Un (Tn,reg)

∗∗.

In other words, (3.3) and (3.4) lead to (7.9) and (7.10). Similarly, a comparison of
(7.3) and (7.4) with (7.9) and (7.10) shows that (7.11) holds. Therefore, there exists a
partial isometryU ∈ L(L,H) such that (H∞,reg)

1
2 = USr, which is the first assertion

in (7.12). This identity shows that also the second assertion in (7.12) holds. ��
Assume that the sequence Tn ∈ L(H,Kn) in Theorem 7.1 has an upper bound, i.e.,

there exists a linear relation T ∈ L(H,K), where K is a Hilbert space, such that

Tn ≺c T , m ≤ n. (7.13)

For instance, if the sequence Tn consists of operators then T may be taken as the limit
of Tn by Theorem 5.1. It follows from (7.13) that

Tn,reg ≺c Treg and (Tn,reg)
∗∗ ≺c (Treg)

∗∗.

With these upper bounds it follows for the closable limit Tr of Tn,reg that

Tr ≺c Treg and hence (Tr)
∗∗ ≺c (Treg)

∗∗.

Consequently, for the closed limit Sr of (Tn,reg)
∗∗ one has via (7.5)

Sr ≺c (Tr)
∗∗ ≺c (Treg)

∗∗.
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8 An Example of a Nondecreasing Sequence

In order to illustrate the various possibilities of convergence a simple example of a
nondecreasing sequence will be presented. Let R ∈ L(H,K) be a linear operator and
define the sequence of linear operators Tn ∈ L(H,K), n ∈ N, by

Tn = √
n R. (8.1)

Then it is clear from (8.1) that

∞⋂
n=1

dom Tn = dom R and Tn ≺c Tn+1, n ∈ N,

so that (5.1) is satisfied. Hence one can apply Theorem 5.1 to determine the limit T
of the sequence Tn . It follows from (5.2) and (5.3) that

dom T = ker R and T = O ker R . (8.2)

In fact, it is clear that T is closable and singular, simultaneously, and that

T ∗∗ = O ker R . (8.3)

Moreover, observe that it follows from (8.2) and (8.3) that

T ∗T = ker R × (ker R)⊥ and T ∗T ∗∗ = ker R × (ker R)⊥.

Note that in the special case where R ∈ B(H,K) this illustrates [2, Corollary 5.2.13].
If, in addition, the operator R ∈ L(H,K) is closable, then all Tn in (8.1) are closable.
The closures T ∗∗

n of Tn are given by

T ∗∗
n = √

n R∗∗,

and it is clear that (6.1) is satisfied. Hence one can apply Proposition 6.1 to obtain the
closed limit S of the sequence T ∗∗

n . It follows from (6.2) and (6.3) that

dom S = ker R∗∗ and S = O ker R∗∗ . (8.4)

One sees directly from (8.3) that T ∗∗ ⊂ S, which illustrates the situation in Propo-
sition 6.1. The inclusion T ∗∗ ⊂ S is strict precisely when ker R ⊂ ker R∗∗ is strict.
As an example where the inclusion is strict, let R be an operator such that R−1 is an
operator that is not closable, in which case ker R = {0} and ker R∗∗ �= {0}. Note that
the nonnegative selfadjoint relation S∗S is given by

S∗S = ker R∗∗ × (ker R∗∗)⊥.

as follows from (8.4).
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Next consider the Lebesgue decomposition of R which is given by

R = Rreg + Rsing, Rreg = (I − P)R, Rsing = PR,

where P be the orthogonal projection form K onto mul R∗∗. Then the regular parts
Tn,reg of Tn in (8.1) are given by

Tn,reg = √
n Rreg,

and it is clear that (7.2) is satisfied. For the closable limit Tr of the sequence Tn,reg it
follows from (7.3) and (7.4) that

dom Tr = ker Rreg and Tr = O ker Rreg .

Since Treg = Oker R one sees directly that Tr ≺c Treg, which is the general situation.
The inequality is strict precisely when ker R ⊂ ker Rreg is strict. Observe that

(Tr)
∗Tr = ker Rreg × (ker Rreg)

⊥ and (Tr)
∗(Tr)∗∗ = ker Rreg × (ker Rreg)

⊥.

The closures of Tn,reg are given by

(Tn,reg)
∗∗ = √

n(Rreg)
∗∗,

and it is clear that (7.5) is satisfied. For the closed limit Sr of the sequence (Tn,reg)
∗∗

it follows from (7.6) and (7.7) that

dom Sr = ker (Rreg)
∗∗ and Sr = O ker (Rreg)∗∗ .

Therefore, one sees that

(Sr)
∗Sr = ker (Rreg)

∗∗ × (ker (Rreg)
∗∗)⊥. (8.5)

Finally consider Tn as in (8.1) with a general operator R ∈ L(H,K). Then the
product relation Hn = T ∗

n T
∗∗
n is given by

Hn = nR∗R∗∗ = n(Rreg)
∗(Rreg)

∗∗.

Since ker (Rreg)
∗(Rreg)

∗∗ = ker (Rreg)
∗∗, it follows from Example 3.3 that the limit

H∞ of Hn is given by H∞ = ker (Rreg)
∗∗ × (ker (Rreg)

∗∗)⊥, which agrees with (8.5).

9 A Description of Closed Linear Operators

Let Tn ∈ B(H,Kn) be a sequence of operators that satisfy (5.1). According to Corol-
lary 6.2 there is a closed limit T ∈ L(H,K)which satisfies (6.4) and (6.5). This section
contains some variations on this theme.
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First it is shown that any nonnegative selfadjoint operator is rougly speaking the
limit of a certain class of nonnegative bounded linear operators.

Lemma 9.1 Let A ∈ L(H) be a nonnegative selfadjoint operator. Then there exists a
sequence of nonnegative selfadjoint operators An ∈ B(H) such that

(Amϕ, ϕ) ≤ (Anϕ, ϕ), ϕ ∈ H, m ≤ n, (9.1)

and

(Anϕ, ϕ) ↗ ‖A 1
2 ϕ‖2, ϕ ∈ dom A

1
2 . (9.2)

Proof Consider the spectral representation of the nonnegative selfadjoint operator A
the Hilbert space H:

A =
∫ ∞

0
λ dEλ.

By means of this representation let the nonnegative selfadjoint operators An ∈ B(H)

be defined by

An =
∫ n

0
λ dEλ, n ∈ N.

Then is is clear that (Amϕ, ϕ) ≤ (Anϕ, ϕ), m ≤ n, for all ϕ ∈ H. This gives (9.1). By
the construction of the sequence An one obtains

(Anϕ, ϕ) ↗ ‖A 1
2 ϕ‖2, ϕ ∈ dom A

1
2 ,

which gives (9.2). ��
As a consequence of Lemma 9.1 there is some kind of converse of Corollary 6.2.

Proposition 9.2 Let T ∈ L(H,K) be a closed linear operator. Then there exists a
sequence of linear operators Tn ∈ B(dom T ,H), such that

‖Tmϕ‖ ≤ ‖Tnϕ‖, ϕ ∈ dom T , m ≤ n, (9.3)

and

‖Tnϕ‖ ↗ ‖Tϕ‖, ϕ ∈ dom T . (9.4)

Proof The product relation H = T ∗T is nonnegative and selfadjoint in H with
mul H = mul T ∗ = (dom T )⊥. Then H = A ⊕̂ ({0} × (dom T )⊥, where A = Hreg

is a nonnegative selfadjoint operator in dom T . Then there exists a sequence of non-
negative selfadjoint operators An ∈ B(dom T ) such that

(Amϕ, ϕ) ≤ (Anϕ, ϕ), ϕ ∈ dom T , m ≤ n,
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and

(Anϕ, ϕ) → ‖A 1
2 ϕ‖2, ϕ ∈ dom A

1
2 = dom T ⊂ dom T .

Due to H = T ∗T and A = Hreg one sees that

‖A 1
2 ϕ‖ = ‖Tϕ‖, ϕ = dom A

1
2 = dom T ,

see Lemma 11.2. Finally define Tn = A
1
2
n , so that (9.3) and (9.4) are satisfied. ��

The last result in this section is a direct consequence of Proposition 9.2; it describes
the closability of an operator in terms of a sequence of bounded linear operators; see
for the original statement [4, Theorem 8.8, Theorem 8.9].

Corollary 9.3 Let S ∈ L(H,K) be a linear operator. Then the following statements are
equivalent:

(i) S is closable;
(ii) there exists a sequence of linear operators Tn ∈ B(dom S,Kn), where Kn are

Hilbert spaces, such that

‖Tmϕ‖ ≤ ‖Tnϕ‖, ϕ ∈ dom S, m ≤ n, (9.5)

and

‖Tnϕ‖ ↗ ‖Sϕ‖, ϕ ∈ dom S. (9.6)

Proof (i) ⇒ (ii) Let S ∈ L(H,K) be a closable operator and denote its closure by T .
Then T ∈ L(H,K) is a closed operator which extends S, such that dom T = dom S.
Now apply Proposition 9.2.

(ii) ⇒ (i) Let Tn ∈ B(dom S,Kn) be a sequence for which (9.5) holds. Then by
Corollary 6.2 there exists a closed linear operator T ∈ L(dom S,K), such that

dom T =
{
ϕ ∈ dom S : sup

n∈N
‖Tnϕ‖ < ∞

}
,

and which satisfies

‖Tnϕ‖ ↗ ‖Tϕ‖, ϕ ∈ dom S.

Thanks to (9.6) one has ‖Sϕ‖ = ‖Tϕ‖ for all ϕ ∈ dom S. Since T is closed if follows
that S is closable. ��

An application of these results can be found in [7, Theorem 6.4], where pairs of
bounded linear operators are classified in terms of almost domination.
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10 Nonincreasing Sequences of Linear Operators

In this section there is a brief review for the situation of nonincreasing sequences
of linear operators in the sense of contractive domination. First recall the analog
of the monotonicity principle in Theorem 3.2 for nonincreasing sequences; see [3,
Theorem 3.7].

Theorem 10.1 Let Kn ∈ L(H) be a sequence of nonnegative selfadjoint relations and
assume they satisfy

Kn ≤ Km, m ≤ n.

Then there exists a nonnegative selfadjoint relation K∞ ∈ L(H) with

K∞ ≤ Kn, n ∈ N. (10.1)

In fact, Kn → K∞ in the strong resolvent sense or, equivalently, in the strong graph
sense. Moreover, the square root of K∞ satisfies

ran (K∞)
1
2 =

{
ϕ ∈

⋂
n∈N

ran (Kn)
1
2 : lim

n→∞ ‖((Kn)
− 1

2 )regϕ‖ < ∞
}

(10.2)

and, furthermore,

‖((Kn)
− 1

2 )regϕ‖ ↗ ‖((K∞)−
1
2 )regϕ‖, ϕ ∈ ran (K∞)

1
2 . (10.3)

Proof A short proof is included for completeness. By antitonicity, the sequence
(Kn)

−1 ∈ L(H) is nondecreasing; cf. [2, Corollary 5.2.8]. Hence, by Theorem 3.2,
there exists a nonnegative selfadjoint relation, say, (K∞)−1 ∈ L(H), such that (K∞)−1

is the limit of the sequence (Kn)
−1 ∈ L(H) in the strong resolvent sense or, equiva-

lently, in the strong graph sense, and (Kn)
−1 ≤ (K∞)−1. Then, again by antitonicity,

K∞ ≤ Kn and,moreover, K∞ is the limit of the sequence Kn in the strong graph sense.
The rest of the statements is a direct translation of similar statements in Theorem 3.2.

��
Note that the multivalued parts of the relations Kn in Theorem 3.2 form a nonin-

creasing sequence. If one of the relations Kn in Theorem 10.1 is an operator, then all
of its successors are operators and, ultimately, the limit K∞ is an operator.

Example 10.2 Let A ∈ L(H) be a nonnegative selfadjoint operator or relation. Then it
is clear that the sequence Kn = 1

n A of nonnegative selfadjoint operators or relations
is nonincreasing. Hence there exists a nonnegative selfadjoint relation K∞ ∈ L(H)

such that Kn → K∞ is the strong graph sense. By means of Example 3.3 one sees
immediately that

K∞ = dom A × mul A.
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The following result is the analog of Theorem 5.1 for nonincreasing sequences
of linear operators. Due to the sequence being nonincreasing there are no further
convergence restrictions for the limit as in Theorem 5.1.

Theorem 10.3 Let Tn ∈ L(H,Kn), where Kn are Hilbert spaces, be a sequence of
linear operators which satisfy

Tn ≺c Tm, m ≤ n. (10.4)

Then there exists a linear operator T ∈ L(H,K), where K is a Hilbert space, such
that

dom T =
⋃
n∈N

dom Tn, (10.5)

and which satisfies

T ≺c Tn and ‖Tnϕ‖ ↘ ‖Tϕ‖, ϕ ∈ dom T . (10.6)

Proof Denote the right-hand side of (10.5) by D. Now let ϕ ∈ D, then clearly ϕ ∈
dom TN for some N ∈ N. For all n ≥ N one has Tn ≺c TN , which implies that
ϕ ∈ dom Tn for all n ≥ N and limn→∞ ‖Tnϕ‖ exists by (10.4). Hence for each ϕ ∈ D
one may define

‖ϕ‖+ = lim
n→∞ ‖Tnϕ‖.

Then ‖ · ‖+ generates a well-defined seminorm on the linear subspace D. Let (·, ·)+
be the corresponding semi-inner product. By Lemma 4.1 there exists a linear operator
T defined on dom T = D ⊂ H to a Hilbert space K such that

(ϕ, ψ)+ = (Tϕ, Tψ), ϕ ∈ D.

This shows the assertion in (10.6). ��
Now Theorem 10.3 will be applied under the assumption that the linear operators

Tn ∈ L(H,Kn) are closed. Then the corresponding relations Kn = T ∗
n Tn ∈ L(H) are

nonnegative and selfadjoint.

Theorem 10.4 Let Tn ∈ L(H,Kn), where Kn are Hilbert spaces, be a sequence of
closed linear operators which satisfy (10.4) and let T ∈ L(H,K), where K is a Hilbert
space, be the limit operator satisfying (10.5) and (10.6). Let K∞ ∈ L(H) be the
nonnegative selfadjoint relation, which is the limit of the nonincreasing sequence of
nonnegative selfadjoint relations Kn = T ∗

n Tn ∈ L(H), so that K∞ satisfies (10.2) and
(10.3). Then K∞ and T are connected via

K∞ = T ∗T ∗∗. (10.7)
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Consequently, there exists a partial isometry U ∈ B(K,H) such that

(K∞,reg)
1
2 = U (Treg)

∗∗ or (Treg)
∗∗ = U∗(K∞,reg)

1
2 . (10.8)

Moreover, for the limit T ∈ L(H,K) one has

(a) T is closable if and only if T ⊂ U∗(K∞,reg)
1
2 ;

(b) T is closed if and only if T = U∗(K∞,reg)
1
2 ;

(c) T is singular if and only if K∞ is singular.

Proof Let T ∈ L(H,K) be the limit operator in (10.5) and (10.6). Recall from (10.6)
that T ≺c Tn . This leads to T ∗∗ ≺c (Tn)∗∗ = Tn , which gives T ∗T ∗∗ ≤ T ∗

n Tn = Kn

by Theorem 2.3. Since this holds for all n ∈ N one obtains

T ∗T ∗∗ ≤ K∞. (10.9)

Moreover, recall from (10.1) that K∞ ≤ Kn , so that (K∞)
1
2 ≺c Tn by Theorem 2.3.

In particular, it follows that (K∞,reg)
1
2 ≺c Tn . Hence one has

dom Tn ⊂ dom (K∞,reg)
1
2 and ‖(K∞,reg)

1
2 ϕ‖ ≤ ‖Tnϕ‖, ϕ ∈ dom Tn .

Clearly, with (10.5) this now leads to

dom T ⊂ dom (K∞,reg)
1
2 and ‖(K∞,reg)

1
2 ϕ‖ ≤ inf

n∈N ‖Tnϕ‖, ϕ ∈ dom T .

Thanks to (10.6) this reads

dom T ⊂ dom (K∞,reg)
1
2 and ‖(K∞,reg)

1
2 ϕ‖ ≤ ‖Tϕ‖, ϕ ∈ dom T ,

or equivalently, (K∞,reg)
1
2 ≺c T . Since closures and regular parts are preserved under

the inequality, this gives (K∞,reg)
1
2 ≺c (T ∗∗)reg or (K∞)

1
2 ≺c T ∗∗ by Lemma 2.2.

Therefore, one obtains

K∞ ≤ T ∗T ∗∗. (10.10)

Combining the inequalities (10.9) and (10.10) leads to the inequalities

T ∗T ∗∗ ≤ K∞ ≤ T ∗T ∗∗,

or, equivalently,

(T ∗T ∗∗ − λ)−1 ≤ (K∞ − λ)−1 ≤ (T ∗T ∗∗ − λ)−1, λ < 0.

This shows that (10.7) holds. Next (10.8) follows thanks to Lemma 11.2.
Finally, the last assertions concerning the relationship between T and K∞ will be

discussed.
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(a) If T ⊂ U∗(K∞,reg)
1
2 , then T is closable. Conversely, if T is closable, then T =

Treg ⊂ (Treg)∗∗ = U∗(K∞,reg)
1
2 .

(b) If T = U∗(K∞,reg)
1
2 , then T is closed. Conversely, if T is closed, then T =

(Treg)∗∗ = U∗(K∞,reg)
1
2 .

(c) If T is singular, then T ∗ = A×BwhereA andB are closed linear subspaces ofK
and H, respectively. Hence T ∗∗ = B⊥ ×A⊥, so that T ∗T ∗∗ = B⊥ ×B and K∞
is singular. Conversely, let K∞ = T ∗T ∗∗ be singular. Then T ∗T ∗∗ = B⊥ × B
with a closed linear subspace B in H. Hence it follows that

{
mul T ∗ = mul T ∗T ∗∗ = B,

ker T ∗∗ = ker T ∗T ∗∗ = B⊥.

Therefore ran T ∗ = (ker T ∗∗)⊥ = mul T ∗, i.e. T ∗ and, hence, also T is singular.

��
In the present circumstances there is in general no preservation of closedness in

Theorem 10.3. This will be shown in the following example; it is a simple adaptation
of [3, Example 4.5] or [12, p. 374].

Example 10.5 Let Tn ∈ L(H,H⊕C)withH = L2(0, 1) be given as a column operator
by Tn = col (T 1

n , T 2
n ) (see [8]) with the operators T 1

n and T 2
n given by

T 1
n f = 1√

n
i D f , f (1) = 0, and T 2

n f = f (0).

Here D stands for the maximal differentiation operator in L2(0, 1). Then T 1
n is closed,

T 2
n is singular, while the column Tn is closed. It is clear that Tn ≺c Tm , m ≤ n, and

the limit T ∈ L(H) is given by T f = f (0)e, where the function e ∈ H = L2(0, 1)
is defined by e(x) = 1. Moreover, the corresponding nonnegative selfadjoint relation
Kn = T ∗

n Tn is the operator in H = L2(0, 1) given by

Kn f = −1

n
D2 f , f ′(0) = n f (0), f (1) = 0.

The relations Kn forma sequence that is nonincreasingwith the nonnegative selfadjoint
limit K∞ and, by Theorem 10.4, one has

K∞ = T ∗T ∗∗.

Now observe that T ∗ = (span {e})⊥ × {0} and T ∗∗ = H × span {e}, so that T is a
singular operator and, in fact T ∗T ∗∗ = H × {0}. Hence it follows that

K∞ = T ∗T ∗∗ = H × {0}.
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11. Appendix: On the Products T∗T and T∗T∗∗

This appendix contains a number of properties of the relations T ∗T and T ∗T ∗∗ when
T ∈ L(H,K) is a linear relation. Themain emphasis is on the interplaywith the regular
parts of these relations. For the convenience of the reader, the arguments are included.

Let T ∈ L(H,K), so that T ∗ ∈ L(K,H) is a closed linear relation. The product
T ∗T ∈ L(H) is defined as

T ∗T = {{ f , f ′} ∈ H × H : { f , h} ∈ T , {h, f ′} ∈ T ∗ for some h ∈ K
}
. (11.1)

Hence, for the elements in the right-hand side of (11.1) it is clear that

( f ′, f ) = ‖h‖2. (11.2)

It follows immediately from (11.1) and (11.2) that the relation T ∗T is nonnegative.
Moreover, it also follows from (11.1) and (11.2) that

mul T ∗T = mul T ∗. (11.3)

It is clear from T ⊂ T ∗∗ that the nonnegative relation T ∗T has a nonnegative extension
T ∗T ∗∗. Since T ∗∗ is closed the product T ∗T ∗∗ is selfadjoint; cf. [2, Lemma 1.5.8]).
Moreover one sees that

T ∗T ⊂ T ∗T ∗∗ ⊂ (T ∗T )∗. (11.4)

In particular, it follows from (11.4) that the closure of T ∗T satisfies

(T ∗T )∗∗ ⊂ T ∗T ∗∗. (11.5)

However, in general, even when T is closable, there is no equality in (11.5).

http://creativecommons.org/licenses/by/4.0/
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Recall the definition of the regular part Treg: Treg = (I − P)T where P is the
orthogonal projection from K onto mul T ∗∗, so that also (T ∗∗)reg = (I − P)T ∗∗.
This gives (Treg)∗ = ((T ∗∗)reg)∗, which by taking adjoints leads to the formal identity
(Treg)∗∗ = ((T ∗∗)reg)∗∗. Note that (T ∗∗)reg is closed, so that (T ∗∗)reg = (Treg)∗∗ in
(1.3) is clear.

There is an interesting interplay between linear relations and their regular parts
when forming quadratic combinations. Let { f , f ′} ∈ T ∗∗ and {g, g′} ∈ T ∗, then by
definition there is the identity

(g′, f ) = (g, f ′). (11.6)

Recall that the orthogonal projection P maps K onto mul T ∗∗ = dom T ∗, and let Q
be the orthogonal projection from H onto mul T ∗ = dom T ∗∗. Therefore the identity
(11.6) reads

(g′, (I − Q) f ) = ((I − P)g, f ′), (11.7)

which can be rewritten in terms of the regular parts

((T ∗)regg, f ) = (g, (Treg)
∗∗ f ), f ∈ dom T ∗∗, g ∈ dom T ∗, (11.8)

where the equality (1.3) has been used. Likewise, there is the identity

((T ∗)regg, f ) = (g, Treg f ), f ∈ dom T , g ∈ dom T ∗, (11.9)

which also follows from (11.6) and (11.7). The following lemma shows the various
interrelationships.

Lemma 11.1 Let T ∈ L(H,K) be a linear relation. Then

{{{ϕ, h} ∈ T : h ∈ dom T ∗} ⊂ Treg,{{ϕ, h} ∈ T ∗∗ : h ∈ dom T ∗} ⊂ (T ∗∗)reg = (Treg)∗∗, (11.10)

and {
T ∗T ⊂ T ∗Treg = (Treg)∗Treg,
T ∗T ∗∗ = T ∗(Treg)∗∗ = (Treg)∗(Treg)∗∗. (11.11)

Moreover, the multivalued parts in (11.11) satisfy

mul T ∗ = mul (Treg)
∗, (11.12)

and, consequently,

{
(T ∗T )reg ⊂ (T ∗)regTreg = (

(Treg)∗Treg
)
reg,

(T ∗T ∗∗)reg = (T ∗)reg(Treg)∗∗ = (
(Treg)∗(Treg)∗∗)

reg.
(11.13)
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In particular,

⎧⎪⎪⎨
⎪⎪⎩

((
(Treg)∗Treg

)
regϕ,ψ

) = (Tregϕ, Tregψ),

ϕ ∈ dom T ∗Treg, ψ ∈ dom T ,((
(Treg)∗(Treg)∗∗)

regϕ,ψ
) = ((Treg)∗∗ϕ, (Treg)∗∗ψ),

ϕ ∈ dom T ∗T ∗∗, ψ ∈ dom T ∗∗.

(11.14)

Proof Due to dom T ∗ ⊂ dom T ∗ = (mul T ∗∗)⊥ and (1.3) one sees that (11.10) holds.
Hence it is clear that T ∗T ⊂ T ∗Treg. With the orthogonal projection P from K onto
mul T ∗∗, one sees that

T ∗(I − P)T = T ∗(I − P)2T = ((I − P)T )∗(I − P)T ,

which completes the proof of the first part of (11.11). Furthermore, replacing T by
T ∗∗ in the first part of (11.11) leads with (1.3) to the second part; the original inclusion
is now an identity since T ∗T ∗∗ is selfadjoint. The identity (11.12) is a consequence of
(11.11) due to (11.3). The consequence in (11.13) is obtained from (11.12) together
with (11.3).

It follows from (11.9) with f = ψ and g = Tregϕ that

((T ∗)regTregϕ,ψ) = (Tregϕ, Tregψ), ϕ,ψ ∈ dom T , Tregϕ ∈ dom T ∗.

Note that the conditions ϕ ∈ dom T and Tregϕ ∈ dom T ∗ are equivalent to the condi-
tion ϕ ∈ dom T ∗Treg. Thus, with (11.13), the first assertion in (11.14) has been shown.
Likewise, it follows from (11.8) with f = ψ and g = (Treg)∗∗ϕ that

((T ∗)reg(Treg)∗∗ϕ,ψ) = ((Treg)
∗∗ϕ, (Treg)

∗∗ψ),

ϕ,ψ ∈ dom T ∗∗, (Treg)
∗∗ϕ ∈ dom T ∗.

Note that the conditions ϕ ∈ dom T ∗∗ and (Treg)∗∗ϕ ∈ dom T ∗ are equivalent to the
condition ϕ ∈ dom T ∗T , thanks to (11.11). Thus, with (11.13), the second assertion
in (11.14) has been shown. ��

There is a special, useful, case of Lemma 11.1 that deserves attention. It is about
the orthogonal operator part of H = T ∗T when T is closed.

Lemma 11.2 Let T ∈ L(H,K) be a closed linear relation and let H ∈ L(H) be the
nonnegative selfadjoint relation defined by H = T ∗T . Then

(Hregϕ,ψ) = (Tregϕ, Tregψ), ϕ ∈ dom T ∗T , ψ ∈ dom T , (11.15)

and there exists a partial isometry U ∈ B(K,H) such that

(Hreg)
1
2 = UTreg.



   81 Page 28 of 28 S. Hassi, H. S. V. de Snoo

Proof Recall that H = T ∗T ∈ L(H) is nonnegative and selfadjoint and that mul H =
mul T ∗. It follows from Lemma 11.1 that the identity (11.15) is satisfied. Therefore

‖(Hreg)
1
2 ϕ‖ = ‖Tregϕ‖, ϕ ∈ dom Hreg = dom H = dom T ∗T = dom (Treg)

∗Treg.

It is clear that dom Hreg = dom (Treg)∗Treg is a core for (Hreg)
1
2 and for Treg; cf. [2,

Lemma 1.5.10]. Hence the assertion follows. ��
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