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Abstract
The Fueter-Sce-Qian mapping theorem gives a constructive way to extend holomor-
phic functions of one complex variable to slice hyperholomorphic functions. Bymeans
of the Cauchy formula for slice hyperholomorphic functions it is possible to have a
Fueter-Sce-Qian mapping theorem in integral form for n odd. On this theorem it is
based the F-functional calculus for n-tuples of commuting operators. It is a func-
tional calculus based on the commutative version of the S spectrum. Furthermore,
it is a monogenic functional calculus in the spirit of McIntosh and collaborators. In
this paper, inspired by the quaternionic case and some particular Clifford algebras
cases, we show a general resolvent equation for the F-functional calculus in the Clif-
ford algebra setting. Moreover, we prove that the F-resolvent equation is the suitable
equation to study the Riesz projectors.

Keywords Spectral theory on the S-spectrum · F-Resolvent operators · F-Resolvent
equation · Riesz projectors for the F-functional calculus

Mathematics Subject Classification 47A10 · 47A60

Communicated by Daniel Alpay.

This article is part of the topical collection “Higher Dimensional Geometric Function Theory and
Hypercomplex Analysis” edited by Irene Sabadini, Michael Shapiro and Daniele Struppa.

B Irene Sabadini
irene.sabadini@polimi.it

Fabrizio Colombo
fabrizio.colombo@polimi.it

Antonino De Martino
antonino.demartino@polimi.it

1 Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, 20133 Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-022-01323-7&domain=pdf


26 Page 2 of 42 F. Colombo et al.

1 Introduction

One of the deepest and important result in hypercomplex analysis is the Fueter-Sce-
Qian mapping theorem. This gives a two step procedure to construct a monogenic
function, i.e., null solutions of the generalized Cauchy Riemann operator in R

n+1,
starting from a holomorphic function of one complex variable. In the first step the class
of holomorphic functions is extended to the one of slice hyperholomorphic functions.
In the second step the class of monogenic functions is generated by applying the so-

called Fueter-Sce-Qian map, namely �
n−1
2 (where � is the Laplace operator), to the

class of slice hyperholomorphic functions. For more details see [27].
Nowadays both slice hyperholomorphic and monogenic functions are widely stud-

ied. See, for example, the books, [25, 26, 33, 34], and the references therein, for
further information about slice hyperholomorphic functions. Recently, this theory of
functions has generated the following research directions: quaternionic integral trans-
forms see [30, 31], quaternionic perturbation theory and invariant subspaces [8], the
characteristic operator functions and applications to linear system theory [5], Schur
analysis [4], fractional powers of quaternionic linear operators [14]. Based on these
there are new classes of fractional diffusion problems [9, 10, 20].

For further information about the theory of monogenic functions see, for instance,
[7, 24, 28, 35] and references therein. Some applications of this function theory are
related to the functional calculus, see [36], peculiar integral transforms [29], singular
integrals [38].

A Cauchy formula holds for slice hyperholomorphic functions and it is the heart
of the S-functional calculus. In order to give further information about this we need
some preliminary material.

Let Rn be the real Clifford algebra over n imaginary units e1, . . . , en satisfying the
relations e�em + eme� = 0, � �= m, e2� = −1. An element in the Clifford algebra will
be denoted by

∑
A eAxA where A = {�1 . . . �r } ∈ P{1, 2, . . . , n}, �1 < . . . < �r is a

multi-index and eA = e�1e�2 . . . e�r , e∅ = 1. A point (x0, x1, . . . , xn) ∈ R
n+1 will be

identified with the element x = x0 + x = x0 +∑n
j=1 x j e j ∈ Rn called paravector

and the real part x0 of x will also be denoted by Re(x). The vector part of x is defined
by x = x1e1 + · · · + xnen . The conjugate of x is denoted by x = x0 − x and the
Euclidean modulus of x is given by |x |2 = x20 + · · · + x2n .

In this paper we work in a Clifford algebra setting, and in the sequel we denote by
B(Vn) the Banach space of all bounded right linear operators acting on a two sided
Clifford Banach module Vn = V ⊗ Rn , where V is a real Banach space.

Let T : Vn → Vn be a bounded right linear operator. The formulation of a quater-
nionic quantum mechanic given by G.Birkhoff and J.Von Neumann in the paper [6]
suggests the existence of an appropriate quaternionic spectrum. The notion of S-
spectrum was discovered in 2006 by F.Colombo and I.Sabadini, see [15, 26].

The S-spectrum is defined in an unconventional way because the square of the
linear operator T is involved, it is given by:

σS(T ) := {s ∈ R
n+1 : T 2 − 2Re(s)T + |s|2I is not invertible},



The F -Resolvent Equation and Riesz Projectors for the… Page 3 of 42 26

and the resolvent set is defined as its complementary set, namely:

ρS(T ) = R
n+1 \ σS(T ).

The left and the right S-resolvent operators are defined as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), s ∈ ρS(T ),

and

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1, s ∈ ρS(T ),

respectively. The left S-resolvent operator satisfies the equation

S−1
L (s, T )s − T S−1

L (s, T ) = I, s ∈ ρS(T ), (1.1)

and the right S-resolvent operator satisfies

sS−1
R (s, T ) − S−1

R (s, T )T = I, s ∈ ρS(T ). (1.2)

By combining in a suitable way formulas (1.1) and (1.2) it is possible to get the
so-called S-resolvent equation, see [1]:

S−1
R (s, T )S−1

L (p, T ) = [[S−1
R (s, T ) − S−1

L (p, T )]p − s[S−1
R (s, T ) − S−1

L (p, T )]]

(p2 − 2s0 p + |s|2)−1, (1.3)

for s, p ∈ ρS(T ). The peculiarity of this equation is that both the left and the right
resolvent operators are involved. Moreover it preserves the right slice hyperholomor-
phicity in s and the left slice hyperholomorphicity in p.

Remark 1.1 In the S-resolvent equation the product S−1
L (p, T )S−1

R (s, T ) cannot be
used, because it destroys the slice hyperholomorphicity.

We observe that in this setting the spectral mapping theorem plays a very important
role, see the quaternionic case [2], the particular cases [3] and the extension to fully
Clifford algebras, see [17]. For recent contributions on the S-functional calculus, see
for example [16, 18].

In [22] a commutative version of the S-functional calculus is studied. To introduce
this we need some preliminary notations.

In the sequel, we will consider bounded paravector operators T , with commuting
components T� ∈ B(V ) for � = 0, 1, . . . , n, n odd. By BC(Vn) we will denote the
subset of B(Vn) consisting of Clifford operators with commuting components, i.e.,
operators of the type

∑
A eATA where A = {�1 . . . �r } ∈ P{1, 2, . . . , n}, �1 < · · · <

�r is a multi-index, T∅ = T0, and the operators TA commute among themselves.
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Let us consider the paravector operator T = T0 + e1T1 + · · · + enTn in BC(Vn),
the F-spectrum of T is defined as

σF (T ) = {s ∈ R
n+1 : s2I − s(T + T ) + T T is not invertible in B(Vn)},

where we have set T := T0 − e1T1 − . . . − enTn , and the F-resolvent set

ρF (T ) := R
n+1 \ σF (T ).

In [23] it is showed that theF-spectrum is the commutative version of the S-spectrum,
i.e., we have

σF (T ) = σS(T ), for T ∈ BC(Vn).

The definition of F-spectrum comes from the shape of the commutative S-resolvent
operators. Let us consider an operator T ∈ BC(Vn), the commutative version of the
left S-resolvent operator is defined as

S−1
L (s, T ) := (sI − T )(s2I − s(T + T ) + T T )−1, s ∈ ρF (T ), (1.4)

and the commutative version of the right S-resolvent operator is

S−1
R (s, T ) := (s2I − s(T + T ) + T T )−1(sI − T ), s ∈ ρF (T ). (1.5)

For the sake of simplicity we have still denoted the commutative version of the S-
resolvent operators with the same symbols as for the noncommutative ones. The
operator

Qs(T ) := (s2I − s(T + T ) + T T )−1, s ∈ ρF (T ),

is called the commutative pseudo S-resolvent operator (for short, it is called pseudo
resolvent operator).

In the sequel, when we mention the S-resolvent operators we intend their commu-
tative versions.

By applying the Fueter-Sce map, namely �
n−1
2 with n odd, to the slice hyper-

holomorphic Cauchy formulas it is possible to get a Fueter-Sce mapping theorem in
integral form, see [23]. This result is crucial to define theF-functional calculus, which
is a monogenic functional calculus in the spirit of A.McIntosh and collaborators, see
[36]. For more information about the F-functional see Sect. 2 of this paper and the
papers [11, 13, 21], here we are only interested to recall the definitions ofF-resolvent
operators. Let us consider T ∈ BC(X) and s ∈ ρF (T ), for n being an odd number we
define the left F-resolvent operator as

F L
n (s, T ) := γn(sI − T )(s2I − s(T + T ) + T T )−

n+1
2 , (1.6)
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and the right F-resolvent operator as

F R
n (s, T ) := γn(s

2I − s(T + T ) + T T )−
n+1
2 (sI − T ), (1.7)

where the constant γn is defined by

γn := (−1)
n−1
2 2n−1

[(
n − 1

2

)

!
]2

. (1.8)

In [13] a resolvent equation for the F-functional calculus in the quaternionic case
(which coincides with the case n = 3) was obtained, and it is given by

F R
3 (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

3 (p, T )

− 1

4

(
sF R

3 (s, T )F L
3 (p, T )p − sF R

3 (s, T )TF L
3 (p, T ) − F R

3 (s, T )TF L
3 (p, T )p

+ F R
3 (s, T )T 2F L

3 (p, T )
)

= [ (F R
3 (s, T ) − F L

3 (p, T )
)
p − s̄

(
F R
3 (s, T ) − F L

3 (p, T )
) ]

(p2 − 2s0 p + |s|2)−1.

(1.9)

for T ∈ BC(V3) and for any p, s ∈ ρF (T ), with s /∈ [p].
TheF-functional calculus depends crucially on the powers of the�

n−1
2 . Thismeans

that when we increase the dimension of the algebra we have to increase the power of
the Laplacian and this generates more involved computations.
The F-resolvent equation when n = 5 is written in terms of the S-resolvent operators
and of the commutative pseudo S-resolvent operators, it is given by

F R
5 (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

5 (p, T ) + γ5Qs (T )S−1
R (s, T )S−1

L (p, T )Qp(T )

+γ5[Q2
s (T )Qp(T ) + Qs (T )Q2

p(T )]
= {[F R

5 (s, T ) − F L
5 (p, T )]p − s̄[F R

5 (s, T ) − F L
5 (p, T )]}(p2 − 2s0 p + |s|2)−1. (1.10)

for p, s ∈ ρF (T ) and where γ5 is given by (1.8) for n = 5. In [11] is showed that this
equation can be still written in terms of F-resolvent operators.
For the case n = 7 we have the following resolvent equation

F R
7 (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

7 (p, T ) + γ7
[Qs (T )S−1

R (s, T )S−1
L (p, T )Q2

p(T )

+Q2
s (T )S−1

R (s, T )S−1
L (p, T )Qp(T ) + Qs (T )Q3

p(T ) + Q3
s (T )Qp(T ) + Q2

s (T )Q2
p(T )]

= {[F R
7 (s, T ) − F L

7 (p, T )
]
p − s̄

[F R
7 (s, T ) − F L

7 (p, T )
]}

(p2 − 2s0 p + |s|2)−1. (1.11)

Nevertheless, in this case it is too much complicated to write the equation (1.11) in
terms of the F-resolvent operators.
This last case shows that the general case of n-tuples of operators can be treated only
in terms of S-resolvent operators and commutative pseudo S-resolvent operators. In
this paper we show, with all the details, the proof of the following formula
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F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

+ γn

[h−2∑

i=0

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T ) +
h−1∑

i=0

Qh−i
s (T )Qi+1

p (T )

]

= {[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1,

(1.12)

where h = n−1
2 , n is odd, T ∈ BC(Vn) and p, s ∈ ρF (T ).

In the introduction of the paper [11] a comparison between all the properties of the
resolvent equations of the holomorphic functional calculus, the S-functional calculus
and the F-functional calculus, is done.

Moreover, we prove that this equation is fundamental to study the Riesz projectors
that are defined by

P̌ = 1

2πγn

∫

∂(G1∩CI )
F L
n (p, T )dpI p

n−1 = 1

2πγn

∫

∂(G2∩CI )
sn−1dsIF R

n (s, T ), (1.13)

where γn is given in (1.8) and the sets G1 and G2 contain part of the F-spectrum.
Outline of the paper: Besides of this introduction the paper consist of 4 sections.

In Section 2 we recall basic results of the theories of slice hyperholomorphic and
monogenic functions. Moreover, we recall also the notions of S-functional functional
calculus and F-functional calculus. In Section 3 we provide an expression of the F-
resolvent equation for any n odd. Finally in Section 4 we study the Riesz projectors
for the F-functional calculus by using the F-resolvent equation.

2 Preliminary Material

Keeping in mind the notations about the real Clifford algebra Rn , given in the Intro-
duction, we recall the main notions for the slice hyperholomorphic and monogenic
functions. These two classes of functions are the ones that appear in the Fueter-Sce-
Qian construction and they extend holomorphic functions to quaternionic or Clifford
algebra valued-functions.

2.1 Function Theories

We start by recalling the concept of slice hyperholomorphic function. To introduce this
notion we need to fix some notations. We denote by S the sphere of purely imaginary
vectors with modulus 1, which is defined by

S = {x = e1x1 + · · · + enxn | x21 + · · · + x2n = 1}.

We observe that if I ∈ S, then I 2 = −1. This means that I behaves like an imaginary
unit, and we denote by
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CI := {u + Iv | u, v ∈ R},

an isomorphic copy of the complex numbers.Given a non-real paravector x = x0+x =
x0 + Jx |x |, we set Jx := x/|x | ∈ S, and we associate to x the sphere defined by

[x] = {x0 + J |x | | J ∈ S}.

Definition 2.1 LetU ⊆ R
n+1.We say thatU is axially symmetric if, for every u+ Iv ∈

U , all the elements u + Jv for J ∈ S are contained in U .

Definition 2.2 Let U ⊆ R
n+1 be an axially symmetric open set and let U ⊆ R × R

be such that x = u + Jv ∈ U for all (u, v) ∈ U . We say that a function f : U → Rn

of the form

f (x) = f0(u, v) + J f1(u, v)

is left slice hyperholomorphic if f0, f1 are Rn-valued differentiable functions such
that

f0(u, v) = f0(u,−v), f1(u, v) = − f1(u,−v) for all (u, v) ∈ U

and if f0 and f1 satisfy the Cauchy-Riemann system

∂u f0 − ∂v f1 = 0, ∂v f0 + ∂u f1 = 0.

We recall that right slice hyperholomorphic functions are of the form

f (x) = f0(u, v) + f1(u, v)J

where f0, f1 satisfy the above conditions.

Remark 2.3 There are other different notions of slice hyperholomorphic functions.
However, the previous definition is the most appropriate for the operator theory see
[14, 15].

The set of left (resp. right) slice hyperholomorphic function on U is denoted with
the symbol SHL(U ) (resp. SH R(U )). The subset of intrinsic functions consist of those
slice hyperholomorphic functions such that f0, f1 are real-valued and is denoted by
N (U ).

Now, we recall the slice hyperholomorphic Cauchy formulas, that are crucial to
develop the hyperholomorphic spectral theory on the S-spectrum.

Definition 2.4 Let x /∈ [s]. We define and

S−1
L (s, x) := −(x2 − 2Re(s)x + |s|2)−1(x − s) (2.1)

= (s − x̄)(s2 − 2Re(x)s + |x |2)−1, (2.2)
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S−1
R (s, x) := −(x − s̄)(x2 − 2Re(s)x + |s|2)−1 (2.3)

= (s2 − 2Re(x)s + |x |2)−1(s − x̄). (2.4)

We say that (2.1) is the left Cauchy kernel in form I, while (2.2) is in the form II.
Analogously, we say that the right Cauchy kernel in form I, while (2.4) is in the form
II.

Lemma 2.5 Let s /∈ [x].
• The left slice hyperholomorphic Cauchy kernel S−1

L (s, x) is left slice hyperholo-
morphic in x and right slice hyperholomorphic in s.

• The right slice hyperholomorphic Cauchy kernel S−1
R (s, x) is left slice hyperholo-

morphic in s and right slice hyperholomorphic in x.

Theorem 2.6 (The Cauchy formulas for slice monogenic functions) Let U ⊂ R
n+1

be a bounded slice Cauchy domain, let J ∈ S and set dsJ = ds(−J ). If f is a (left)
slice monogenic function on a set that contains U then

f (x) = 1

2π

∫

∂(U∩CJ )

S−1
L (s, x) dsJ f (s), for any x ∈ U . (2.5)

If f is a right slice hyperholomorphic function on a set that contains U, then

f (x) = 1

2π

∫

∂(U∩CJ )

f (s) dsJ S
−1
R (s, x), for any x ∈ U . (2.6)

These integrals depend neither on U nor on the imaginary unit J ∈ S.

Now, we recall the definition of monogenic functions

Definition 2.7 Let U be an open set in Rn+1. A real differentiable function f : U →
Rn is left monogenic if

Df (x) := ∂

∂x0
f (x) +

n∑

i=1

ei
∂

∂xi
f (x) = 0.

It is right monogenic if

f (x)D := ∂

∂x0
f (x) +

n∑

i=1

∂

∂xi
f (x)ei = 0.

Also for this class of functions it is possible to have a Cauchy formula, that is the
heart of the functional calculus developed by A. McIntosh and collaborators see [36].

A bridge between the theory of slice hyperholomorphic andmonogenic functions is
the Fueter-Sce theorem. Thiswas proved byR. Fueter in 1934, see [32] for quaternions.
More than 20 years later M. Sce, see [39], extended this result to Clifford algebras in
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a very general way; see [27] for an English translation of Sce works in hypercomplex
analysis.

In the original paper of R. Fueter, [32], holomorphic functions are defined on open
sets of the complex upper half plane. However, this condition can be relaxed if one
consider functions of the following type

g(z) = g0(u, v) + ig1(u, v), z = u + iv

defined in a set D ⊆ C, symmetric with respect to the real axis such that the functions
g0 and g1 satisfy the so-called even-odd conditions, namely

g0(u,−v) = g0(u, v) and g1(u,−v) = −g1(u, v).

Furthermore g0 and g1 satisfy the Cauchy-Riemann system. The same conditions are
required by Sce for higher dimensions.

Theorem 2.8 (Sce [39]) Consider the Euclidean space Rn+1, n odd, whose elements
are identified with paravectors x = x0 + x. Let f̃ (z) = f0(u, v) + i f1(u, v) be a
holomorphic function defined in a domain (open and connected) D in the upper-half
complex plane and let

	D = {x = x0 + x | (x0, |x |) ∈ D}

be the open set induced by D in Rn+1. The map

f (x) = TFS1( f̃ ) := f0

(

x0, |x |) + x

|x | f1(x0, |x |
)

takes the holomorphic functions f̃ (z) and gives the Clifford-valued function f (x).
Then the function

f̆ (x) := TFS2
(
f0(x0, |x |) + x

|x | f1(x0, |x |)
)
,

where TFS2 := �
n−1
2

n+1 and �n+1 is the Laplacian in n+1 dimensions, is a monogenic
function.

We observe that the operator TFS2 is a differential operator when n is odd. On the
other side when n is even the operator TFS2 is a fractional operator, and it is possible
to define TFS2 by means of the Fourier multipliers, as Tao Qian did in in [37].

Moreover, we note that a different method to connect slice hyperholomorphic and
monogenic functions is the Radon and dual Radon transform, see [19].

In [23] the Fueter-Sce theorem is written in integral form. The main advantage of
this approach is that one can obtain a monogenic function by integrating suitable slice
hyperholomorphic functions. We recall what happens when we apply the Fueter-Sce

map TFS2 = �
n−1
2

n+1 to the slice hyperholomorphic Cauchy kernelswritten in the second
form.
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Theorem 2.9 Let n be an odd number and let x, s ∈ R
n+1. For s /∈ [x], we have

�
n−1
2 S−1

L (s, x) = γn(s − x̄)(s2 − 2Re(x)s + |x |2)− n+1
2 ,

and

�
n−1
2 S−1

R (s, x) = γn(s
2 − 2Re(x)s + |x |2)− n+1

2 (s − x̄),

where the constants γn are defined in (1.8).

Remark 2.10 The previous result has been generalized for all the dimensions in [12].

Proposition 2.11 Let n be an odd number and let x, s ∈ R
n+1 be such that x /∈ [s].

Let S−1
L (s, x) and S−1

R (s, x) be the slice hyperholomorphic Cauchy kernels in form
II. Then:

• The function �
n−1
2 S−1

L (s, x) is a left monogenic function in the variable x and
right slice hyperholomorphic in s.

• The function �
n−1
2 S−1

R (s, x) is a right monogenic function in the variable x and
left slice hyperholomorphic in s.

Definition 2.12 (The F-kernels) Let n be an odd number and let x , s ∈ R
n+1. We

define, for s /∈ [x], the F L
n -kernel as

F L
n (s, x) := �

n−1
2 S−1

L (s, x) = γn(s − x̄)(s2 − 2Re(x)s + |x |2)− n+1
2 ,

and the F R
n -kernel as

F R
n (s, x) := �

n−1
2 S−1

R (s, x) = γn(s
2 − 2Re(x)s + |x |2)− n+1

2 (s − x̄),

where the constant γn are defined in (1.8).

Theorem 2.13 (The Fueter-Sce mapping theorem in integral form) Let U ⊂ R
n+1 be

a bounded slice Cauchy domain, let J ∈ S and set dsJ = ds(−J ).

(a) If f is a (left) slice monogenic function on a set that contains U, then the left

monogenic function f̆ (x) = �
n−1
2 f (x) admits the integral representation

f̆ (x) = 1

2π

∫

∂(U∩CJ )

F L
n (s, x)dsJ f (s). (2.7)

(b) If f is a right slice monogenic function on a set that contains U, then the right

monogenic function f̆ (x) = �
n−1
2 f (x) admits the integral representation

f̆ (x) = 1

2π

∫

∂(U∩CJ )

f (s)dsJF R
n (s, x). (2.8)

The integrals depend neither on U and nor on the imaginary unit J ∈ S.
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2.2 Functional Calculi on the S-Spectrum

In the sequel, we will consider bounded paravector operators T = e1T1 + · · · + enTn ,
with commuting components T� acting on a real vector space V , i.e. T� ∈ B(V ) for
� = 0, 1, . . . , n. The set of bounded paravector operators is denoted by BC0,1(Vn)
where Vn = V ⊗ Rn . The subset of B(Vn) given by the operators T with commuting
components T� will be denoted by BC(Vn).

Let T ∈ BC0,1(Vn). We denote by SML(σS(T )), SMR(σS(T )) the set of all left
(or right) slice hyperholomorphic functions f with σS(T ) ⊂ dom( f ). We now recall
the following definition:

Definition 2.14 (The S-functional calculus for n-tuples of operators) Let Vn be a two
sided Banach module and T ∈ B0,1(Vn). Let U ⊂ R

n+1 be a bounded slice Cauchy
domain that contains σS(T ) and set dsJ = −ds J . We define

f (T ) = 1

2π

∫

∂(U∩CJ )

S−1
L (s, T ) dsJ f (s), for f ∈ SML(σS(T )), (2.9)

and

f (T ) = 1

2π

∫

∂(U∩CJ )

f (s) dsJ S−1
R (s, T ), for f ∈ SMR(σS(T )). (2.10)

The definition of the S-functional calculus is well posed since the integrals in (2.9)
and (2.10) depend neither on U and nor on the imaginary unit J ∈ S.

Remark 2.15 The S-functional calculus has been generalized for fully Clifford opera-
tors with non commuting components in [18].

The F-functional calculus is based on the Fueter-Sce theorem in integral form.
Since this result is obtained by means of the second form of the slice hyperholo-
morphic Cauchy kernels the F-functional calculus is limited to paravector operators
with commuting components. Moreover, it is based on the commutative version of the
S-spectrum, the so-called F-spectrum.

Definition 2.16 (The F-functional calculus for bounded operators) Let n be an odd
number, let T = e1T1+· · ·+enTn ∈ BC(Vn), assume that the operators T�, � = 1, .., n
have real spectrum and set dsJ = ds/J . For any function f ∈ SML(σS(T )), we
define

f̆ (T ) := 1

2π

∫

∂(U∩CJ )

F L
n (s, T ) dsJ f (s). (2.11)

For any f ∈ SMR(σS(T )), we define

f̆ (T ) := 1

2π

∫

∂(U∩CJ )

f (s) dsJ F R
n (s, T ), (2.12)

where J ∈ S and U is a slice Cauchy domain U .
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The definition of the F-functional calculus is well posed since the integrals in (2.11)
and (2.12) depend neither on U and nor on the imaginary unit J ∈ S.

We can write the left F-resolvent operator in terms of the pseudo S-resolvent
operators as follows.

Definition 2.17 (F-resolvent operators) Let n be an odd number. Let us consider
T = T0 + T1e1 + · · · + Tnen ∈ BC0,1(Vn). For s ∈ ρF (T ), we define the left F-
resolvent operator as

F L
n (s, T ) = γn(sI − T )Qs(T )

n+1
2 , (2.13)

and the right F-resolvent operator as

F R
n (s, T ) = γnQs(T )

n+1
2 (sI − T ), (2.14)

where γn are defined in (1.8).

For these operators hold the following relations, proved in [13, Thm. 5.1]

Theorem 2.18 (The left and right F-resolvent equations) Let n be an odd number
and let T ∈ B0,1(Vn). Let s ∈ ρF (T ). Then the F-resolvent operators satisfy the
equations

F L
n (s, T )s − TF L

n (s, T ) = γnQs(T )
n−1
2 (2.15)

and

sF R
n (s, T ) − F R

n (s, T )T = γnQs(T )
n−1
2 , (2.16)

where the constants γn are given by (1.8).

In [11] a series expansions of theF-resolvent operators is proved in terms of T and
T̄ . To state this result we need to introduce the following notation

K�(m, n) :=
[




(
n + 1

2

)]2
2n−1(−1)

n−1
2

(
n+1
2

)

m+1−n−�

(
n−1
2

)

�

�!(m − n + 1 − �)! 0 ≤ � ≤ m − n + 1, m ≥ n − 1

Theorem 2.19 Let s ∈ R
n+1. For ‖T ‖ < |s|, we have

+∞∑

m=n−1

m−n+1∑

�=0

K�(m, n) Tm+1−n−� T̄ � s−1−m

= γn(sI − T )(s2I − (T + T )s + T T )−
n+1
2 , (2.17)
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and

+∞∑

m=n−1

m−n+1∑

�=0

K�(m, n)s−1−m Tm+1−n−� T̄ �

= γn(s
2I − (T + T )s + T T )−

n+1
2 (sI − T ), (2.18)

where γn are as in (1.8).

The following diagram sums up all the constructions exposed

SH(U ) AM(U )
⏐
⏐
�

Slice Cauchy Formula
TFS2−−−−→ Fueter − Sce theorem in integral form

⏐
⏐
�

⏐
⏐
�

S−Functional calculus F − functional calculus

Remark 2.20 Observe that in the above diagram the arrow from the space of axially
monogenic function AM(U ) is missing because theF-functional calculus is deduced
from the slice hyperholomorphic Cauchy formula.

3 TheF -Resolvent Equation for nOdd

Inspired from the F-resolvent equations in the cases n = 3,5,7 studied in [11], we
get a general F-resolvent equation for any n odd. From the case n = 7, see (1.11), it
is clear that writing the F-resolvent equation only in terms of F-resolvent operators
is too much complicated. For generic n odd we write the F-resolvent equation in
terms of S-resolvent operators and pseudo S-resolvent operators. We start by showing
a technical result.

Lemma 3.1 (The general structure of the F-resolvent equation with the pseudo S-
resolvent operators) Let n > 3 be an odd number, and let h = n−1

2 be the Sce exponent.
Let us consider T ∈ BC0,1(Vn). Then for p, s ∈ ρF (T ) the following equation holds

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

+ γn

[h−2∑

i=0

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T ) +
h−1∑

i=0

Qh−i
s (T )Qi+1

p (T )

]

= {[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1.

(3.1)
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Proof We left multiply the S-resolvent equation (1.3) by γnQh
s (T )

F R
n (s, T )S−1

L (p, T ) =
{
[F R

n (s, T ) − γnQh
s (T )S−1

L (p, T )]p
−s̄[F R

n (s, T ) − γnQh
s (T )S−1

L (p, T )]
}

·
· (p2 − 2s0 p + |s|2)−1 (3.2)

and we right multiply it by γnQh
p(T ), so we get

S−1
R (s, T )F L

n (p, T ) =
{
[γn S−1

R (s, T )Qh
p(T ) − F L

n (p, T )]p − s̄[γn S−1
R (s, T )Qh

p(T )

−F L
n (p, T )]

}
· ·(p2 − 2s0 p + |s|2)−1. (3.3)

We now multiply S-resolvent equation on the left and on the right byQh−1−i
s (T ) and

Qi+1
p (T ), respectively. Then, we sum on the index 0 ≤ i ≤ h − 2 and we obtain

h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T ) =
{[h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )

− Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

]

p − s̄

[h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )

− Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

]}

·(p2 − 2s0 p + |s|2)−1. (3.4)

Now we sum (3.2), (3.3) and (3.4) multiplied by γn , and we get

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

+ γn

h−2∑

i=0

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T )

=
{[

F R
n (s, T ) − γnQh

s (T )S−1
L (p, T )

+ γn S
−1
R (s, T )Qh

p(T ) − F L
n (p, T ) + γn

h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )

− Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

]

p

− s̄

[

F R
n (s, T ) − γnQh

s (T )S−1
L (p, T ) + γn S

−1
R (s, T )Qh

p(T ) − F L
n (p, T )

+ γn

h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )
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− Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

]}

(p2 − 2s0 p + |s|2)−1. (3.5)

Putting in order the terms in the right hand side of the previous equation we get

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

+ γn

h−2∑

i=0

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T )

= {[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1

+ γn
{[
S−1
R (s, T )Qh

p(T ) − Qh
s (T )S−1

L (p, T ) +
h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )

− Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

]
p − s̄

[
S−1
R (s, T )Qh

p(T ) − Qh
s (T )S−1

L (p, T )

+
h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T ) − Qh−1−i

s (T )S−1
L (p, T )Qi+1

p (T )
]}

(p2 − 2s0 p + |s|2)−1. (3.6)

Now, using the definition of left and right S-resolvent operators we get

S−1
R (s, T )Qh

p(T ) − Qh
s (T )S−1

L (p, T ) +
h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )

−
h−2∑

i=0

Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

= Qs (T )(sI − T )Qh
p(T ) − Qh

s (T )(pI − T )Qp(T ) +
h−2∑

i=0

Qh−i
s (T )(sI − T )Qi+1

p (T )

−
h−2∑

i=0

Qh−1−i
s (T )(pI − T )Qi+2

p (T )

= Qs (T )(sI − T )Qh
p(T ) − Qh

s (T )(pI − T )Qp(T ) + Qh
s (T )(sI − T )Qp(T )

+
h−2∑

i=1

Qh−i
s (T )(sI − T )Qi+1

p (T )

− Qs (T )(pI − T )Qh
p(T ) −

h−3∑

i=0

Qh−1−i
s (T )(pI − T )Qi+2

p (T )

= Qs (T )(s − p)Qh
p(T ) + Qh

s (T )(s − p)Qp(T ) +
h−2∑

i=1

Qh−i
s (T )(sI − T )Qi+1

p (T )

−
h−3∑

i=0

Qh−1−i
s (T )(pI − T )Qi+2

p (T )

= Qs (T )(s − p)Qh
p(T ) + Qh

s (T )(s − p)Qp(T ) +
h−2∑

i=1

Qh−i
s (T )(sI − T )Qi+1

p (T )
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−
h−2∑

i=1

Qh−i
s (T )(pI − T )Qi+1

p (T )

= Qs (T )(s − p)Qh
p(T ) + Qh

s (T )(s − p)Qp(T ) +
h−2∑

i=1

Qh−i
s (T )(s − p)Qi+1

p (T )

=
h−1∑

i=0

Qh−i
s (T )(s − p)Qi+1

p (T ). (3.7)

Then we compute

γn
{[
S−1
R (s, T )Qh

p(T ) − Qh
s (T )S−1

L (p, T ) +
h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )

− Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

]
p − s̄

[
S−1
R (s, T )Qh

p(T ) − Qh
s (T )S−1

L (p, T )

+
h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T ) − Qh−1−i

s (T )S−1
L (p, T )Qi+1

p (T )
]}

(p2 − 2s0 p + |s|2)−1

= γn

{[h−1∑

i=0

Qh−i
s (T )(s − p)Qi+1

p (T )

]

p − s̄

[h−1∑

i=0

Qh−i
s (T )(s − p)Qi+1

p (T )

]}

(p2 − 2s0 p + |s|2)−1

= γn

[h−1∑

i=0

Qh−i
s (T )(sp − p2)Qi+1

p (T ) −
h−1∑

i=0

Qh−i
s (T )(|s|2 − s̄ p)Qi+1

p (T )

]

(p2 − 2s0 p + |s|2)−1

= γn

[h−1∑

i=0

Qh−i
s (T )(sp − p2 − |s|2 + s̄ p)Qi+1

p (T )

]

(p2 − 2s0 p + |s|2)−1

= −γn

h−1∑

i=0

Qh−i
s (T )Qi+1

p (T )(p2 − 2s0 p + |s|2)(p2 − 2s0 p + |s|2)−1

= −γn

h−1∑

i=0

Qh−i
s (T )Qi+1

p (T ).

Hence

γn
{[
S−1
R (s, T )Qh

p(T ) − Qh
s (T )S−1

L (p, T ) +
h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T )

− Qh−1−i
s (T )S−1

L (p, T )Qi+1
p (T )

]
p − s̄

[
S−1
R (s, T )Qh

p(T ) − Qh
s (T )S−1

L (p, T )

+
h−2∑

i=0

Qh−1−i
s (T )S−1

R (s, T )Qi+1
p (T ) − Qh−1−i

s (T )S−1
L (p, T )Qi+1

p (T )
]}

(p2 − 2s0 p + |s|2)−1



The F -Resolvent Equation and Riesz Projectors for the… Page 17 of 42 26

= − γn

h−1∑

i=0

Qh−i
s (T )Qi+1

p (T ). (3.8)

Finally, by substituting (3.8) in (3.6) we get (3.1).

Remark 3.2 The proof of the previous lemma shows that the structure of the resolvent
equations of the hyperholomorphic functional calculi is crucial. In fact the term

{[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1

involves the difference of theF-resolvent operators entangled with the Cauchy kernel
of slice monogenic functions. This term is equal to a function involving the products
of the F-resolvent operators and of the S-resolvent operators that appear in the term

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

and of a more complicated part that involves the S-resolvent operators and the pseudo
S-resolvent operators, namely

γn

[
h−2∑

i=0

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T ) +
h−1∑

i=0

Qh−i
s (T )Qi+1

p (T )

]

.

Remark 3.3 If in equation (3.1) we consider n = 5, then h = 2, and n = 7, then
h = 3, we get the equation (1.10) and (1.11).

In order to find a pseudo F-resolvent equation we divide into two cases according

to the parity of the Sce exponent h = n − 1

2
. To state the following result we introduce

this notations

A0(s, p, T ) := −shF R
n (s, T )TF L

n (p, T )ph−1 − sh−1F R
n (s, T )TF L

n (p, T )ph

+ sh−1F R
n (s, T )T 2F L

n (p, T )ph−1

+ shF R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

− shF R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

− sh−1F R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

T (|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

+ sh−1F R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

T (|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k,

(3.9)
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B0(s, p, T ) :=
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠ , (3.10)

and

C0(s, p, T ) :=
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph
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+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1.

(3.11)

3.1 The General Structure of the PseudoF -Resolvent Equation for hOdd

The main result of this subsection is the following theorem.

Theorem 3.4 (The general structure of the pseudo F-resolvent equation for h odd
number) Let n > 3 be an odd number as well as h. Let T ∈ BC0,1(Vn). Then for
p, s ∈ ρF (T ) the following equation holds

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

+ γn

[

s
h−2∑

i=0

Qh−i
s (T )Qi+2

p (T )p − s
h−2∑

i=0

Qh−i
s (T )TQi+2

p (T )

−
h−2∑

i=0

Qh−i
s (T )TQi+2

p (T )p +
h−2∑

i=0

Qh−i
s (T )T

2Qi+2
p (T ) +

h−1∑

i=0,i �= h−1
2

Qh−i
s (T )Qi+1

p (T )

]

+ γ −1
n

[

shF R
n (s, T )F L

n (p, T )ph + A0(s, p, T ) + B0(s, p, T ) + C0(s, p, T )

]

= {[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1, (3.12)

where the three terms A0(s, p, T ), B0(s, p, T ) and C0(s, p, T ) are defined above.

Proof We start by rewriting formula (3.1) as

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

+ γn

[h−2∑

i=0

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T ) + Q
h+1
2

s (T )Q
h+1
2

p (T )

+
h−1∑

i=0,i �= h−1
2

Qh−i
s (T )Qi+1

p (T )

]

= {[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1.

(3.13)

Now, we focus on the termQ
h+1
2

s (T )Q
h+1
2

p (T ) andwith somemanipulations we obtain

Q
h+1
2

s (T )Q
h+1
2

p (T ) = Q
h+1
2

s (T )Q
h−1
2

s (T )Q
1−h
2

s (T )Q
1−h
2

p (T )Q
h−1
2

p (T )Q
h+1
2

p (T )

= Qh
s (T )Q

1−h
2

s (T )Q
1−h
2

p (T )Qh
p(T ). (3.14)
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By the binomial formula we get

Q
h+1
2

s (T )Q
h+1
2

p (T ) = Qh
s (T )(s2I − 2sT0 + T T )

h−1
2 (p2I − 2pT0 + T T )

h−1
2 Qh

p(T )

= Qh
s (T )

⎛

⎜
⎝

h−1
2∑

k=0

( h−1
2
k

)

sh−1−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=0

( h−1
2
k

)

(|T |2 − 2T0 p)
k ph−1−2k

⎞

⎟
⎠Qh

p(T )

= Qh
s (T )

⎛

⎜
⎝sh−1 +

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
k ph−1−2k + ph−1

⎞

⎟
⎠Qh

p(T )

= sh−1Qh
s (T )Qh

p(T )ph−1 + sh−1Qh
s (T )

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
k ph−1−2k

⎞

⎟
⎠Qh

p(T )

+ Qh
s (T )

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
k ph−1−2k

⎞

⎟
⎠Qh

p(T )

+ Qh
s (T )

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠Qh

p(T )ph−1. (3.15)

Now, we use the left and right F-resolvent equations, (see Theorem 2.18)

F L
n (p, T )p − TF L

n (p, T ) = γnQ
h
p(T )

and

sF R
n (s, T ) − F R

n (s, T )T = γnQ
h
s (T ).

We go through the computations term by term

sh−1Qh
s (T )Qh

p(T )ph−1

= γ −2
n

[

shF R
n (s, T )F L

n (p, T )ph − shF R
n (s, T )TF L

n (p, T )ph−1

− sh−1F R
n (s, T )TF L

n (p, T )ph + sh−1F R
n (s, T )T 2F L

n (p, T )ph−1
]

. (3.16)
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Then we consider

sh−1Qh
s (T )

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kQh

p(T )ph−1−2k

⎞

⎟
⎠

= γ −2
n

[

shF R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

− shF R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

− sh−1F R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

T (|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

+sh−1F R
n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

T (|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎤

⎥
⎦ . (3.17)

Then we compute the term

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2kQh
s (T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kQh

p(T )ph−1−2k

⎞

⎟
⎠

= γ −2
n

⎡

⎢
⎣

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠
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+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠

⎤

⎥
⎦ . (3.18)

We have also

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2kQh
s (T )(|T |2 − 2T0s)

k

⎞

⎟
⎠Qh

p(T )ph−1

= γ −2
n

⎡

⎢
⎣

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph

+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1

⎤

⎥
⎦ .

(3.19)

Finally by using the definition of left and right S-resolvent operators we get

h−2∑

i=0

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T ) =
h−2∑

i=0

Qh−i
s (T )(sI − T )(pI − T )Qi+2

p (T )

= s
h−2∑

i=0

Qh−i
s (T )Qi+2

p (T )p − s
h−2∑

i=0

Qh−i
s (T )TQi+2

p (T ) −
h−2∑

i=0

Qh−i
s (T )TQi+2

p (T )p

+
h−2∑

i=0

Qh−i
s (T )T

2Qi+2
p (T ), (3.20)

and this concludes the proof. ��
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3.2 The General Structure of the PseudoF -Resolvent Equation for h Even Number

In this last subsection we consider the case in which h = (n−1)/2 is an even number.
To state the following result we need these notations

A1(s, p, T ) : = −shF R
n (s, T )TF L

n (p, T )ph−1 − sh−1F R
n (s, T )TF L

n (p, T )ph

+ sh−1F R
n (s, T )T 2F L

n (p, T )ph−1 (3.21)

and

B1(s, p, T ) := shF R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

− shF R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k+

− sh−1F R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

T (|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

+ sh−1F R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

T (|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

(3.22)

and

C1(s, p, T ) :=
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠
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⎛

⎜
⎝

h−1
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1.

(3.23)

Theorem 3.5 (The general structure of the pseudo F-resolvent equation for h even
number) Let n > 3 be an odd number and h be even. Let T ∈ BC0,1(Vn). Then for
p, s ∈ ρF (T ) the following equation holds

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T )

+ γn

[

−sQ
h+2
2

s (T )TQ
h+2
2

p (T ) − Q
h+2
2

s (T )TQ
h+2
2

p (T )p + Q
h+2
2

s (T )T
2Q

h+2
2

p (T )

+
h−1∑

i=0

Qh−i
s (T )Qi+1

p (T ) + s
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )Qi+2

p (T )p − s
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )TQi+2

p (T )

−
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )TQi+2

p (T )p +
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )T

2Qi+2
p (T )

]

+ γ −1
n

[
A1(s, p, T ) + B1(s, p, T ) + C1(s, p, T ) + shF R

n (s, T )F L
n (p, T )ph

]

= {[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1, (3.24)
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where the three terms A1(s, p, T ), B1(s, p, T ) and C1(s, p, T ) are defined above.

Proof Let us begin by writing formula (3.1) as

F R
n (s, T )S−1

L (p, T ) + S−1
R (s, T )F L

n (p, T ) + γn

[

Q
h
2
s (T )S−1

R (s, T )S−1
L (p, T )Q

h
2
p (T )

+
h−2∑

i=0,i �= h−2
2

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T ) +
h−1∑

i=0

Qh−i
s (T )Qi+1

p (T )

]

= {[F R
n (s, T ) − F L

n (p, T )
]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1. (3.25)

Now, we focus on the Q
h
2
s (T )S−1

R (s, T )S−1
L (p, T )Q

h
2
p (T ). By definition of left and

right S-resolvent operators we get

Q
h
2
s (T )S−1

R (s, T )S−1
L (p, T )Q

h
2
p (T ) = Q

h+2
2

s (T )(sI − T )(pI − T )Q
h+2
2

p (T )

= sQ
h+2
2

s (T )Q
h+2
2

p (T )p − sQ
h+2
2

s (T )TQ
h+2
2

p (T ) − Q
h+2
2

s (T )TQ
h+2
2

p (T )p

+ Q
h+2
2

s (T )T
2Q

h+2
2

p (T ). (3.26)

We continue the calculations only on the term sQ
h+2
2

s (T )Q
h+2
2

p (T )p. By the binomial
formula we get

sQ
h+2
2

s (T )Q
h+2
2

p (T )p = sQh
s (T )(s2I − 2sT0 + T T )

h−2
2 (p2I − 2pT0 + T T )

h−2
2 Qh

p(T )p

= sQh
s (T )

⎛

⎜
⎝

h−2
2∑

k=0

( h−2
2
k

)

sh−2−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=0

( h−2
2
k

)

(|T |2 − 2T0 p)
k ph−2−2k

⎞

⎟
⎠Qh

p(T )p

= sQh
s (T )

⎛

⎜
⎝sh−2 +

h−2
2∑

k=1

( h−2
2
k

)

sh−2−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠×

×
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

(|T |2 − 2T0 p)
k ph−2−2k + ph−2

⎞

⎟
⎠Qh

p(T )p

= sh−1Qh
s (T )Qh

p(T )ph−1 + sh−1Qh
s (T )

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
k ph−1−2k

⎞

⎟
⎠Qh

p(T )

+ Qh
s (T )

⎛

⎜
⎝

h−2
2∑

k=1

( h−1
2
k

)

sh−1−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠
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⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
k ph−1−2k

⎞

⎟
⎠Qh

p(T )

+ Qh
s (T )

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−1−2k (|T |2 − 2T0s)
k

⎞

⎟
⎠Qh

p(T )ph−1. (3.27)

Now, we use the left and right F-resolvent equations in Theorem 2.18 and we go
through the computations term by term

sh−1Qh
s (T )Qh

p(T )ph−1 = γ −2
n

[

shF R
n (s, T )F L

n (p, T )ph − shF R
n (s, T )TF L

n (p, T )ph−1

− sh−1F R
n (s, T )TF L

n (p, T )ph + sh−1F R
n (s, T )T 2F L

n (p, T )ph−1
]

, (3.28)

and

sh−1Qh
s (T )

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kQh

p(T )ph−1−2k

⎞

⎟
⎠

= γ −2
n

[

shF R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

− shF R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

− sh−1F R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

T (|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

+ sh−1F R
n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

T (|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k
]

, (3.29)

then we consider the term

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−1−2kQh
s (T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kQh

p(T )ph−1−2k

⎞

⎟
⎠

= γ −2
n

[
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠
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−
⎛

⎜
⎝

h−2
2∑

k=1

( h−1
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kF L

n (p, T )ph−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2k−1F R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

(|T |2 − 2T0 p)
kTF L

n (p, T )ph−1−2k

⎞

⎟
⎠

]

, (3.30)

and the other term

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−1−2kQh
s (T )(|T |2 − 2T0s)

k

⎞

⎟
⎠Qh

p(T )ph−1

= γ −2
n

[
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−2kF R
n (s, T )(|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

k

⎞

⎟
⎠F L

n (p, T )ph

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

sh−1−2kF R
n (s, T )T (|T |2 − 2T0s)

kT

⎞

⎟
⎠F L

n (p, T )ph−1
]

.

(3.31)
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Finally by using the definition of left and right S-resolvent operators we obtain

h−2∑

i=0,i �= h−2
2

Qh−i−1
s (T )S−1

R (s, T )S−1
L (p, T )Qi+1

p (T )

=
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )(sI − T )(pI − T )Qi+2

p (T )

= s
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )Qi+2

p (T )p − s
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )TQi+2

p (T )

−
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )TQi+2

p (T )p +
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )T

2Qi+2
p (T ) (3.32)

and this concludes the proof. ��

4 The Riesz Projectors for theF -Functional Calculus: The General
Case of nOdd

In the monogenic functional calculus developed by McIntosh and collaborators, [36],
the resolvent equation is missing. They are able to study the Riesz projectors by
using another functional calculus: the Weyl calculus. For the F-functional calculus,
which is a monogenic functional calculus, the interesting symmetries that appear in
the equations of Theorem 3.4 and Theorem 3.5 allow to study the Riesz projectors.

Next result follows as in the case n = 5, see [11, Lemma 5.4].

Lemma 4.1 Let T ∈ BC(Vn) and h = n−1
2 . Suppose that G contains just some points

of the F-spectrum of T and assume that the closed smooth curve ∂(G ∩ CI ) belongs
to the F-resolvent set of T , for every I ∈ S. Then

∫

∂(G∩CI )

smdsIF R
n (s, T ) = 0,

∫

∂(G∩CI )

F L
n (p, T )dpI p

m = 0,

for all m ≤ 2h − 1.

In order to study the Riesz Projectors for the F-functional calculus we now state
the following results.

Lemma 4.2 Let f and g be left slice monogenic and right slice monogenic functions,
respectively, defined on an open set U. For any I ∈ S and any open bounded set DI in
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U ∩CI whose boundary is a finite union of continuously differentiable Jordan curves,
we have

∫

∂DI

g(s)dsI f (s) = 0.

Lemma 4.3 Let B ∈ B(Vn). Let G be a bounded slice Cauchy domain and let f be
an intrinsic slice monogenic function whose domain contains G. Then for p ∈ G, and
for any I ∈ S we have

1

2π

∫

∂(G∩CI )

f (s)dsI (s̄ B − Bp)(p2 − 2s0 p + |s|2)−1 = B f (p).

Theorem 4.4 Let n > 3 be an odd number and let T = ∑n
i=1 ei Ti ∈ BC0,1(Vn). Let

σF (T ) = σF ,1(T ) ∪ σF ,2(T ) with

dist
(
σF ,1(T ), σF ,2(T )

)
> 0,

and

σ(T�) ⊂ R for all � = 1, . . . , n.

Let G1, G2 be two admissible sets for T such that σF ,1(T ) ⊂ G1 and Ḡ1 ⊂ G2 and
such that dist

(
G2, σF ,2(T )

)
> 0. Then the operator

P̌ = 1

γn(2π)

∫

∂(G1∩CI )
F L
n (p, T )dpI p

n−1 = 1

γn(2π)

∫

∂(G2∩CI )
sn−1dsIF R

n (s, T ). (4.1)

is a projector.

Proof We divide the proof in two cases, according to the parity of h = n−1
2 .

CASE I: The Sce exponent h is odd.
We start by multiplying the equation of Theorem 3.4 by sh on the left and ph on

the right, and since T0 = 0 we get

shF R
n (s, T )S−1

L (p, T )ph + sh S−1
R (s, T )F L

n (p, T )ph

+ γn

[

sh+1
h−2∑

i=0

Qh−i
s (T )Qi+2

p (T )ph+1 +

+ sh+1
h−2∑

i=0

Qh−i
s (T )TQi+2

p (T )ph + sh
h−2∑

i=0

Qh−i
s (T )TQi+2

p (T )ph+1

+ sh
h−2∑

i=0

Qh−i
s (T )T 2Qi+2

p (T )ph +



26 Page 30 of 42 F. Colombo et al.

+ sh
h−1∑

i=0,i �= h−1
2

Qh−i
s (T )Qi+1

p (T )ph
]

+γ −1
n

[

s2hF R
n (s, T )F L

n (p, T )p2h

+ shA0(s, p, T )ph + shB0(s, p, T )ph

+ shC0(s, p, T )ph
]

= sh
{[F R

n (s, T ) − F L
n (p, T )

]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1 ph . (4.2)

Now, we multiply equation (4.2) by dsI on the left, integrate it over ∂(G2 ∩CI ) with
respect to dsI and thenwemultiply it by dpI on the right and integrate over ∂(G1∩CI )

with respect to dpI . We obtain

∫

∂(G2∩CI )
shdsIF R

n (s, T )

∫

∂(G1∩CI )
S−1
L (p, T )dpI p

h

+
∫

∂(G2∩CI )
shdsI S

−1
R (s, T )

∫

∂(G1∩CI )
F L
n (p, T )dpI p

h

+ γn

[∫

∂(G2∩CI )
sh+1

h−2∑

i=0

Qh−i
s (T )dsI

∫

∂(G1∩CI )
Qi+2

p (T )dpI p
h+1

+
∫

∂(G2∩CI )
sh+1

h−2∑

i=0

Qh−i
s (T )dsI T

∫

∂(G1∩CI )
Qi+2

p (T )dpI p
h

+
∫

∂(G2∩CI )
sh

h−2∑

i=0

Qh−i
s (T )dsI T

∫

∂(G1∩CI )
Qi+2

p (T )dpI p
h+1

+
∫

∂(G2∩CI )
sh

h−2∑

i=0

Qh−i
s (T )dsI T

2
∫

∂(G1∩CI )
Qi+2

p (T )dpI p
h

+
∫

∂(G2∩CI )
sh

h−1∑

i=0,i �= h−1
2

Qh−i
s (T )dsI

∫

∂(G1∩CI )
Qi+1

p (T )dpI p
h
]

+ γ −1
n

[∫

∂(G2∩CI )
s2hdsIF R

n (s, T )

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h+

+
∫

∂(G2∩CI )

∫

∂(G1∩CI )
shdsIA0(s, p, T )dpI p

h + shdsIB0(s, p, T )dpI p
h

+ shdsI C0(s, p, T )dpI p
h
]

=
∫

∂(G2∩CI )
dsI

∫

∂(G1∩CI )
sh
{[F R

n (s, T ) − F L
n (p, T )

]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1dpI p
h . (4.3)

Recalling the definition of A0, B0, C0 and the fact that T0 = 0 we have

∫

∂(G2∩CI )

∫

∂(G1∩CI )
shdsIA0(s, p, T )dpI p

h + shdsIB0(s, p, T )dpI p
h

+ shdsI C0(s, p, T )dpI p
h

= −
∫

∂(G2∩CI )
s2hF R

n (s, T )dsI T
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1
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−
∫

∂(G2∩CI )
s2h−1F R

n (s, T )dsI T
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h

+
∫

∂(G2∩CI )
s2h−1dsIF R

n (s, T )T 2
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1

+
∫

∂(G2∩CI )
s2hdsIF R

n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

|T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

−
∫

∂(G2∩CI )
s2hdsIF R

n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

|T |2kT
∫

∂(G1∩CI )
F L
n (p, T )p2h−1−2k

−
∫

∂(G2∩CI )
s2h−1dsIF R

n (s, T )

h−1
2∑

k=1

( h−1
2
k

)

T |T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

+
∫

∂(G2∩CI )
s2h−1F R

n (s, T )dsI

h−1
2∑

k=1

( h−1
2
k

)

T |T |2kT
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1−2k

+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

|T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

|T |kT
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−2k−1dsIF R

n (s, T )T |T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

|T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−2k−1dsIF R

n (s, T )T |T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)

|T |2kT
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2k
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h
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−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2kT
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1

−
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−1−2kdsIF R

n (s, T )T |T |2k
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h

+
⎛

⎜
⎝

h−1
2∑

k=1

( h−1
2
k

)∫

∂(G2∩CI )
s2h−1−2kdsIF R

n (s, T )T 2|T |2k
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1.

(4.4)

Now, since h ≤ 2h − 1 by Lemma 4.1 we get

∫

∂(G2∩CI )

shdsIF R
n (s, T )

∫

∂(G1∩CI )

S−1
L (p, T )dpI p

h

=
∫

∂(G2∩CI )

shdsI S
−1
R (s, T )

∫

∂(G1∩CI )

F L
n (p, T )dpI p

h = 0.

Moreover, since 2h − 2k ≤ 2h − 1 and 2h − 1 − 2k ≤ 2h − 1 we obtain
∫

∂(G2∩CI )

∫

∂(G1∩CI )

shdsIA0(s, p, T )dpI p
h + shdsIB0(s, p, T )dpI p

h

+shdsIC0(s, p, T )dpI p
h = 0.

Now, we focus on the term

∫

∂(G2∩CI )

sh+1
h−2∑

i=0

Qh−i
s (T )dsI

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h+1.

First of all we split the sum in two parts and write

h−2∑

i=0

Qh−i
s (T )Qi+2

p (T ) =
� h−2

2 �∑

i=0

Qh−i
s (T )Qi+2

p (T ) +
h−2∑

i=� h−2
2 �+1

Qh−i
s (T )Qi+2

p (T ),

where �.� is the floor of a number. In the first sum the powers ofQs(T ) are more than
the powers of Qp(T ), and conversely in the second sum.

Since T0 = 0, by the binomial formula we get

� h−2
2 �∑

i=0

Qh−i
s (T )Qi+2

p (T ) = Qh
s (T )

� h−2
2 �∑

i=0

i∑

k=0

(
i

k

)

s2k |T |2(i−k)Qi+2
p (T )+

+
h−2∑

i=� h−2
2 �+1

Qh−i
s (T )

h−2−i∑

k=0

(
h − 2 − i

k

)

p2k |T |2(h−2−i−k)Qh
p(T ). (4.5)
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Consider the first sum. By the F- resolvent equation, see (2.16) we get

∑� h−2
2 �

i=0

∑i
k=0

(i
k

)
s2kQh

s (T )|T |2(i−k)Qi+2
p (T )

= γ −1
n
∑� h−2

2 �
i=0

∑i
k=0

(i
k

)
s2k
(
sF R

n (s, T ) − F R
n (s, T )T

) |T |2(i−k)Qi+2
p (T ).

Hence we have to compute the following integrals

γ −1
n

� h−2
2 �
∑

i=0

i∑

k=0

(
i

k

)∫

∂(G2∩CI )
sh+2+2kdsIF R

n (s, T )|T |2(i−k)
∫

∂(G1∩CI )
Qi+2

p (T )dpI p
h+1,

γ −1
n

� h−2
2 �
∑

i=0

i∑

k=0

(
i

k

)∫

∂(G2∩CI )
sh+1+2kdsIF R

n (s, T )T |T |2(i−k)
∫

∂(G1∩CI )
Qi+2

p (T )dpI p
h+1.

Now, since h is odd then we can write h = 2N + 1, with N ∈ N. This implies that

h + 2 + 2k ≤ 2i + 2 + 2N + 1 ≤ 2

⌊
h − 2

2

⌋

+ 2 + 2N + 1

= 2(N − 1) + 2 + 2N + 1 = 4N + 1 = 2h − 1.

Similarly we get

h + 1 + 2k ≤ 2h − 1.

Therefore by Lemma 4.1 we get

γ −1
n

� h−2
2 �∑

i=0

i∑

k=0

(
i

k

)∫

∂(G2∩CI )

sh+2+2kdsIF R
n (s, T )

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h+1 = 0

γ −1
n

� h−2
2 �∑

i=0

i∑

k=0

(
i

k

)∫

∂(G2∩CI )

sh+1+2kdsIF R
n (s, T )

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h+1 = 0.

(4.6)

Now, we focus on the second sum. By the F- resolvent equation, see (2.15), we get

h−2∑

i=� h−2
2 �+1

Qh−i
s (T )

h−2−i∑

k=0

(
h − 2 − i

k

)

|T |2(h−2−i−k)Qh
p(T )p2k

= γ −1
n

h−2∑

i=� h−2
2 �+1

Qh−i
s (T )

h−2−i∑

k=0

(
h − 2 − i

k

)

|T |2(h−2−i−k)
(
F R
n (p, T )p − TF R

n (p, T )
)
p2k .

(4.7)

Hence we have to compute the following integrals

γ −1
n

h−2∑

i=� h−2
2 �+1

2+i−h∑

k=0

(
h − 2 − i

k

)∫

∂(G2∩CI )

sh+1dsIQh−i
s (T )|T |2(h−2−i−k)
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∫

∂(G1∩CI )

F R
n (p, T )dpI p

h+2k+2,

γ −1
n

h−2∑

i=� h−2
2 �+1

h−2−i∑

k=0

(
h − 2 − i

k

)∫

∂(G2∩CI )

sh+1dsIQh−i
s (T )|T |2(h−2−i−k)T

∫

∂(G1∩CI )

F R
n (p, T )dpI p

h+2k+1.

Since h = 2N + 1, with N ∈ N we get

2k + 2 + h ≤ 2(h − 2 − i) + 2 + h = 2h − 4 − 2i + 2 + h

≤ 4N + 2 − 4 − 2

(

�h − 2

2
� + 1

)

+2 + 2N + 1 = 4N + 1 = 2h − 1,

and similarly

2k + 1 + h ≤ 2h − 1,

together with Lemma 4.1 we get

γ −1
n

h−2∑

i=� h−2
2 �+1

h−2−i∑

k=0

(
h − 2 − i

k

)∫

∂(G2∩CI )

sh+1dsIQh−i
s (T )|T |2(h−2−i−k)

∫

∂(G1∩CI )

F R
n (p, T )dpI p

h+2k+2 = 0

γ −1
n

h−2∑

i=� h−2
2 �+1

h−2−i∑

k=0

(
h − 2 − i

k

)∫

∂(G2∩CI )

sh+1dsIQh−i
s (T )|T |2(h−2−i−k)T

∫

∂(G1∩CI )

F R
n (p, T )dpI p

h+2k+1 = 0. (4.8)

Similar arguments applied to the other members of (4.3) lead to

γ −1
n

∫

∂(G2∩CI )
s2hdsIF R

n (s, T )

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h

=
∫

∂(G2∩CI )
dsI

∫

∂(G1∩CI )
sh
{[F R

n (s, T ) − F L
n (p, T )

]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]}

(p2 − 2s0 p + |s|2)−1dpI p
h . (4.9)
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Since h = n−1
2 , by formula (4.1) we get

(2π)2

γ −1
n

P̌2 =
∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

sh
{[F R

n (s, T ) − F L
n (p, T )

]
p

−s̄
[F R

n (s, T ) − F L
n (p, T )

]}
(p2 − 2s0 p + |s|2)−1 phdpI .

Now, we work on the integral on the right hand side. As Ḡ1 ⊂ G2, for any s ∈
∂(G2 ∩ CI ) the functions

p �→ p(p2 − 2s0 p + |s|2)−1 ph,

p �→ (p2 − 2s0 p + |s|2)−1 ph

are slice monogenic on Ḡ1. By Lemma 4.2 we have

∫

∂(G1∩CI )

p(p2 − 2s0 p + |s|2)−1dpI p
h = 0,

∫

∂(G1∩CI )

(p2 − 2s0 p + |s|2)−1 phdpI = 0.

This implies that

∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

shF R
n (s, T )p(p2 − 2s0 p + |s|2)−1dpI p

h = 0

and

∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

sh s̄F R
n (s, T )(p2 − 2s0 p + |s|2)−1dpI p

h = 0.

Then we have

(2π)2

γ −1
n

P̌2 =
∫

∂(G2∩CI )
shdsI

∫

∂(G1∩CI )
[s̄F L

n (p, T ) − F L
7 (p, T )p](p2 − 2s0 p + |s|2)−1dpI p

h .

From Lemma 4.3 with B =: F L
n (p, T ) and f (s) := sh we get

P̌2 = 1

(2π)γn

∫

∂(G1∩CI )

F L
n (p, T )dpI p

2h = P̌.
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CASE II: The Sce exponent h is even.

We multiply the equation of Theorem 3.5 by sh left and ph on the right, and since
T0 = 0 we get

shF R
n (s, T )S−1

L (p, T )ph + sh S−1
R (s, T )F L

n (p, T )ph

+ γn

[

sh+1Q
h+2
2

s (T )TQ
h+2
2

p (T )ph + shQ
h+2
2

s (T )TQ
h+2
2

p (T )ph+1

+ shQ
h+2
2

s (T )T 2Q
h+2
2

p (T )ph + sh
h−1∑

i=0

Qh−i
s (T )Qi+1

p (T )ph

+ sh+1
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )Qi+2

p (T )ph+1

+ sh+1
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )TQi+2

p (T )ph + sh
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )Qi+2

p (T )ph+1

+ sh
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )T 2Qi+2

p (T )ph
]

+ γ −1
n

[
shA1(s, p, T )ph + shB1(s, p, T )ph + shC1(s, p, T )ph

+ s2hF R
n (s, T )F L

n (p, T )p2h
]

= sh
{[F R

n (s, T ) − F L
n (p, T )

]
p − s̄

[F R
n (s, T ) − F L

n (p, T )
]
(p2 − 2s0 p + |s|2)−1 ph . (4.10)

Now, we multiply by dsI on the left, integrate it over ∂(G2 ∩CI ) with respect to dsI
and then we multiply it by dpI on the right and integrate over ∂(G1∩CI )with respect
to dpI , and we obtain

∫

∂(G2∩CI )

shF R
n (s, T )dsI

∫

∂(G1∩CI )

S−1
L (p, T )dpI p

h

+
∫

∂(G2∩CI )

shdsI S
−1
R (s, T )

∫

∂(G1∩CI )

F L
n (p, T )ph+

+ γn

[∫

∂(G2∩CI )

sh+1dsIQ
h+2
2

s (T )T
∫

∂(G1∩CI )

Q
h+2
2

p (T )dpI p
h

+
∫

∂(G2∩CI )

shdsIQ
h+2
2

s (T )T
∫

∂(G1∩CI )

Q
h+2
2

p (T )dpI p
h+1+

+
∫

∂(G2∩CI )

shdsIQ
h+2
2

s (T )T 2
∫

∂(G1∩CI )

Q
h+2
2

p (T )dpI p
h

+
∫

∂(G2∩CI )

shdsI

h−1∑

i=0

Qh−i
s (T )

∫

∂(G1∩CI )

Qi+1
p (T )dpI p

h+

+
∫

∂(G2∩CI )

sh+1dsI

h−2∑

i=0,i �= h−2
2

Qh−i
s (T )

∫

∂(G2∩CI )

Qi+2
p (T )dpI p

h+1
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+
∫

∂(G2∩CI )

sh+1
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )T

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h

+
∫

∂(G2∩CI )

shdsI

h−2∑

i=0,i �= h−2
2

Qh−i
s (T )

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h+1

+
∫

∂(G2∩CI )

shdsI

h−2∑

i=0,i �= h−2
2

Qh−i
s (T )T 2

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h
]

+

+ γ −1
n

[ ∫

∂(G2∩CI )

∫

∂(G1∩CI )

shdsIA1(s, p, T )dpI p
h

+ shdsIB1(s, p, T )dpI p
h + shdsIC1(s, p, T )dpI p

h

+
∫

∂(G2∩CI )

s2hdsIF R
n (s, T )

∫

∂(G1∩CI )

F L
n (p, T )dpI p

2h
]

=
∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

sh
{[F R

n (s, T ) − F L
n (p, T )

]
p

− s̄
[F R

n (s, T ) − F L
n (p, T )

]
(p2 − 2s0 p + |s|2)−1dpI p

h . (4.11)

From the definition of A1, B1, C1 and recalling that T0 = 0 we have

∫

∂(G2∩CI )

∫

∂(G1∩CI )
shdsIA1(s, p, T )dpI p

h + shdsIB1(s, p, T )dpI p
h

+ shdsI C1(s, p, T )dpI p
h

= −
∫

∂(G2∩CI )
s2hF R

n (s, T )dsI T
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1+

−
∫

∂(G2∩CI )
s2h−1F R

n (s, T )dsI T
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h

+
∫

∂(G2∩CI )
s2h−1dsIF R

n (s, T )T 2
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1+

+
∫

∂(G2∩CI )
s2hdsIF R

n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

|T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

−
∫

∂(G2∩CI )
s2hdsIF R

n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

T |T |2k
∫

∂(G1∩CI )
F L
n (p, T )p2h−1−2k

−
∫

∂(G2∩CI )
s2h−1dsIF R

n (s, T )

h−2
2∑

k=1

( h−2
2
k

)

T |T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

+
∫

∂(G2∩CI )
s2h−1F R

n (s, T )dsI

h−2
2∑

k=1

( h−2
2
k

)

T 2|T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1−2k+
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+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

|T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

|T |kT
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1−2k

⎞

⎟
⎠

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−2k−1dsIF R

n (s, T )T |T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

|T |2k
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−2k−1dsIF R

n (s, T )T |T |2k
⎞

⎟
⎠

⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)

|T |2kT
∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1−2k

⎞

⎟
⎠

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2k
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−2kdsIF R

n (s, T )|T |2kT
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1

−
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−1−2kdsIF R

n (s, T )T |T |2k
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h

+
⎛

⎜
⎝

h−2
2∑

k=1

( h−2
2
k

)∫

∂(G2∩CI )
s2h−1−2kdsIF R

n (s, T )T 2|T |2k
⎞

⎟
⎠

∫

∂(G1∩CI )
F L
n (p, T )dpI p

2h−1.

(4.12)

Now we observe that since h ≤ 2h − 1 by Lemma 4.1 we have

∫

∂(G2∩CI )

shdsIF R
n (s, T )

∫

∂(G1∩CI )

S−1
L (p, T )dpI p

h

=
∫

∂(G2∩CI )

shdsI S
−1
R (s, T )

∫

∂(G1∩CI )

F L
n (p, T )dpI p

h = 0.
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Moreover, since 2h − 2k ≤ 2h − 1 and 2h − 1 − 2k ≤ 2h − 1 we get

∫

∂(G2∩CI )

∫

∂(G1∩CI )

shdsIA1(s, p, T )dpI p
h

+shdsIB1(s, p, T )dpI p
h + shdsIC1(s, p, T )dpI p

h = 0.

Now, we focus on computing the integral

∫

∂(G2∩CI )

sh+1dsIQ
h+2
2

s (T )T
∫

∂(G1∩CI )

Q
h+2
2

p (T )dpI p
h .

By the binomial formula and recalling that T0 = 0 we get

Q
h+2
2

p (T ) = Q
2−h
2

p (T )Q
h−2
2

p (T )Q
h+2
2

p (T ) = (p2 + |T |2) h−2
2 Qh

p(T )

=
h−2
2∑

k=0

( h−2
2
k

)

|T |2
(
h−2
2 −k

)

Qh
p(T )p2k .

By the F-resolvent, see (2.15), we deduce that

∫

∂(G2∩CI )
sh+1dsIQ

h+2
2

s (T )T
∫

∂(G1∩CI )
Q

h+2
2

p (T )dpI p
h

=
∫

∂(G2∩CI )
sh+1dsIQ

h+2
2

s (T )T

h−2
2∑

k=0

( h−2
2
k

)

|T |2
(
h−2
2 −k

) ∫

∂(G1∩CI )
Qh

p(T )dpI p
2k+h

=
∫

∂(G2∩CI )
sh+1dsIQ

h+2
2

s (T )T

h−2
2∑

k=0

( h−2
2
k

)

|T |2
(
h−2
2 −k

) ∫

∂(G1∩CI )
F L
n (p, T )dpI p

2k+h+1

−
∫

∂(G2∩CI )
sh+1dsIQ

h+2
2

s (T )T 2

h−2
2∑

k=0

( h−2
2
k

)

|T |2
(
h−2
2 −k

) ∫

∂(G1∩CI )
F L
n (p, T )dpI p

2k+h .

(4.13)

We observe that

h + 1 + 2k ≤ h + 1 + h − 2 = 2h − 1,

similarly we have h+2k ≤ 2h−1, so formula (4.13) together with Lemma 4.1 imply
that

∫

∂(G2∩CI )

sh+1dsIQ
h+2
2

s (T )T
∫

∂(G1∩CI )

Q
h+2
2

p (T )dpI p
h = 0.

Using similar arguments, we obtain

∫

∂(G2∩CI )

shdsIQ
h+2
2

s (T )T
∫

∂(G1∩CI )

Q
h+2
2

p (T )dpI p
h+1 = 0
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∫

∂(G2∩CI )

shdsIQ
h+2
2

s (T )T 2
∫

∂(G1∩CI )

Q
h+2
2

p (T )dpI p
h = 0. (4.14)

By similar computations made when h is odd we get

∫

∂(G2∩CI )

shdsI

h−1∑

i=0

Qh−i
s (T )

∫

∂(G1∩CI )

Qi+1
p (T )dpI p

h = 0,

∫

∂(G2∩CI )

sh+1dsI

h−2∑

i=0,i �= h−2
2

Qh−i
s (T )

∫

∂(G2∩CI )

Qi+2
p (T )dpI p

h+1 = 0,

∫

∂(G2∩CI )

sh+1
h−2∑

i=0,i �= h−2
2

Qh−i
s (T )T

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h = 0,

∫

∂(G2∩CI )

shdsI

h−2∑

i=0,i �= h−2
2

Qh−i
s (T )

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h+1 = 0,

∫

∂(G2∩CI )

shdsI

h−2∑

i=0,i �= h−2
2

Qh−i
s (T )T 2

∫

∂(G1∩CI )

Qi+2
p (T )dpI p

h = 0.

By formula (4.1) we get

(2π)2

γ −1
n

P̌2 =
∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

sh
{[F R

n (s, T ) − F L
n (p, T )

]

p − s̄
[F R

n (s, T ) − F L
n (p, T )

]}
(p2 − 2s0 p + |s|2)−1 phdpI .

Finally, by following exactly the same steps done when h is odd we get

P̌2 = P̌.
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