
Complex Analysis and Operator Theory (2023) 17:124
https://doi.org/10.1007/s11785-023-01433-w

Complex Analysis
and Operator Theory

Stepanov andWeyl Classes of c-Almost Periodic Type
Functions

Hadjer Ounis1 · Juan Matías Sepulcre2

Received: 8 July 2023 / Accepted: 30 September 2023 / Published online: 18 October 2023
© The Author(s) 2023

Abstract
As an extension of some classes of generalized almost periodic functions, in this
paper we develop the notion of c-almost periodicity in the sense of Stepanov and
Weyl approaches. In fact, we extend some basic results of this theory which were
already demonstrated for the standard cases. In particular, we prove that every c-almost
periodic function in the sense of Stepanov approach (in the sense of equi-Weyl orWeyl
approaches, respectively) is also cm-almost periodic in the sense of Stepanov approach
(in the sense of equi-Weyl orWeyl approaches, respectively) for each non-zero integer
number m. This study is performed for both representative cases of functions defined
on the real axis and with values in a Banach space and the complex functions defined
on vertical strips in the complex plane.
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1 Introduction

The theory of almost periodic functions, mainly created during the 1920s by the
Danish mathematician H. Bohr (1887–1951), is a powerful tool to study a wide class
of trigonometric series of the general type and even exponential series (in this context,
we can cite among others the papers [4, 5, 7, 9, 24]). If (X , ‖·‖) is an arbitrary Banach
space and f : R → X is a function of an unrestricted real variable x , the notion of
almost periodicity in the sense of Bohr involves the fact that f (x)must be continuous,
and for every ε > 0 there corresponds a number l = l(ε) > 0 such that any interval of
length l contains at least a number τ satisfying ‖ f (x + τ) − f (x)‖ ≤ ε for all x ∈ R.
We will denote as AP(R, X) the space of almost periodic functions in the sense of
this definition (Bohr’s condition). Shortly after its development, this theory acquired
numerous applications to various areas of mathematics, from harmonic analysis to
differential equations.

In the course of time, outstanding mathematicians were developing several variants
and extensions of Bohr’s concept (see for example [2–5, 8, 10, 15, 16, 22, 23]).
In particular, the first generalizations of the notion of almost periodicity in Bohr’s
sense were given by W. Stepanov (1889–1950) [25], who succeeded in removing the
continuity restrictions and characterize this new class in terms of mean values over
integrals of fixed length. In this sense, given 1 ≤ p < ∞, it is not difficult to prove
that

‖ f ‖S p := sup
x∈R

(∫ x+1

x
‖ f (t)‖p dt

)1/p

defines a norm on the space of locally p-integrable maps from R into X . This norm
leads to the spaces S p(R, X), 1 ≤ p < ∞, containing the primary space AP(R, X),
which can also be characterized through a Bohr-type definition in the sense that a
locally integrable map f : R → X is in S p(R, X) if and only if for every ε > 0 there
corresponds a relatively dense set of real numbers {τ } satisfying ‖ f (t+τ)− f (t)‖S p ≤
ε (see [4, pp. 79,88]).

A generalization of these functions was given by H.Weyl (1885–1955) through the
spaces which we will denote as e-W p(R, X) ⊃ S p(R, X), 1 ≤ p < ∞. Specifically,
the functions in e-W p(R, X) are obtained through locally integrable maps f from R

into X such that for every ε > 0 there corresponds a relatively dense set {τ } of real
numbers and a number L0 > 0 satisfying ‖ f (t + τ)− f (t)‖S p

L0
≤ ε ∀τ ∈ {τ }, where

‖ f ‖S p
L0

:= sup
x∈R

(
1

L0

∫ x+L0

x
‖ f (t)‖p dt

)1/p

.

(See for example [4, pp. 82,88] or [2, Definition 4.1 and p. 140] where the functions
in this space are called equi-almost periodic in the sense of Weyl).

On the other hand, given c ∈ C\{0}, it is said that a continuous function f : R → X
is c-periodic if there exists w > 0 such that f (x + w) = c f (x) for all x ∈ R. This
concept, which was proposed in [1], extends the more known notions of periodicity
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(with c = 1), anti-periodicity (with c = −1) and Bloch periodicity (with c depending
on w in the form c = eikw, k ∈ R), and it has practical relevance for engineering
science (especially condensed matter physics).

In connection with the notions of almost periodicity and c-periodicty, Khalladi
et al. [12] have recently considered the following notion, which is called c-almost
periodicity: a continuous function f : R → X is said to be c-almost periodic if for
every ε > 0 there corresponds a number l = l(ε) > 0 such that every open interval
of length l contains at least a number τ satisfying ‖ f (x + τ) − c f (x)‖ ≤ ε for all
x . We will denote as APc(R, X) the space of c-almost periodic functions in the sense
of this definition. Note that the case c = 1 leads to the space AP(R, X). Also, the
case c = −1 leads to the space of almost anti-periodic functions. Note also that a
c-periodic function is not necessarily c-almost periodic ( f (x) = 2−x is an example
of a function which is 1

2 -periodic but not
1
2 -almost periodic). See also [11, 13, 17, 18]

for more information on this type of spaces of functions defined on the real line.
Furthermore, the concept of c-almost periodicity (and hence almost periodicity)

can also be extended to the important case of complex functions defined on arbitrary
vertical strips of the complex plane (see [20, Definition 1]). Let f : U → C be a
continuous function in a strip of the form U = {z ∈ C : α < Re z < β}, with
−∞ ≤ α < β ≤ ∞. Then f is called c-almost periodic in U if, for every ε > 0 and
reduced strip U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U (with α < α1 < β1 < β), there
corresponds a number l = l(ε) > 0 such that any open interval of length l contains
at least a point τ satisfying | f (z + iτ) − c f (z)| ≤ ε for all z ∈ U1. We will denote
as APc(U ,C) the space of c-almost periodic functions in the sense of this definition.
In particular, the case c = 1 corresponds with the set AP(U ,C) of almost periodic
functions defined onU , which was theorized in [6] and has been widely studied in the
literature as an extension of the real case (see for example Chapter 3 of the books [4,
9] and the references [7, 21]).

In this context, Sects. 2 and 4 of this paper are focused on the notions of c-
almost periodicity in the sense of Stepanov and Weyl approaches, which provide
the sets of functions S p

c (R, X), e-W p
c (R, X),W p

c (R, X), S p
c (U ,C), e-W p

c (U ,C) and
W p

c (U ,C), and the corresponding concepts of boundedness, uniform continuity and
uniform convergence which will be used later. The main definitions for the real case
are based on [19, Section 2.9] and [14]. In comparison with the primary work pre-
viously made for the spaces APc(R, X) and APc(U ,C), Sects. 3 and 5 develop the
main properties of the sets of S p

c , e-W
p
c and W p

c -almost periodic functions. In partic-
ular, Propositions 6 and 15 prove that every c-almost periodic function in the sense of
Stepanov approach (in the sense of equi-Weyl or Weyl approaches, resp.) is also cm-
almost periodic in the sense of Stepanov approach (in the sense of equi-Weyl or Weyl
approaches, resp.) for eachm ∈ Z\{0}. Furthermore, we show some conditions under
which the sets of c-almost periodic functions in the sense of Stepanov, equi-Weyl or
Weyl approaches are included in the respective spaces of almost periodic functions in
the sense of Stepanov, equi-Weyl or Weyl approaches (see Propositions 8, 9, 17 and
18).

This study is performed for both representative cases of functions of the type f :
R → X and f : U → C. Although the demonstrations of the properties for the case of
the complex functions defined on vertical strips are similar to the case of the functions
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defined on the real line and with values in a Banach space, we include them for the
sake of completeness.

2 Main Definitions for the Case of Functions from the Real Line to a
Banach Space

We will devote this section to introduce the spaces of c-almost periodic functions in
the sense of Stepanov andWeyl approaches for the case of mappings defined onRwith
values in a generic Banach space X , whose norm is indicated by ‖·‖. These sets, which
were introduced by Khalladi et al. (see [14]), are natural generalizations of the space
of c-almost periodic functions APc(R, X) which was described in the introduction.

Given 1 ≤ p < ∞, we will also denote as L p
loc(R, X) the set of locally p-

integrable functions, i.e. Lebesgue measurable functions f : R → X such that∫
K

‖ f (x)‖p dx < ∞ for all compact subsets K of R. If f ∈ L p
loc(R, X), it is clear

that the functions (c f )(x) := c f (x) (with c ∈ C), x ∈ R, and f α(x) := f (x + α)

(with α ∈ R), x ∈ R, are also in L p
loc(R, X). Furthermore, by Minkowski inequality,

the sum of functions in L p
loc(R, X) is also in L p

loc(R, X). We will also use the symbols
lim and lim to denote the upper limit and the lower limit, respectively.

Definition 1 (c-almost periodicity in the sense of Stepanov and Weyl approaches) Let
1 ≤ p < ∞, c ∈ C\ {0} and f ∈ L p

loc(R, X).

(a) We will say that f is Stepanov-(p, c)-almost periodic (we will also say that it is
a S p

c -almost periodic function) if for every ε > 0 there corresponds a relatively
dense set {τ } of real numbers (i.e. there exists l > 0 such that any interval of length
l contains at least a point τ ) whose elements satisfy

sup
x∈R

(∫ x+1

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.

Fixed p, c and ε, the elements of the set {τ } satisfying the above condition are
called S p

c -translation numbers belonging to ε (or simply (ε, c)-Stepanov transla-
tion numbers of f (x)). We will denote as S p

c (R, X) the set of c-almost periodic
functions in the sense of Stepanov approach.

(b) We will say that f is equi-Weyl-(p, c)-almost periodic (we will also say that it is
an e-W p

c -almost periodic function) if for every ε > 0 we can find a real number
L0 = L0(ε) and a relatively dense set {τ } of real numbers (i.e. there exists l > 0
such that any interval of length l contains at least a point τ ) satisfying

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.

Fixed p, c and ε, the elements of the set {τ } satisfying the above condition are
called e-W p

c -translation numbers belonging to ε and associated with the value L0
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(or simply (ε, c)-equi-Weyl translation numbers of f (x) associated with the value
L0). We will denote as e-W p

c (R, X) the set of c-almost periodic functions in the
sense of equi-Weyl.

(c) We will say that f is Weyl-(p, c)-almost periodic (we will also say that it is a
W p

c -almost periodic function) if for every ε > 0 we can find a relatively dense set
{τ } of real numbers satisfying

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.

Fixed p, c and ε, the elements of the set {τ } satisfying the above condition are called
W p

c -translation numbers belonging to ε (or simply (ε, c)-Weyl translation numbers
of f (x)). We will denote as W p

c (R, X) the set of c-almost periodic functions in
the sense of Weyl approach.

For the case c = 1, the set of S p
1 , e-W

p
1 andW p

1 -almost periodic functions (with 1 ≤
p < ∞) will be also denoted respectively as S p(R, X), e-W p(R, X) and W p(R, X).

It is easy to see that the sets S p
c (R, X), e-W p

c (R, X) andW p
c (R, X) (with 1 ≤ p <

∞) are generalizations of the class of c-almost periodic functions in the sense of Bohr
(see also [2, Table 2] for the case c = 1).

Remark 1 (Extensions of the primary notion of c-almost periodicity) If 1 ≤ p < ∞
and c ∈ C \ {0}, then

APc(R, X) ⊂ S p
c (R, X) ⊂ e-W p

c (R, X) ⊂ W p
c (R, X).

Indeed, let f ∈ APc(R, X) and fix ε > 0. This means that there corresponds a number
l = l(ε) > 0 such that any open interval of length l contains at least a real number τ

satisfying

‖ f (x + τ) − c f (x)‖ ≤ ε for all x ∈ R.

Therefore, it is also accomplished that

sup
x∈R

(∫ x+1

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ sup
x∈R

(∫ x+1

x
ε p dt

) 1
p

≤ ε,

which yields that f is in S p
c (R, X). Furthermore, the inclusion S p

c (R, X) ⊂
e-W p

c (R, X) is direct by taking L0 = 1 in the definition of equi-Weyl-(p, c)-almost
periodicity. Finally, it is clear that any equi-Weyl-(p, c)-almost periodic function is
also Weyl-(p, c)-almost periodic.

Example 1 (Stepanov-(p, c)-almost periodicity does not yield c-almost periodicity)
Fix 1 ≤ p < ∞ and c ∈ C \ {0}. Consider the function

f (x) = sin

(
1

2 + cos x + cos(
√
2x)

)
, x ∈ R,



124 Page 6 of 45 H. Ounis, J. M. Sepulcre

which is clearly in L p
loc(R,R). It is straightforward that the function ϕ(x) := 2 +

cos x + cos(
√
2x) is greater than 0 for all x ∈ R (otherwise, ϕ(x0) = 0 would yield

cos x0 = −1 and cos(
√
2x0) = −1, which is impossible because the numbers 1 and√

2 are incommensurable). In fact, by Kronecker’s theorem, for all δ > 0 there exists
t0 ∈ R satisfying the inequalities |t0−π | < δ and |t0

√
2−π | < δ (mod. 2π ). Therefore

infx∈R ϕ(x) = 0 and the function 1
ϕ(x) is unbounded. Also by continuity (the range of

ϕ is (0, 4]) and Kronecker’s theorem, fixed n ∈ N, there exists tn such that 1
ϕ(tn)

= nπ

and t ′n such that 1
ϕ(t ′n)

= (
n + 1

2

)
π , and we can choose them so that |tn−t ′n| → 0 when

n goes to ∞. Since | f (tn) − f (t ′n)| = 1, we get that f is not uniformly continuous,
which yields that f is not a c-almost periodic function. However, it is Stepanov-(p, c)-
almost periodic for c = 1. Indeed, consider the function

fn(x) := sin

(
1

2 + max{cos x,−1 + 1
n } + cos(

√
2x)

)
, x ∈ R.

Since ϕn(x) := 2 + max{cos x,−1 + 1
n } + cos(

√
2x), x ∈ R, is bounded below by a

positive constant, we have that fn is almost periodic for each n ∈ N (see particularly [9,
Theorem 1.7]). Hence fn is also Stepanov-(p, 1)-almost periodic. Moreover, ϕn(x) =
ϕ(x) when max{cos x,−1 + 1

n } = cos x , which yields that

∫ 2π

0
| fn(x + t) − f (x + t)|p dt ≤ 2pμ(En,x ),

where μ is the Lebesgue measure on R and En,x is the set {τ ∈ [x, x + 2π ] :
max{cos τ,−1 + 1

n } = −1 + 1
n }. Thus μ(En,x ) = μ(En,0) = μ([π − δn, π + δn])

with cos δn = 1 − 1
n and δn → 0 when n goes to ∞. It follows that

lim
n→∞

(∫ x+1

x
| fn(t) − f (t)|p

)
dt = 0

uniformly with respect to x ∈ R. This means that for every ε > 0 there is n0 ∈ N

such that

sup
x∈R

(∫ x+1

x
| fn(t) − f (t)|p dt

) 1
p

≤ ε for each n ≥ n0.

Hence { fn(x)}n≥1 is S
p-uniformly convergent to f . We deduce from Proposition 7,

point v), that f is in S p
1 (R,R).

Example 2 (Equi-Weyl-(p, c)-almost periodicity does not yield Stepanov-(p, c)-
almost periodicity) Fix 1 ≤ p < ∞ and c ∈ C \ {0}. Consider the function

f (x) =
{

1
c if x ∈ (0, 1)

0 otherwise
,
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which is clearly in L p
loc(R,R). Given ε > 0, suppose the existence of a relatively

dense set {τ } of real numbers whose elements satisfy

sup
x∈R

(∫ x+1

x
| f (t + τ) − c f (t)|p dt

) 1
p

≤ ε. (1)

However, by taking 0 < ε < 1, x0 = 0 and τ > 1, we have

∫ x0+1

x0
| f (t + τ) − c f (t)|p dt =

∫ x0+1

x0

∣∣∣∣0 − c · 1
c

∣∣∣∣
p

dt = 1 > ε,

which means that (1) is not true and hence f is not Stepanov-(p, c)-almost periodic.
Furthermore, it can be proved that f is equi-Weyl-(p, c)-almost periodic. Indeed, for
every τ, x ∈ R and L0 > 1, we have

1

L0

∫ x+L0

x
| f (t + τ) − c f (t)|p dt

≤ 1

L0

(∫ x+L0

x
| f (t + τ)|p dt + |c|

∫ x+L0

x
| f (t)|p dt

)

= 1

L0

(∫ x+τ+L0

x+τ

| f (t)|p dt + |c|
∫ x+L0

x
| f (t)|p dt

)

≤ 1

L0

(
1

|c|p + |c| 1

|c|p
)

= 1

L0

1

|c|p (1 + |c|).

Then

sup
x∈R

(
L−1
0

∫ x+L0

x
| f (t + τ) − c f (t)|p dt

) 1
p

≤ 1

L
1
p
0

1

|c| (1 + |c|) 1
p .

Consequently, for every ε > 0 there exists L0 > 1 such that

sup
x∈R

(
L−1
0

∫ x+L0

x
| f (t + τ) − c f (t)|p dt

) 1
p

≤ ε

for every τ ∈ R.

Example 3 (Weyl-(p, c)-almost periodicity does not yield equi-Weyl-(p, c)-almost
periodicity) Fix 1 ≤ p < ∞ and c ∈ C \ {0}. Consider the function

f (x) =
{

1
c if x ≤ 0

0 if x > 0
,
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which is clearly in L p
loc(R,R). Given ε > 0, suppose the existence of L0 = L0(ε)

and a relatively dense set {τ } of real numbers (which requires arbitrarily large values
of τ ’s) satisfying

sup
x∈R

(
L−1
0

∫ x+L0

x
| f (t + τ) − c f (t)|p dt

) 1
p

≤ ε. (2)

However, take a negative real number x0 so that x0 + L0 < 0 and note that for large
values of τ > 0 it is accomplished that

(
L−1
0

∫ x0+L0

x0
| f (t + τ) − c f (t)|p dt

) 1
p

=
(
L−1
0

∫ x0+L0

x0

∣∣∣∣0 − c
1

c

∣∣∣∣
p

dt

) 1
p

= 1.

Hence, if 0 < ε < 1, it is clear that (2) is not true, which means that f is not
equi-Weyl-(p, c)-almost periodic. Furthermore, it can be proved that f isWeyl-(p, 1)-
almost periodic (see the reasoning for the Heaviside function in [19, Example 2.5.34]).
Indeed, for every τ ∈ R, we get

sup
x∈R

(∫ x+L

x
| f (t + τ) − f (t)|p dt

) 1
p

= |τ | 1p

for every L > |τ | in virtue of the fact that t and t + τ , t ∈ R, can be of distinct sign in
an interval of at most length |τ |. Consequently, for every ε > 0 we can find a relatively
dense set {τ } of real numbers satisfying

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
| f (t + τ) − f (t)|p dt

) 1
p

= lim
L→∞

1

L1/p |τ | 1p ≤ ε.

Remark 2 (On the concept of c-almost periodicity in the sense of Stepanov approach)
Actually, given 1 ≤ p < ∞ and c ∈ C\{0}, the concept of c-almost periodicity in the
sense of Stepanov approach could have defined in an analogous manner by including
a positive constant L for which

sup
x∈R

(
1

L

∫ x+L

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.

However, we write L = 1 in our Definition 1.a) because it is easy to prove that all
the L-Stepanov norms are equivalent, i.e. for every L1, L2 > 0 there exist k1, k2 > 0
such that

k1‖ f ‖S p
L1

≤ ‖ f ‖S p
L2

≤ k2‖ f ‖S p
L1

,

where ‖ f ‖S p
L

:= sup
x∈R

(
1
L

∫ x+L
x ‖ f (t)‖p dt

) 1
p
(see also [2, p. 132]).
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Remark 3 (On the notions of c-almost periodicity in the sense of Weyl approach) We
note that the difference between S p

c and e-W p
c -almost periodic functions is that in the

latter case the value L0 varies with ε.
Note also that Definition 1.b) is analogous to that of [4, p. 77] or [5, p. 226] for

the case c = 1. Equivalently, we can state that f ∈ e-W p
c (R, X) if for every ε > 0

we can find a real number L0 = L0(ε) and a relatively dense set {τ } of real numbers
satisfying

sup
x∈R

(
L−1

∫ x+L

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε ∀L ≥ L0.

This is the version which is analogous to that of [2, Definition 4.1] for the case c = 1.
The equivalence between these two definitions is justified by the fact that for every
L0, L1 > 0 with L0 < L1 we have that

‖ f ‖S p
L1

≤
(
1 + L0

L1

) 1
p ‖ f ‖S p

L0
. (3)

Indeed, if L1 > L0 > 0 take m ∈ N such that (m − 1)L0 < L1 < mL0. Then

‖ f ‖S p
L1

= sup
x∈R

(
1

L1

∫ x+L1

x
‖ f (t)‖p dt

) 1
p

≤ sup
x∈R

(
mL0

L1

1

mL0

∫ x+mL0

x
‖ f (t)‖p dt

) 1
p

=
(
mL0

L1

) 1
p ‖ f ‖S p

mL0
=

(
(m − 1)L0 + L0

L1

) 1
p ‖ f ‖S p

mL0

<

(
L1 + L0

L1

) 1
p ‖ f ‖S p

mL0
≤

(
1 + L0

L1

) 1
p ‖ f ‖S p

L0
,

where the last inequality is given by the fact that

1

mL0

∫ x+mL0

x
‖ f (t)‖p dt

= 1

mL0

(∫ x+L0

x
‖ f (t)‖p dt +

∫ x+2L0

x+L0

‖ f (t)‖p dt + . . . +
∫ x+mL0

x+(m−1)L0

‖ f (t)‖p dt

)

≤ m

mL0
sup
x∈R

(∫ x+L0

x
‖ f (t)‖p dt

)
= ‖ f ‖p

S p
L0

,

which yields that ‖ f ‖p
S p
mL0

≤ ‖ f ‖p
S p
L0

.

Note that inequality (3) can also be used to prove the existence of the limit
limL→∞ ‖ f ‖S p

L
because, fixed an arbitrary L0, it is deduced from there that
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limL→∞‖ f ‖S p
L

≤ ‖ f ‖S p
L0
, which yields limL→∞‖ f ‖S p

L
≤ limL0→∞‖ f ‖S p

L0
=

limL→∞‖ f ‖S p
L
and, therefore, the existence of the limit.

In this way, fixed ε > 0, if f satisfies our Definition 1.b), then there exists L0 = L0(
ε
2 )

and a relatively dense set {τ } of real numbers such that ‖ f τ − c f ‖S p
L0

≤ ε
2 , where

f τ (x) := f (x + τ) for all x ∈ R. This yields, by virtue of (3), that ‖ f τ − c f ‖S p
L1

≤(
1 + L0

L1

)
ε
2 for any L1 > L0. Therefore, if we take L1 arbitrarily large (L1 → ∞) it

is clear that ‖ f τ − c f ‖S p
L

≤ ε for every L ≥ L ′
1 for a certain L ′

1 sufficiently large,
which means that f satisfies this alternative definition. The converse is trivial.

With respect to the Stepanov, equi-Weyl orWeyl metrics (denoted as Sp, e-W p and
W p, respectively), we next define the notions of boundedness, uniform continuity and
uniform convergence which will be used in this paper. The interconnection among
these metrics (for every notion) is given by the relations S p ⇒ e-W p ⇒ W p.

Definition 2 (S p, e-W p and W p-boundedness) Given 1 ≤ p < ∞, let f ∈
L p
loc(R, X).

(a) We will say that f is S p-bounded (or Stepanov-p-bounded) if there exists M > 0
such that

sup
x∈R

(∫ x+1

x
‖ f (t)‖p dt

) 1
p

≤ M .

(b) We will say that f is e-W p-bounded (or equi-Weyl-p-bounded) if there exist
L0 > 0 and M > 0 such that

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t)‖p dt

) 1
p

≤ M .

By Remark 3 (see (3)), it is equivalent to stating the existence of L0 > 0 and
M > 0 such that

sup
x∈R

(
L−1

∫ x+L

x
‖ f (t)‖p dt

) 1
p

≤ M ∀L ≥ L0.

(c) We will say that f is W p-bounded (or Weyl-p-bounded) if there exists M > 0
such that

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t)‖p dt

) 1
p

≤ M .

Definition 3 (S p, e-W p and W p-uniform continuity) Given 1 ≤ p < ∞, let f ∈
L p
loc(R, X).
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(a) We will say that f is S p-uniformly continuous if for every ε > 0 there is a positive
number δ = δ(ε) such that any |h| < δ satisfies

sup
x∈R

(∫ x+1

x
‖ f (t + h) − f (t)‖p dt

) 1
p

≤ ε.

(b) We will say that f is e-W p-uniformly continuous if for every ε > 0 there exist
two numbers L0 = L0(ε) and δ = δ(ε) such that any |h| < δ satisfies

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + h) − f (t)‖p dt

) 1
p

≤ ε.

Again by Remark 3 (see (3)), it is equivalent to stating the existence of L0 = L0(ε)

and δ = δ(ε) such that any |h| < δ satisfies

sup
x∈R

(
L−1

∫ x+L

x
‖ f (t + h) − f (t)‖p dt

) 1
p

≤ ε ∀L ≥ L0(ε).

(c) We will say that f is W p-uniformly continuous if for every ε > 0 there exists
δ = δ(ε) such that any |h| < δ satisfies

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t + h) − f (t)‖p dt

) 1
p

≤ ε.

Definition 4 (S p, e-W p and W p-uniform convergence) Let 1 ≤ p < ∞.

(a) We will say that a sequence { fn}n≥1 of S p-bounded functions is S p-uniformly
convergent to a S p-bounded function f : R → X if for every ε > 0 there is
n0 ∈ N such that

sup
x∈R

(∫ x+1

x
‖ fn(t) − f (t)‖p dt

) 1
p

≤ ε for each n ≥ n0.

(b) We will say that a sequence { fn}n≥1 of e-W p-bounded functions is e-W p-
uniformly convergent to an e-W p-bounded function f : R → X if for every
ε > 0 there exist L0 = L0(ε) and n0 ∈ N satisfying

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ fn(t) − f (t)‖p dt

) 1
p

≤ ε for each n ≥ n0.

Equivalently, by Remark 3, it is equivalent to stating the existence of L0 = L0(ε)

and n0 ∈ N satisfying

sup
x∈R

(
L−1

∫ x+L

x
‖ fn(t) − f (t)‖p dt

) 1
p

≤ ε ∀L ≥ L0(ε) and n ≥ n0.
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(c) We will say that a sequence { fn}n≥1 of W p-bounded functions is W p-uniformly
convergent to a W p-bounded function f : R → X if for every ε > 0 there exists
n0 ∈ N satisfying

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ fn(t) − f (t)‖p dt

) 1
p

≤ ε for each n ≥ n0.

3 Main Properties of the Spaces Spc (R,X), e-W
p
c (R,X) andWp

c (R,X)

We next expose the most important properties of the classes of functions f : R →
X which are Stepanov-(p, c)-almost periodic, equi-Weyl-(p, c)-almost periodic or
Weyl-(p, c)-almost periodic. The most of the following properties were already
obtained for some particular cases (see [14, 20]).

It is worth already noting that the reasoning or the proofs whichwewill show for the
case of the c-almost periodic functions in the sense of Stepanov approach are similar
or analogous to that of equi-Weyl-(p, c)-almost periodicity.

Proposition 1 (S p and e-W p-boundedness of the functions in S p
c (R, X) and e-

W p
c (R, X)) Let c ∈ C\ {0} and 1 ≤ p < ∞.

(i) If f ∈ S p
c (R, X), then f is S p-bounded.

(ii) If f ∈ e-W p
c (R, X), then f is e-W p-bounded.

Proof Let 1 ≤ p < ∞, c ∈ C\ {0} and f ∈ L p
loc(R, X). Given L > 0 and x0 ∈ R, by

the Minkowski inequality we have

(
L−1

∫ x0+L

x0
‖c f (x)‖p dx

) 1
p

≤
(
L−1

∫ x0+L

x0
‖c f (x) − f (x + τ)‖p dx

) 1
p

+ (4)

+
(
L−1

∫ x0+L

x0
‖ f (x + τ)‖pdx

) 1
p

.

Now, take ε = 1. If f ∈ S p
c (R, X) or f ∈ e-W p

c (R, X), there exists l > 0 such
that any interval of length l contains at least a number in the respective sets of the
(ε, c)-Stepanov or (ε, c)-equi-Weyl translation numbers of f (x). In particular, if x0
is an arbitrary real number, there corresponds a value τ belonging to these respective
sets such that x0 + τ is in the interval [0, l]. Also, take L0 = L0(1) the number
corresponding to ε = 1 in the definition of equi-Weyl-(p, c)-almost periodicity. In
this way, we deduce from (4) for the value L = L0 (or L = 1 for the case of
f ∈ S p

c (R, X)) that

(
L−1
0

∫ x0+L0

x0
‖c f (x)‖p dx

) 1
p

≤ 1 +
(
L−1
0

∫ x0+τ+L0

x0+τ

‖ f (x)‖p dx

) 1
p

≤ 1 +
(
L−1
0

∫ l+L0

0
‖ f (x)‖p dx

) 1
p

,
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which yields that

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t)‖p dt

) 1
p

≤ M := 1

|c|

⎛
⎝1 +

(
L−1
0

∫ l+L0

0
‖ f (x)‖p dx

) 1
p

⎞
⎠ .

This proves (i) and (ii). ��

Proposition 2 (S p and e-W p-uniform continuity of the functions in S p
c (R, X) and

e-W p
c (R, X)) Let c ∈ C\ {0} and 1 ≤ p < ∞.

(i) If f ∈ S p
c (R, X), then f is S p-uniformly continuous.

(ii) If f ∈ e-W p
c (R, X), then f is e-W p-uniformly continuous.

Proof Fix ε > 0. As the set of the (
|c|ε
3 , c)-Stepanov or (

|c|ε
3 , c)-equi-Weyl translation

numbers of f (x) is relatively dense, there exists l > 0 such that every interval of
length l contains at least one number of this set. In particular, fixed an arbitrary real
number x0 there corresponds such a translation number τ such that x0 + τ belongs
to the interval [0, l]. Also, take L0 the positive number corresponding to the case |c|ε

3
in the definition of equi-Weyl-(p, c)-almost periodicity (we can take L0 = 1 for the
case S p

c (R, X)). Then for any δ > 0, by the Minkowski inequality, it is accomplished
that

(
L−1
0

∫ x0+L0

x0
‖c f (x + δ) − c f (x)‖p dx

) 1
p

≤
(
L−1
0

∫ x0+L0

x0
‖c f (x + δ) − f (x + δ + τ)‖p dx

) 1
p

+
(
L−1
0

∫ x0+L0

x0
‖ f (x + δ + τ) − f (x + τ)‖p dx

) 1
p

+
(
L−1
0

∫ x0+L0

x0
‖ f (x + τ) − c f (x)‖p dx

) 1
p

≤ 2

3
|c| ε +

(
L−1
0

∫ x0+τ+L0

x0+τ

‖ f (x + δ) − f (x)‖p dx

) 1
p

≤ 2

3
|c| ε +

(
L−1
0

∫ L0+l

0
‖ f (x + δ) − f (x)‖p dx

) 1
p

.

Now, define the functions fn(x) := f (x+ 1
n ) ∈ L p

loc(R, X). It is clear that the sequence
{ fn}n≥1 converges pointwise to f and, by the dominated convergence theorem in L p-
spaces (or as a consequence of the Brezis-Lieb theorem), also converges to f in the
sense of L p (see also [4, p. 84] or [5, pp. 233–234]). Hence there exists δ0 > 0 such
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that for any |δ| < δ0 it is accomplished that

(
L−1
0

∫ L0+l

0
‖ f (x + δ) − f (x)‖p dx

) 1
p

≤ |c| ε
3

,

which yields that

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + δ) − f (t)‖p dt

) 1
p

≤ ε, ∀ |δ| ≤ δ0.

This proves i) and ii). ��

Remark 4 It is not true that any function f in W p
c (R, X) is also W p-bounded or W p-

uniformly continuous. A counterexample for the case c = 1 can be seen in [2, Example
4.28]. However, we next show an analogous result (based on [3, Lemma 5]) for the
W p-uniform continuity under the following hypothesis, with f ∈ L p

loc(R, X) and
1 ≤ p < ∞:

For every ε > 0 there exists δ > 0 such that

(
1

L

∫ L

0
‖ f (t + h) − f (t)‖p dt

) 1
p

≤ ε for all |h| < δ (5)

uniformly with respect to L ∈ (0,∞).

Proposition 3 (W p-uniform continuity of the functions in W p
c (R, X) under hypothesis

(5)) Let c ∈ C\ {0} and 1 ≤ p < ∞. If f ∈ W p
c (R, X) and it satisfies (5), then f is

W p-uniformly continuous.

Proof Fix ε > 0. As the set of the (
|c|ε
3 , c)-Weyl translation numbers of f (x) is

relatively dense, there exists l > 0 such that every interval of length l contains at
least one number of this set. In particular, fixed an arbitrary real number x there
corresponds such a translation number τ such that x + τ belongs to the interval [0, l].
Since ‖c f (x + δ) − c f (x)‖ is less than or equal to

‖c f (x + δ) − f (x + δ + τ)‖ + ‖ f (x + δ + τ) − f (x + τ)‖ + ‖ f (x + τ) − c f (x)‖

and

∫ x+L

x
‖ f (t + δ + τ) − f (t + τ)‖p dt =

∫ x+τ+L

x+τ

‖ f (t + δ) − f (t)‖p dt

≤
∫ L+l

0
‖ f (t + δ) − f (t)‖p dt,
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for any δ > 0, by the Minkowski inequality it is accomplished that

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖c f (t + δ) − c f (t)‖p dt

) 1
p

≤ 2

3
|c| ε + lim

L→∞

(
L−1

∫ L+l

0
‖ f (t + δ) − f (t)‖p dt

) 1
p

.

Now, by (5), there exists δ0 > 0 such that for any |δ| < δ0 it is accomplished that

(
(L + l)−1

∫ L+l

0
‖ f (t + δ) − f (t)‖p dt

) 1
p

≤ |c| ε
3

,

uniformly with respect to L > 0, which yields that

(
L−1

∫ L+l

0
‖ f (t + δ) − f (t)‖p dt

) 1
p

≤
(
L + l

L

) 1
p |c| ε

3
,

for any |δ| < δ0 uniformly with respect to L > 0. Consequently, we get

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t + δ) − f (t)‖p dt

) 1
p

≤ ε, ∀ |δ| < δ0,

which means that f is W p-uniformly continuous. ��
Proposition 4 (S p

|c|, e-W
p
|c| and W p

|c|-almost periodicity of the norm) Let 1 ≤ p < ∞
and c ∈ C\ {0}. Given f : R → X, consider the function ‖ f ‖ : R → [0,∞) defined
as ‖ f ‖(x) = ‖ f (x)‖ for all x ∈ R.

(i) If f ∈ S p
c (R, X), then ‖ f ‖ ∈ S p

|c|(R, [0,∞)).

(ii) If f ∈ e-W p
c (R, X), then ‖ f ‖ ∈ e-W p

|c|(R, [0,∞)).

(iii) If f ∈ W p
c (R, X), then ‖ f ‖ ∈ W p

|c|(R, [0,∞)).

Proof Let f ∈ e-W p
c (R, X) (or f ∈ S p

c (R, X), respectively). For every ε > 0 we can
find l > 0 and L0 = L0(ε) > 0 (take L0 = 1 for the case of f ∈ S p

c (R, X)) such that
any interval of length l contains at least a point τ satisfying

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.

Now, if c ∈ C \ {0} and x ∈ R, note that

|‖ f (x + τ)‖ − |c|‖ f (x)‖| = |‖ f (x + τ)‖ − ‖c f (x)‖| ≤ ‖ f (x + τ) − c f (x)‖,
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which yields that

sup
x∈R

(
L−1
0

∫ x+L0

x
|‖ f (t + τ)‖ − |c|‖ f (t)‖|p dt

) 1
p

≤ sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.

This proves (i) and (ii). Property (iii) can also be proved analogously by the above
inequality. ��
Proposition 5 (S p

c , e-W
p
c and W p

c -almost periodicity of the function f̌ (x) = f (−x))
Let c ∈ C\ {0} and 1 ≤ p < ∞. Given f : R → X, consider the function f̌ : R → X
defined as f̌ (x) = f (−x) for all x ∈ R.

(i) f ∈ S p
c (R, X) if and only if f̌ ∈ S p

1/c(R, X).

(ii) f ∈ e-W p
c (R, X) if and only if f̌ ∈ e-W p

1/c(R, X).

(iii) f ∈ W p
c (R, X) if and only if f̌ ∈ W p

1/c(R, X).

Proof Given 1 ≤ p < ∞, f ∈ L p
loc(R, X), c ∈ C\ {0}, L > 0 and τ ∈ R, we have

that

sup
x∈R

(
L−1

∫ x+L

x
‖ f̌ (t + τ) − 1

c
f̌ (t)‖p dt

) 1
p

= sup
x∈R

(
1

|c|p L
∫ x+L

x
‖c f (−t − τ) − f (−t)‖p dt

) 1
p

= sup
x∈R

(
1

|c|p L
∫ −(x+τ)

−(x+τ)−L
‖ f (t + τ) − c f (t)‖p dt

) 1
p

= 1

|c| supy∈R

(
1

L

∫ y+L

y
‖ f (t + τ) − c f (t)‖p dt

) 1
p

.

This means that τ is a (|c|ε, c)-Stepanov, equi-Weyl or Weyl translation number of
f (x) if and only if τ is an (ε, 1

c )-Stepanov, equi-Weyl (associated with the same L)

or Weyl translation number of f̌ (x), respectively. Hence the proposition holds. ��
Lemma 1 (S p

c , e-W
p
c and W p

c -almost periodicity iff S p
1/c, e-W

p
1/c and W p

1/c-almost

periodicity) Let c ∈ C\ {0} and 1 ≤ p < ∞. Then S p
c (R, X) = S p

1/c(R, X), e-

W p
c (R, X) = e-W p

1/c(R, X) and W p
c (R, X) = W p

1/c(R, X).

Proof Suppose that f ∈ e-W p
c (R, X) (or f ∈ S p

c (R, X), respectively). Given ε > 0,
take L0 the positive number corresponding to the case |c| ε in the definition of equi-
Weyl-(p, c)-almost periodicity (we can take L0 = 1 for the case S p

c (R, X)). Note that
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every τ in the set of the (|c| ε, c)-equi-Weyl translation numbers of f (x) associated
with L0 (or (|c| ε, c)-Stepanov translation numbers, with L0 = 1) satisfies

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t − τ) − 1

c
f (t)‖p dt

) 1
p

= sup
x∈R

(
1

|c|p L0

∫ x+L0

x
‖c f (t − τ) − f (t)‖p dt

) 1
p

= sup
x∈R

(
1

|c|p L0

∫ x−τ+L0

x−τ

‖ f (y + τ) − c f (y)‖p dy

) 1
p

≤ |c| ε
|c| = ε.

This shows that the set of the (ε, 1/c)-equi-Weyl translation numbers of f (asso-
ciated with the same value L0) is relatively dense (the same as the set of the
(ε, 1/c)-Stepanov translation numbers), which means that f ∈ e-W p

1/c(R, X) (or

f ∈ S p
1/c(R, X), respectively). The converse is analogous. The proof for the case

W p
c (R, X) = W p

1/c(R, X) is similar to the above reasoning. ��
The following result generalizes that of [14, Proposition 2.3] which was stated for

the case of (equi-)Weyl-almost periodicity and m ∈ N.

Proposition 6 (S p
c , e-W

p
c ,W

p
c -almost periodicity yields S p

cm , e-W
p
cm ,W

p
cm -almost peri-

odicity) Let c ∈ C\ {0}, 1 ≤ p < ∞ and m ∈ Z \ {0}. Then S p
c (R, X) ⊂ S p

cm (R, X),
e-W p

c (R, X) ⊂ e-W p
cm (R, X) and W p

c (R, X) ⊂ W p
cm (R, X).

Proof Let f ∈ e-W p
c (R, X) (or f ∈ S p

c (R, X), respectively), and fix m ∈ N. For
every ε > 0 we can find l > 0 and L0 = L0(ε) > 0 (take L0 = 1 for the case of
f ∈ S p

c (R, X)) such that any interval of length l contains at least a point τ satisfying

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε(
m−1∑
j=0

|c| j p
)1/p .

Also, fixed m ∈ N, we have that

f (x + mτ) − cm f (x) =
m−1∑
j=0

c j ( f (x + (m − j)τ ) − c f (x + (m − j − 1)τ )) .

Therefore, for any x ∈ R we have

L−1
0

∫ x+L0

x
‖ f (t + mτ) − cm f (t)‖p dt

≤
m−1∑
j=0

|c| j p
L0

∫ x+L0

x
‖ f (t + (m − j)τ ) − c f (t + (m − j − 1)τ )‖p dt
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=
m−1∑
j=0

|c| j p 1

L0

∫ x+L0+(m− j−1)τ

x+(m− j−1)τ
‖ f (t + τ) − c f (t)‖p dt

≤
m−1∑
j=0

|c| j p
(

ε p∑m−1
j=0 |c| j p

)
= ε p

and

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + mτ) − cm f (t)‖p dt

)1/p

≤ ε.

This means that mτ is an (ε, cm)-equi-Weyl translation number (associated with the
value L0) of f (x) (or an (ε, cm)-Stepanov translation number of f (x)), which means
that f ∈ e-W p

cm (R, X) (or f ∈ S p
cm (R, X), respectively). Finally, by Lemma 1,

f is also included in e-W p
1/cm (R, X) (or in S p

1/cm (R, X)). The proof for the case

W p
c (R, X) ⊂ W p

cm (R, X) is analogous. Thus the result holds. ��
Proposition 7 (Some extra properties) Let c ∈ C\ {0} and 1 ≤ p < ∞. Suppose that
f ∈ S p

c (R, X) ( f ∈ e-W p
c (R, X) or f ∈ W p

c (R, X), respectively). Then it is satisfied
that:

(i) λ f ∈ S p
cm (R, X) (λ f ∈ e-W p

cm (R, X) or λ f ∈ W p
cm (R, X), respectively) for

any λ ∈ C and for each m ∈ Z \ {0}.
(ii) If α ∈ R and β ∈ R\ {0} , then the functions f α(x) := f (x + α) and fβ(x) :=

f (βx), x ∈ R, are in S p
cm (R, X) (in e-W p

cm (R, X) or W p
cm (R, X), respectively)

for each m ∈ Z \ {0}.
(iii) The condition of boundedness of f (x) (i.e. the existence of M > 0 such that

‖ f (x)‖ ≤ M, ∀x ∈ R) implies that the function f 2(x) := ( f (x))2 for all
x ∈ R is in S p

c2k
(R, X) ( f 2 ∈ e-W p

c2k
(R, X) or f 2 ∈ W p

c2k
(R, X), respectively)

for each k ∈ Z\{0}.
(iv) If there exists m1 > 0 such that ‖ f (x)‖ ≥ m1 ∀x ∈ R, then the function

1
f (x) := 1

f (x) , x ∈ R, is in S p
cm (R, X) ( 1f ∈ e-W p

cm (R, X) or 1
f ∈ W p

cm (R, X),
respectively) for each m ∈ Z\{0}.

(v) Let { fn(x)}n≥1 be a sequence of functions in S p
c (R, X) (in e-W p

c (R, X) or
W p

c (R, X), respectively). If { fn(x)}n≥1 is S p-uniformly convergent (e-W p-
uniformly convergent or W p-uniformly convergent, respectively) to a function
f : R → X (in L p

loc(R, X)), then f is in S p
c (R, X) (in e-W p

c (R, X) or
W p

c (R, X), respectively).

Proof Let f ∈ e-W p
c (R, X) (or f ∈ S p

c (R, X), respectively). For every ε > 0 we can
find l > 0 and L0 = L0(ε) > 0 (take L0 = 1 for the case of f ∈ S p

c (R, X)) such that
any interval of length l contains at least a point τ (which is called an (ε, c)-equi-Weyl
or Stepanov translation number of f (x)) satisfying

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.
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(Although the value ε > 0 could be changed, we will also denote as L0 the positive
real number associated with the translation number).
If f ∈ W p

c (R, X), for every ε > 0 we can find l > 0 such that any interval of length l
contains at least a point τ (which is called an (ε, c)-Weyl translation number of f (x))
satisfying

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε.

(i) Fixed λ ∈ C\ {0} (the case λ = 0 is trivial), note that every τ in the set of
the ( ε

|λ| , c)-equi-Weyl translation numbers (or the set of the ( ε
|λ| , c)-Stepanov

translation numbers, respectively) satisfies

sup
x∈R

(
L−1
0

∫ x+L0

x
‖λ f (t + τ) − λc f (t)‖p dt

) 1
p

= sup
x∈R

(
|λ|p L−1

0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ |λ| ε

|λ| = ε,

which yields that λ f ∈ e-W p
c (R, X) (or λ f ∈ S p

c (R, X), respectively). Finally,
by Proposition 6, we also have that λ f ∈ e-W p

cm (R, X) (or λ f ∈ S p
cm (R, X),

respectively) for each m ∈ Z \ {0}. The case λ f ∈ W p
cm (R, X) is analogous.

(ii) Note that every τ in the set of the (ε, c)-equi-Weyl translation numbers of f (x)
(or in the set of the (ε, c)-Stepanov translation numbers of f (x), respectively)
satisfies

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f α(t + τ) − c f α(t)‖p dt

) 1
p

= sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ + α) − c f (t + α)‖p dt

) 1
p

= sup
x∈R

(
L−1
0

∫ x+α+L0

x+α

‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε,

which yields that τ is also an (ε, c)-equi-Weyl translation number of f α(x) (or
an (ε, c)-Stepanov translation number of f α(x), respectively).
On the other hand, if β > 0 and τ is in the set of the (ε, c)-equi-Weyl translation
numbers of f (x) associated with the value βL0 (or in the set of the (ε, c)-
Stepanov translation numbers of f (x) associated with β, respectively), it is also
accomplished that



124 Page 20 of 45 H. Ounis, J. M. Sepulcre

sup
x∈R

(
L−1
0

∫ x+L0

x

∥∥∥∥ fβ

(
t + τ

β

)
− c fβ(t)

∥∥∥∥
p

dt

) 1
p

= sup
x∈R

(
L−1
0

∫ x+L0

x

∥∥∥∥ f

(
β

(
t + τ

β

))
− c f (βt)

∥∥∥∥
p

dt

) 1
p

= sup
x∈R

(
(βL0)

−1
∫ βx+βL0

βx
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε,

which yields that τ
β
is an (ε, c)-equi-Weyl translation number of fβ(x) associated

with the value L0 (or an (ε, c)-Stepanov translation number of fβ(x), respec-
tively). The case β < 0 is solved by taking τ in the set of the (ε, c)-equi-Weyl
translation numbers of f (x) associated with the value −βL0 (or in the set of the
(ε, c)-Stepanov translation numbers of f (x) associated with −β, respectively),
which leads to the fact that τ

β
is an (ε, c)-equi-Weyl translation number of fβ(x)

associated with the value L0 (or an (ε, c)-Stepanov translation number, respec-
tively).
Hence the functions f α(x) and fβ(x) are in e-W p

c (R, X) (or S p
c (R, X), respec-

tively) and, byProposition6, f α(x) and fβ(x) are in e-W p
cm (R, X) (or S p

cm (R, X),
respectively) for each m ∈ Z \ {0}. The case W p

cm (R, X) is analogous.
(iii) Suppose the existence of M > 0 such that ‖ f (x)‖ ≤ M, ∀x ∈ R. Note that

every τ in the set of the ( ε
M(1+|c|) , c)-equi-Weyl translation numbers (or the set

of the ( ε
M(1+|c|) , c)-Stepanov translation numbers, respectively) satisfies

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f 2(t + τ) − c2 f 2(t)‖p dt

) 1
p

= sup
x∈R

(
L−1
0

∫ x+L0

x
‖( f (t + τ) − c f (t)) ( f (t + τ) + c f (t))‖p dt

) 1
p

≤ M(1 + |c|) sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ M(1 + |c|) ε

M(1 + |c|) = ε.

This shows that f 2 ∈ e-W p
c2

(R, X) (or f 2 ∈ S p
c2

(R, X), respectively). Finally,

we deduce from Proposition 6 that f 2 ∈ e-W p
c2k

(R, X) (or f 2 ∈ S p
c2k

(R, X),

respectively) for each k ∈ Z\{0}. The case f 2 ∈ W p
c2k

(R, X) is analogous.
(iv) Suppose the existence of m1 > 0 such that ‖ f (x)‖ ≥ m1 > 0 ∀x ∈ R. Note

that every τ in the set of the (ε |c|m2
1, c)-equi-Weyl translation numbers (or the

set of the (ε |c|m2
1, c)-Stepanov translation numbers, respectively) satisfies
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sup
x∈R

(
L−1
0

∫ x+L0

x

∥∥∥∥ 1

f (t + τ)
− 1

c

1

f (t)

∥∥∥∥
p

dt

) 1
p

= sup
x∈R

(
L−1
0

∫ x+L0

x

∥∥∥∥ f (t + τ) − c f (t)

c f (t) f (t + τ)

∥∥∥∥
p

dt

) 1
p

≤ ε |c|m2
1

|c|m2
1

= ε,

which proves that the multiplicative inverse, or reciprocal, of f (x) is in e-
W p

1/c(R, X) (or in S p
1/c(R, X), respectively). Hence, by Proposition 6, we

conclude that 1
f ∈ e-W p

cm (R, X) (or 1
f ∈ S p

cm (R, X), respectively) for each

m ∈ Z \ {0}. The case 1
f ∈ W p

cm (R, X) is analogous.
(v) By e-W p-uniformly convergence (or S p-uniformly convergence), given ε > 0,

there exist L0 = L0(ε) (take L0 = 1 for the case of S p-uniformly convergence)
and n0 ∈ N such that

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ fn(t) − f (t)‖p dt

) 1
p

≤ min

{
ε

3
,

ε

3 |c|
}

∀n ≥ n0.

Then every τ in the set of the ( ε
3 , c)-equi-Weyl translation numbers of fn0(x)

(or in the set of the ( ε
3 , c)-Stepanov translation numbers, respectively) satisfies

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + τ) − fn0(t + τ)‖p dt

) 1
p

+sup
x∈R

(
L−1
0

∫ x+L0

x
‖ fn0(t + τ) − c fn0(t)‖p dt

) 1
p

+

+sup
x∈R

(
L−1
0

∫ x+L0

x
‖c fn0(t) − c f (t)‖p dt

) 1
p

≤ ε

3
+ ε

3
+ |c| ε

3 |c| = ε,

which yields that f ∈ e-W p
c (R, X) (or f ∈ S p

c (R, X), respectively). The case
of the W p-uniformly convergence is analogous. ��

The following two results show some conditions under which the sets S p
c (R, X),

e-W p
c (R, X) and W p

c (R, X) are respectively included in S p(R, X), e-W p(R, X) and
W p(R, X).
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Proposition 8 (Connection with S p, e-W p andW p-almost periodicity) Consider 1 ≤
p < ∞ and c ∈ C\ {0} such that arg c

2π ∈ Q. Then

S p
c (R,X)⊂ S p

|c|q (R,X), e-W p
c (R,X)⊂e-W p

|c|q (R,X) and W p
c (R,X)⊂W p

|c|q (R,X),

where q ∈ N is so that arg c
2π = r

q for a certain r ∈ Z such that gcd(r , q) = 1. In

particular, under the same condition, the case |c| = 1 yields the inclusions S p
c (R, X) ⊂

S p(R, X), e-W p
c (R, X) ⊂ e-W p(R, X) and W p

c (R, X) ⊂ W p(R, X).

Proof Put arg c = 2πr
q with r ∈ Z and q ∈ N so that gcd(r , q) = 1. Then

cq = |c|qeqi arg c = |c|qe2rπ i = |c|q .

Now, if f ∈ S p
c (R, X), f ∈ e-W p

c (R, X) or f ∈ W p
c (R, X), Proposition 6 assures

respectively that f ∈ S p
cq (R, X) = S p

|c|q (R, X), f ∈ e-W p
cq (R, X) = e-W p

|c|q (R, X)

or f ∈ W p
cq (R, X) = W p

|c|q (R, X). Hence the result holds. ��
Proposition 9 (Connection with S p, e-W p and W p-almost periodicity) Let 1 ≤ p <

∞ and c ∈ C\ {0} such that arg c
π

/∈ Q and |c| = 1. Then S p
c (R, X) ⊂ S p(R, X) and e-

W p
c (R, X) ⊂ e-W p(R, X). Furthermore, every e-W p-bounded function in W p

c (R, X)

is also in W p(R, X).

Proof Let f ∈ e-W p
c (R, X) (or f ∈ S p

c (R, X), respectively). By Proposition 1 (see
also Definition 2), there exist M > 0 and L0 > 0 (take L0 = 1, respectively) such
that

sup
x∈R

(
L−1

∫ x+L

x
‖ f (t)‖p dt

) 1
p

≤ M ∀L ≥ L0. (6)

Suppose that arg c is not a rational multiple of π, which yields that eni arg c �= 1
for all n ∈ N. Given ε > 0, choose n1, n2 ∈ N (with n1 �= n2) such that∣∣en2i arg c − en1i arg c

∣∣ < ε
2M (note that the existence of n1 and n2 is assured by virtue

of the fact that
{
eni arg c : n ∈ N

} ⊂ {c ∈ C : |c| = 1} and that the length of the unit
circumference is finite). Hence

∣∣cn2−n1 − 1
∣∣ =

∣∣∣e(n2−n1)i arg c − 1
∣∣∣ =

∣∣∣en2i arg c − en1i arg c
∣∣∣ <

ε

2M
.

Moreover, by Proposition 6, it is accomplished that f ∈ e-W p
cn2−n1

(R, X) (or f ∈
S p
cn2−n1

(R, X), respectively). Consequently, for ε > 0 there exists L1 (without loss of
generality, we will suppose that L1 ≥ L0) such that every τ in the set of ( ε

2 , c
n2−n1)-

equi-Weyl translation numbers of f (x) associated with L1 (or ( ε
2 , c

n2−n1)-Stepanov
translation numbers associated with L1 = 1) satisfies
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sup
x∈R

(
L−1
1

∫ x+L1

x
‖ f (t + τ) − f (t)‖p dt

) 1
p

≤ sup
x∈R

(
L−1
1

∫ x+L1

x
‖ f (t + τ) − cn2−n1 f (t)‖p dt

) 1
p

+sup
x∈R

(
L−1
1

∫ x+L1

x
‖cn2−n1 f (t) − f (t)‖p dt

) 1
p

≤ ε

2
+ |cn2−n1 − 1| sup

x∈R

(
L−1
1

∫ x+L1

x
‖ f (t)‖p dt

) 1
p

≤ ε,

which proves that S p
c (R, X) ⊂ S p(R, X) and e-W p

c (R, X) ⊂ e-W p(R, X). Finally,
the condition of e-W p-boundedness of a function f ∈ L p

loc(R, X) yields (6) and the
last statement of the result is proved in an analogous manner. ��

The following property reminds the relative compactness of the family of translates
of a function with respect to an hypothetical S p

c or W p
c -metric, which constitutes an

extension of some concrete results proved by Andres et al. for the case c = 1 (see [2,
Theorems 3.5, 4.12, 4.23]).

Proposition 10 (On the family of translates of a S p
c , e-W

p
c or W p

c -almost periodic
function) Let c ∈ C\ {0} and 1 ≤ p < ∞. Given a function f ∈ L p

loc(R, X), consider
the family of translates F f = { f h(x) := f (x + h) : h ∈ R} ⊂ L p

loc(R, X).

(i) If f ∈ S p
c (R, X), then there exists a finite amount of values h j ∈ R, j = 1, . . . , n,

satisfying the following property: for every ε > 0 and f h ∈ F f , there exists
j ∈ {1, . . . , n} such that

sup
x∈R

(∫ x+1

x
‖c f h(t) − f h j (t)‖p dt

) 1
p

≤ ε

or

sup
x∈R

(∫ x+1

x
‖c f −h j (t) − f h(t)‖p dt

) 1
p

≤ ε.

(ii) If f ∈ e-W p
c (R, X), then there exists a finite amount of values h j ∈ R, j =

1, . . . , n, and L0 > 0 satisfying the following property: for every ε > 0 and
f h ∈ F f , there exists j ∈ {1, . . . , n} such that

sup
x∈R

(
L−1

∫ x+L

x
‖c f h(t) − f h j (t)‖p dt

) 1
p

≤ ε for all L ≥ L0
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or

sup
x∈R

(
L−1

∫ x+L

x
‖c f −h j (t) − f h(t)‖p dt

) 1
p

≤ ε for all L ≥ L0.

(iii) If f ∈ W p
c (R, X) and it satisfies hypothesis (5), then there exists a finite amount

of values h j ∈ R, j = 1, . . . , n, satisfying the following property: for every
ε > 0 and f h ∈ F f , there exists j ∈ {1, . . . , n} such that

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖c f h(t) − f h j (t)‖p dt

) 1
p

≤ ε

or

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖c f −h j (t) − f h(t)‖p dt

) 1
p

≤ ε.

Proof (i) and (ii) We will expose the proof for the case f ∈ e-W p
c (R, X) (the case

f ∈ S p
c (R, X) is analogous by taking L0 = 1). Fix ε > 0. By Proposition 2, we

know that f is e-W p-uniformly continuous, which means that there exist two positive
numbers L0 = L0(ε) and δ = δ(ε) such that any |h| < δ satisfies

sup
x∈R

(
L−1
0

∫ x+L0

x
‖ f (t + h) − f (t)‖p dt

) 1
p

≤ ε

2
. (7)

Moreover, we can find l > 0 and L1 = L1(ε) > 0 such that any interval of length l
contains at least a point τ satisfying

sup
x∈R

(
L−1
1

∫ x+L1

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε

2
. (8)

Without loss of generality, suppose l > δ. Now, fix h ∈ R and note that in the interval
[−h,−h + l] there exists τ satisfying (8) (note that h + τ ∈ [0, l]). Furthermore, it is
assured the existence of n ∈ N such that nδ ≤ l < (n+1)δ and choose j ∈ {1, . . . , n}
such that

( j − 1)δ < h + τ < ( j + 1)δ

or, equivalently,

|h + τ − jδ| < δ. (9)
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Put h j = jδ. Now, if L2 ≥ max{L0, L1} (see Remark 3), by (7), (8) and (9), we have
that

sup
x∈R

(
L−1
2

∫ x+L2

x
‖c f (t + h) − f (t + h j )‖p dt

) 1
p

≤ sup
x∈R

(
L−1
2

∫ x+L2

x
‖c f (t + h) − f (t + h + τ)‖p dt

) 1
p

+sup
x∈R

(
L−1
2

∫ x+L2

x
‖ f (t + h + τ) − f (t + h j )‖p dt

) 1
p

≤ ε

2
+ ε

2
= ε.

Analogously, fixed h ∈ R, in the interval [h, h + l] there exists τ1 satisfying (8) (note
that −h + τ1 ∈ [0, l]). Furthermore, it is assured the existence of n ∈ N such that
nδ ≤ l < (n + 1)δ and choose j ∈ {1, . . . , n} such that

( j − 1)δ < −h + τ1 < ( j + 1)δ

or, equivalently,

| − h + τ1 − jδ| < δ.

Hence

sup
x∈R

(
L−1
2

∫ x+L2

x
‖c f (t − h j ) − f (t + h)‖p dt

) 1
p

≤ sup
x∈R

(
L−1
2

∫ x+L2

x
‖c f (t − h j ) − f (t − h j + τ1)‖p dt

) 1
p

+sup
x∈R

(
L−1
2

∫ x+L2

x
‖ f (t − h j + τ1) − f (t + h)‖p dt

) 1
p

≤ ε

2
+ ε

2
= ε.

(iii) Fix ε > 0. By Proposition 3, we know that f isW p-uniformly continuous, which
means that there exists δ = δ(ε) such that any |h| < δ satisfies

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t + h) − f (t)‖p dt

) 1
p

≤ ε

2
. (10)

Moreover, we can find l > 0 such that any interval of length l contains at least a point
τ satisfying

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t + τ) − c f (t)‖p dt

) 1
p

≤ ε

2
. (11)
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Without loss of generality, suppose l > δ. Now, fix h ∈ R and note that in the interval
[−h,−h + l] there exists τ satisfying (8) (note that h + τ ∈ [0, l]). Furthermore, it is
assured the existence of n ∈ N such that nδ ≤ l < (n+1)δ and choose j ∈ {1, . . . , n}
such that

( j − 1)δ < h + τ < ( j + 1)δ

or, equivalently,

|h + τ − jδ| < δ. (12)

Put h j = jδ. By (10), (11) and (12), we have that

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖c f (t + h) − f (t + h j )‖p dt

) 1
p

≤ lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖c f (t + h) − f (t + h + τ)‖p dt

) 1
p

+ lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t + h + τ) − f (t + h j )‖p dt

) 1
p

≤ ε

2
+ ε

2
= ε.

Analogously, fixed h ∈ R, in the interval [h, h+ l] there exists τ1 satisfying (11) (note
that −h + τ1 ∈ [0, l]). Furthermore, it is assured the existence of n ∈ N such that
nδ ≤ l < (n + 1)δ and choose j ∈ {1, . . . , n} such that

( j − 1)δ < −h + τ1 < ( j + 1)δ

or, equivalently,

| − h + τ1 − jδ| < δ.

Hence

lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖c f (t − h j ) − f (t + h)‖p dt

) 1
p

≤ lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖c f (t − h j ) − f (t − h j + τ1)‖p dt

) 1
p

+ lim
L→∞ sup

x∈R

(
L−1

∫ x+L

x
‖ f (t − h j + τ1) − f (t + h)‖p dt

) 1
p

≤ ε

2
+ ε

2
= ε.

��
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4 Main Definitions for the Case of Complex Functions Defined on
Vertical Strips

Wewill devote this section to introduce the spaces of c-almost periodic functions in the
sense of Stepanov and Weyl approaches for the case of complex functions defined on
vertical strips in the complex plane. These sets are natural generalizations of the space
of c-almost periodic functions APc(U ,C) which was described in the introduction,
where U is of the form {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞.

First of all, we introduce the following family of functions which is connected with
the set of p-locally integrable functions.

Definition 5 (Functions in the set L p
li (U ,C)) Let 1 ≤ p < ∞ and f : U → C

a complex function defined in a vertical strip U = {z ∈ C : α < Re z < β}, with
−∞ ≤ α < β ≤ ∞. We will say that f is in the set L p

li (U ,C) if for every rectangle
in U , say {z ∈ C : α1 ≤ Re z ≤ β1, l1 ≤ Im z ≤ l2} (with α < α1 < β1 < β and
−∞ < l1 < l2 < ∞), we have

sup
x∈[α1,β1]

(∫ l2

l1
| f (x + i t)|p dt

) 1
p

< ∞.

Definition 6 (c-almost periodicity in the sense of Stepanov or Weyl approaches for
vertical strips) Let c ∈ C\ {0} and 1 ≤ p < ∞. Consider a function f ∈ L p

li (U ,C)

defined in a strip U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞.

(a) We will say that f is Stepanov-(p, c)-almost periodic in U , and we will
write f ∈ S p

c (U ,C), if for every ε > 0 and every reduced strip U1 =
{z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U (with α < α1 < β1 < β) there corresponds a
relatively dense set {τ } ⊂ R (i.e. there exists l > 0 such that any interval of length
l contains at least a point τ ) whose elements satisfy

sup
x+iy∈U1

(∫ y+1

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε. (13)

The elements of the set {τ } satisfying the above condition are called Sp
c -translation

numbers belonging to ε associated with U1 (or simply (ε, c)-Stepanov translation
numbers of f ).

(b) We will say that f is equi-Weyl-(p, c)-almost periodic in U , and we will
write f ∈ e-W p

c (U ,C), if for every ε > 0 and every reduced strip U1 =
{z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U (with α < α1 < β1 < β) we can find a real
number L0 = L0(ε) and a relatively dense set {τ } of real numbers (i.e. there exists
l > 0 such that any interval of length l contains at least a point τ ) satisfying

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε. (14)
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The elements of the set {τ } satisfying the above condition are called e-W p
c -

translation numbers belonging to ε associated with L0 and U1 (or simply
(ε, c)-equi-Weyl translation numbers of f associated with L0).

(c) We will say that f is Weyl-(p, c)-almost periodic in U , and we will write
f ∈ W p

c (U ,C), if for every ε > 0 and every reduced strip of the form
U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U (with α < α1 < β1 < β) we can find
a relatively dense set {τ } of real numbers (i.e. there exists l > 0 such that any
interval of length l contains at least a point τ ) satisfying

lim
L→∞ sup

x+iy∈U1

(
L−1

∫ y+L

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε.

The elements of the set {τ } satisfying the above condition are calledW p
c -translation

numbers belonging to ε associated with U1 (or simply (ε, c)-Weyl translation
numbers of f ).

As it was said above, the sets S p
c (U ,C), e-W p

c (U ,C) and W p
c (U ,C) are gen-

eralizations of the class of functions APc(U ,C) (see [20, Definition 1]). In fact, if
1 ≤ p < ∞ and c ∈ C \ {0}, it is easy to see that

APc(U ,C) ⊂ S p
c (U ,C) ⊂ e-W p

c (U ,C) ⊂ W p
c (U ,C).

With respect to the Stepanov, equi-Weyl or Weyl metrics, we next define the prop-
erties of boundedness, uniform continuity and uniform convergence which we will
use in the next section. They are adaptations of the Definitions 2, 3 and 4 for the case
of complex functions defined on vertical strips.

Definition 7 (S p, e-W p or W p-boundedness, for vertical strips) Let 1 ≤ p < ∞
and consider a function f ∈ L p

li (U ,C), where U is a vertical strip of the type
{z ∈ C : α < Re z < β} with −∞ ≤ α < β ≤ ∞. Also, take a vertical substrip
U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U .

(i) f is said to be S p-bounded in U1 if there exists M > 0 such that

sup
x+iy∈U1

(∫ y+1

y
| f (x + i t)|p dt

) 1
p

≤ M .

(ii) f is said to be e-W p-bounded inU1 if there exist two positive numbers L0 and M
such that

sup
x+iy∈U1

(
1

L0

∫ y+L0

y
| f (x + i t)|p dt

) 1
p

≤ M .
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(iii) f is said to be W p-bounded in U1 if there exists M > 0 such that

lim
L→∞ sup

x+iy∈U1

(
1

L

∫ y+L

y
| f (x + i t)|p dt

) 1
p

≤ M .

Definition 8 (S p, e-W p or W p-uniform continuity, for vertical strips) Let 1 ≤ p <

∞ and consider a function f ∈ L p
li (U ,C), where U is a vertical strip of the type

{z ∈ C : α < Re z < β}with−∞ ≤ α < β ≤ ∞. Also, consider an arbitrary vertical
line rx = {z ∈ C : Re z = x} ⊂ U , where x = Rew for some w ∈ U .

(i) f is said to be S p-uniformly continuous in the vertical line rx if for any ε > 0
there is a positive number δ = δ(ε) such that any |h| < δ satisfies

sup
y∈R

(∫ y+1

y
| f (x + i(t + h)) − f (x + i t)|p dt

) 1
p

≤ ε.

(ii) f is said to be e-W p-uniformly continuous in the vertical line rx if for any ε > 0
there exist two positive numbers L0 and δ = δ(ε) such that any |h| < δ satisfies

sup
y∈R

(
1

L0

∫ y+L0

y
| f (x + i(t + h)) − f (x + i t)|p dt

) 1
p

≤ ε.

iii) f is said to be W p-uniformly continuous in the vertical line rx if for any ε > 0
there exists δ = δ(ε) > 0 such that any |h| < δ satisfies

lim
L→∞ sup

y∈R

(
1

L

∫ y+L

y
| f (x + i(t + h)) − f (x + i t)|p dt

) 1
p

≤ ε.

Definition 9 (S p, e-W p or W p-uniform convergence, for vertical strips) Let 1 ≤
p < ∞ and { fn}n≥1 a sequence of functions in L p

li (U ,C), where U =
{z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞.

(i) If { fn}n≥1 is a sequence of S p-bounded functions in every vertical substrip U1 ⊂
U , we will say that { fn}n≥1 is S p-uniformly convergent to a function f : U → C,
which is also S p-bounded in every U1 ⊂ U , if for every vertical substrip U1 ⊂ U
and ε > 0 there exists n0 ∈ N such that

sup
x+iy∈U1

(∫ y+1

y
| fn(x + i t) − f (x + i t)|p dt

) 1
p

≤ ε for each n ≥ n0.

(ii) If { fn}n≥1 is a sequence of e-W p-bounded functions in every vertical substrip
U1 ⊂ U , we will say that { fn}n≥1 is e-W p-uniformly convergent to a function
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f : U → C, which is also e-W p-bounded in every U1 ⊂ U , if for every vertical
substrip U1 ⊂ U and ε > 0 there exist L0 = L0(ε) and n0 ∈ N satisfying

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| fn(x + i t) − f (x + i t)|p dt

) 1
p

≤ ε for each n ≥ n0.

(iii) If { fn}n≥1 is a sequence ofW p-bounded functions in every vertical substripU1 ⊂
U , we will say that { fn}n≥1 isW p-uniformly convergent to a function f : U → C,
which is alsoW p-bounded in everyU1 ⊂ U , if for every vertical substripU1 ⊂ U
and ε > 0 there exists n0 ∈ N satisfying

lim
L→∞ sup

x+iy∈U1

(
L−1

∫ y+L

y
| fn(x + i t) − f (x + i t)|p dt

) 1
p

≤ ε for each n ≥ n0.

Remark 5 (On the notions of c-almost periodicity in the sense of Weyl and equi-Weyl)
As in Remark 3, we note that the difference between Stepanov-(p, c)-almost periodic-
ity and equi-Weyl-(p, c)-almost periodicity is that in the latter case the value L0 varies
with ε and every reduced strip inU . Furthermore, by comparison with Definition 6.b),
we note that f ∈ e-W p

c (U ,C) if and only if for every ε > 0 and every reduced strip
U1 ⊂ U we can find a real number L0 = L0(ε) and a relatively dense set {τ } of real
numbers satisfying

sup
x+iy∈U1

(
L−1

∫ y+L

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε ∀L ≥ L0.

Indeed, for every L0, L1 > 0 with L0 < L1 we have that

‖ f ‖S p
L1,U1

≤
(
1 + L0

L1

) 1
p ‖ f ‖S p

L0,U1
, (15)

where ‖ f ‖S p
L,U1

:= sup
x+iy∈U1

(
L−1

∫ y+L
y | f (x + i t)|p dt

) 1
p
(for every L > 0). In fact,

if we take m ∈ N such that (m − 1)L0 < L1 < mL0 then

‖ f ‖S p
L1,U1

= sup
x+iy∈U1

(
L−1
1

∫ y+L1

y
| f (x + i t)|p dt

) 1
p

≤ sup
x+iy∈U1

(
mL0

L1

1

mL0

∫ y+mL0

y
| f (x + i t)|p dt

) 1
p

=
(
mL0

L1

) 1
p ‖ f ‖S p

mL0,U1
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=
(

(m − 1)L0 + L0

L1

) 1
p ‖ f ‖S p

mL0,U1

<

(
L1 + L0

L1

) 1
p ‖ f ‖S p

mL0,U1

≤
(
1 + L0

L1

) 1
p ‖ f ‖S p

L0,U1
,

where the last inequality is given by the fact that any x, y with x + iy ∈ U1 satisfies

1

mL0

∫ y+mL0

y
| f (x + i t)|p dt

= 1

mL0

(∫ y+L0

y
| f (x + i t)|p dt +

∫ y+2L0

y+L0

| f (x + i t)|p dt + . . . +

+ . . . +
∫ y+mL0

y+(m−1)L0

| f (x + i t)|p dt
)

≤ m

mL0
sup

x+iy∈U1

(∫ y+L0

y
| f (x + i t)|p dt

)
= ‖ f ‖p

S p
L0,U1

,

which yields that ‖ f ‖p
S p
mL0,U1

≤ ‖ f ‖p
S p
L0,U1

. In this way, fixed ε > 0 and a reduced strip

U1 ⊂ U , if f satisfies ourDefinition 6.b), then there exists L0 = L0(
ε
2 ) and a relatively

dense set {τ } of real numbers such that it is accomplished ‖ f iτ − c f ‖S p
L0,U1

≤ ε
2 ,

where f iτ (z) := f (z+ iτ) for all z ∈ U . This yields by (15) that ‖ f iτ − c f ‖S p
L1,U1

≤(
1 + L0

L1

)
ε
2 for any L1 > L0. Therefore, if we take L1 arbitrarily large (L1 → ∞) it

is clear that ‖ f iτ − c f ‖S p
L,U1

≤ ε for every L ≥ L ′
1 for a certain L ′

1 sufficiently large,

which means that f satisfies this alternative definition. The converse is trivial.

5 Main Properties of the Spaces Spc (U,C), e-W
p
c (U,C) andWp

c (U,C)

In this section wewill show the basic properties of the functions f : U → Cwhich are
Stepanov-(p, c)-almost periodic, equi-Weyl-(p, c)-almost periodic or Weyl-(p, c)-
almost periodic and are defined on vertical strips U of the complex plane.

The demonstrations of the most of following properties are similar to the case of
the functions in S p

c (R, X), e-W p
c (R, X) and W p

c (R, X). However, we include them
for the sake of completeness.

Proposition 11 (S p, e-W p-boundedness and uniform continuity) Let c ∈ C\ {0} and
1 ≤ p < ∞. Consider a vertical strip of the form U = {z ∈ C : α < Re z < β},
with −∞ ≤ α < β ≤ ∞, and a substrip U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with
α < α1 < β1 < β.
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(i) If f ∈ S p
c (U ,C), then f is S p-bounded in U1 and S p-uniformly continuous in

every vertical line in U.
(ii) If f ∈ e-W p

c (U ,C), then f is e-W p-bounded in U1 and e-W p-uniformly contin-
uous in every vertical line in U.

Proof Take U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β, and
ε = 1. By e-W p

c -almost periodicity (or S p
c -almost periodicity, respectively), there

exist L0 > 0 (take L0 = 1, resp.) and l > 0 such that every interval in R of length l
contains at least an (ε, c)-equi-Weyl (or Stepanov, resp.) translation number of f i.e.
it satisfies (14) (or (13), resp.). In particular, if z = x + iy is an arbitrary complex
number inU1, we can assure the existence of a value τ satisfying (14) (or (13), resp.)
and such that y + τ ∈ [0, l]. Moreover, since f ∈ L p

li (U ,C), it is clear that there

exists M > 0 such that sup
x∈[α1,β1]

(∫ l+L0
0 | f (x + i t)|p dt

) 1
p ≤ M (take L0 = 1, resp.).

Consequently, for an arbitrary x + iy ∈ U1 we have

(
L−1
0

∫ y+L0

y
|c f (x + i t)|p dt

) 1
p

≤
(
L−1
0

∫ y+L0

y
|c f (x + i t) − f (x + i(t + τ))|p dt

) 1
p

+
(
L−1
0

∫ y+L0

y
| f (x + i(t + τ))|p dt

) 1
p

≤ 1 +
(
L−1
0

∫ y+τ+L0

y+τ

| f (x + i t)|p dt

) 1
p

≤ 1 +
(
L−1
0

∫ l+L0

0
| f (x + i t)|p dt

) 1
p

≤ 1 + L
− 1

p
0 M,

which yields that

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i t)|p dt

) 1
p

≤ 1 + L
− 1

p
0 M

|c| .

This shows that f satisfies Definition 7 concerning e-W p or S p-boundedness.
On the other hand, fix ε > 0 and x+iy ∈ U1. Denote as l, L0 and τ (with y+τ ∈ [0, l])
the corresponding numbers above associated with the c-almost periodicity in the sense
of Stepanov or equi-Weyl-(p, c)-almost periodicity for the value |c|ε

3 . In this way, for
every δ > 0 we have
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(
L−1
0

∫ y+L0

y
|c f (x + i(t + δ)) − c f (x + i t)|p dt

) 1
p

≤
(
L−1
0

∫ y+L0

y
|c f (x + i(t + δ)) − f (x + i(t + δ + τ))|p dt

) 1
p

+
(
L−1
0

∫ y+L0

y
| f (x + i(t + δ + τ)) − f (x + i(t + τ))|p dt

) 1
p

+
(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

=
(
L−1
0

∫ y+δ+L0

y+δ

| f (x + i(s + τ)) − c f (x + is)|p ds
) 1

p

+
(
L−1
0

∫ y+τ+L0

y+τ

| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

+
(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ 2 |c| ε
3

+
(
L−1
0

∫ l+L0

0
| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

.

Now, for every x = Re z with z ∈ U , define the function fn,x (t) := f (x + i(t +
1
n )) ∈ L p

loc(R,C). It is clear that the sequence { fn,x (t)}n≥1 converges pointwise to
fx (t) := f (x + i t) and, by the dominated convergence theorem in L p-spaces (or as
a consequence of the Brezis-Lieb theorem), also converges to fx in the sense of L p.
Hence there exists δx > 0 such that for any |δ| < δx it is accomplished that

(
L−1
0

∫ L0+l

0
| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

≤ |c| ε
3

,

which yields that

sup
y∈R

(
L−1
0

∫ y+L0

y
| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

≤ ε, ∀ |δ| ≤ δx .

This proves the result. ��
We next show an analogous result for theW p-uniform continuity under the follow-

ing hypothesis, which is based on (5), with f ∈ L p
li (U ,C) and 1 ≤ p < ∞:

For every x = Re z, with z ∈ U , and ε > 0 there exists δx > 0 such that

(
1

L

∫ L

0
| f (x + i(t + h)) − f (x + i t)|p dt

) 1
p

≤ ε for all |h| < δx , (16)
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uniformly with respect to L ∈ (0,∞).

Proposition 12 (W p-uniform continuity of functions in W p
c (U ,C) under hypothesis

(16)) Let c ∈ C\ {0} and 1 ≤ p < ∞. Consider a vertical strip of the form U =
{z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. If f ∈ W p

c (U ,C) and it satisfies
(16), then f is W p-uniformly continuous in every vertical line in U.

Proof Fix ε > 0 and take an arbitrary U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with
α < α1 < β1 < β. As the set of the W p

c -translation numbers belonging to |c|ε
3

associated with U1 is relatively dense, there exists l > 0 such that every interval of
length l contains at least one number of this set. In particular, to each fixed arbitrary
complex number x + iy ∈ U1 there corresponds such a translation number τ such that
y + τ belongs to the interval [0, l]. Now, note that for any δ > 0 and t ∈ R, we have

|c f (x + i(t + δ)) − c f (x + i t)|
≤ |c f (x + i(t + δ)) − f (x + i(t + δ + τ))|

+ | f (x + i(t + δ + τ)) − f (x + i(t + τ))|
+ | f (x + i(t + τ)) − c f (x + i t)|

and

∫ y+L

y
| f (x + i(t + δ + τ)) − f (x + i(t + τ))|p dt

=
∫ y+τ+L

y+τ

| f (x + i(t + δ)) − f (x + i t)|p dt

≤
∫ L+l

0
| f (x + i(t + δ)) − f (x + i t)|p dt .

Thus, by the Minkowski inequality, it is accomplished that

lim
L→∞ sup

y∈R

(
L−1

∫ y+L

y
|c f (x + i(t + δ)) − c f (x + i t)|p dt

) 1
p

≤ 2

3
|c| ε + lim

L→∞

(
L−1

∫ L+l

0
| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

.

Now, by (16), there exists δx > 0 such that for any |δ| < δx it is accomplished that

(
(L + l)−1

∫ L+l

0
| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

≤ |c| ε
3

,

uniformly with respect to L > 0, which yields that

(
L−1

∫ L+l

0
| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

≤
(
L + l

L

) 1
p |c| ε

3
,
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for any |δ| < δx uniformly with respect to L > 0. Consequently, we get

lim
L→∞ sup

y∈R

(
L−1

∫ y+L

y
| f (x + i(t + δ)) − f (x + i t)|p dt

) 1
p

≤ ε, ∀ |δ| < δx ,

which means, by Definition 8, that f is W p-uniformly continuous in the vertical line
rx = {z ∈ C : Re z = x} ⊂ U . ��
Proposition 13 (S p

|c|, e-W
p
|c| and W p

|c|-almost periodicity of the modulus function)
Let 1 ≤ p < ∞ and c ∈ C\ {0}. Consider a vertical strip of the form U =
{z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Given f : U → C, take the
notation | f | : U → [0,∞) for the function defined as | f |(z) := | f (z)| for all z ∈ U.

(i) If f ∈ S p
c (U ,C), then | f | ∈ S p

|c|(U , [0,∞)).

(ii) If f ∈ e-W p
c (U ,C), then | f | ∈ e-W p

|c|(U , [0,∞)).

(iii) If f ∈ W p
c (U ,C), then | f | ∈ W p

|c|(U , [0,∞)).

Proof Let f ∈ e-W p
c (U ,C) (or f ∈ S p

c (U ,C), respectively), and take U1 =
{z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β. For every ε > 0 we can
find l > 0 and L0 = L0(ε) > 0 (take L0 = 1 for the case of f ∈ S p

c (U ,C)) such that
any interval of length l contains at least a point τ satisfying

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε.

Now, if c ∈ C\{0} and x + iy ∈ U1, note that

|| f (x + i(y + τ))| − |c|| f (x + iy)||
= || f (x + i(y + τ))| − |c f (x + iy)|| ≤ | f (x + i(y + τ)) − c f (x + iy)|,

which yields that

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
|| f (x + i(t + τ))| − |c|| f (x + i t)||p dt

) 1
p

≤ sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε.

This proves (i) and (ii). Property (iii) is also proved analogously from the above
inequality. ��
Proposition 14 (S p

c , e-W
p
c and W p

c -almost periodicity of the function f̌ (z) = f (z))
Let c ∈ C\ {0} and 1 ≤ p < ∞, and consider a vertical strip of the form U =
{z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Given f : U → C, consider the
function f̌ : U → C defined as f̌ (z) := f (z) for all z ∈ U.
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(i) f ∈ S p
c (U ,C) if and only if f̌ ∈ S p

1/c(U ,C).

(ii) f ∈ e-W p
c (U ,C) if and only if f̌ ∈ e-W p

1/c(U ,C).

(iii) f ∈ W p
c (U ,C) if and only if f̌ ∈ W p

1/c(U ,C).

Proof Let f ∈ e-W p
c (U ,C) (or f ∈ S p

c (U ,C), respectively), and take U1 =
{z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β. For every ε > 0 we can
find l > 0 and L0 = L0(ε) > 0 (take L0 = 1 for the case of f ∈ S p

c (U ,C)) such that
any interval of length l contains at least a point τ satisfying

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ |c|ε.

Then

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f̌ (x + i(t + τ)) − 1

c
f̌ (x + i t)|p dt

) 1
p

= sup
x+iy∈U1

(
1

|c|p L0

∫ y+L0

y
|c f (x − i(t + τ)) − f (x − i t)|p dt

) 1
p

= sup
x+iy∈U1

(
1

|c|p L0

∫ −(y+τ)

−(y+τ+L0)

| f (x + i(t + τ)) − c f (x + i t)|p dt
) 1

p

≤ |c| ε
|c| = ε,

which yields that every τ is in the set of the (ε, 1
c )-equi-Weyl translation numbers

of f̌ associated with L0 (or (ε, 1
c )-Stepanov translation numbers, with L0 = 1), i.e.

f̌ ∈ e-W p
1/c(U ,C) (or f̌ ∈ S p

1/c(U ,C), respectively). The converse is analogous.

Furthermore, the case f ∈ W p
c (U ,C) is also analogous. ��

Lemma 2 (S p
c , e-W

p
c and W p

c -almost periodicity iff S p
1/c, e-W

p
1/c and W p

1/c-almost
periodicity) Let c ∈ C\ {0} and 1 ≤ p < ∞. Consider a vertical strip of the formU =
{z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then S p

c (U ,C) = S p
1/c(U ,C),

e-W p
c (U ,C) = e-W p

1/c(U ,C) and W p
c (U ,C) = W p

1/c(U ,C).

Proof Suppose that f ∈ e-W p
c (U ,C) (or f ∈ S p

c (U ,C), respectively), and take the
vertical substripU1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β. Given
ε > 0, take L0 the positive number corresponding to the case |c| ε in the definition of
equi-Weyl-(p, c)-almost periodicity (we can take L0 = 1 for the case S p

c (U ,C)). Note
that every τ in the set of the (|c| ε, c)-equi-Weyl translation numbers of f associated
with L0 and U1 (or (|c| ε, c)-Stepanov translation numbers, with L0 = 1) satisfies
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sup
x+iy∈U1

(
L−1
0

∫ y+L0

y

∣∣∣∣ f (x + i(t − τ)) − 1

c
f (x + i t))

∣∣∣∣
p

dt

) 1
p

= sup
x+iy∈U1

(
1

|c|p L0

∫ y+L0

y
|c f (x + i(t − τ)) − f (x + i t))|p dt

) 1
p

≤ |c| ε
|c| = ε.

This shows that −τ is in the set of the (ε, 1
c )-equi-Weyl translation numbers of f

associated with L0 and U1 (or (ε, 1
c )-Stepanov translation numbers, resp.). Hence

f ∈ e-W p
1/c(U ,C) (or f ∈ S p

1/c(U ,C), resp.). The converse is analogous.

The proof for the case W p
c (U ,C) = W p

1/c(U ,C) is similar to the above reasoning.
��

Proposition 15 (S p
c , e-W

p
c , W

p
c -almost periodicity yields S p

cm , e-W
p
cm , W

p
cm -almost

periodicity) Let c ∈ C\ {0}, 1 ≤ p < ∞ and m ∈ Z \ {0}. Consider a vertical strip of
the form U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then S p

c (U ,C) ⊂
S p
cm (U ,C), e-W p

c (U ,C) ⊂ e-W p
cm (U ,C) and W p

c (U ,C) ⊂ W p
cm (U ,C).

Proof Let f ∈ e-W p
c (U ,C) (or f ∈ S p

c (U ,C), respectively), and fix m ∈ N and
U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β. For every ε > 0 we
can find l > 0 and L0 = L0(ε) > 0 (take L0 = 1 for the case of f ∈ S p

c (U ,C)) such
that any interval of length l contains at least a point τ satisfying

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε(∑m−1
j=0 |c| j p

)1/p .

Also, for fixed m ∈ N and x + iy ∈ U , we have that

f (x + i(y + mτ)) − cm f (x + iy)

=
m−1∑
j=0

c j ( f (x + i(y + (m − j)τ )) − c f (x + i(y + (m − j − 1)τ ))) .

Therefore, for any x + iy ∈ U1 we have

L−1
0

∫ y+L0

y
| f (x + i(t + mτ)) − cm f (x + i t)|p dt

≤
m−1∑
j=0

|c| j p
L0

∫ y+L0

y
| f (x + i(t + (m − j)τ )) − c f (x + i(t + (m − j − 1)τ ))|p dt

=
m−1∑
j=0

|c| j p 1

L0

∫ y+L0+(m− j−1)τ

y+(m− j−1)τ
| f (x + i(t + τ)) − c f (x + i t)|p dt

≤
m−1∑
j=0

|c| j p
(

ε p∑m−1
j=0 |c| j p

)
= ε p
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and

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + mτ)) − cm f (x + i t)|p dt

)1/p

≤ ε.

This means that mτ is an (ε, cm)-equi-Weyl translation number (associated with the
value L0) of f (or an (ε, cm)-Stepanov translation number of f ), which means that
f ∈ e-W p

cm (U ,C) (or f ∈ S p
cm (U ,C), respectively). Finally, byLemma2, the function

f is also included in e-W p
1/cm (U ,C) (or in S p

1/cm (U ,C)). The proof for the case

W p
c (U ,C) ⊂ W p

cm (U ,C) is analogous. This proves the result. ��
Proposition 16 (Some extra properties) Let c ∈ C\ {0} and 1 ≤ p < ∞. Consider
a vertical strip of the form U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞.
Suppose that f ∈ S p

c (U ,C) ( f ∈ e-W p
c (U ,C) or f ∈ W p

c (U ,C), respectively).
Then it is satisfied

(i) If c ∈ R, then Re f and Im f are in S p
cm (U ,R) (in e-W p

cm (U ,R) or W p
cm (U ,R),

respectively) for each m ∈ Z\{0}.
(ii) λ f ∈ S p

cm (U ,C) (λ f ∈ e-W p
cm (U ,C) or λ f ∈ W p

cm (U ,C), respectively) for
any λ ∈ C and for each m ∈ Z \ {0}.

(iii) If α ∈ R and β ∈ R\ {0} , then the functions f iα(z) := f (z+ iα) and fiβ(z) :=
f (x + iβ y), with z = x + iy ∈ U, are in S p

cm (U ,C) (in e-W p
cm (U ,C) or

W p
cm (U ,C), respectively) for each m ∈ Z \ {0}.

(iv) f ∈ S p
cm (U ,C) ( f ∈ e-W p

cm (U ,C) or f ∈ W p
cm (U ,C), respectively) for each

m ∈ Z \ {0}.
(v) The condition of boundedness of f (i.e. the existence of M > 0 such that | f (z)| ≤

M, ∀z ∈ U) implies that the function f 2(z) := ( f (z))2 for all z ∈ U is in
S p
c2k

(U ,C) ( f 2 ∈ e-W p
c2k

(U ,C) or f 2 ∈ W p
c2k

(U ,C), respectively) for each
k ∈ Z\{0}.

(vi) If there exists m1 > 0 such that | f (z)| ≥ m1 ∀z ∈ U, then the function
1
f (z) := 1

f (z) , z ∈ U, is in S p
cm (U ,C) ( 1f ∈ e-W p

cm (U ,C) or 1
f ∈ W p

cm (U ,C),
respectively) for each m ∈ Z\{0}.

(vii) Let { fn(z)}n≥1 be a sequence of functions in S p
c (U ,C) (in e-W p

c (U ,C) or
W p

c (U ,C), respectively). If { fn(z)}n≥1 is S p-uniformly convergent (e-W p-
uniformly convergent or W p-uniformly convergent, respectively) to a function
f : U → C (in L p

li (U ,C)), then f is in S p
c (U ,C) (in e-W p

c (U ,C) orW p
c (U ,C),

respectively).

Proof Let f ∈ e-W p
c (U ,C) (or f ∈ S p

c (U ,C), respectively), and take U1 =
{z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α < α1 < β1 < β. For every ε > 0 we can
find l > 0 and L0 = L0(ε) > 0 (take L0 = 1 for the case of f ∈ S p

c (U ,C)) such that
any interval of length l contains at least a point τ (which is called an (ε, c)-equi-Weyl
or Stepanov translation number of f ) satisfying

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε.
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(Although the value ε > 0 could be changed in the different paragraphs, without loss
of generality we will also denote as L0 the positive real number associated with the
translation number).
If f ∈ W p

c (U ,C), for every ε > 0 and every reduced strip of the form U1 =
{z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U (with α < α1 < β1 < β) we can find l > 0 such that
any interval of length l contains at least a point τ satisfying

lim
L→∞ sup

x+iy∈U1

(
L−1

∫ y+L

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε.

(i) As c ∈ R and |Rew| ≤ |w| for all w ∈ C, by above every τ in the set of the
(ε, c)-equi-Weyl translation numbers of f (or in the set of the (ε, c)-Stepanov
translation numbers of f , respectively) satisfies

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
|Re f (x + i(t + τ)) − cRe f (x + i t)|p dt

) 1
p

= sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
|Re ( f (x + i(t + τ)) − c f (x + i t))|p dt

) 1
p

≤ sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε,

which yields that Re f ∈ e-W p
c (U ,C) (or Re f ∈ S p

c (U ,C), respectively). The
case of theW p

c -almost periodicity is analogous, as also is the case Im f . Finally,
Proposition 15 assures our result.

(ii) If λ ∈ C\ {0} (the case λ = 0 is trivial), note that every τ in the set of the ( ε
|λ| , c)-

equi-Weyl translation numbers (or the set of the ( ε
|λ| , c)-Stepanov translation

numbers, respectively) satisfies

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
|λ f (x + i(t + τ)) − λc f (x + i t)|p dt

) 1
p

= sup
x+iy∈U1

(
|λ|p L−1

0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ |λ| ε

|λ| = ε,

which yields that λ f ∈ e-W p
c (U ,C) (or λ f ∈ S p

c (U ,C), respectively). Finally,
by Proposition 15, we also have that λ f ∈ e-W p

cm (U ,C) (or λ f ∈ S p
cm (U ,C),

respectively) for each m ∈ Z \ {0}. The case λ f ∈ W p
cm (U ,C) is analogous.

(iii) Note that every τ in the set of the (ε, c)-equi-Weyl translation numbers of f (or
in the set of the (ε, c)-Stepanov translation numbers of f , respectively) satisfies
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sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f iα(x + i(t + τ)) − c f iα(x + i t)|p dt

) 1
p

= sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ + α)) − c f (x + i(t + α))|p dt

) 1
p

= sup
x+iy∈U1

(
L−1
0

∫ y+α+L0

y+α

| f (x + i(t + τ)) − c f (x + i t)|p dt
) 1

p

≤ ε,

which yields that τ is also an (ε, c)-equi-Weyl translation number of f iα(z) (or
an (ε, c)-Stepanov translation number of f iα(z), respectively).
On the other hand, if β > 0 and τ is in the set of the (ε, c)-equi-Weyl translation
numbers of f associated with the value βL0 (or in the set of the (ε, c)-Stepanov
translation numbers of f associated with β, respectively), it is also accomplished
that

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y

∣∣∣∣ fiβ
(
x + i(t + τ

β
)

)
− c fiβ(x + i t)

∣∣∣∣
p

dt

) 1
p

= sup
x+iy∈U1

(
L−1
0

∫ y+L0

y

∣∣∣∣ f
(
x + iβ(t + τ

β
)

)
− c f (x + iβt)

∣∣∣∣
p

dt

) 1
p

= sup
x+iy∈U1

(
(βL0)

−1
∫ β y+βL0

β y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ ε,

which yields that τ
β
is an (ε, c)-equi-Weyl translation number of fiβ(z) associ-

ated with L0 (or an (ε, c)-Stepanov translation number, respectively). The case
β < 0 is analogous to that of the proof of Proposition 7, point ii).
Hence the functions f iα(z) and fiβ(z) are in e-W p

c (U ,C) (or S p
c (U ,C), respec-

tively) and, by Proposition 15, f iα(z) and fiβ(z) are in e-W p
cm (U ,C) (or

S p
cm (U ,C), respectively) for each m ∈ Z \ {0}. The case W p

cm (U ,C) is anal-
ogous.

(iv) The result is immediately deduced from the fact that any τ ∈ R satisfies

∣∣ f (z + iτ) − c f (z)
∣∣p = | f (z + iτ) − c f (z)|p ∀z ∈ U .

Proposition 15 completes the proof.
(v) Suppose the existence of M > 0 such that | f (z)| ≤ M, ∀z ∈ U .Note that every

τ in the set of the ( ε
M(1+|c|) , c)-equi-Weyl translation numbers of f (or the set

of the ( ε
M(1+|c|) , c)-Stepanov translation numbers of f , respectively) satisfies
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sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f 2(x + i(t + τ)) − c2 f 2(x + i t)|p dt

) 1
p

= sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
|( f (x + i(t + τ)) − c f (x + i t))

× ( f (x + i(t + τ)) + c f (x + i t))|p dt) 1
p

≤ M(1 + |c|) sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ M(1 + |c|) ε

M(1 + |c|) = ε.

This shows that f 2 ∈ e-W p
c2

(U ,C) (or f 2 ∈ S p
c2

(U ,C), respectively). Finally,

we deduce from Proposition 15 that f 2 ∈ e-W p
c2k

(U ,C) (or f 2 ∈ S p
c2k

(U ,C),

respectively) for each k ∈ Z\{0}. The case f 2 ∈ W p
c2k

(U ,C) is analogous.
(vi) Suppose the existence of m1 > 0 such that | f (z)| ≥ m1 > 0 ∀z ∈ U . Note

that every τ in the set of the (ε |c|m2
1, c)-equi-Weyl translation numbers of f (or

in the set of the (ε |c|m2
1, c)-Stepanov translation numbers of f , respectively)

satisfies

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y

∣∣∣∣ 1

f (x + i(t + τ))
− 1

c

1

f (x + i t)

∣∣∣∣
p

dt

) 1
p

= sup
x+iy∈U1

(
L−1
0

∫ y+L0

y

∣∣∣∣ f (x + i(t + τ)) − c f (x + i t)

c f (x + i t) f (x + i(t + τ))

∣∣∣∣
p

dt

) 1
p

≤ ε |c|m2
1

|c|m2
1

= ε,

whichproves that themultiplicative inverse, or reciprocal, of f is in e-W p
1/c(U ,C)

(or in S p
1/c(U ,C), respectively). Hence, by Proposition 15, we conclude that

1
f ∈ e-W p

cm (U ,C) (or 1
f ∈ S p

cm (U ,C), respectively) for each m ∈ Z \ {0}. The
case 1

f ∈ W p
cm (U ,C) is analogous.

(vii) By e-W p-uniformly convergence (or S p-uniformly convergence), we know that
given ε > 0, there exist L0 = L0(ε) (take L0 = 1 for the case of S p-uniformly
convergence) and n0 ∈ N such that

sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| fn(x + i t) − f (x + i t)|p dt

) 1
p

≤min

{
ε

3
,

ε

3 |c|
}

∀n ≥ n0.

Then every τ in the set of the ( ε
3 , c)-equi-Weyl translation numbers of fn0(z)

(or in the set of the ( ε
3 , c)-Stepanov translation numbers of fn0(z), respectively)

satisfies
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sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − c f (x + i t)|p dt

) 1
p

≤ sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| f (x + i(t + τ)) − fn0(x + i(t + τ))|p dt

) 1
p

+

+ sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
| fn0(x + i(t + τ)) − c fn0(x + i t)|p dt

) 1
p

+

+ sup
x+iy∈U1

(
L−1
0

∫ y+L0

y
|c fn0(x + i t) − c f (x + i t)|p dt

) 1
p

≤ ε

3
+ ε

3
+ |c| ε

3 |c| = ε,

which yields that f ∈ e-W p
c (U ,C) (or f ∈ S p

c (U ,C), respectively). The case
of the W p-uniformly convergence is analogous. ��

The following two results show some conditions under which the sets S p
c (U ,C),

e-W p
c (U ,C) and W p

c (U ,C) are included in S p(U ,C), e-W p(U ,C) and W p(U ,C),
respectively.

Proposition 17 (Connection with S p, e-W p and W p almost periodicity) Let 1 ≤
p < ∞ and c ∈ C\ {0} such that arg c

2π ∈ Q. Consider a vertical strip of the form
U = {z ∈ C : α < Re z < β}, with −∞ ≤ α < β ≤ ∞. Then

Sp
c (U ,C)⊂ S p

|c|q (U ,C), e-W p
c (U ,C)⊂e-W p

|c|q (U ,C) and W p
c (U ,C)⊂W p

|c|q (U ,C),

where q ∈ N is so that arg c
2π = r

q for a certain r ∈ Z such that gcd(r , q) = 1. In

particular, under the samecondition, the case |c| = 1 yields the inclusions S p
c (U ,C) ⊂

S p(U ,C), e-W p
c (U ,C) ⊂ e-W p(U ,C) and W p

c (U ,C) ⊂ W p(U ,C).

Proof Put arg c = 2πr
q with r ∈ Z and q ∈ N so that gcd(r , q) = 1. Then

cq = |c|qeqi arg c = |c|qe2rπ i = |c|q .

Now, if f ∈ S p
c (U ,C), f ∈ e-W p

c (U ,C) or f ∈ W p
c (U ,C), Proposition 15 assures

that f ∈ S p
cq (U ,C) = S p

|c|q (U ,C), f ∈ e-W p
cq (U ,C) = e-W p

|c|q (U ,C) or f ∈
W p

cq (U ,C) = W p
|c|q (U ,C), and the result holds. ��

Proposition 18 (Connection with S p, e-W p andW p-almost periodicity) Let 1 ≤ p <

∞ and c ∈ C\ {0} such that arg c
π

/∈ Q and |c| = 1. Consider a vertical strip of the form
U = {z ∈ C : α < Re z < β}, with−∞ ≤ α < β ≤ ∞. Then S p

c (U ,C) ⊂ S p(U ,C)

and e-W p
c (U ,C) ⊂ e-W p(U ,C). Furthermore, if f is a function in W p

c (U ,C) which
is e-W p-bounded in every vertical substrip in U, then f is also in W p(U ,C).
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Proof Let f ∈ S p
c (U ,C) and take U1 = {z ∈ C : α1 ≤ Re z ≤ β1} ⊂ U with α <

α1 < β1 < β. By Proposition 11 (see also Definition 7), there exists M > 0 such that

sup
x+iy∈U1

(∫ y+1

y
| f (x + i t)|p dt

) 1
p

≤ M .

Suppose that arg c is not a rational multiple of π, which yields that eni arg c �= 1
for all n ∈ N. Given ε > 0, choose n1, n2 ∈ N (with n1 �= n2) such that∣∣en2i arg c − en1i arg c

∣∣ < ε
2M (note that the existence of n1 and n2 is assured by virtue

of the fact that
{
eni arg c : n ∈ N

} ⊂ {c ∈ C : |c| = 1} and that the length of the unit
circumference is finite). Hence

∣∣cn2−n1 − 1
∣∣ =

∣∣∣e(n2−n1)i arg c − 1
∣∣∣ =

∣∣∣en2i arg c − en1i arg c
∣∣∣ <

ε

2M
.

Moreover, by Proposition 15, it is accomplished that f ∈ S p
cn2−n1

(U ,C). Conse-
quently, given ε > 0, every τ in the set of ( ε

2 , c
n2−n1)-Stepanov translation numbers

of f satisfies

sup
x+iy∈U1

(∫ y+1

y
| f (x + i(t + τ)) − f (x + i t)|p dt

) 1
p

≤ sup
x+iy∈U1

(∫ y+1

y
| f (x + i(t + τ)) − cn2−n1 f (x + i t)|p dt

) 1
p

+ sup
x+iy∈U1

(∫ y+1

y
|cn2−n1 f (x + i t) − f (x + i t)|p dt

) 1
p

≤ ε

2
+ |cn2−n1 − 1| sup

x+iy∈U1

(∫ y+1

y
| f (x + i t)|p dt

) 1
p

≤ ε,

which proves the inclusion S p
c (U ,C) ⊂ S p(U ,C). The case e-W p

c (U ,C) ⊂
e-W p(U ,C) is similar. To prove the last statement, take U1 an arbitrary vertical sub-
strip inU and note that, by Definition 7, the condition of e-W p-boundedness inU1 of
a function f ∈ L p

li (U ,C) yields the existence of two positive numbers L0 and M such

that sup
x+iy∈U1

(
1
L0

∫ y+L0
y | f (x + i t)|p dt

) 1
p ≤ M , which leads to f ∈ W p(U ,C) in a

manner analogous to the above reasoning. ��
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16. Kostić, M.: Weyl almost automorphic functions and applications, preprint (2021). hal-03168920
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19. Kostić, M.: Selected Topics in Almost Periodicity, vol. 84. De Gruyter Studies in Mathematics, Berlin

(2022)
20. Ounis, H., Sepulcre, J.M.: The class of c-almost periodic functions defined on vertical strips in the

complex plane. Rev. Mat. Complut. 36, 707–724 (2023)
21. Sepulcre, J.M., Vidal, T.: Almost periodic functions in terms of Bohr’s equivalence relation. Ramanujan

J. 46(1), 245–267 (2018). (Corrigendum, ibid, 48 (3) (2019) 685–690)
22. Sepulcre, J.M., Vidal, T.: Bohr’s equivalence relation in the space of Besicovitch almost periodic

functions. Ramanujan J. 49(3), 625–639 (2019)
23. Sepulcre, J.M., Vidal, T.: Bochner-type property on spaces of generalized almost periodic functions.

Mediterr. J. Math. 17, 193 (2020)
24. Sepulcre, J.M., Vidal, T.: A note on spaces of almost periodic functions with values in Banach spaces.

Can. J. Math. 65(4), 953–962 (2022)

http://creativecommons.org/licenses/by/4.0/


Stepanov and Weyl Classes of c-Almost Periodic Type… Page 45 of 45 124

25. Stepanov, W.: Über einige Verallgemeinerungen der fastperiodischen Funktionen. Math. Ann. 95,
473–498 (1926)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Stepanov and Weyl Classes of c-Almost Periodic Type Functions
	Abstract
	1 Introduction
	2 Main Definitions for the Case of Functions from the Real Line to a Banach Space
	3 Main Properties of the Spaces Scp(mathbbR,X), e-Wcp(mathbbR,X) and Wcp(mathbbR,X)
	4 Main Definitions for the Case of Complex Functions Defined on Vertical Strips
	5 Main Properties of the Spaces Scp(U,mathbbC), e-Wcp(U,mathbbC) and Wcp(U,mathbbC)
	References




