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1 Introduction

As usual, let N be the set of natural numbers, H a separable complex Hilbert space
and B(H) the set of all bounded linear operators on H . For an operator T ∈ B(H),
let T ∗ denote the adjoint operator of T .

In this section, we need to introduce some definitions. One of the definitions is
the complex symmetric operators. It is widely recognized that numerous analytical
problems necessitate extensive research on non-Hermitian operators. Among these
problems, complex symmetric operators have emerged as particularly crucial in both
theoretic and application aspects (see [16]).

Definition 1.1 Amapping T : H → H is said to be anti-linear (also conjugate-linear),
if it satisfies

T (αx + β y) = ᾱT (x) + β̄T (y),

for all α, β ∈ C and x, y ∈ H .

Definition 1.2 An anti-linear mapping C : H → H is said to be a conjugation if it
satisfies the following conditions:

(a) involutive: C2 = Id , where Id is an identity operator;
(b) isometric: ‖C(x)‖ = ‖x‖, for all x ∈ H .

Following [17, Lemma 1], we see that for any conjugation C , there exists an
orthonormal basis {en}∞n=1 for H satisfying Cen = en for all n ∈ N. Actually, there
are many conjugations on some holomorphic function spaces. For example, the com-
mon conjugation of complex numbers (J f )(z) = f (z̄) and more general conjugation
Jμ,σ , which will be defined on McCarthy–Bergman spaces of Dirichlet series later.

Based on Definition 1.2, we give the following definition.

Definition 1.3 Let C be a conjugation on H . An operator T ∈ B(H) is said to be
complex symmetric with C if T = CT ∗C .

Significantly, if an operator T ∈ B(H) is complex symmetric, then it can be rep-
resented as a symmetric matrix relative to some orthonormal basis of H (see [17,
Proposition 2]). For this reason, the complex symmetric operators can be considered
as an extension of symmetric matrices. As expected, with the continuous people’s
studies, the class of complex symmetric operators has become increasingly diverse.
The class includes all normal operators, Hankel operators (matrices), operators that are
algebraic of order two, finite Toeplitz matrices, all (truncated or compressed) Toeplitz
operators, and some Volterra integration operators. The investigations of this operator
were carried out by Garcia, Putinar, andWogen in [17–20]. Many studies for the oper-
ator have been conducted on holomorphic function spaces (see [13, 14, 23, 25–27,
32]).

In the next time, we would like to provide the research motivations of this paper.
With the basic questions such as boundedness and compactness settled, more attention
has been paid to the study of the topological structure of the (weighted) composition
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operators in the operator norm topology. In this research background, Shapiro and
Sundberg in [30] posed a question on whether two composition operators belong to
the same connected component, when their difference is compact. Motivated by this
question, people started to investigate compact differences, or more generally linear
combinations of composition operators; see for example [5, 7–9, 22]. In the study of
the compactness of linear combinations of composition operators, people indeed found
some interesting phenomena. For example, the compactness of linear combinations∑N

j=1 λ jCϕ j , for finitelymany distinct linear fractional maps ϕ j and nonzero complex
numbersλ j , implies that each composition operatorCϕ j is compact on theHardy space
H2 (Bn) over the unit ball (see [10]). Most recently, Xu et al. in [31] characterized
complex symmetry of linear combinations of composition operators on the Fock space
and proved that the bounded operator

∑N
j=1 λ jCϕ j isJ -symmetric if and only if each

Cϕ j is J -symmetric.
Motivated by the above-mentioned interesting studies, a very natural thing is to

study complex symmetry of linear combinations of composition operators on some
other holomorphic function spaces. Here, we shall extend such problem from classical
spaces to the McCarthy–Bergman spaces of Dirichlet series. Actually, in this work,
we give a complete characterization of complex symmetry for linear combinations of
composition operators on the McCarthy-Bergman spaces of Dirichlet series. We also
characterize the normal and self-adjoint complex symmetric linear combinations of
composition operators on such spaces. At the same time, some images are given in
order to find some interesting phenomena of J -symmetric such combinations. These
results well demonstrate the innovation of the work. Our work can be regarded as
a good continuous study of the composition operators on the McCarthy–Bergman
spaces of Dirichlet series.

2 Preliminaries

Let Cθ denote the half-plane of complex numbers s = σ + i t with σ > θ , that is,
Cθ = {s ∈ C : Re s > θ}. For a ≤ 0, the McCarthy–Bergman space Aa of Dirichlet
series is defined by (see [21])

Aa =
{

f (s) =
∞∑

n=1

an
ns

: ‖ f ‖2Aa
= |a1|2 +

∞∑

n=2

|an|2 (log n)a < ∞
}

.

Aa is a Hilbert space with the inner product

〈 f , g〉Aa = a1b̄1 +
∞∑

n=2

anb̄n(log n)a,

where f (s) = ∑∞
n=1

an
ns and g(s) = ∑∞

n=1
bn
ns ∈ Aa . If a = 0, Aa is reduced to the

Hardy space H2 of Dirichlet series with square summable coefficients. One can see
[6] for more information on the space. The reproducing kernel Kw,a of Aa at a point
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w ∈ C1/2 is given by

Kw,a(s) = 1 +
∞∑

n=2

1

(log n)a

1

nw+s
, s ∈ C1/2.

By the Cauchy-Schwarz inequality, Aa is a space of analytic functions in C1/2.
Let ϕ be an analytic self-map of the half-plane C1/2. The composition operator

induced by ϕ on Aa is defined as

Cϕ f = f ◦ ϕ, f ∈ Aa .

It is clear that f ◦ ϕ is an analytic function in C1/2 for any f ∈ Aa . Composition
operators on Aa (or other spaces of Dirichlet series) have been extensively studied
in recent years (see [1–4, 12, 15, 24, 28]). Among these studies, the following result
obtained in [4, 24] characterizes the bounded composition operators on Aa . For the
convenience, if ϕ satisfies Theorem A, then it is called a c0-symbol.

Theorem A Let a ≤ 0 and ϕ be an analytic self-map of C1/2. Then the operator Cϕ is
bounded on Aa if and only if

ϕ(s) = c0s +
∞∑

n=1

cnn
−s =: c0s + ψ(s)

where c0 is a nonnegative integer and ψ is a Dirichlet series that converges in Cθ for
some θ > 0 and has the following mapping properties:

(a) If c0 = 0, then ψ (C0) ⊂ C1/2.
(b) If c0 ≥ 1, then either ψ ≡ 0 or ψ (C0) ⊂ C0.

3 Complex Symmetry of Linear Combinations of Composition
Operators

In this section, we characterize the linear combinations of composition operators on
Aa which are J -symmetric with respect to the conjugation

(J f )(s) = f (s̄), f ∈ Aa and s ∈ C1/2.

By the similar method of Lemma 3.1 in [29]. We have the folowing result on Aa .

Lemma 3.1 Let ϕ(s) = c0s + ∑∞
k=1 ckk

−s be a c0-symbol. Then the following state-
ments hold:

(i) If c0 = 0, then C∗
ϕ1 = 1 + ∑∞

n=2 n
−c1n−s(log n)−a.

(ii) If c0 ≥ 1, then C∗
ϕ1 = 1.
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Let

ϕ1(s) = c(1)
0 s +

∞∑

k=1

c(1)
k k−s and ϕ2(s) = c(2)

0 s +
∞∑

k=1

c(2)
k k−s

be two c0-symbols and ϕ1 �= ϕ2. Let λ1 and λ2 be two nonzero complex numbers.
The linear combination of composition operators on Aa is defined as

S2 = λ1Cϕ1 + λ2Cϕ2 .

Note that if one of λ1 and λ2 is equal to zero, then S2 returns to the case of a single
composition operator, which has been studied onA0 (see [32]) and the results are also
applicable to the general spaces Aa . For this reason, we assume that λ1 and λ2 are
nonzero.

One of the aims of this section is to characterize J -symmetric operatorS2 onAa .
For this problem we obtain the following result.

Theorem 3.1 Let a ≤ 0. Then the operator S2 is J -symmetric on Aa if and only if
ϕ1(s) = s + c(1)

1 and ϕ2(s) = s + c(2)
1 with Re c(1)

1 ≥ 0 and Re c(2)
1 ≥ 0.

Proof Since ϕ1 and ϕ2 are c0-symbols, both Cϕ1 and Cϕ2 are bounded on Aa , which
means thatS2 is bounded onAa . Now, suppose thatS2 isJ -symmetric onAa . Since
ϕ1 and ϕ2 are c0-symbols, there exist the following four possible cases:

(i) c(1)
0 = 0 and c(2)

0 = 0;

(ii) c(1)
0 = 0 and c(2)

0 ≥ 1;

(iii) c(1)
0 ≥ 1 and c(2)

0 = 0;

(iv) c(1)
0 ≥ 1 and c(2)

0 ≥ 1.

It is easy to see that above four cases can be reduced to the following two cases:

(a) c(1)
0 = 0 or c(2)

0 = 0;

(b) c(1)
0 ≥ 1 and c(2)

0 ≥ 1.

Case (a).Assume that c(1)
0 = 0 or c(2)

0 = 0. From Definition 1.3, it follows thatS2
is J -symmetric on Aa if and only if

λ1Cϕ1 + λ2Cϕ2 = J (λ1Cϕ1 + λ2Cϕ2)
∗J = J (λ1C

∗
ϕ1

+ λ2C
∗
ϕ2

)J . (3.1)

From (3.1) and 1 ∈ Aa , we obtain

(λ1C
∗
ϕ1

+ λ2C
∗
ϕ2

)J 1 = J (λ1Cϕ1 + λ2Cϕ2)1. (3.2)

From the fact J 1 = 1 and (3.2), we have

λ1C
∗
ϕ1
1 + λ2C

∗
ϕ2
1 = λ1 + λ2. (3.3)
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By Lemma 3.1 (i) and since c(1)
0 = 0 or c(2)

0 = 0, we see that the left side of (3.3) is a
nonconstant function but the right side of (3.3) is a constant. This is a contradiction,
which shows that this case does not happen.

Case (b). Assume that c(1)
0 ≥ 1 and c(2)

0 ≥ 1. First, from an elementary calculation
we see that for f , g ∈ Aa , it follows that

〈J f ,J g〉Aa = 〈g, f 〉Aa . (3.4)

Since J (
n−s

) = n−s for all n ∈ N, from (3.1) and (3.4) we have

〈
S2

(
m−s) , n−s 〉

Aa
= 〈

S2
(
n−s) ,m−s 〉

Aa
(3.5)

for eachm, n ∈ N, which shows that thematrix of the operatorS2 in the base {n−s}∞n=1
is symmetric. We also know that in the base {n−s}∞n=1, {S2n−s}∞n=1 can be expressed
as

(
S21,S22−s,S23−s, . . .

) = (
1, 2−s, 3−s, . . .

)

⎛

⎜
⎜
⎜
⎝

a1,1 a1,2 a1,3 · · ·
a2,1 a2,2 a2,3 · · ·
a3,1 a3,2 a3,3 · · ·
...

...
. . .

...

⎞

⎟
⎟
⎟
⎠

. (3.6)

SinceS21 = λ1 + λ2, from some calculations we see that the matrix in (3.6) is equal
to

⎛

⎜
⎜
⎜
⎝

λ1 + λ2 0 0 · · ·
0 a2,2 a2,3 · · ·
0 a3,2 a3,3 · · ·
...

...
. . .

...

⎞

⎟
⎟
⎟
⎠

. (3.7)

So far, it has shown that the matrix in (3.7) is symmetric. On the other hand, we have

S2n
−s = (λ1Cϕ1 + λ2Cϕ2)n

−s = λ1n
−ϕ1(s) + λ2n

−ϕ2(s)

= λ1n
−c(1)

0 s−c(1)
1 n

−
∞∑
k=2

c(1)
k k−s

+ λ2n
−c(2)

0 s−c(2)
1 n

−
∞∑
k=2

c(2)
k k−s

= λ1n
−c(1)

0 s−c(1)
1

∞∏

k=2

⎛

⎜
⎝1 +

∞∑

j=1

(
−c(1)

k log n
) j

j ! k− js

⎞

⎟
⎠

+ λ2n
−c(2)

0 s−c(2)
1

∞∏

k=2

⎛

⎜
⎝1 +

∞∑

j=1

(
−c(2)

k log n
) j

j ! k− js

⎞

⎟
⎠ . (3.8)

Interestingly, Sect. 3 in [15] shows that the Dirichlet series of (λ1Cϕ1 + λ2Cϕ2)n
−s

can be obtained by expanding the brackets in (3.8). From this and (3.7), we obtain
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am,n = 0 for all n > m ≥ 2. Since the matrix in (3.7) is symmetric, we obtain
am,n = 0 for all 2 ≤ n < m. This implies that the matrix is a diagonal matrix

⎛

⎜
⎜
⎜
⎝

λ1 + λ2 0 0 · · ·
0 a2,2 0 · · ·
0 0 a3,3 · · ·
...

...
. . .

...

⎞

⎟
⎟
⎟
⎠

. (3.9)

Since λ1 and λ2 are two nonzero complex numbers, from (3.9) we obtain c(1)
k = c(2)

k =
0 for all k ≥ 2. From this and (3.8), it follows that

S2n
−s = λ1n

−c(1)
0 s−c(1)

1 + λ2n
−c(2)

0 s−c(2)
1 (3.10)

for all n ≥ 2. Since c(1)
0 ≥ 1 and c(2)

0 ≥ 1, we will divide into the following subcases
to discuss.

Subcase (1). If c(1)
0 = 1 and c(2)

0 = 1, then from (3.10) we have

S2n
−s = λ1n

−s−c(1)
1 + λ2n

−s−c(2)
1 = (λ1n

−c(1)
1 + λ2n

−c(2)
1 )n−s (3.11)

for all n ≥ 2. From (3.9) and (3.11), it follows that

an,n = λ1n
−c(1)

1 + λ2n
−c(2)

1

for all n ≥ 2. Thus, we obtain ϕ1(s) = s + c(1)
1 and ϕ2(s) = s + c(2)

1 . Moreover, from

Theorem A, we have Re c(1)
1 ≥ 0 and Re c(2)

1 ≥ 0.

Subcase (2). If c(1)
0 = 1 and c(2)

0 > 1, or c(1)
0 > 1 and c(2)

0 = 1, then from (3.10)
we have

S2n
−s = λ1n

−s−c(1)
1 + λ2n

−c(2)
0 s−c(2)

1 (3.12)

or

S2n
−s = λ1n

−c(1)
0 s−c(1)

1 + λ2n
−s−c(2)

1 (3.13)

for all n ≥ 2. Since λ1 and λ2 are nonzero complex numbers, λ1n−c(1)
1 �= 0 and

λ2n−c(2)
1 �= 0 for all n ≥ 2. From these facts, we see that S2n−s �= an,nn−s for all

n ≥ 2, which shows that this subcase does not happen.
Subcase (3). If c(1)

0 > 1 and c(2)
0 > 1, then from (3.10) we have

S2n
−s = λ1n

−c(1)
0 s−c(1)

1 + λ2n
−c(2)

0 s−c(2)
1 (3.14)
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for all n ≥ 2. Moreover, we see that

n−c(1)
0 s �= n−s and n−c(2)

0 s �= n−s .

Also, we see that if S2n−s = an,nn−s for all n ≥ 2, then the coefficient an,n should

be equal to zero. Thus, the coefficients of n−c(1)
0 s and n−c(2)

0 s in (3.14) must be one of
the following two cases:

λ1n
−c(1)

1 = 0 and λ2n
−c(2)

1 = 0 (3.15)

or

c(1)
0 = c(2)

0 > 1 and λ1n
−c(1)

1 + λ2n
−c(2)

1 = 0 (3.16)

for all n ≥ 2. But, since λ1 and λ2 are nonzero, (3.15) is clearly not true. So, (3.16)
holds for all n ≥ 2. However, if (3.16) holds for all n ≥ 2, then from (3.14) it follows
that λ1 + λ2 = 0 and c(1)

1 = c(2)
1 . This shows that ϕ1 = ϕ2, which is a contradiction

since ϕ1 �= ϕ2.
Combining these cases, we have proven that if the operatorS2 is J -symmetric on

Aa , then ϕ1(s) = s + c(1)
1 and ϕ2(s) = s + c(2)

1 with Re c(1)
1 ≥ 0 and Re c(2)

1 ≥ 0.

Conversely, assume that ϕ1(s) = s + c(1)
1 and ϕ2(s) = s + c(2)

1 with Re c(1)
1 ≥ 0

and Re c(2)
1 ≥ 0. Since span{Kw,a : w ∈ C1/2} is dense in Aa and it is obvious that

J Kw,a = Kw,a , we obtain

S2J Kw,a(s) =
2∑

j=1

λ j Kw,a(ϕ j (s)) (3.17)

for all w, s ∈ C1/2. Using the fact C∗
ϕKw,a = Kϕ(w),a , we have

JS∗
2Kw,a(s) =

2∑

j=1

λ j Kϕ j (w),a(s) (3.18)

for all w, s ∈ C1/2. Hence, from (3.17) and (3.18) we see thatS2 is J -symmetric on
Aa if and only if

2∑

j=1

λ j Kw,a(ϕ j (s)) =
2∑

j=1

λ j Kϕ j (w),a(s). (3.19)

From the assumptions, we see that (3.19) holds by using a tedious computation. This
shows that the operatorS2 is J -symmetric on Aa . From this, the desired conclusion
follows. ��



Complex Symmetry of Linear Combinations of Composition Operators... Page 9 of 17 56

Fig. 1 The images of ranges for functions S(1)
2 3−s and S(2)

2 3−s

Fig. 2 The images of ranges for functions S(3)
2 and S(4)

2 acting on 3−s

Next, we give some examples.

Example 3.1 (a) Let c(1)
1 = 1+2i and c(2)

1 = 3+4i . DefineS(1)
2 = C

s+c(1)
1

+C
s+c(2)

1

and S
(2)
2 = C

s+c(1)
1

− C
s+c(2)

1
. By Theorem 3.1, S(1)

2 and S
(2)
2 are J -symmetric

on Aa .
(b) Let c(1)

1 = 1 + 2i and c(2)
1 = 3 + 4i . Define S

(3)
2 = C

3s+c(1)
1

+ C
2s+c(2)

1
and

S
(4)
2 = C

s+c(1)
1 +2−s + C

s+c(2)
1 +2−s . Also, from Theorem 3.1 we see that S(3)

2 and

S
(4)
2 are not J -symmetric on Aa .

In order to find some interesting phenomena of J -symmetric operators, we give the
images of ranges for functions S(1)

2 3−s ,S(2)
2 3−s ,S(3)

2 3−s andS(4)
2 3−s , respectively

(Figs. 1, 2).
From these images, one can easily find that there indeed exist some distinct differ-

ences between J -symmetric and non J -symmetric operators S2 on Aa .
Theoretically speaking, there may be many conjugations onAa . However, contrary

to expectations, we have the following result, which shows that the complex symmetry
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of the composition operator on Aa is independent of the conjugations. By reading
Theorem 2.5 in [32] and Theorem 3.1, we can easily give the proof and so we omit it.

Lemma 3.2 Let a ≤ 0 and ϕ(s) = c0s + ∑∞
k=1 ckk

−s be a non-constant c0-symbol.
Then the following statements are equivalent:

(a) Cϕ is complex symmetric on Aa.
(b) Cϕ is J -symmetric on Aa.
(c) ϕ(s) = s + c1 with �c1 ≥ 0.

From Theorem 3.1 and Lemma 3.2, we have the next result.

Corollary 3.1 Let a ≤ 0 and ϕ j be a non-constant c0-symbol. Then the following
statements are equivalent:

(a) S2 is J -symmetric on Aa.
(b) Cϕ j is complex symmetric on Aa for each j ∈ {1, 2}.
(c) Cϕ j is J -symmetric on Aa for each j ∈ {1, 2}.
(d) ϕ1(s) = s + c(1)

1 and ϕ2(s) = s + c(2)
1 with Re c(1)

1 ≥ 0 and Re c(2)
1 ≥ 0.

Remark 3.1 Let |μ| = 1 and {σn} be a sequence of real numbers. From [33], we obtain
the following conjugation on Aa

(Jμ,σ f )(s) = μ

∞∑

n=1

ann−s̄−iσn ,

for any f (s) = ∑∞
n=1 ann

−s ∈ Aa . From Corollary 3.1, we obtain that S2 is Jμ,σ -

symmetric onAa if and only if ϕ1(s) = s+c(1)
1 and ϕ2(s) = s+c(2)

1 with Re c(1)
1 ≥ 0

and Re c(2)
1 ≥ 0. This corollary is very theoretical significance.

Now, we extend S2 to the more complicated case. To this end, let

ϕ1(s) = c(1)
0 s +

∞∑

k=1

c(1)
k k−s, ϕ2(s) = c(2)

0 s +
∞∑

k=1

c(2)
k k−s, . . . , ϕN (s) = c(N )

0 s

+
∞∑

k=1

c(N )
k k−s

be c0-symbols and ϕi �= ϕk whenever i �= k for i, k ∈ {1, 2, . . . , N }. Define

SN =
N∑

j=1

λ jCϕ j

as the linear combination of the operators Cϕ j on Aa , where λ1, . . . , λN ∈ C\{0}.
Since each operator Cϕ j is bounded on Aa , the operator SN is also bounded on Aa .
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Theorem 3.2 Let a ≤ 0. Then the operator SN is J -symmetric on Aa if and only if
ϕ j (s) = s + c( j)

1 with Re c( j)
1 ≥ 0 for each j ∈ {1, 2, . . . , N }.

Proof Suppose that the operator SN is J -symmetric on Aa . From this and the fact
1 ∈ Aa , we have

(λ1C
∗
ϕ1

+ λ2C
∗
ϕ2

+ · · · + λNC
∗
ϕN

)J 1 = J (λ1Cϕ1 + λ2Cϕ2 + · · · + λNCϕN )1.
(3.20)

Similarly, we divide into two cases to consider:

(i) There is at least a zero in c(1)
0 , c(2)

0 , . . ., c(N )
0 ;

(ii) c(1)
0 ≥ 1, c(2)

0 ≥ 1, . . ., and c(N )
0 ≥ 1.

Case (i). Assume that there is at least a zero in c(1)
0 , c(2)

0 , . . ., c(N )
0 . From the fact

J 1 = 1 and (3.20), we have

λ1C
∗
ϕ1
1 + λ2C

∗
ϕ2
1 + · · · + λNC

∗
ϕN

1 = λ1 + λ2 + · · · + λN . (3.21)

From Lemma 3.1, we see that this case is obviously incorrect.
Case (ii). Assume that c(1)

0 ≥ 1, c(2)
0 ≥ 1, . . ., and c(N )

0 ≥ 1. Since J (
n−s

) = n−s

for all n ≥ 1, from (3.20) and (3.4) we have

〈
SN

(
m−s) , n−s 〉

Aa
= 〈

SN
(
n−s) ,m−s 〉

Aa
(3.22)

for each m, n ≥ 1. Then, there is a symmetric matrix of the operatorSN with respect
to the base {n−s}∞n=1. On the other hand, sinceSN1 = λ1 +λ2 + . . .+λN , the matrix
of the operator SN in this base is

⎛

⎜
⎜
⎜
⎝

λ1 + λ2 + . . . + λN 0 0 · · ·
0 a2,2 a2,3 · · ·
0 a3,2 a3,3 · · ·
...

...
. . .

...

⎞

⎟
⎟
⎟
⎠

. (3.23)

But, we also have

SNn
−s = λ1n

−ϕ1(s) + λ2n
−ϕ2(s) + · · · + λNn

−ϕN (s)

= λ1n
−c(1)

0 s−c(1)
1 n

−
∞∑
k=2

c(1)
k k−s

+ λ2n
−c(2)

0 s−c(2)
1 n

−
∞∑
k=2

c(2)
k k−s

+ · · · + λNn
−c(N )

0 s−c(N )
1 n

−
∞∑
k=2

c(N )
k k−s

= λ1n
−c(1)

0 s−c(1)
1

∞∏

k=2

⎛

⎜
⎝1 +

+∞∑

j=1

(
−c(1)

k log n
) j

j ! k− js

⎞

⎟
⎠
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+ λ2n
−c(2)

0 s−c(2)
1

∞∏

k=2

⎛

⎜
⎝1 +

+∞∑

j=1

(
−c(2)

k log n
) j

j ! k− js

⎞

⎟
⎠

+ · · · + λNn
−c(N )

0 s−c(N )
1

∞∏

k=2

⎛

⎜
⎝1 +

+∞∑

j=1

(
−c(N )

k log n
) j

j ! k− js

⎞

⎟
⎠ . (3.24)

By expanding the brackets in (3.24), we obtain am,n = 0 for all n > m ≥ 2. Since
the matrix (3.23) is symmetric by the previous argument, we obtain am,n = 0 for all
2 ≤ n < m. This implies that the matrix (3.23) is a diagonal matrix

⎛

⎜
⎜
⎜
⎝

λ1 + λ2 + . . . + λN 0 0 · · ·
0 a2,2 0 · · ·
0 0 a3,3 · · ·
...

...
. . .

...

⎞

⎟
⎟
⎟
⎠

. (3.25)

Then, we have c(1)
k = c(2)

k = . . . = c(N )
k = 0 for all k ≥ 2. By this and (3.24), we

have

SNn
−s = λ1n

−c(1)
0 s−c(1)

1 + λ2n
−c(2)

0 s−c(2)
1 + . . . + λNn

−c(N )
0 s−c(N )

1 (3.26)

for all n ≥ 2. Similar to the proof of Theorem 3.1, here we also will divide into the
following subcases:

Subcase (1).Assume that c(1)
0 = c(2)

0 = · · · = c(N )
0 = 1. Then from (3.26) we have

SNn
−s = (λ1n

−c(1)
1 + λ2n

−c(2)
1 + · · · + λNn

c(N )
1 )n−s (3.27)

for all n ≥ 2. From (3.25) and (3.27), it follows that an,n = λ1n−c(1)
1 + λ2n−c(2)

1 +
· · · + λNnc

(N )
1 for all n ≥ 2. Thus, we obtain that SN is J -symmetric such that

ϕ1(s) = s + c(1)
1 , ϕ2(s) = s + c(2)

1 , . . ., ϕN (s) = s + c(N )
1 . Moreover, from Theorem

A, we have Re c(1)
1 ≥ 0, Re c(2)

1 ≥ 0 , . . ., Re c(N )
1 ≥ 0.

Subcase (2). Assume that there is only one c( j)
0 > 1 and c(i)

0 = 1, where j ∈
{1, 2, . . . , N } and i ∈ {1, 2, . . . , N } \ { j}. From (3.26), we have

SNn
−s = λ1n

−s−c(1)
1 + · · · + λ j n

−c( j)
0 s−c( j)

1 + · · · + λNn
−s−c(N )

1 (3.28)

for all n ≥ 2. Since λ1, λ2, . . . , λN ∈ C\{0}, and λ j n−c( j)
1 �= 0 for all n ≥ 2 and

j ∈ {1, 2, . . . , N }, then we have that SNn−s �= an,nn−s for all n ≥ 2. Clearly, this
case does not happen.
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Subcase (3). Assume that c( j)
0 > 1 and j ∈ 	, where 	 contains at least two or

more elements of {1, 2, . . . , N }. Then from (3.26) we have

SNn
−s =

∑

j∈	

λ j n
−c( j)

0 s−c( j)
1 +

∑

i∈{1,2,...,N }\	
λi n

−s−c(i)
1 (3.29)

for all n ≥ 2. Moreover, we know that

n−c( j)
0 s �= n−s

for every j ∈ 	. We see that if SNn−s = an,nn−s for all n ≥ 2, then an,n = 0.

But, because λ1, λ2, . . . , λN ∈ C\{0} and λ j n−c( j)
1 �= 0 for all n ≥ 2 and j ∈

{1, 2, . . . , N }, from (3.29) we have that c(i)
0 = c( j)

0 > 1 for each i, j ∈ 	 and

∑

j∈	

λ j n
−c( j)

1 = 0

for all n ≥ 2. This shows that

∑

j∈	

λ j = 0

and c(i)
1 = c( j)

1 for each i, j ∈ 	. From this, it follows that ϕi = ϕ j for each
i, j ∈ {1, 2, . . . , N }, which is a contradiction.

Combining the above discussions, we prove that if the operatorSN isJ -symmetric
on Aa , then ϕ j (s) = s + c( j)

1 with Re c( j)
1 ≥ 0 for each j ∈ {1, 2, . . . , N }.

Conversely, assume that ϕ j (s) = s + c( j)
1 with Re c( j)

1 ≥ 0, where j ∈
{1, 2, . . . , N }. By Lemma 3.2, each Cϕ j , j ∈ {1, 2, . . . , N } is J -symmetric on Aa .
This shows that the operator SN is J -symmetric on Aa , and we complete the proof.

��
By Lemma 3.2 and Theorem 3.2, the following result is true.

Corollary 3.2 Let a ≤ 0 and ϕ j be a non-constant c0-symbol. Then the following
statements are equivalent:

(a) SN is J -symmetric on Aa.
(b) Cϕ j is complex symmetric on Aa for all j ∈ {1, 2, . . . , N }.
(c) Cϕ j is J -symmetric on Aa for all j ∈ {1, 2, . . . , N }.
(d) ϕ j (s) = s + c( j)

1 with Re c( j)
1 ≥ 0, for all j ∈ {1, 2, . . . , N }.

Finally, we present some applications of J -symmetric linear combinations of
composition operators. Recall that each complex symmetric composition operator
is normal on Aa (see Theorem B in [32]) and this result is also applicable to Aa .
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Lemma 3.3 Let a ≤ 0 and ϕ be a non-constant c0-symbol. Then the operator Cϕ is
complex symmetric on Aa if and only if Cϕ is normal on Aa.

Theorem 3.3 Let a ≤ 0 and ϕ j be a non-constant c0-symbol. Then the operator
SN is complex symmetric on Aa if and only if each Cϕ j is normal on Aa for each
j ∈ {1, 2, . . . , N }. Furthermore, SN is also normal on Aa.

Proof The proof is easily obtained from Corollary 3.2 and Lemma 3.3, so we omit it.
��

Next, we characterize the self-adjoint composition operators.

Lemma 3.4 Let a ≤ 0. Then the operator Cϕ is self-adjoint on Aa if and only if
ϕ(s) = s + c, where c is a nonnegative real number.

Proof Assume that the operator Cϕ is self-adjoint on Aa . Since Cϕ is self-adjoint on
Aa , it is normal. From Lemma 3.2, we have that ϕ(s) = s + c1, where �c1 ≥ 0.
Then, on Aa it follows that C∗

ϕ = Cϕ̃ , where ϕ̃(s) = s + c̄1 and c̄1 is the complex
conjugation of c1. Since n−s ∈ Aa for each n ∈ N, we have

Cϕn
−s = C∗

ϕn
−s = Cϕ̃n

−s,

which implies that n−c1 = n−c̄1 . From this and Lemma 4.2 in [11], we obtain c1 = c̄1,
that is, c1 is a nonnegative real number. The converse is trivial. The proof is complete.

��
Let ϕ1 �= ϕ2. The next result is about the difference D2 = Cϕ1 − Cϕ2 on Aa .

Theorem 3.4 Let a ≤ 0. Then D2 is self-adjoint on Aa if and only if both Cϕ1 and
Cϕ2 are self-adjoint on Aa.

Proof Assume that D2 is self-adjoint on Aa . Obviously, D2 is normal on Aa . By
Theorem 3.3, ϕ1(s) = s + c(1)

1 and ϕ2(s) = s + c(2)
1 . From the proof of Lemma 3.4,

we have

(Cϕ1 − Cϕ2)n
−s = (Cϕ̃1 − Cϕ̃2)n

−s,

where ϕ̃1(s) = s + c̄(1)
1 and ϕ̃2(s) = s + c̄(2)

1 . That is,

n−c(1)
1 − n−c(2)

1 = n−c̄(1)
1 − n−c̄(2)

1 . (3.30)

Let c(1)
1 = σ1 + i t1 and c(2)

1 = σ2 + i t2. Replacing them by the expression of (3.30),
we obtain

n−σ1−i t1 − n−σ2−i t2 = n−σ1+i t1 − n−σ2+i t2 . (3.31)
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From (3.31), we obtain

n−σ2(nit2 − n−i t2) = n−σ1(nit1 − n−i t1). (3.32)

By taking the natural logarithm in (3.32), we have

e−σ2 log n(eit2 log n − e−i t2 log n) = e−σ1 log n(eit1 log n − e−i t1 log n). (3.33)

From (3.33), we have

2e−σ2 log n sin(t2 log n)i = 2e−σ1 log n sin(t1 log n)i . (3.34)

Assume that σ1 �= σ2. Then, from (3.34) we have

t1 log n = k1π, t2 log n = k2π, k1, k2 ∈ Z. (3.35)

If t1 or t2 does not equal zero in (3.35), then log 3/ log 2 ∈ Q. However, this is not
true. So, both t1 and t2 must be equal to zero. As a result of this, from Lemma 3.4
it follows that both Cϕ1 and Cϕ2 are self-adjoint on Aa . The reverse is obvious. The
proof is finished. ��

Remark 3.2 If we define the operator S2 = aCϕ1 + bCϕ2 , then the operator D2 is
obtained by choosing a = 1 and b = −1. At this moment, a and b are two special
real numbers. Similarly, we can prove that if a and b are general real numbers, then
the operator S2 is self-adjoint on Aa if and only if both Cϕ1 and Cϕ2 are self-adjoint
on Aa .
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