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Abstract
We consider a bounded balanced strictly convex domain � ⊂ C

d with C2 boundary.
Then there exists a peak set E with Hausdorff dimension equal to 1 on each slice. In
particular E has maximal possible Hausdorff dimension equal to 2d − 1.

Keywords Peak set · Maximum modulus set · Inner function · Hausdorff dimension

Mathematics Subject Classification 32E30 · 32E35

1 Introduction

Let � be a bounded, convex and balanced domain with C2 boundary. Each η ∈ ∂�

sets out the slice ηD where D = {λ ∈ C : |λ| ≤ 1} is the unit disc.

1.1 Historical Background

If we have a compact set K ⊂ ∂� and f ∈ A(�) such that | f | < 1 on �\K and
f = 1 on K we say that K is a peak set for1 A(�) and f is a peak function for K . It
is possible to generalize this concept to a peak interpolation set:

If for a given continuous function g on K there exists f ∈ A(�) such that f = g
on K and ‖ f ‖∞ ≤ ‖g‖∞ then we say that K is a peak interpolation set.

Crucial sources of information about peak sets can be found in the following works:
[4, 9, 11, 13].
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Peak sets on the unit disc D are extensively studied. The most important result in
this area is the Fatou-Rudin-Carleson theorem (see [1, 2, 8, 15] and [17, p 205]) which
states that the classes of peak and peak interpolations sets for A(D) coincide and are
precisely the subsets of Lebesgue measure zero in ∂D.

However, as one can expect the situation in C
d is not so obvious. There exist non

trivial examples of strange behavior of peak sets in several complex variables.
The regular case2 Rudin described in [14].
Topologically, peak sets are small in strictly pseudoconvex domains. The real topo-

logical dimension of a peak set is not bigger than d − 1 (see [16]). In particular, a
peak set must have an empty interior. But from the measure-theoretic point of view
peak sets no longer have to be so small. Tumanov [18] constructed a peak set of Haus-
dorff dimension 2.5 in the unit sphere B3 ⊂ C

3. Stensönes Henriksen proved [5] that
every strictly pseudoconvex domain with C∞ boundary in C

d has a peak set with a
Hausdorff dimension 2d − 1. Moreover, If � is a circular, bounded, strictly convex
domain with C2 boundary it is possible to construct a peak set K ⊂ ∂� which inter-
sects all the circles in ∂� with the center at zero (see [8]). These examples indicate
that the question of complete characterization of all peak sets for A(�) for a strictly
pseudoconvex domain is far from trivial.

It is known nowadays that every peak set K is also a peak interpolation set, which
implies that any compact T ⊂ K is also a peak set (see [13, p. 206]). Moreover,
any subset of euclidean space of Hausdorff dimensionm contains a compact subset of
Hausdorff dimensionβ for each 0 ≤ β ≤ m. (see [3, Theorem 2.10.47]). Therefore the
peak sets mentioned in [5, 8, 18] contain peak sets for any lower Hausdorff dimension.
However, if we choose a compact set K ⊂ ∂� then it is usually impossible to construct
a peak set as in [5, 8, 18] inside K .

1.2 Main Result

In this paper we give an example (see Theorem 3.1) of peak set E ⊂ ∂� such that
η∂D ∩ E has Hausdorff dimension equal to 1 for all η ∈ ∂�. In fact our peak set has
maximal possible Hausdorff dimension on ∂� (see Remark 3.2).

Our inspiration is a Henriksen’s result [5]. Henriksen’s method is based on the
∂ problem and requires C∞ boundary of a considered domain. Our methods do not
require the use of a theory related to the ∂ problem. We consider domains with only
C2 boundary. Note that our peak set crosses precisely all circles with the center at zero
and has maximal possible Hausdorff dimension on each slice. Even in the case of the
unit ball our result is new. Some generalizations are possible (see Remark 3.3).

1.3 Applications

Assume that K ⊂ ∂� is a peak set for A(�), then a set K has the following properties
(see [13, 19]):

(1) there exists f ∈ A(�) such that K = f −1(0) (K is a zero set).

2 The paper [14] is in fact generalization Fatou-Rudin-Carleson theorem to a higher dimension forC1 peak
sets.
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(2) if T ⊂ K is compact then T is a peak set.
(3) A(�)|K = C(K ).
(4) if g is a nonzero, continuous function on K then there exists f ∈ A(�) such that

f = g on K and | f (z)| < ‖g‖K for z ∈ �\K (K is a peak interpolation set).
(5) |μ| (K ) = 0 for all μ ∈ A⊥(∂�).
(6) if G ∈ A(�) is a peak function for K , then F = exp(i log(1 − G)) is a bounded

holomorphic function on � with no limit along any curve in � that ends at a point
of K .

1.4 Organization of the Paper

We start our paper by describing some property of compact set E ⊂ [0, 1] that guar-
antees Hausdorff dimension equal to 1 (see Lemma 2.2). In fact it is enough to divide
recursively into ni equal intervals and choose inside smaller intervals with length con-
trolled by θi parameter. Then we will show that combination of special homogeneous
polynomials retain this property (see Lemma2.5). Nextwe amplify the big (	Q j ≥ α)

real part values of constructed polynomials Q j and we suppress values that are too
small (	Q j ≤ α

2 ) (see Theorem 3.1).

1.5 Notations

We use the following notation:
For α > 0 and δ > 0 and countable family U of open sets U ∈ U with diameter

d(U ) we define

hα(U) :=
∑

U∈U
d(U )α

Now we have Hausdorff measure:

Hα
δ (E) = inf

U

⎧
⎨

⎩h
α(U) : E ⊂

⋃

U∈U,d(U )<δ

U

⎫
⎬

⎭ ,

where the infimum is taken over all countable covers U of E by open sets. We can
define Hausdorff dimension

dimH (E) := sup{α ≥ 0 : Hα(E) > 0} = inf{α ≥ 0 : Hα(E) = 0},

where Hα(E) = limδ→0 Hα
δ (E).

For a given z ∈ ∂� and 0 ≤ a ≤ b ≤ 2π let us denote

z[a,b] = z exp (2π i[a, b])
z[a] = z exp (2π ia)
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2 Preliminary Estimates

2.1 Hausdorff Dimension

We use the following Tumanov’s Lemma to calculate Hausdorff dimension:

Lemma 2.1 [18, Lemma 3] Let 1 > α > 0 and c > 0. Let {r j }∞j=0 be a sequence of
positive numbers decreasing to zero. For a given j ∈ N let ω j be a subset of [0, 1].
Let us define a sum of intervals E j =⋃x∈ω j

[x, x + r j ].
Suppose that:

(1) In each interval [x, x + r j−1] of E j−1 there are at least
(
r j−1
r j

)α

intervals of E j .

(2) Distance between intervals [x, x + r j ] and [y, y + r j ] is at least

ρ j := cr j−1

(
r j
r j−1

)α

for x �= y ∈ ω j .

Then Hα(E) > 0 where E =⋂ j∈N E j .

In fact our crucial property of E gives us a so large set that it is impossible to use
directly Tumanov’s Lemma. Fortunately, we can choose a subset of E for which we
can easily use this method.

Lemma 2.2 Let
{
n j
}
be a sequence of natural numbers and

{
θ j
}
be a sequence of

positive numbers such that n j > 4, θ j > 1 for j ≥ 2 and lim j→∞
θ j
nα
j

= 0 for

α ∈ (0, 1). Let E1 = [0, 1], r1 = 1 and r j = r j−1
θ j n j

. Suppose that a decreasing

sequence of compact sets {E j } has the following property:
If [z, z + r j−1] ⊂ E j−1 and k ∈ {0, . . . , n j − 1} then there exists xz,k such that

[xz,k, xz,k + r j ] ⊂
[
z + kr j−1

n j
, z + (k + 1)r j−1

n j

]
∩ E j .

Then dimH (E) = 1 where E =⋂ j∈N E j .

Proof Let α ∈ (0, 1) and ω̃1 = {0}. Let ω̃ j be a maximal possible subset of

⋃

z∈ω̃ j−1

n j−1⋃

k=0

{xz,k}

such that distance between intervals [x, x + r j ] and [y, y + r j ] is at least

ρ j := 1

4
r j−1

(
r j
r j−1

)α
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for x �= y ∈ ω̃ j . Let us observe that if z1 �= z2 ∈ ω̃ j−1 then distance between
[z1, z1 + r j−1] and [z2, z2 + r j−1] is at least ρ j−1 > ρ j , so without lost of the
generality we can assume that xz,0 ∈ ω̃ j for all z ∈ ω̃ j−1.

For a given ω̃ j−1 let us denote Ẽ j−1 =⋃z∈ω̃ j−1
[z, z + r j−1].

Let z ∈ ω̃ j−1 and

Ñ j = #
{
xz,k ∈ ω̃ j

}
.

Let [a, b] ⊂ [z, z + r j−1] ⊂ Ẽ j−1 with b − a ≥ 2ρ j + 4
r j−1
n j

. Since length of

[
a + ρ j + r j , b − ρ j − 2r j

]

is larger than
r j−1
n j

there exists k0 ∈ {0, . . . , n j − 1} such that

[
z + k0r j−1

n j
, z + (k0 + 1)r j−1

n j

]
⊂ (a + ρ j + r j , b − ρ j − 2r j

)
,

so there exists xz,k0 with
[
xz,k0 , xz,k0 + r j

] ⊂ (a + ρ j + r j , b − ρ j − 2r j
)
. But ω̃ j is

maximal possible subset of

⋃

z∈ω̃ j−1

n j−1⋃

k=0

{xz,k}

so there exists xz,k1 ∈ ω̃ j with
∣∣xz,k0 − xz,k1

∣∣ ≤ ρ j + r j , which implies that

[
xz,k1 , xz,k1 + r j

] ⊂ (a, b) ,

so (a, b) contains at least one element of ω̃ j .
Since xz,0 ∈ ω̃ j we have:

Ñ j ≥
r j−1

(
1 − 1

n j

)

2ρ j + 4
r j−1
n j

≥
3
4r j−1

1
2r j−1

(
r j

r j−1

)α + 4r j−1
n j

= 3

2
(
θ j n j

)−α + 16
(
n j
)−1

≥ 3
(
θ j n j

)α

2 + 16θα
j

(
n j
)α−1 ≥ (θ j n j

)α =
(
r j−1

r j

)α

iff 16θα
j

(
n j
)α−1 ≤ 1. Since 0 ≤ lim j→∞ θα

j

(
n j
)α−1 ≤ lim j→∞

θ j

n1−α
j

= 0 we can

use Lemma 2.1 and conclude that Hα(E) ≥ Hα(Ẽ) > 0, which finishes the proof. 
�
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2.2 Homogeneous Polynomials

We need polynomials from [7] but with Lipschitz constants:

Lemma 2.3 There exists K ∈ N such that for each N ∈ N sufficiently large and
N < m1 < m2 < · · · < mK ≤ 2N, we can choose a sequence pm of homogeneous
polynomials of degree m which satisfy

(1)
∣∣pm j (z)

∣∣ ≤ 2 for all z ∈ ∂�,

(2) maxk∈{1,...,K }
∣∣pmk (z)

∣∣ ≥ 1
2 for all z ∈ ∂�,

(3)
∣∣pm j (z) − pm j (w)

∣∣ ≤ 3m j ‖z − w‖ for z, w ∈ ∂�

Proof Let 0 < c1 < c2 be from [7, Lemma 2.1]. For a = 1
4 we can choose C

from [7, Lemma 2.5]. Let K = K (α, β) be from [7, Lemma 2.3] for α = 1
4
√
c2

and

β = C√
c1
. For N ∈ N fix a maximal 1/(4

√
c2N )-separated subset A ⊂ ∂�. Using

[7, Lemma 2.3] we can divide A into at most K disjoint C/
√
c1N -separated subsets

A0, A1, . . . , AK−1. We define the same way as in [7, Theorem 2.6]:

pm j (z) :=
∑

ξ∈A j

〈
z, νξ

〉m j

for j = 0, 1, . . . , K − 1.
Using the same arguments as in [7, Theorem 2.6] we conclude properties (1)–(2).
Since m j − 1 ≥ N we can use [7, Lemma 2.5 (4)] and observe that

∑

ξ∈A j

∣∣〈z, νξ

〉∣∣m j−1 ≤ 1 + a = 5

4

for z ∈ ∂�. Now we can estimate:

∣∣pm j (z) − pm j (w)
∣∣ ≤

∑

ξ∈A j

∣∣〈z, νξ

〉m j − 〈w, νξ

〉m j
∣∣

≤
∑

ξ∈A j

∣∣〈z − w, νξ

〉∣∣
m j−1∑

k=0

∣∣〈z, νξ

〉∣∣k ∣∣〈w, νξ

〉∣∣m j−k−1

≤ ‖z − w‖
m j−1∑

k=0

∑

ξ∈A j

(∣∣〈z, νξ

〉∣∣m j−1 + ∣∣〈w, νξ

〉∣∣m j−1
)

≤ ‖z − w‖
m j−1∑

k=0

10

4
≤ 3m j ‖z − w‖

for z, w ∈ ∂�. 
�
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Since we use combinations homogeneous polynomials and Lipschitz functions we
will need the following tool for efficient small interval integration.

Lemma 2.4 Let f be a Lipschitz function on [0, 1] then
∫ 1

n

0
exp (2π int) f (t)dt = O

(
1

n2

)

Proof If | f (t1) − f (t2)| ≤ C |t1 − t2| then we can estimate

∣∣∣∣∣

∫ 1
n

0
exp (2π int) f (t)dt

∣∣∣∣∣ =
∣∣∣∣∣

∫ 1
n

0
exp (2π int) ( f (t) − f (0)) dt

∣∣∣∣∣

≤
∫ 1

n

0
Ctdt ≤ C

n2


�
Our crucial one-dimensional property of E (Lemma 2.2) is preserved by polynomials:

Lemma 2.5 There exists a constant α ∈ (0, 1) such that for a given Lipschitz positive
function h on ∂� there exists a constant θ > 1 such that for all sufficiently large
m ∈ N we can choose polynomial Pm with:

(1) |Pm | < h on ∂�,
(2) |Pm(rη)| ≤ ‖h‖ rm for η ∈ ∂�, r ∈ (0, 1),
(3) for all η ∈ ∂� there exists x ∈ [0, 1

m

]
such that:

	Pm ≥ αh

on η[
x,x+ 1

θm

].

Proof There exists N = N (�) ∈ N such that for a given continuous positive function
h on ∂� we can choose holomorphic functions f1, . . . , fN on Cd such that (see [7]):

| fi | < h < 2 max
i=1,...,N

| fi |

on ∂�. There exists C > 0 such that

| fi (η) − fi (ξ)| ≤ C ‖η − ξ‖

for η, ξ ∈ �. Let K ∈ N be as in Lemma 2.3. For a given m, n ∈ N let mi, j =
m(n + K (i − 1) + j − 1). Now for sufficiently large n0 and all positive m we have:
mn ≤ m1,1 < · · · < mN ,K < 2mn and there exist homogeneous polynomials pmi, j

of degree mi, j such that:

(1)
∣∣pmi, j

∣∣ ≤ 2 on ∂�,
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(2) max j∈{1,...,K }
∣∣pmi, j

∣∣ ≥ 1
2 on ∂�,

(3)
∣∣pmi, j (η) − pmi, j (ξ)

∣∣ ≤ 3mi, j ‖η − ξ‖ ≤ 6mn0 ‖η − ξ‖ for z, w ∈ ∂�.

We show that it is enough to define β = 1 − 1
211K 2N2 , α = 1

2 (1 − β2),

θ = 24π ‖h‖ n0
αminξ∈∂� h(ξ)

and

Pm := 1

2K N

N∑

i=1

fi

K∑

j=1

pmi, j

for m large enough.
We have on ∂�:

|Pm | ≤ 1

2K N

N∑

i=1

h
K∑

j=1

2 ≤ h

and

|Pm(rη)| ≤ 1

2K N

N∑

i=1

‖h‖
K∑

j=1

2rm ≤ ‖h‖ rm

for η ∈ ∂� and r ∈ (0, 1). Moreover for η, ξ ∈ ∂� and m sufficiently large:

|Pm(η) − Pm(ξ)| ≤ 1

2K N

∑

i, j

| fi (η)| ∣∣pmi, j (η) − pmi, j (ξ)
∣∣+

+ 1

2K N

∑

i, j

∣∣pmi, j (ξ)
∣∣ | fi (η) − fi (ξ)|

≤ 1

2K N

∑

i, j

h(z)6mn0 ‖η − ξ‖ + 1

2K N

∑

i, j

2C ‖η − ξ‖

≤ 6 ‖h‖mn0 ‖η − ξ‖ .

Let us observe that
√
1 + x ≤ 1 + 1

2 x − 1
16 x

2 holds for x ∈ (−1, 1).
Now we can use Lemma 2.4 and estimate for m large enough, η ∈ ∂�:

∫ 1
m

0

√
h − 	Pm(ηt )dt ≤

∫ 1
m

0

√
h

⎛

⎝1 − Pm + Pm
4h

− 1

16

(
Pm + Pm

2h

)2
⎞

⎠ (η[t])dt

≤
∫ 1

m

0

√
h

⎛

⎝1 − 1

26h2K 2N 2

∑

i, j

| fi |2
∣∣pmi, j

∣∣2
⎞

⎠ (η[t])dt + O

(
1

m2

)
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≤
∫ 1

m

0

√
h

⎛

⎝1 − 1

26h2K 2N 2

∑

i, j

| fi |2 1

4
+ O

(
1

m

)⎞

⎠ (η[t])dt

≤
∫ 1

m

0

√
h

(
1 − 1

210K 2N 2 + O

(
1

m

))
(η[t])dt

≤
∫ 1

m

0

√
h

(
1 − 1

211K 2N 2

)
(η[t])dt =

∫ 1
m

0
β
√
h(η[t])dt .

In particular there exists x ∈ [0, 1
m

]
such that (h − 	Pm) (η[x]) ≤ β2h(η[x]) so we

have:

2αh(η[x]) = (1 − β2)h(η[x]) ≤ (	Pm) (η[x]).

Without lost of the generality we can assume that m is so large that for t ∈[
x, x + 1

θm

]
we have

3

4
h(η[t]) ≤ h(η[x]).

Since

∣∣(	Pm) (η[x]) − (	Pm) (η[t])
∣∣ ≤ 6 ‖h‖mn02π(t − x) ≤ 12π ‖h‖ n0

θ

= αminξ∈∂� h(ξ)

2
,

we can estimate:

3

2
αh(η[t]) ≤ 2αh(η[x]) ≤ (	Pm ) (η[x]) ≤ (	Pm ) (η[x]) + (	Pm ) (η[t]) − (	Pm ) (η[t])

≤ (	Pm ) (η[t]) + 1

2
αh(η[t]),

which implies

αh(η[t]) ≤ (	Pm) (η[t])

and finishes the proof. 
�

3 Peak Set

Theorem 3.1 There exists a peak set E ⊂ ∂� such that η∂D ∩ E has Hausdorff
dimension equal to 1 for all η ∈ ∂�.

Proof Let α ∈ (0, 1) be from Lemma 2.5.
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Before constructing the desired peak set and the function F exhibiting the defi-
nition of the peak set we present an inductive construction of several sequences (of
Q j , E jm j , θ j , r j ) satisfying the following properties:

(1) Q1 = 1, E1 = ∂�, m1 = 1, θ1 = 1, r1 = 1, Q j is a polynomial, E j–compact
subset of ∂�, m j , θ j ,

1
r j
–natural numbers.

(2)
θ j
j√m j

≤ 2− j , r j = r j−1
θ j m j

,

(3) E j = {η ∈ E j−1 : 	Q j (η) ≥ α
}
,

(4)
∣∣Q j

∣∣ ≤ 1 and
∣∣Q j

∣∣ ≤ 2− j on3

Dj−1 :=
(
�\K (E j−1, 2

− j )
)

∪
⎛

⎝
⋃

k< j

{
	Qk ≤ α

2

}
∩ �

⎞

⎠ ,

(5) If η[
0,

r j−1
m j

] ⊂ E j−1 then there exists x ∈
[
0,

r j−1
2m j

]
such that

η[x,x+r j ] ⊂ E j ∩ η[
0,

r j−1
m j

].

Let us observe that Q1, E1,m1, θ1, r1 are just defined by property (1), so suppose that
Q j−1, E j−1m j−1, θ j−1, r j−1 have properties (1)–(5).

Since Dj−1 ∩ E j−1 = ∅ therefore 2ε = inf(ξ,η)∈E j−1×Dj−1 ‖ξ − η‖ > 0. For a
given η ∈ ∂� ∩ Dj−1 there exists an open neighbourhood Vη of η with the following
properties:

• Vη ∩ K (E j−1, ε) = ∅
• If f is holomorphic on Vη then:

sup
ξ∈Vη∩�

| f (ξ)| ≤ sup
ξ∈∂�∩Vη

| f (ξ)| .

To guarantee the last inequality, it suffices to choose the neighborhood Uη of η in ∂�

so that Uη ∩ K (E j−1, ε) = ∅. Now it is enough to define Vη =⋃ω:∂ω⊂Uη
ω where ω

is any one-dimensional complex disc disjoint with K (E j−1, ε).
Let V = ⋃

η∈Dj−1
Vη. Since Dj−1 is compact there exists s ∈ (0, 1) such that

Dj−1 ⊂ s� ∪ V . We can choose a positive Lipschitz function h on ∂� such that

• h ≤ 1 on ∂�,
• h ≡ 1 on E j−1,
• h ≤ 2− j on V ∩ ∂�.

Now for a given h we can use Lemma 2.5 and choose θ > 1 such that for all sufficiently
large m ∈ N we can choose polynomial Pm with:

3 If S is a set then K (S, r) =
{
η ∈ C

d : infξ∈S ‖ξ − η‖ < r
}
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• |Pm | < h on ∂�,
• |Pm(rη)| ≤ rm for η ∈ ∂�, r ∈ (0, 1),
• for all η ∈ ∂� there exists x ∈ [0, 1

m

]
such that:

	Pm ≥ αh (3.1)

on η[
x,x+ 1

θm

].

We can define θ j = 2�θ�. Since 1
r j−1

∈ Nwe can also assume thatm = 2m j
r j−1

form j ∈
N sufficiently large. In particularm j can be so large that |Pm | ≤ 2− j on s� and

θ j
j√m j

≤
2− j . Now we can define r j = r j−1

θ j m j
, Q j = Pm and E j = {η ∈ E j−1 : 	Q j (η) ≥ α

}
.

If η ∈ Dj−1 then η ∈ s� or η ∈ V . In both cases |Q j (η)| ≤ 2− j so we have
properties (1)–(4). Suppose that η[

0,
r j−1
m j

] = η[
0, 2

m

] ⊂ E j−1. Now for a given η there

exists x ∈ [0, 1
m

] =
[
0,

r j−1
2m j

]
with (3.1). But η[

x,x+ 1
θm

] ⊂ η[
0, 2

m

] ⊂ E j−1 so h = 1

on η[
x,x+ 1

θm

] and

η[x,x+r j ] = η[
x,x+ r j−1

θ j m j

] = η[
x,x+ 1

�θ�m
] ⊂ η[

x,x+ 1
θm

] ⊂ E j .

We just proved that our sequences fulfills properties (1)-(5).
Let us choose sequences Q j E j ,m j , θ j , r j . The set E =⋂ j E j is a compact subset

of ∂�. Let us consider Q = ∑
j Q j . If j0 ∈ N then we can observe

∣∣Q j
∣∣ ≤ 2− j on

�\K (E j0−1, 2− j0) for j ≥ j0. In particular Q is holomorphic function on � and
continuous on �\E .

For a given η ∈ �\(D1 ∪ E) let index jη ≥ 2 be such that η ∈ Djη\Djη−1. We
have

∣∣Q j (η)
∣∣ ≤ 2− j for j ≥ jη + 1 and 	Q j (η) ≥ α

2 for j ≤ jη − 1, so we can
estimate:

	Q(η) ≥
∑

k≤ jη−1

	Qk(η) + 	Q jη (η) −
∑

k≥ jη+1

|Qk(η)| ≥ jη
α

2
− 1 −

∑

k≥ jη+1

2−k

>
jη
2

− 2.

If �\(D1 ∪ E) � ηn → ξ ∈ E then jηn → ∞. In particular

lim
�\E�ηn→ξ∈E

	Q(ξ) ≥ lim
n→∞

1

2
jηn − 2 = ∞

and 	Q(η) > −1 for η ∈ �\(D1 ∪ E).
If η ∈ D1 then

∣∣Q j (η)
∣∣ ≤ 2− j for j ≥ 2, so we have	Q(η) ≥ −1−∑ j≥2 2

− j >

−2. In particular

	Q > −2
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on �\E , which implies that E is a peak set for the function F = exp
( −1
Q+2

)
.

Now we calculate Hausdorff dimension of E on each slice. Let α ∈ (0, 1) we can
observe for 1

j ≤ α:

0 ≤ θ j

mα
j

≤ θ j

m
1
j
j

→ 0.

For a given ξ ∈ ∂� we have ξ[0,1] ⊂ E1. Moreover if ξ[z,z+r j−1]⊂ E j−1 for some

z ∈ [0, 1] and k ∈ {0, . . . ,m j − 1} then we can set η = ξz+s ∈ E j−1 for s = kr j−1
m j

.
In particular

η[
0,

r j−1
m j

] = ξ[
z+ kr j−1

m j
,z+ (k+1)r j−1

m j

] ⊂ ξ[z,z+r j−1] ⊂ E j−1,

so there exists x ∈
[
0,

r j−1
2m j

]
such that

η[x,x+r j ] ⊂ E j ∩ η[
0,

r j−1
m j

].

Now we have:

ξ[
z+ kr j−1

m j
+x,z+ kr j−1

m j
+x+r j

] = η[x,x+r j
] ⊂ E j ∩ η[

0,
r j−1
m j

] = E j ∩ ξ[
z+ kr j−1

m j
,z+ (k+1)r j−1

m j

]

so we can use Lemma 2.2 and conclude that ξ[0,1] ∩ E has Hausdorff dimension
equal 1. 
�
Remark 3.2 Peak set E withHausdorff dimension equals to 1on each slice hasmaximal
possible Hausdorff dimension equal to 2d − 1.

Proof It follows from Fubini theorem for Hausdorff measure see ([18, Proposition 2]
and [20]). 
�
Remark 3.3 Let ε, r ∈ (0, 1) and Sε = {η ∈ ∂� : η1 ≥ ε}, �[0,r ] = exp (2π i[0, r ]).
Then there exists E ⊂ Sε�r peak set such that η�r ∩ E has Hausdorff dimension
equal to 1 for η ∈ Sε.

Proof Let ri be as in the proof of Theorem 3.1. It is enough to observe that Sε�[0,ri ]
contains a peak set with Hausdorff dimension equal to 1 on each slice crossing Sε. 
�
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