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Abstract
We present in this note a correction to Theorem 17 in Ran andWojtylak (Compl. Anal.
Oper. Theory 15:44, 2021) and sharpen the estimates for eigenvalues of parametric
rank one perturbations given in that theorem.

Keywords Eigenvalues of matrices · Perturbation theory · Parametric dependence of
eigenvalues · Puiseux series

Mathematics Subject Classification Primary 15A18 · 47A55

1 Introduction and Preliminaries

This note concerns an erratum and addendum to [4], in particular to Theorem 17. One
of themain points of the theorem is to show the asymptotic behavior of the eigenvalues
of B(τ ) = A+τuv∗ when |τ | → ∞. The statement is that these eigenvalues trace out
a set of curves which asymptotically approximates a set of non-intersecting circles.
The statement of the theorem needs a small correction. The proof contains some
independent miscalculations, which fortunately, had no effect on the validity of the
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corresponding statements. Therefore, we find it necessary to present a fully corrected
version with a new proof. The detailed list of corrections can be found in Sect. 3. The
results are illustrated by an example.

First we repeat the setting of [4], to make this erratum and addendum independently
readable. Let A be an n × n complex matrix, and let u, v be two vectors in C

n . We
consider the eigenvalues of the parametric rank one perturbation B(τ ) = A + τuv∗
of A. Denote by mA(λ) the minimal polynomial of A, and define

puv(λ) = v∗mA(λ)(λIn − A)−1u.

Observe that this is a polynomial (see [3]), and

det(λIn − B(τ )) = det(λIn − A) · (1 − τv∗(λIn − A)−1u)

= det(λIn − A)

mA(λ)
(mA(λ) − τ puv(λ)). (1)

Also introduce Q(λ) = v∗(λIn − A)−1u. By Proposition 2 in [4], if λ0 is not an
eigenvalue of A, then it is an eigenvalue of B(τ0) of multiplicity κ ≥ 1, if and only
if τ0Q(λ0) = 1, Q′(λ0) = 0, . . . , Q(κ−1)(λ0) = 0, Q(κ)(λ0) �= 0. In this case λ0 has
geometric multiplicity one.

2 Main Results

We are interested in the behavior of the eigenvalues of B(τ ), where τ = tei θ as
functions of θ for fixed t , and then in particular in what happens as t → ∞.

For that reason, introduce for t > 0 the set

σ(A, u, v; t) =
⋃

0≤θ≤2π

σ(A + tei θuv∗) \ σ(A).

Theorem 17 in [4] describes the asymptotic behavior of (parts of) these sets as t → ∞.
We correct, complete and extend the result.

Theorem 1 Let A ∈ C
n×n, u, v ∈ C

n and let l ∈ N denote the degree of the minimal
polynomial mA(λ). If

v∗u = · · · = v∗Al−1u = 0 (2)

then puv(λ) ≡ 0 and σ(A + τuv∗) = σ(A) for any τ ∈ C. If

v∗u = · · · = v∗Aκ−1u = 0, v∗Aκu �= 0, (3)

for some κ ∈ {0, . . . , l − 1} then the following statements hold.

(i) puv(λ) is of degree l − κ − 1;
(ii) l − κ − 1 eigenvalues of B(τ ) converge to the roots of puv(λ) as τ → ∞;
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(iii) there are κ +1 eigenvalues λ1(τ ), . . . , λκ+1(τ ) of A+τuv∗ having the following
Puiseux expansion at τ = ∞

λ j (τ ) = c−1τ
1

κ+1 + c0 + c1τ
− 1

κ+1 + · · · , j = 1, . . . κ + 1, (4)

where

c−1 = (v∗Aκu)
1

κ+1 ,

c0 = 1

κ + 1
· v∗Aκ+1u

v∗Aκu
,

c1 = 1

κ + 1
· 1

(v∗Aκu)1+
1

κ+1

·
(

v∗Aκ+2u − κ + 2

2(κ + 1)
· (v∗Aκ+1u)2

v∗Aκu

)
;

(iv) if ζ is a root of the polynomial puv(λ) of multiplicity k and is not a root of mA(λ),
then there are k eigenvalues of A + τuv∗ converging to ζ with τ → ∞ having
the following Puiseux expansion at τ = ∞

λ j (τ ) = ζ − b1τ
− 1

k − b2τ
− 2

k − b3τ
− 3

k − · · · , j = 1, . . . , k, (5)

where, using am = am(ζ ) = v∗(ζ In − A)−mu for m ≥ 0,

b1 = b1(ζ ) = a
− 1
k

k+1, ak+1 �= 0,

b2 = b2(ζ ) = −1

k
· b

2
1 ak+2

ak+1
.

The complex roots in Eqs. (4) and (5) should be understood as in the theory of
Puiseux series: each particular root determines uniquely the eigenvalue λ j , see also
Remark 4 below.

Remark 2 Let us comment on some genericity issues appearing in Theorem 1. It was
shown in [3] that for generic u, v (i.e., u, v with arbitrary complex entries except an
algebraic subset ofC2n , depending possibly on A) we have that v∗u �= 0 and the roots
of puv(λ) are all simple and disjoint with the roots ofmA(λ). Hence, in Theorem 1 we
have generically κ = 1 and in part (iv) for each root ζ of puv(λ) we have k = 1 and
mA(ζ ) �= 0. However, in general, many different situations might occur. For example,
a root of puv(λ) might be a root of mA(λ), as can be seen in Example 5 below.

Further, note that the multiplicities of the roots of puv(λ) and the number κ are in
some relation, e.g., due to Theorem 1(i). In particular, if κ = l − 1 then puv(λ) is a
constant, nonzero polynomial and the only limit point of eigenvalues is infinity. There
are, however, some other hidden constraints relating κ and the multiplicities of puv(λ)

and their nature needs to be studied more intensively in future work.
All these comments explain the role of the assumptions in Corollary 3 below.



91 Page 4 of 13 A. C. M. Ran, M. Wojtylak

Corollary 3 With the notation of Theorem 1, if (3) holds and none of the roots ζ1, . . . , ζν

of puv(λ) is a root of mA(λ), then for sufficiently large t = |τ | the set σ(A, u, v; t) can
be parametrized by disjoint curves 
1(θ), . . . , 
ν+1(θ), where the κ + 1 eigenvalues
which go to infinity together trace out a curve


ν+1(θ) = c−1t
1

κ+1 ei θ + c0 + c1t
− 1

κ+1 e− i θ + O(t−
2

κ+1 ), 0 ≤ θ ≤ 2π,

while the k j eigenvalues near ζ j together trace out a curve 
 j (θ) which is of the form


 j (θ) = ζ j − b1(ζ j )t
− 1

k j ei θ − b2(ζ j )t
− 2

k j e2 i θ + O(t
− 3

k j ), j ∈ {1, . . . , ν}.

In both cases above the O iswith respect to t = |τ | → ∞and is uniform in θ ∈ [0, 2π ].
Proof of Theorem 1 Assume first (2) holds. Expanding the resolvent at infinity we get

puv(λ) = mA(λ)v∗(λIn − A)−1u

= mA(λ)v∗
⎛

⎝
∞∑

j=1

λ− j−1A j

⎞

⎠ u

=
∞∑

j=l

λ− j−1mA(λ)v∗A ju.

However, recall that puv(λ) is a polynomial, hence v∗A ju = 0 for all j = 0, 1, 2, . . .
and puv(λ) ≡ 0. In consequence, det(λIn − B(τ )) = det(λIn − A) for all τ ∈ C by
(1).

Assume now that (3) holds. Statements (i) and (ii) were proved in [4], the proof
did not contain errors. Let us now show (iii). For large values of |τ | consider the
eigenvalues of A + τuv∗ which are not eigenvalues of A. These are among the roots
of mA(λ) − τ puv(λ). Dividing by τ , and viewing s = 1/τ as a variable, they are
also roots of smA(λ) − puv(λ), and hence we have by general theory concerning the
behavior of roots of a polynomial under a perturbation such as this that the roots are
given by Puiseux series, see e.g., [1], Part II, Chapter V, and [2],Theorem 9.1.1. For
the large eigenvalues of B(τ ) we can make this more precise as follows. Recall that
the eigenvalues of B(τ ) which are not eigenvalues of A satisfy τv∗(λI − A)−1u = 1.
For |λ| > ‖A‖ this may be rewritten as

1 = τv∗
∞∑

j=0

A j

λ j+1 u = τ

∞∑

j=κ

v∗A ju

λ j+1 ,

where in the last step we used the definition of κ . Hence

λκ+1

τ
= v∗Aκu + 1

λ
v∗Aκ+1u + 1

λ2
v∗Aκ+2u + · · · . (6)
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We can write λ as a Puiseux series as

λ = c−1τ
1

κ+1 + c0 + c1τ
− 1

κ+1 + · · · , (7)

or equivalently,
λ

τ
1

κ+1

= c−1 + c0τ
− 1

κ+1 + c1τ
− 2

κ+1 + · · · . (8)

Taking the (κ + 1)-th power of this we arrive at

λκ+1

τ
= cκ+1

−1 + (κ + 1)cκ−1c0τ
− 1

κ+1

+
(

(κ + 1)cκ−1c1 +
(

κ + 1
2

)
cκ−1
−1 c20

)
τ− 2

κ+1 + O(τ− 3
κ+1 ). (9)

From the leading terms in (6) and (9) we see that

cκ+1
−1 = v∗Aκu. (10)

Now consider
(

λκ+1

τ
− v∗Aκu

)
λ. By (6) this is equal to

(
λκ+1

τ
− v∗Aκu

)
λ = v∗Aκ+1u + 1

λ
v∗Aκ+2u + O(λ−2). (11)

On the other hand, inserting (10) into (9), and then inserting (4) we obtain

(
λκ+1

τ
− v∗Aκu

)
λ

= λ

(
(κ + 1)cκ−1c0τ

− 1
κ+1 +

(
(κ + 1)cκ−1c1 +

(
κ + 1
2

)
cκ−1
−1 c20

)
τ− 2

κ+1 + O(τ− 3
κ+1 )

)

=
(
c−1τ

1
κ+1 + c0 + c1τ

− 1
κ+1 + O(τ− 2

κ+1 )
)

·
(

(κ + 1)cκ−1c0τ
− 1

κ+1 +
(

(κ + 1)cκ−1c1 +
(

κ + 1
2

)
cκ−1
−1 c20

)
τ− 2

κ+1 + O(τ− 3
κ+1 )

)

= (κ + 1)cκ+1
−1 c0 + (κ + 1)

(
cκ−1c

2
0 + cκ+1

−1 c1 + κ

2
cκ−1c

2
0

)
τ− 1

κ+1 + O(τ− 2
κ+1 )

= (κ + 1)cκ+1
−1 c0 + (κ + 1)

(
κ + 2

2
cκ−1c

2
0 + cκ+1

−1 c1

)
τ− 1

κ+1 + O(τ− 2
κ+1 ) (12)

Comparing formulas (11) and (12) we see

(κ + 1)cκ+1
−1 c0 = v∗Aκ+1u. (13)

Using (10) we obtain

c0 = 1

κ + 1
· v∗Aκ+1u

v∗Aκu
. (14)
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In addition, subtracting the constant term in (11) and then multiplying by λ we obtain

((
λκ+1

τ
− v∗Aκu

)
λ − v∗Aκ+1u

)
λ = v∗Aκ+2u + O(λ−1). (15)

On the other hand, subtracting the constant term in (12) and then multiplying by λ we
obtain, also using (13),

((
λκ+1

τ
− v∗Aκu

)
λ − v∗Aκ+1u

)
λ

= λ · (κ + 1)

(
κ + 2

2
cκ−1c

2
0 + cκ+1

−1 c1

)
τ− 1

κ+1 + O(τ− 2
κ+1 ).

Now use again (4) to see that

((
λκ+1

τ
− v∗Aκu

)
λ − v∗Aκ+1u

)
λ

=
(
c−1τ

1
κ+1 + c0 + O(τ− 1

κ+1 )
)

·
(

(κ + 1)

(
κ + 2

2
cκ−1c

2
0 + cκ+1

−1 c1

)
τ− 1

κ+1 + O(τ− 2
κ+1 )

)

= (κ + 1)

(
κ + 2

2
cκ+1
−1 c20 + cκ+2

−1 c1

)
+ O(τ− 1

κ+1 ). (16)

Comparing the constant terms in (15) and (16) we see that

(κ + 1)

(
κ + 2

2
cκ+1
−1 c20 + cκ+2

−1 c1

)
= v∗Aκ+2u.

Solving this equation for c1 using the formulas (10) and (14), one finds after some
computation

c1 = 1

κ + 1
· 1

(v∗Aκu)1+
1

κ+1

·
(

v∗Aκ+2u − κ + 2

2(κ + 1)
· (v∗Aκ+1u)2

v∗Aκu

)
,

as stated in the theorem.
(iv) Since ζ is a root of puv(λ) and by assumption is not a root of mA(λ) we have

v∗(ζ In − A)−1u = 0. Hence, for λ near ζ we expand

v∗(λIn − A)−1u = v∗((λ − ζ )In + (ζ In − A))−1u

= v∗((λ − ζ )(ζ In − A)−1 + In)
−1(ζ In − A)−1u
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= v∗
∞∑

j=0

(−1) j (λ − ζ ) j (ζ In − A)−( j+1)u

= v∗
∞∑

j=1

(ζ − λ) j (ζ In − A)−( j+1)u.

Recall that any eigenvalue of A + τuv∗ which is not an eigenvalue of A satisfies

1

τ
= v∗(λIn − A)−1u.

As ζ is a root of puv(λ) with multiplicity k, we have

1

τ
= (ζ − λ)kak+1 + (ζ − λ)k+1ak+2 + · · · , ak+1 �= 0. (17)

We express now λ in a a Puiseux series in τ−1, this is possible because λ is a root of
mA(λ) − τ puv(λ) = 0. Since ζ has multiplicity k we have that

λ = ζ − b1τ
− 1

k − b2τ
− 2

k − b3τ
− 3

k − · · ·

for some b1, b2, . . .. Then ζ − λ = b1τ− 1
k + b2τ− 2

k + · · · , and inserting that in the
equation (17) we obtain

1

τ
= 1

τ
bk1ak+1 + kbk−1

1 τ− k−1
k · b2τ− 2

k ak+1

+ bk+1
1 τ− k+1

k ak+2 + smaller order terms

= 1

τ
bk1ak+1 + τ− k+1

k

(
kbk−1

1 b2ak+1 + bk+1
1 ak+2

)
+ · · · . (18)

Equating terms of equal powers in τ , for the terms 1
τ
on the left and right hand sides

gives

b1 = a
− 1
k

k+1 =
(

1

v∗(ζ In − A)−(k+1)u

) 1
k

.

The term on the right hand side with power τ− k+1
k gives

kb2ak+1 + b21ak+2 = 0,

i.e.,

b2 = −1

k
· b

2
1 ak+2

ak+1
.

This completes the proof. �
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Using the formula for b1 we can derive an alternative formula for b2 completely in
terms of ak+1 and ak+2, which after some computation, and with proper care for the
kth roots, becomes

b2 = −1

k
· ak+2

a
1+ 2

k
k+1

= −1

k
· v∗(ζ In − A)−(k+2)u
(
v∗(ζ In − A)−(k+1)u

)1+ 2
k

.

Remark 4 As stated in the Corollary 3, the κ + 1 eigenvalues going to infinity
together trace out the curve 
ν+1(θ). Let us number the eigenvalues so that these
are λ1(τ ), . . . , λκ+1(τ ). After possibly renumbering these eigenvalues, one derives
from the theory of Puiseux series, see e.g. [1],

λ j (te
i θ ) = κ+1

√
t r ei(

1
κ+1 (θ+θ0)+ 2 j

κ+1π) + O(1), j = 1, 2, . . . , κ + 1,

where v∗Aκu = rei θ0 . As θ → 2π one has that

λ j (te
i θ ) → λ j+1(t), j = 1, . . . , κ, λκ+1(te

i θ ) → λ1(t).

A similar statement holds for the k j eigenvalues near ζ j tracing out the curve
 j (θ).

3 List of Corrections

• The analysis of the case indicated in formula (2) above was missing in [4]. For
completeness, we have included it in the current version.

• The eigenvalues ζ j in point (v) of Theorem 17 of [4] were not assumed to be
disjoint with the roots of mA(λ). If some ζ j is a root of mA(λ) several things
might occur, which need an independent work. A reformulation of the Theorem,
including that assumption, was necessary.

• A more detailed Puiseux expansion for the eigenvalues for τ → ∞ was given,
both in the case of eigenvalues converging to infinity and to a root of puv(λ). The
version in [4] contained only the first term.

• All results on the set σ(A, u, v, t) were moved to a separate Corollary. This is
partially due to the two previous items, and partially due to presentation issues.

• On page 17, line 13 in [4] the formula given there for c1 is wrong.
• On page 17, last three lines, and page 18, the first line in [4] the display formula
contains a mistake which has an effect on the remainder of the proof. There is a
factor (−1)k missing in the summation.

• The formula at the bottom of page 18 in [4] contains an error.

4 Examples

Let us begin with the promised example whenmA(λ) and puv(λ) have a common root.
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0

0.5

1

1.5

2

Fig. 1 Eigenvalues for t = 1 in Example 5

Example 5 Let

A =
⎡

⎣
1 0 0
0 0.5 0
0 0 1.5

⎤

⎦ , u = v =
⎡

⎣
0
1
1

⎤

⎦ .

Then κ = 1 and puv(λ) = 2(λ−1)2. Hence, A+τuv∗ has one eigenvalue converging
to infinity and two eigenvalues converging to 1 with τ → ∞. However, unlike in
Theorem 1(iv), in the plot of σ(A, u, v, t) we do not have a circle around 1 formed
by two eigenvalues. In the current situation one eigenvalue remains at 1 for all τ ∈ C,
while the other one forms the full circle, see Fig. 1. The plot in Fig. 1 shows these
circles for t = 1, together with the eigenvalues of B(tei θ ) for t = 1 and θ = 2π j

200 for
j = 1, 2, . . . , 200.

Remark 6 The formulas in Theorem 1(iii) take an especially nice form in the generic
case, when κ = 0. In that case we have

c−1 = v∗u, c0 = v∗Au
v∗u

, c1 = 1

(v∗u)2

(
v∗A2u − (v∗Au)2

v∗u

)
.

As a first approximation we obtain the circle


(θ) ≈ v∗u · tei θ + v∗Au
v∗u

,

while a further refinement is the curve


(θ) ≈ v∗u · tei θ + v∗Au
v∗u

+ 1

(v∗u)2

(
v∗A2u − (v∗Au)2

v∗u

)
· 1
t
e− i θ .
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0.3 0.35 0.4 0.45 0.5 0.55 0.6
-0.1

-0.05

0

0.05

0.1

-0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6
-0.1

-0.05

0

0.05

0.1

Fig. 2 Eigenvalues for t = 1 in red, the circular approximation in blue. On the left around ζ1, on the right
around ζ2

Let us also specialize the formulas in Theorem 1(iv) for the generic case k = 1. In
this case we have

b1 = 1

v∗(ζ In − A)−2u
, b2 = − v∗(ζ In − A)−3u

(v∗(ζ In − A)−2u)3
.

As a first approximation we obtain the circle


(θ) ≈ ζ − b1e
i θ 1

t

as a second approximation we obtain the curve


(θ) ≈ ζ − b1e
i θ 1

t − b2e
2 i θ 1

t2
.

Example 7 Consider A =
⎡

⎣
−1 0 0
0 0 0
0 0 1

⎤

⎦, u =
⎡

⎣
1
1
1

⎤

⎦ , v =
⎡

⎣
1
2
3

⎤

⎦. Then puv(λ) =

6λ2+2λ−2, with zeroes ζ1 = − 1
6 +

√
13
6 ≈ 0.4343 and ζ2 = − 1

6 −
√
13
6 ≈ −0.7676.

One computes that b1(ζ1) ≈ 0.0489 and b1(ζ2) ≈ 0.0437. So the first approximation
of the curves 
 j (θ) are given by 
 j (θ) ≈ ζ j − b1(ζ j )ei θ

1
t , which are circles with

centers at ζ j and radii b1(ζ j ). The plots in Fig. 2 show these circles for t = 1, together
with the eigenvalues of B(tei θ ) for t = 1 and θ = 2π j

200 for j = 1, 2, . . . , 200.
It is obvious from the graphs that the circle around ζ1 is already a fairly good

approximation for the eigenvalues of B(τ ). However, the circle around ζ2 is definitely
not a very nice approximation. We further compute that b2(ζ1) ≈ −9.5594 × 10−4

and b2(ζ2) ≈ −0.062. Focusing on the next approximation of 
2(θ) we get as an
approximation 
2(θ) ≈ −0.7676 − 0.0437ei θ + 0.062e2 i θ . Incorporating this extra
term in the approximation leads to a much better approximation as is shown in Fig. 3.

For the large eigenvalues of B(τ ), already for τ = 1 the circular approximation
is fairly good, the extra term in the approximation only makes it even better. In this
case we have c−1 = 6, c0 = 1

3 and c1 = 23
216 . See Fig. 4, where for 200 equally

spaces values of θ the eigenvalues of B(ei θ ) are plotted, together with the circular
approximation 1

3 + 6ei θ and the second approximation 1
3 + 6ei θ + 23

216e
− i θ .
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Fig. 3 Eigenvalues for t = 1
close to ζ2 in red, the circular
approximation in blue, in green
the more accurate approximation
with an additional term

-0.85 -0.8 -0.75 -0.7 -0.65
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 4 The eigenvalues of
B(ei θ ) are plotted in red, the
circular approximation is plotted
in blue and the second
approximation is plotted in green

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

For t = 1
2 the picture is clearer. The approximating circle in this case is 1

3 + 3ei θ ,
the second approximation is 1

3 + 3ei θ + 46
216e

− i θ , as is shown in Fig. 5

Example 8 Take A and u as in the previous example, but let v =
⎡

⎣
1

− 1
2− 1
2

⎤

⎦. Then v∗u = 0

and v∗Au = − 3
2 , so κ = 1. Furthermore, v∗A2u = 1

2 and v∗A3u = − 3
2 . In that case,

c2−1 = − 3
2 , so c−1 =

√
3
2 i, c0 = − 1

6 and c1 = −5
√
2

24
√
3
i. With τ = tei θ we obtain for

the circular approximation of the two eigenvalues going to infinity

±
√
3

2

√
t

(
− sin

(
1

2
θ

)
+ i cos

(
1

2
θ

))
− 1

6
.
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Fig. 5 The eigenvalues of
B( 12 e

i θ ) are plotted in red, the
circular approximation is plotted
in blue and the second
approximation is plotted in green
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Fig. 6 The eigenvalues of B(4ei θ ) plotted in red, the circular approximation in blue and the second approx-
imation in green

Adding the extra terms with c1 is a bit more involved; it gives
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.

For t = 4 Fig. 6 shows the situation, and also illustrates that the fit for the circle is not
satisfactory, while the fit with the next term is essentially better. Obviously, for larger
t this will improve even further.

The results of Theorem 1 and Corollary 3 show how the curves 
 j can be described
not only qualitatively, but as the examples show, also quantitatively the results are fairly
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sharp, certainly if we take into account the correction term to the circular approxima-
tion.
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