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Abstract

The bounded real lemma (BRL) is a classical result in systems theory, which provides a
linear matrix inequality criterium for dissipativity, via the Kalman-Yakubovich-Popov
(KYP) inequality. The BRL has many applications, among others in H°° control.
Extensions to infinite dimensional systems, although already present in the work of
Yakubovich, have only been studied systematically in the last few decades. In this con-
text various notions of stability, observability and controllability exist, and depending
on the hypothesis one may have to allow the KYP-inequality to have unbounded solu-
tions which forces one to consider the KYP-inequality in a spatial form. In the present
paper we consider the BRL for continuous time, infinite dimensional, linear well-
posed systems. Via an adaptation of Willems’ storage function approach we present a
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unified way to address both the standard and strict forms of the BRL. We avoid making
use of the Cayley transform and work only in continuous time. While for the stan-
dard bounded real lemma, we obtain analogous results as there exist for the discrete
time case, when treating the strict case additional conditions are required, at least at
this stage. This might be caused by the fact that the Cayley transform does not pre-
serve exponential stability, an important property in the strict case, when transferring
a continuous-time system to a discrete-time system.

Keywords Kalman-Yakubovich-Popov inequality - Bounded real lemma - Storage
functions - Well-posed linear systems - Continuous time - Passive systems - Schur
functions

Mathematics Subject Classification Primary 47A63; Secondary 47A48 - 47A56 -
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1 Introduction

The study and elaboration of the Bounded Real Lemma (BRL) has a rich history,
beginning with the work of Kalman [20], Yakubovich [35] and of Popov [25]. From the
beginning, the Kalman- Yakubovich-Popov (KYP) lemma was viewed more broadly as
the quest to establish the equivalence between a frequency-domain inequality (FDI)
and a Linear Matrix Inequality (LMI). In our case, this will actually be a Linear
Operator Inequality.

A finite dimensional, linear input-output system in continuous time is frequently
written in input/state/output form

x()| _[A B]|[x@®) B
fol=[EB]00] =0 o= an
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where the state x(t) at time ¢ takes values in the state space X = C" (with C denoting
the set of complex numbers), the input u(t) lives in the input space U = C™, and
the output y(t) in the output space Y = C*, and where A, B, C, D are matrices of
appropriate sizes. The initial time is t = 0 and xo € X is the given initial state of
the system. By the elementary theory of differential equations, the unique solution of
(1.1)1s

'
x(t) = e xo + / A9 Bu(s) ds,
0

. (1.2)
y(1) = CeAlxg + / Ce'=9 Bu(s) ds + Du(r).
0
Taking Laplace transforms in (1.2), we get

W) = —A) xo+ (- AT BIQ),

O = C0.— A)xo + DMu),
where

DA =Ch—A)"'B+D (1.3)

is called the transfer function of the linear system (1.1). In particular, when xo = 0,
we get

FO) = DOIER), (1.4)

i.e., the transfer function maps the Laplace transform of the input signal into the
Laplace transform of the output signal. Alternatrively, let us make the Ansatz that
u(t) = e*ug, x(t) = e*xp and y(r) = ¢ yo form a trajectory on R, where ug, xo
and yq are constant vectors. Then x(t) = reM xq and the first equation in (1. 1) gives
x0 = (A — A~ Buy. Plug this into the second equation of (1.1) to get yg = @(A)uo
Hence, the transfer function maps the amplitude of the input wave to the amplitude
of the output wave, and this gives a second interpretation of the transfer function as
a frequency response function. This second interpretation can be extended to time-
varying linear systems as well; see [8]. For finite dimensional systems, the Laplace
transform version is more common, but for infinite-dimensional systems, the frequency
response version is more accessible.

We will be particularly interested in the case where @(A) is analytic on the right
half-plane C*. If it is the case that in addition ||3D(k) || < 1 for all A in the open right
half-plane C*, we say that D is in the Schur class (with respect to C*), denoted as
Su.y.

What we shall call the standard bounded real lemma (standard BRL) is concerned
with characterizing in terms of the system matrix [C D] when it is the case that the
associated transfer function ﬁ(k) is in Sy.y. A variation of the problem is the strict
bounded real lemma which is concerned with the problem of characterizing in terms
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of the system matrix [ ch ] when the associated transfer function D (1) is in the strict
Schur class 3([)1,)/’ i.e., when there exists a p < 1 such that ||©(A) | < pforallxr e CT.
For the finite dimensional case, the problem is pretty well understood (see [7, 33] for
the standard case and [24] for the strict case), while for the infinite dimensional case
the results are not as complete, but see [5] for the standard case). Our goal here is
to provide a unified approach to the standard and the strict bounded real lemmas for
infinite dimensional well-posed system with continuous time (as in [31]); in fact, at
that level of generality, this appears to be the first attempt at a strict bounded real
lemma.

We shall make use of the concept of storage function as introduced by J. Willems
in his study of dissipative systems [33, 34], closely related to independent work [4] of
D. Arov appearing around the same time. Here we concentrate on the special case of
“scattering” supply rate: s(u, y) = |[ul|> — || y]I>.

Definition 1.1 The function S : X — [0, oo] is a storage function for X if S(0) =0
and for all trajectories (u, X, y) of X with initial time O and for all # > 0, it holds that

t t
S (x(1) +f0 ly()IIF ds < S (x(0)) +/0 lu(s) I ds. (1.5)

IfSx) = ||x||§( is a storage function for X, then X is called passive.

An easy consequence of this notion of dissipativity (i.e., existence of a storage
function) is what we shall call input/output dissipativity, namely: In case the system
is initialized with the initial state x( set equal to 0, then the energy drained out of the
system over the interval [0, ¢] via the output y cannot exceed the energy inserted into
the system over the same interval via the input u: that is,

t 1
[ v as = [ e ds. - subieet o0 =0.
0 0

This implies that the transfer function is in the Schur class; more details on this can
be found in Proposition 6.1 below. A non-obvious point is that the converse holds: if
D e Su v, then a storage function exists for X, and this will be one of the statements
in our standard BRL. Similarly, as we shall see that D being in the strict Schur class is
equivalent to X having what we shall call a strict storage function (see Definition 1.4
below).

For a suitable function u, let t/ denote the backward-shift operator

(T'a)(s) =u(t +5), teR, t+s e dom(u).

By time-invariance of the system equations (1.1) we see that for any 7y > O the
backward-shifted trajectory (t"u, T0x, T™y) is again a system trajectory whenever
(u, x, y) is a system trajectory. Setting 1 =ty > 0, 1, =t + t9 > t1 and rewriting the
resulting version of (1.5) as
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4]

5]
lu(s)|I7, ds — / ly(s)l1% ds,

5l

S(x(t2)) — Sx(1)) < /

5]

we see that the dissipation inequality (1.5) can be interpreted as saying that the net
energy stored by the system state over the interval [1, f2] is no more than the net
energy supplied to the system by the outside environment over the same time interval.

In order to state the standard and strict bounded real lemmas even for the finite
dimensional case, we need to carefully distinguish different notions of positivity for
Hermitian matrices.

Definition 1.2 For H an n x n Hermitian matrix over C, we write

e H > 0if (Hx,x) > 0 for all nonzero x in C"*" (equivalently for the finite
dimensional case here, for some 8§ > 0 we have (Hx, x) > §||x||* forall x € C"),

e H<0if —H >0,

e H>0if (Hx,x) > 0forall x € C",

e H=<0if—H >=0.

Theorem 1.3 (Standard finite dimensional bounded real lemma; see e.g. [7, 33])
For a finite-dimensional linear system X with system matrix S = [ég] as in
(1.1) which is minimal (i.e., rank[B AB --- A""'B] = n (controllability) and
rank [C* A*C* ... A*"~1C*] = n (observability), the following conditions are equiv-
alent:

(1) After unique analytic continuation (if necessary) to a domain D(@) o CH, D is
in the Schur class Sy y.

(2) The following continuous-time Kalman-Yakubovich-Popov (KYP) inequality has
a solution H > 0:

* * *
|:HA+A H+C*C HB+C D}ﬁo' (16)

B*H + D*C D*D — 1

(3) The system X is similar to a passive system X°, i.e., there exist X° and an invertible
I': X — X° such that

A° B° rolfAa Bl[r-to
[C° D°:| = [0 1} [c D] [ 0 1} .7
satisfies (1.6) with H = 1xo.

(4) The system X has a storage function.
(5) The system X has a quadratic storage function (see below).

Here by a quadratic storage function we mean a storage function S of the special
form S(x) = (Hx, x), where H > 0 is a Hermitian matrix. If H is positive definite
(H > 0) then S = Sy has the additional property that S is coercive (there is a
§ > 0 so that Sy (x) > §|x||? for all x € X). The connection between a solution
H > 0 of the KYP-inequality (1.6) and a quadratic storage function is that any
H > 0 satisfying (1.6) generates a quadratic storage function S for ¥ according to
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S(x) = Sg(x) := (Hx, x). The strict bounded real lemma is concerned with an
analogous characterization of the strict Schur class S(Z/,r
To formulate the strict result let us introduce the following terminology.

Definition 1.4 Suppose S: X — [0, oo] is such that S(0) = 0 and X is a well-posed
linear system with system trajectories (u, X, y) with initiation at t = 0. Then we say
that:

(1) S is a strict storage function for ¥ if there is a § > 0 so that, for all system
trajectories (u, X, y) of ¥ and 0 < #; < #, we have

n 1%
nx@nﬂds+:/ ly(s)[I* ds

131

S@m»+sf

1

5]
= Sx() + (1 —8)/ lu(s)[|* ds. (1.8)
1

(2) Sisasemi-strict storage function for X if condition (1.8) holds but with the integral
term involving the state vector x(s) omitted, i.e., if there is a § > 0 so that, for all
system trajectories (u, X, y) and 0 < #; < t, we have

5

2 n
S(X(tz))+f ly()II*ds < Sx(t1)) + (1 —5)/ lu(s)I*ds.  (1.9)
1

3]

In the following result the equivalence (1) < (2) is due to Petersen-Anderson-
Jonckheere [24] (at least for the special case D = 0); we add the connections with
similarity and storage functions for the strict setting.

Theorem 1.5 (Finite dimensional strict bounded real lemma) Suppose that X is a
finite dimensional linear system with system matrix S = [é g] as in (1.1) such that
the matrix A is stable (i.e., A has spectrum only in the open left half plane: o (A) C
C™ :={r € C | Re(A) < 0}). Then the following conditions are equivalent:

(1) Possibly after unique analytic continuation to a domain dom(@) S CH Disin
the strict Schur class S(()]’Y.

(2) The following continuous-time strict Kalman-Yakubovich-Popov (KYP) inequality
has a solution H > 0:

B*H + D*C  D*D —1 (1.10)

|:HA + A*H 4+ C*C HB + C*D:| 0
(3) The system X is similar to a strictly passive system X°, i.e., there exist X° and an
invertible I' : X — X° such that (1.7) satisfies (1.10) with H = 1xo.
(4) The system ¥ has a quadratic, coercive strict storage function.
(5) The system ¥ has a semi-strict storage function.

In the infinite dimensional case, we wish to allow one or each of the coefficient
spaces, i.e., the input space U, the state space X, or the output space Y, to be a
infinite dimensional Hilbert space. The situation becomes more involved in at least
three respects:
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e The system matrix [é g] is replaced by an (in general) unbounded system node

(see [31, Definition 4.7.2], [5, §2] or §4 below for details) between Hilbert spaces
U, X and Y. Here we restrict ourselves to the setting of well-posed systems, i.e., in
place of the system matrix [ é g ] asin (1.1) there is a well-defined one-parameter

family of block 2 x 2 operator matrices

A B X X o
¢ o | L2qo, a0, oy | T Lo, |0 T

which corresponds to the mapping such that

A B [ x(0) x(t)
|:Q:t /Dtj| ) |:7T[0,t]ll - 0.1y |’ t>0,
whenever (u, X, y) is a system trajectory. It is often advantageous to work with the

"integrated operators" A’, B!, ¢, D! instead of with the system node directly. In

case the system is finite dimensional and given by system matrix [é g], one can

read off from (1.2) that the integrated operators 2, B’, €', D are given by
A xp > ey,

'
B uljo. [ A9 Bu(s)ds, €' xg > Ce™xplo<s<is
0

N
D' ulj (cf ) Bu(s') ds/+Du(s)>
0

0<s<t

To get some additional flexibility with respect to choice of location f#y for the
specification of the initial condition (x(f9) = xg), Staffans (see [31, page 30])
defines three “master operators"

0
Bu :=/ A Bu(s)ds, Cx:= (t — CQltx) ,
> 120 (1.11)
Du = <t — / CUA S Bu(s)ds + Du(t))

—00 teR

and observes that the analogues of B, ¢/, D’ for the case where the initial condition
istakenat? = fg rather thant = 0 (denoted as B , &} , D] ) are all easily expressed
in terms of the master operators; for the case where #y = 0 the formulas are as in
Eq. (2.1) below.

We let the collection of operators written in block matrix from (even though it does
not fit as the representation of a single operator between a two-component input
space and a two-component output space) [ Q@l % ] denote the associated well-posed
linear system.

Secondly, since the state space X may be infinite dimensional, the solution H of
(1.6) can become unbounded, both from below and from above. In this case the
notion of positivity for a (possibly unbounded) selfadjoint Hilbert-space operator
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becomes still more refined than that for the finite dimensional case (cf., Defini-
tion 1.2) as follows.

Definition 1.6 For an unbounded, densely defined, selfadjoint operator H on X with
domain dom(H) we say:

€))
@)

3

H is positive semidefinite (written H > 0) when (Hx, x) > Oforall x € dom(H);
H is positive definite (written H > 0) whenever (Hx,x) > O forall 0 # x €
dom(H);

H is strictly positive definite (written H » 0) whenever there exists a § > 0 so
that (Hx, x) > 8||x||? for all 0 # x € dom(H).

By [21, Theorem 3.35 on p. 281], each positive semidefinite operator H on X

. .. . . 1 . 1.1
admits a positive semidefinite square root H 2, for which we have H = H2H?z2,
and hence

dom(H) = | x & dom(H?) | Hix € dom(H)} < dom(#?).

Throughout this paper we use the standard ordering for possibly unbounded pos-
itive semidefinite operators (see, e.g., [2, §5] or [21, (2.17) on p. 330]): given
positive semidefinite operators Hy and H> on a Hilbert space X ,we write H < Hy

if
1 1 1 1 1
dom(H, ) C dom(H{) and |Hx| < |H, x| forall x € dom(H,).

In case H> and H; are bounded, this amounts to the standard Loewner ordering
for bounded selfadjoint operators. Similarly we define H; < H> and H; < Ha,
and we write Hy > H, (resp. H; > H> and Hy » H») whenever H, < Hj (resp.
H, < Hy and Hy < H)).

Thirdly, with all of A, B, C, D, being possibly unbounded, it is more difficult to
make sense of the formula (1.3) for the transfer function of the system X. However,
there is a formula for the well-posed-system setup based on the interpretation of
the transfer function as a “frequency response function" which appeared at the
beginning of the introduction. There is also a formula for the transfer function
analogous to formula (1.3) expressed directly in terms of the associated system
node S (see the formula (4.4) to come). All these ideas are worked out in detail
in Staffans’ book [31] and the fragments needed here are reviewed in §2 and §4
below.

In the case of unbounded positive semidefinite solutions H, the associated quadratic

function Sy should be allowed to take on the value infinity according to the formula:

_fuH X% it x € dom(H?),

s
HO=1 if x ¢ dom(H?).
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Remark 1.7 Note that then H being bounded is detected in the associated quadratic
function Sy by Sy being finite-valued, while H being strictly positive definite (i.e.,
H » 0) is detected in Sy by Sy being coercive, i.e., there is a 6 > 0 so that
Sy (x) = 8|x||> forall x € X.

Also, for the case where H is unbounded, the similarity I" should be weakened to
a pseudo-similarity defined as follows.

Definition 1.8 Two well-posed systems ¥ = [ %3 ] and £° = [ % 27|, with state
spaces X and X°, respectively, are pseudo-similar if ©° = © and there exists a
closed, densely defined and injective linear operator I' : X D dom(I") — X° with

dense range, called a pseudo-similarity, with the following properties:

(1) ran(®B) C dom(I') and B° = I'B, or equivalently ran(B’) C dom(I") and
B! = I'B! for each 1.
(2) forallt > 0, A" dom(I") C dom(I") and A°'T = le|d0m(l")’ and

3) ¢TI = QZ| & or equivalently, €' = ¢’ | dom(T") forall t > 0.

m(I")’
If ' is bounded with a bounded inverse, then ¥ and X° are said to be similar. (In this
case the condition that dom(I") = X is automatically satisfied.)

This definition is reproduced from [31, Definition 9.2.1], but with the condition
that the range of I' is dense added and a couple of redundant assumptions dropped;
observe that Staffans also states on page 512 of [31] that I~ is a pseudo-similarity
if I' is a pseudo-similarity, that property (1) in Definition 1.8 implies that B maps
into ran(I") and item (2) implies that ran(T") is invariant under 2(’. Hence the tw o
pseudo-similarity definitions are equivalent.

We make the following additional definitions:

e Foreacha € R, we define C,, := {z € C | Re z > a} (soin particular CT = Cy).
e Welet H*(Cy; B(U, Y)) denote the B(U, Y)-valued functions which are analytic
and bounded on C,.

Thus the Schur class consists of those functions F € H®(C*; B(U, Y)) such that
F(A) is acontraction from U into Y forall A € C™, and in this case we write F € Sy y.
In fact, for convenience, we identify two analytic functions which coincide on some set
in the intersection of their domains which has an interior cluster point. In particular, we
write F € Sy y if the restriction F | dom(F) (| C+ has a unique extension to a function
in SU’ Y-

In the infinite dimensional situation, following [31] we use the frequency response
idea at the beginning of the introduction to define the transfer function ) by the
formula

DWuo 1= Deauo)(0). A € Cop. ug € U,
where D is a suitable version of the input/output map D; see Proposition 2.3 for the
details. We can now formulate our first main result.

Theorem 1.9 (Standard infinite dimensional bounded real lemma) For a minimal well-

posed system ¥ = [% % ] with transfer function D the following are equivalent:
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(1) The transfer function satisfies D e Su.y (in the generalized sense described
above).

(2) The continuous-time KYP-inequality has a ‘spatial’ solution H in the following
sense: H is a closed, possibly unbounded, densely defined, and positive definite
operator on X, such that for all t > 0:

A dom(H?) C dom(H?), B'L*([0,1]:U) C dom(H?), (1.12)

and the following spatial form of the KYP-inequality holds:
Hz() A B [ x HzO x| e dom(H%)
¢ D ||u ul L0, 10 |

(1.13)
where the norms are those of [ 12 ([g( t],Y)] and [ LZ([OX;}U) ], respectively.

(3) The system X is pseudo-similar to a passive system.
(4) The system ¥ has a storage function.
(5) The system X has a quadratic storage function.

When these equivalent conditions hold, an operator H defining a quadratic storage
function in item (5) will also be a spatial solution of the KYP-inequality in item (2) and
vice versa. For every pseudo-similarity T to a passive system, the operator H := I'*T"
is a spatial solution to the KYP-inequality in item (2) and it can serve as the operator
defining the quadratic storage function in item (5).

Note that the spatial solution H of the KYP-inequality in item (2) of the preceding
theorem is required to be independent of 7.

In §3 below (see in particular Definition 3.7), we will introduce the concept of L2-
exact controllability and L?-exact observability for continuous-time systems, which
are weaker than exact controllability and exact observability in infinite time, but still
strong enough to guarantee a bounded solution of the KYP-inequality. Thus we get
the following alternative infinite dimensional version of the standard bounded real
lemma, a result which we believe is new in the continuous-time setting:

Theorem 1.10 (L2-minimal infinite dimensional bounded real lemma) For an L2-
minimal well-posed system ¥ = [% %] with transfer function D, the following

conditions are equivalent:

(1) The transfer function of ¥ satisfies De Su.y.
(2) A bounded, strictly positive definite solution H to the following standard KYP-
inequality exists:

At B [H O] A B HO

with the adjoint computed w.r.t. the inner product in L2([0,1]; K), where K = U
orK =Y.
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(3) The system % is similar fo a passive system.

When these conditions hold, in fact C* C dom(@), so that 6|C+ is itself in Sy y,
rather than just having a unique restriction-followed-by-extension in Sy y.

For each bounded, strictly positive definite solution H to the KYP-inequality in
item (2), the operator I' .= H > establishes similarity to a passive system as in item
(3). Conversely, for every similarity T in item (3), H := I'*T is a bounded, strictly
positive definite solution to the KYP-inequality in item (2).

All solutions H to the spatial KYP-inequality in item (2) of Theorem 1.9 are in fact
bounded, strictly positive definite solutions of (1.14), and there exist bounded, strictly
positive definite solutions H, and H, of (1.14) such that

H, = H < H,.

Remark 1.11 The L?-minimality assumption in Theorem 1.10 brings the results much
closer to the finite dimensional setting, while only assuming minimality makes the
situation more subtle. For instance, while each pseudo-similarity provides a spatial
solution to the KYP-inequality (1.13), the converse may not hold, as it does not appear
to be the case that every spatial KYP-solution H can be used to define a passive
well-posed system X’ via (1.7); see the proof of Theorem 1.10 for more details in the
bounded case. Specifically, to prove strong continuity if the semigroup of the candidate
passive system, more conditions seem necessary. Also, assuming only minimality,
there are results on a ’largest’ and "smallest’ solution to the spatial KYP-solution, but
these serve as extremal solutions only for subclasses of spatial KYP-solutions; see
Remark 7.5 below for more details.

It is straightforward to formulate a naive infinite dimensional version of the strict
BRL. While the implications (2) < (3) and (2) = (1) are then straightforward, the
implication (1) = (2) or (3) appears to require some extra hypotheses. We present
three possible strengthenings of the hypothesis (1) so that the implication (1) = (2) or
(3) holds in the infinite dimensional setting. The naive expectation is that one should
strengthen the stability assumption on A in the discrete-time case to the assumption
that the operator Co-semigroup be exponentially stable for the continuous-time case.
However this appears to be not sufficient in general. We shall additionally assume
that the operator Co-semigroup {A" | + > 0} embeds into an operator Cy-group
(A | € R} (meaning that {2’ | # € R} is a Co-group of operators such that A = A’
for t > 0). Equivalently, the Cop-semigroup {2’ | > 0} is such that 2( is invertible
for some ¢ > 0; see Proposition 5.2 below for additional information. We note that
this invertibility condition always holds in finite dimensions, and hence the notions
strict and semi strict collapse to one notion of strictness in the finite dimensional case.

In addition we introduce auxiliary operators

cth,A: X — L*([0,1], X), QZX,B: L%([0, 1]; U) — L*([0, t]; X)
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given by
€ oatx e (s = 1LxWx = Ax)oss< € L0, 1], X),

QtA,BI (s = u(s))o<s<t = <S — / A5~ Bu(r) dr)
0

O<s<t

Here [ égg] is the system node associated with the well-posed system (details in
§4 below) and we shall be assuming that the Cp-semigroup 2’ generated by A is
exponentially stable. Under these conditions the state trajectories (u, X, y) associated
with ¥ are such that x € L>(R*, X) andy € L2(R*, Y) as long as u € L?(R*, U).
In system-trajectory terms, the operator [€], 4 B, 5] has the following property: if
(u, x,y) is any system trajectory, then

x(0)

u| ] — xlj0.1 € L2([0, 11, X) (1.15)
[0,7]

[€,.0 0] |

Our version of the strict BRL for the infinite dimensional continuous-time setting
is as follows:

Theorem 1.12 (Infinite dimensional strict bounded real lemma) Consider the follow-
ing statements for a well-posed system ¥ = [%[ % ]

(1) The transfer function D of Lisin S?],y and Ct C dom(ﬁ).
(2a) There exists a bounded H »- 0 on X which satisfies the strict KYP-inequality
associated with ¥, i.e., there is a § > 0 such that

[QU %T [H 0 Hm' %’}
@t @t 0 lLZ([O,t],Y) Q:t Dt

(@'1 A)*):| ‘ : |:H 0 ]
po| e Mgt o] < , t>0. (1.16
[ @ ) [ 1x.A A,B] 0 (1=8)1200.0.0) > (1.16)

(2b) There exists a bounded H » 0 on X which satisfies the semi-strict KYP-
inequality for X, i.e., there is a § > 0 so that for all t > 0 we have:

A BT [H 0 A B [H 0 (1.17)
D L0 12goay L€ D] T L0 A=lpgn] '

(3a) X is similar fo a strictly passive system, i.e., one satisfying (1.16) with H = 1x
and some & > 0.

(3b) X is similar to a semi-strictly passive system, i.e., one satisfying (1.17) with
H=1y%.

(4a) X has a finite-valued, coercive, quadratic, strict storage function.

(4b) X has a finite-valued, coercive, quadratic, semi-strict storage function.

(5a) X has a strict storage function.

(5b) X has a semi-strict storage function.
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Then we have the following implications:

(2a) <= (Ba) < (4a) = (5a)

u u U U
(2b) <= (3b) <= (4b) — (5b) = (1).

Furthermore, all 9 statements in the list (1)—(5) are equivalent if we assume in addi-
tion that A" is exponentially stable and at least one of the following three conditions

holds:

(H1) A can be embedded into a Cy-group;
(H2) X is L2-controllable;
(H3) X is L2-observable.

Remark 1.13 Let us sketch here the connection between the strict operator KYP-
inequality (1.16) and the strict storage-function inequality (1.8).

As already observed in Remark 1.7, H > 0 being bounded corresponds to the
associated quadratic storage function Sy (x) = ||H %x||2 being finite-valued on X,
and H » 0 corresponds to Sy being coercive.

Given a well-posed system X, by the definition of the [% % ] system trajectories,
(u, x,y) are determined from the initial condition x(0) = xo and the input signal u
according to

x(t) = Al xo + ‘Btu|[0,,]
y(#) = Cxo +D'ulpo,q, ¢ >0.

If we look at the quadratic form coming from the selfadjoint operator on the left-
x(0)

hand side of the operator inequality (1.16) evaluated at [u\[o |

] coming from a system
trajectory (u, X,y), we get

(H (A x0 + B"uljo,1). A'xo + B'ulpo,) x + 1€ x0 + D'uljo,1 II%z([O,,],Y)

+ 81x110,0117 2 0.7, x) = HX@), XO)x + I¥li0.0117 200,17,y + 81Xl10.1117 2 40,11,

while the right-hand side gives us

(HX(0), X(0)x + (1 = ) [l 1) -

Thus the strict KYP-inequality (1.16) for a bounded H » 0, when viewed in terms of
x(0)

the respective quadratic forms evaluated at [ulw |

], becomes exactly

2 2
(HX(I), X(O)X + ||y|[0,t] ”Lz([(),t],Y) + 5||X|[0,z] ”Lz([O,t],X)
< (HX(0). X(O)x + (1 = 8) [ulio. 122010

Setting Sy (x) = ||H%x||2 = (Hx, x), we see that the last inequality is exactly the
defining inequality (1.8) for Sy to be a strict storage function. Thus the class of
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bounded H »- 0 satisfying the strict KYP inequality (1.16) is exactly the class of
H for which the associated quadratic function Sy is a finite-valued, coercive strict
storage functions for 2.

A similar analysis gives the corresponding statement for the semi-strict setting: the
class of bounded H »- 0 satisfying the semi-strict KYP inequality (1.17) is exactly the
class of H for which the associated quadratic function Sy is a finite-valued, coercive,
semi-strict storage function.

Arov and Staffans [5] also treat the standard BRL for infinite dimensional,
continuous-time systems (Theorem 1.9 above), but from a complementary point of
view. There the authors introduce system nodes [ A&2 ] first, and then define the asso-
ciated system (and the associated operators £ = [% 3 ]) through smooth system
trajectories associated with the system-node trajectories. They introduce the notion of
pseudo-similarity at the level of system nodes and obtain the equivalence of pseudo-
similarity to a dissipative system node with the existence of a solution to a spatial
KYP-inequality expressed directly in terms of the system node operators (a spatial
infinite dimensional analogue of the spatial KYP-inequality (1.6)). To complete the
analysis they use Cayley transform computation to reduce the result to the discrete-
time situation studied in [2] (see Remark 4.5 below for additional details). In the
present paper, on the other hand, all details are worked out directly in the continuous-
time systems setting rather than using Cayley transforms to map into discrete time.
This is necessary in our stydy of the strict BRL, because exponential stability in con-
tinuous time is in general not mapped into exponential stability in discrete time; see
Example 5.5 below.

We extend the concept of L>-storage function originally introduced by Willems
[33, 34] and developed further for discrete-time infinite dimensional systems in [10] to
continuous-time, infinite dimensional systems. We show that Willems’ available stor-
age function S, (see [33, 34]) is of a special type which we call L2-regular, whereas
Willems® required supply S, is not. In response to the latter, we introduce an L>-
regularized version S, < S, of the required supply and prove that all L?-regularized
storage functions § satisfy S, < § < §, under some additional assumptions. More-
over, we prove that S, and S, are quadratic. Our variational approach to the explicit
solution of the density operators determining S, and S, in §6 is much in the same
spirit as in the discussion in [23, §3].

Extensions to the infinite dimensional, Hilbert space setting were begun already
by Yakubovich in [37, 38], but the theory has been systematized and refined in many
iterations after these seminal papers. The paper of Curtain [12] for instance treats the
strict BRL for the case where “B and C are bounded" (i.e., B € B(U, X) and C €
B(X,Y)) and the resulting feedthrough operator D € B(U, Y) is taken to be 0. Her
KYP-inequality can be seen (via a Schur-complement calculation) to be contained in
our strict KYP-inequality criterion (see (4.8) below) when specialized to her situation.

In addition to the BRL as presented here, the so-called KYP lemma appears in the
context of many other topics in control theory. e.g., the design of a certain type of
Lyapunov function leading to stabilization of a linear system via a nonlinear state-
feedback control as in the original problem of Lur’e, linear-quadratic optimization
problems, feedback design, etc.; we refer to [17] for an informative survey. The paper
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[18] for instance gives a far-reaching extension of the original form of the KYP-lemma,
allowing the FDIs to be given only on finite frequency intervals and the class of systems
allowed to be more general, by exploiting the S-procedure, which also goes back to
work of Yakubovich (see [14, 36]).

The Bounded Real Lemma (more generally the KYP lemma) has now been adapted
to a number of additional applications. Let us mention that, specifically, in [16], the
bounded real lemma is applied to model reduction, more precisely to balanced bounded
real truncation, and the relation of the minimal and maximal storage functions to
optimal control theory is described; see also [30] for this connection and an alternative
version of the strict bounded real and positive real lemmas. Finally, we mention that
there is also an extension [11] of the present approach to discrete-time dichotomous
and bicausal systems, where it is essential that solutions of the KYP-inequality be
indefinite; such a situation is considered for both discrete-time and continuous-time
systems in [26] to handle applications where a stabilizability assumption is missing.
It should be of interest to extend the results here to the dichotomous setting, thereby
getting a continuous-time analogue of [11].

The paper is organized as follows. In §2, the basics of well-posed systems are
recalled. In §4 the complementary differential approach via system nodes is reviewed,
because some issues coming up in the sequel are more easily resolved via the system-
node approach. In §3 we develop the concept of L?-minimality for the continuous-
time setting (analogous to developments in [10] for the discrete-time setting). Some
examples of LZ-minimal systems are discussed in §5. In §6, we extend the concept of
L?-regularized storage function from [10] to continuous time and we use this to study
Sq and S,.. Finally, in § 8 we prove our main results stated in the present introduction.
Part of the proofs are based on an operator optimization problem, which is the topic
of Appendix A.

Notation and terminology. For 7 € R, we define the backward shift operator t” acting
on a function u with dom(u) C R by

(tT'w)(s) =u(t +s), seR, t+sedom).

Given J C R, we define the projection 7 acting on a function u with J C dom(u) C
R by

u(s), seJ,
mwyu)(s) =
@Gy =1, seR\J.
Set RT := [0, 00) and R~ := (—o00, 0). We abbreviate T4 = MR+, T— := mr- and

define 7} := 77" and t_ := t'7_ for t > 0, both acting on functions with support
anywhere in R. The multiplicative interaction between these operations is given by

tny=ny,t, teR, JCR, withJ+t:={x+1|xelJ}
Furthermore, we let 5 denote the reflection operator:

(u)(—t) = u(t), t € dom(u). (1.18)



84 Page160f77 J.A.Balletal.

Let K be a Hilbert space. For every, not necessarily bounded, interval J/ C R we
write L2(J; K) for the usual Hilbert space of K -valued measurable, square integrable
functions on J with values in K, considering this space as a subspace of L%( =
L%(R; K) by zero extension, without writing out the injection explicitly. We abbreviate
L2+ = L%X(R*; K), and L2_ = L%(R~; K). With leoc x Wwe denote the space of
K -valued measurable functions u such that 7 ju € L2 for every bounded interval J.
The symbols L2 1K L2 .k and L2 7.r.x stand for the spaces of functions u € L2 with
support bounded to the left (supp(u) C (L, oo) for some L € R), support bounded
to the right (supp(u) C (—o0, L) for some L € R), or with support bounded on both
sides, respectively. Similarly we define L%, loc. K> L% loc K> leoc I L%iK, etc. However,
note that some spaces may coincide, e.g., L%’r’loc’K L% r K L% Yoc. K leoc P
12+ — 12+

r,loc,K r,K»
L € R such that supp(z), supp(zk) C (L, 00) forallk, and 77, 712Zx — zin L2 for all

etc. Convergence of z to z in L2 7 loc.x Means that there is some

T > L, and convergence in L?

2+ 72+
and L[oc K — LE loc,

inR— and R, respectively, and we let these spaces inherit the topology of L%’ loc.K -
For an interval J C R, we write C(J, K) for the space of continuous functions on J
with values in K.

Throughout, for Hilbert spaces U and V we write B(U, V) for the Banach space of
bounded linear operators mapping U into V with the operator norm simply denoted by
I II. For a contraction operator 7 in B(U, V), that is, with | T|| < 1, we write Dt for
the defect operator of T which is defined to be the unique positive semidefinite square

v 1oc.k 18 defined similarly. Moreover, L LK = Lz loc.K

x are considered as subspaces of L2 ?.loc.x With support contained

root of the bounded, positive semidefinite operator I — T*T, i.e., D := (I — T*T)%.

2 Well-posed Linear Systems

In this section we provide some background on well-posed systems, more specifically,
causal, time-invariant L?-well-posed linear systems. We recall this class of systems
in Definition 2.1; for a more detailed study and motivation of this class of systems we
refer the reader to [31]. It may be a helpful experience for the reader to verify that the
system determined by (1.1) and (1.11) fits Definitions 2.1 and 2.2 below.

Definition 2.1 Let U, X and Y be separable Hilbert spaces. A quadruple £ = [ %3 ]
is called a well-posed system if it has the following properties:

(1) The symbol 2l indicates a family ¢ — 2A’, which is a Cy-semigroup on X.

(2) The input map B : L%_U — X is a linear map satisfying 2’8 = B1’ on L%;],
forall t > 0.

(3) The output map € : X — L
allz > 0.

(4) The transfer map (input/output map) ® : L%,loc,U — L%,ZOC’Y is a linear map

Joc.y 1s @ linear map satisfying A" = i Con X, for
satisfying the following identities on L%, loe.U"

(a) 7' = D! forall ¢ € R (time invariance),
(b) m_®Dm; = 0 (causality) and
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(c) n4+®Dr_ = CBr_ (Hankel operator factorization).

(5) The operators B, &€, and ® are continuous with respect to the topology of L%, loc

We remark that the intertwinement in condition (2) in the preceding definition,
A'PBu = Brluforu e Lz_u, is written in this form in [31, Definition 2.2.1], but
in fact the projection in T = 7'm_ is redundant for such u, since 7_u = w. It is
also possible to consider B as an operator with domain L%’ loc,y» Without breaking
this intertwinement property, by setting ‘B := Bn_; however, we do not make this
convention here. On the other hand, € can be interpreted as an operator from X into
L%’ loc,y Since le;g,y can be identified with a subspace of L%ﬁ loc,y DY Zero extension
onR™.

Given the well-posed system X, we define

%t = %”*TWLZ([OJ],U) : Lz([(), t], U) — X, re R+7
¢ =€ X — L*([0,11,Y), teR",  and 2.1
:Dt = T[[OJ]@'L2([0,[],U) : Lz([O, t], U) - Lz([oa t]’ Y)’ re R+‘

Inorder to stay compatible with the notation in [31], we abbreviate B jo ;ju to B'u,
so that we can apply B’ to arbitrary u € le()c,U rather than only u € L2([0, t]; U).
Note that we divert in (2.1) from the notation in [31, Definition 2.2.6]: what we define
as B', ¢ and D' corresponds to B, € and D} in [31], with the additional feature
that we restrict B and @' to functions in L2([0, 1], U).

With a slight modification of the formulas in [31, Theorem 2.2.14] it is possible to

recover B, ¢ and ® from B, ¢! and D’ via:

Bu = lim Bt "7 om, uwell,, Cx=lim¢x, xceX,

—00 ’ —00 (2 2)
. 2 — 2 ’
Du = lim DYt i qu, we Ly,
The limits for 8 and € follow from Theorem 2.2.14 in [31]. For ©, a slightly different
argument is needed, which we will now give. Fix u € L% loc,y and let L be such that
supp(u) C [L, 00). Forallt > |L|, we then get from the time invariance and causality
of ® that

‘Etgzttitﬂ[_[’t]u = ‘L’tJT[(),zt]@‘L’itJT[L’,]u = ﬂ[_l’l]fitl’t@ﬂ[ht]u = mL,n DL 0.
Now fix T > L arbitrarily. When t — oo, we get m[z 77 ju = 7, 7ju for all
t > T, so that nyz, ju — uwin L% Ioc.y+ BY the continuity of ©, we then get for
t > max{|L|, |T|} that

n[L,T]r’@mr_ln'[_,,,]u = 7T[L,T]®7T[L,t]u —> JT[L,T]@II.

)
Hence, in L“ocﬂy, we have

lim /D%t ' m_; qu = Du.
—>0o0
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Next we define what we mean by a solution, or a trajectory, of a well-posed system.

Definition 2.2 By an (input/state/output) trajectory on R of a well-posed linear sys-
tem X with initial state xo € X, we mean atriple (u, X, y) with input signalu € LZZJ; Us

state signal x € C(R™; X) and output signal y € leo“; y that satisfies

x(t) = A'xo + %ITE[O,;]U, t >0, 23)
y = €x0 + Dmru = Cxp + Du. '
By an (input/state/output) trajectory of ¥ on R (with initial state x_o, = 0) we mean
a triple (u, x, y) with input signal u € L%’ loc,u» State trajectory x € C(R; X) and
output signal y € L%y Joc.y that satisfies

x(t) :=Br_tu, teR, y:=%u (2.4)

Note that a trajectory (u, X, y) on R is uniquely determined by the initial state x
and the input signal u, while a trajectory on R is uniquely determined by u, and then
one can intuitively think of lim;_, _, X(¢#) = 0 as a kind of initial state. We mention a
few rules on how trajectories on R and R can be manipulated, which will be useful
in the sequel. The proofs are straightforward and left to the reader.

(1) If (u, x,y) is a trajectory on R and r € R with x(¢) = 0, then 7[; o0)(u, X, y) is
also a trajectory on R.

(2) A triple (u, x,y) is a trajectory on R if and only if the support of u is bounded to
the left by some ¢ € R and 7’ (u, X, y) is a trajectory on R™ with initial state zero.

(3) The triple (u, X, y) is a trajectory on R if and only if 7° (u, X, y) is a trajectory on
R for some/all s € R.

(4) If (u,x,y) and (v, z, w) are trajectories on R™ and x(t) = z(0) for some t > 0
then 7(o, 1) (u, X, y) + 77/ (v, z, W) is a trajectory on Rt.

(5) If (u, x, y) is a trajectory on R and (v, z, w) is a trajectory on R* with z(0) = x(0)
then w_(u, X, y) + (v, z, w) is a trajectory on R.

In order to discuss additional features of the well-posed system X, we need an
alternative representation of ‘B, € and ©, as bounded linear Hilbert space operators,
and we now proceed to construct this representation. First set e, (1) := e for 1 € C,
t € R, and define the Hilbert space chu’ x by

Li,K = {ewu |ue L%(} with (e,u, ewV)LZ)K = (u, V)L%{ foru,v e L%(.

Similarly we define ijfK by replacing L% by L%(i. Note that, as sets, we have the
inclusions L%,r, x C Li, x C leoc, ¢ for all € R, with each inclusion being dense
in their respective topologies, with similar dense inclusions for the corresponding
L**—spaces.
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It is well-known, see e.g., Theorem 2.5.4 in [31], that every Cp-semigroup 2 has a
growth bound

In [
wy = lim
t—00 t

<

00, 2.5)

meaning that for every @ > wg there is some M > 0 such that ||A'|| < Me®" for
all + > 0. We call X, or A, exponentially stable if wgy < 0. In this connection, we
also point out that a passive system has a contractive semigroup, i.e., ||| < 1 for all
t > 0, and this implies that wg < 0. In particular, all @ € C,,,, lie in the resolvent set
p(A) of the generator A of 2(, meaning that « — A has a bounded inverse on the state
space X; see [31, Theorem 3.2.9(1)].

Fix a real number w. In case w > 0, then LZ)’_K C L%{ with dense and continuous

embedding, and LZ_;)  1s the dual of LCZUTK with pivot space L%, so that the duality
pairing satisfies

(v,u),2-

2— 2—
o i (v, u)L? s VELy uel . (2.6)

See for instance [31, §3.6] or [32, §2.9] for detailed constructions of the dual with
respect to a pivot space. If we have an exponentially stable system, then it is possible
to take @ = 0 and in that case the three spaces in (2.6) coincide. In fact, for an
exponentially stable system it is possible to take w < 0, in which case instead LZ_ZU, K

is the densely and continuously embedded subspace and Lf;K is the dual subspace of
L%{. Then, for L? the embeddings are reversed, so that L2_+w x C L? C LiTK and
LLZUJFK - L? C Lz_tj x> and duality pairings with respect to the pivot space L? exist
in analogy to (2.6).

Let now £ = [Q@[ % ] be a well-posed system and fix a real number o with @ >
wg. By Theorem 2.5.4 in [31], ran(€) is contained in Li+y, while B extends to
a unique continuous linear operator from Lz)__U into X, and the restriction of ® to

L e N Lz)’.U has a unique linear extension that maps L, ,; continuously into L? .
We can thus reinterpret the operators B, € and © as

BeBLL, X). CeBX, LX), DeBLL, L2y, 2.7

and this reinterpretation can also be reversed, so that the original three operators can
be recovered from their tilde versions. In case the operators B, ¢ and © can be
reinterpreted in the above fashion as bounded operators as in (2.7), then we say that
B, € and D are w-bounded, respectively. Moreover, the Co-semigroup A is called
w-bounded in case sup,. |le ' A" || < oco.

The following proposition shows how the frequency-response-function approach
at the beginning of the introduction can be used to define a transfer function for an
infinite dimensional well-posed system X directly via the integrated system operators
A, B, €, D, thereby avoiding completely the system node S = [ 488 ] to be discussed
in §4.
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Proposition 2.3 For a well-posed system ¥ = [Q@[ % ] and for all > wsgy, D uniquely
induces an operator® : H1 IOC(R U) — H1 ZOC(R; Y), where
1 . o 2 ; 2 2—
Hypoe @ K) = {f e Lo i | f e Lok nf e LE], 2.8)

and the action of ® is independent of @ > wsgy. The transfer function o) of X, given
by

D(Wug := Dexup)(0), A€ Coy, ug € U,

is well-defined and when restricted to the half-plane C,, for o > wq, gives a function
in H o"((Cw, BU,Y)). F urthermore we recover the Laplace-transform interpretation
(1.4) of’D(A) as follows: foru € L y we have

Du(h) = DMWUR), A eC,. (2.9)

Proposition 2.3 follows from Lemmas 4.5.1, 4.5.3 and 4.6.2 and Corollary 4.6.10
together with Definition 4.6.1 in [31]. We emphasize that the domain of the transfer
function defined in Proposition 2.3 is C,,,, and at the same time remind the reader
that we identify two analytic functions agreeing on a set of points in the intersection
of their respective domains having a common interior cluster point. The key starting
point to the preceding proposition is that

h h
Du — % —
T u u Tu ll’
h h

due to time invariance; see the proof of [31, Lemma 4.5.1].

Let us identify the spaces X, U and Y with their duals. Then the adjoints of the oper-
ators in (2.7) with respect to the appropriate duality pairings belong to the following
spaces:

*eB(X.L%, ). € eBLY ,. X). D*eBL>

w,Y’

2
LZ, ).

w,Y?
Since B, € and D are bounded linear Hilbert space operators, their adjoints are well

defined. Noting that L* “ou C L* loe.U and Ler szu y» We can view the adjoints as
operators of the followmg forms:

® . 2 ®._ 3§ .72+
B =B X > L, €= €*|L3*y LT = X,
5 ' (2.10)
: Lr,loc,Y - Lr,loc,U;

using [31, Theorem 6.2.1], we indeed see that D* has a restriction followed by
an extension to an operator that maps Lf loc.y Continuously into Lf loc.y- Using the
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reflection operator 4 as in (1.18), we define the causal dual system >4 of ¥ via

A4 B A ¥
d _
> [cd @d} [H%@) 5[@@51]’ @.11)

where 2* is the dual semigroup of 2, i.e., (A*)" = (A")*, t > 0. Here we depart from
[10] by using the causal dual system instead of the anti-causal dual system, which
would not have the reflections I in (2.11). The reason is that we prefer to have all of
the theory in [31] at our disposal.

Theorem2.4 Let ¥ = [%%] be a well-posed system. Then the causal dual sys-
tem X% of ¥ is a well-posed system with input space Y, state space X and output
space U. Moreover, the causal dual of =4 is equal to ¥ and the transfer function
of >4 s ’Dd(k) = ’D(A)* r € p(A), and in parttcular ||’D | oo (C,: By, Uy =
||’D||Hoo((c B, vy forall > wg. If ¥ is passive, then >4 s passive too.

For the proof, see Theorems 6.2.3, 6.2.13 and Lemma 11.1.4 in [31].

Lemma25 Let ¥ = [%‘%] be a well-posed system with causal dual system
o4 = [Qéj g;’]. Define B!, ¢ and ®' as in (2.1) and define (B?)!, (€9)" and

@ analogously for the dual system $¢. Then

@ (BHT" _Tix 0] [w B 1x 0

@y @y | Tloay] [eo]loay] 70

Y U
where for a separable Banach space K we define A’K € B(Lz([O, t], K)) to be the
unitary operator given by A = t~"S|;20.1.k)-
Proof We need to prove that for each r > 0:
(@NHNH* =2, (@) =B'AY, (B))* = (AP*T, (D))" = (AY)D A
The first identity follows directly from the definition of (2A¢)’. Next note that
€ = m0.nAB® : X — L*([0,1], U).

Thus, forallt > 0,u € LZ([O, t],U) and x € X we have

<(Q:d)lx, ll> = <n[0,,]ﬂ%®x, u>L%/+ = <7‘[[0’t]ﬂ%*x, u)LEZ,u’Liqu

L2([0,4],0)
= (x, %Hn[o,t]u)x = (x, %Hu)x = (x, BSu) y

using that B and 9B coincide on L%_U in the last step. It thus follows for # > 0 and
u e L([0, 1], U) that

(€D u = BSu = Br't 'Su = (Br_t)t 'Sdu= B'Alu,
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and this proves the second identity. The third identity follows by an almost identical
argument.

It remains to prove the last identity. For this purpose, let y € L*([0, ], Y) and
u e L2([0, t], U). Then

d\t = d = ?
<(© )"y, u>L2([0,tl,U) _<”[0,t]© y: u>L2(l0,t],U) = {mo.nADEAY. )2 0,10
= (Ar—r,0 D%y, “)LZ([O,t],U)
=(m_1,0D%sly, H“)LZ(H,O],U): (D*4y, H“>L2_;,_U,Li’u

=y, ﬂﬁHH)LZ_Z,,y»LiTy =y, ”[O,z]ﬂgﬂu)ﬁ([o,z],n :

It follows that

(@N*u = 70 1A D = Sy 07" D7 Su = A’ 770,107 ' Su
= (AY)*D'Apu,
which proves the last identity. O
The following notions will be important in the sequel:

Definition 2.6 A well-posed system X = [% %] is (approximately) controllable if
the finite-time reachable subspace

Rea(T) := ran(B) = span {ran(((@")’)*) It > 0}

is dense in X. Following [3], we say that the system X is (approximately) observable
if the finite-time observable subspace

Obs(Z) := span {ran((€")*) | > 0} = ran(B)
isdensein X, and itis (approximately) minimal if it is both controllable and observable.

Note that the equalities in the definitions of Rea (X) and Obs (X) are dual, and
that they follow directly from Lemma 2.5 and formulas (2.2), and that these equalities
imply the following corollary:

Corollary 2.7 The well-posed system X is controllable (resp. observable) if and only
if £ is observable (resp. controllable). In particular, ¥ is minimal if and only if £¢
is minimal.

The following lemma shows that our definitions agree with the other common
definitions of controllability and observability:

Lemma 2.8 The well-posed system ¥ is controllable if and only if B¢ is one-to-one
and observable if and only if € is one-to-one.



The Infinite-Dimensional Bounded Real Lemmas... Page230f77 84

Proof We prove the statement regarding observability; for controllability the claim
follows by duality. For x € X we have

Cx=0 ¢ ¢x=mp€x=0 forallt >0
& (¢'x,y)=0 forallz > 0andy e L*([0,],Y)
<= x Lran((¢)*) forallt >0
<— x 1L Obs(X),

which proves our claim. O

3 The L%-input and L?-output Maps of a Well-posed Linear System

The concepts of £2-exact controllability, ¢>-exact observability, and £>-exact mini-
mality were recently introduced for discrete-time systems in [9]. We will now extend
these concepts to well-posed continuous-time systems.

Define the (in general unbounded) L?-output map as

W : X D dom(W,) — LI",

0= ¢|dom(w0) 3.1)
with dom(W,) := !x €X|Cxe L2Y+} : '

i.e., we restrict € to the x € X that are mapped into L2+, rather than into lef;;,y’ and
view the resulting operator as mapping with codomain L?’. Note that ker(W,) =
ker(¢) = ker(¢) and henge % is observable if and only if W, is one to one, or
equivalently, if and only if € is one-to-one.

Proposition 3.1 Let W, be the L?-output map of a well-posed system ¥ = [% % ]

Then W, is closed. Additionally assume that W, is densely defined. In this case:

(1) The operator W, has a closed and densely defined adjoint W
(2) A functiony € L%"' lies in dom(W?}) if and only if there exists an x, € X such
that

lim <x, %dn[_t,olﬂy>x = (x, %)y, x € dom(W,). (3.2)
—00

When 'y € dom(W}), we have W'y = x,, where x,, is given by (3.2).
(3) It holds that LT, < dom(W?), that W5|,»+ = 895l and that WiL>}, =
, e .

ran(B?) = Obs (X).
(4) Foralls > 0andy € dom(W}) we have

7% dom(W}) C dom(W}), Wit 'y = (A*)*W)y.
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Before giving the proof, we remark that by Lemma 2.5, the limit in (3.2) can be
rewritten as

lim <x, %dn[_t,olsly>x = lim (x, @) mo0.0¥)y » (3.3)

t—00
because the expressions inside of the limit operators are the same.

Proof To see that W, is closed, let dom(W,) > x;y — x in X and W,x; — y in L%,+.

Fix b > 0 arbitrarily and observe that 7[o ;)€ is a bounded operator from X to L,
by the well-posedness of X. Hence

T[[()’b]Cx = lim ﬂ[oyb]exk = lim JT[(),b]Woxk = 7110,5]Y-
k— 00 k— 00

Now let b — oo to getthat €x =y € L%,"’. This shows that x € dom(W,) and
W,x =y. Hence W, is closed, as claimed.

In the remainder of the proof we assume that dom(W,) is dense in X and we prove
items (1)—(4). Note that item (1) follows directly from [28, Theorems 13.9 and 13.12],
since W,, is closed and densely defined.

We now proceed with the explicit characterization of W given in item (2). Let
x € dom(W,) andy € L%,Jr. We have €x = W,x € L?’. Hence

(Wox, y)p2e = (€x,y) 2e= lim {m0.n€x, y) 20=lim (€%, 700.0¥) 120,11y
. t
Jim {x, (€)*mi0.0¥)y -

Then y € dom(W}) if and only if there exists an xo € X, such that for all x €
dom(W,), we have

(x. x0)x = (Wox.y) 20 = lim {x, (€)"7p0.1y)y -

This proves item (2), and we next prove item (3).
Incasey € L%‘;, say supp(y) C [0, T'], then (€")*mg 7y is independent of ¢ for
t > T and thus xg = lim;_ oo (€ *mp0.qy = (€T)*y exists and satisfies (3.2) by

(3.3). Hence L.,  dom(W;) and fory € L, it by (3.3) holds that

Wiy = [lim %dﬂn[o,;]y = %dﬂy,
—o0
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and then clearly
W;"Lf‘; = %dﬂLﬁ, = %sz_y = ran(BY) ;

this proves all of item (3).
Finally, we prove item (4). Fix s, > 0, x € X and y € dom(W}) C L%"'. Then
we have

x, (@) mp, fmr“y)

= (x, (€)Y T mp0,.0y)

1+ ;
Sy, [0, ,]y)Lz ([0.11.Y) (Tin[O,s—Ft]Q:xa N[O,I]Y)LZ([O’[]VY)

=z}
= (mi0.n 74 €x, 7m0 ]y)LZ([o ny) = (710.0€A*x, 7o, f]y>L2([o,t],Y)
= (CA'x, w01y )LZ([O 1,Y) = {'x, (@) mo.y)y -

Moreover, for x € dom(W,), we have 2°x € dom(W,), since €A°x = ] ¢&x € L?’.
Using all of this, we find for x € dom(W,) and x, € X satisfying (3.2) that

(x, (le)*x,,)X = <Q(Sx,xo>x = tl_i)m ( "x, (€ 0.y )

—S

_ i+ _
= lim (x, (€") 10,457 "y)y = Jim (x. @) 70,17 7"y)y -

t—00

Since the limit exists for every x € dom(W,), it follows that t—°y € dom(W}) and
Wit™y = (%)*x, = (A*)*Wy, which proves item (4). O

The L2-input map is defined similarly, via the causal dual system. We first define
the adjoint L*-input map Wf , using % to indicate that Wf is defined directly and
not as the adjoint of an operator W.:

WX .= q¢¢ : X D dom(WX) — L7,

‘dom(wz" )
(3.4)

with dom(WX) := {x € X|¢ixe L2U+}.

Defining W(‘f and Wf* similarly as in (3.1) and (3.4), respectively, for the causal dual
system %9, one obtains

W¢ = AWX* and W = gW,, (3.5)

and in particular, ¥ is minimal if and only if W, and W;k are both injective.
By duality, from Proposition 3.1, we obtain the following result:

Proposition 3.2 Ler Wc* be the adjoint L*-input map of a well-posed system ¥ =

[% % ] Then WC* is closed. Additionally assume that W;k is densely defined. In this
case:
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(1) The operator WC* has a closed and densely defined adjoint, denoted by W, such
that WE = Wi

(2) A function u € L%; lies in dom(W,) if and only if there exists an x, € X such
that

Jlim. (x, B o)y = (x.xc)x, x € dom(WX). (3.6)
When u € dom(W,), we have W .u = x., where x. is given by (3.6).
(3) Itholds that L, C dom(W,), that W, |,»- =B, and that W.L} 7, = ran(B) =
. U .
Rea (X).
(4) Forall s > 0 we have t* dom(W.) C dom(W,.) and W.tu = A*W_ u for all
u € dom(W,).

Again, it holds that
x, B0y, = <x, ((@d)f)*n[o,,]ﬂu>x L xeX,uell, >0,

We have the following easy corollary:

Corollary 3.3 Assume that the adjoint L*-input map W;k of awell-posed system ¥ =

[% %] is densely defined. For every system trajectory (U, X,y) of ¥ on R, we have

7_u € dom(W,) and x(0) = W, r_u.

Proof Let (u, X, y) be a trajectory of £ on R. By Definition 2.2, we then have 7r_u €
L%_U C dom(®B) C dom(W,). By item (3) of Proposition 3.2 and (2.4), x(0) =
Br_u=W,.m_u. O

In the remainder of this section we shall assume that D | dom(®) () C+ has a unique

analytic extension to a function in H®(C*; B(U, Y)), also denoted by ®. With our
convention to identify analytic functions that coincide on some set with an interior
cluster point, we simply write DeH ®(CT; B(U, Y)). In that case, D defines a
bounded pointwise multiplication operator

Mz : L*GR; U) — LY GR;Y), (Mgf)() =D f(), reiR, (37

with operator norm || M5 || equal to the supremum norm || D loo Of D over C*. Further,
let £ : L>(R; K) — L?(iR; K) denote the unitary bilateral Laplace transform

(Lu)(A) = /OO e Mut)dr, ieiR,

—00

which in particular maps L%;“ unitarily onto H ,2("' := H*(C*; K). We then define the
L>-transfer map Ly, by

Ly == L*MzL € B(LY, Ly). (3.8)

We now derive various properties of this operator.
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Theorem 3.4 Let ¥ be a well-posed linear system with transfer function D e
H>®(C*; B(U, Y)). The following statements are true:

(1) The operator Ly in (3.8) is the unique continuous linear extension to an operator
in B(L?, L%,) of the restriction of O to L%‘U. Moreover, we have ||Lx | = ||§)\||Oo
and Ly is causal, i.e., m_Lymy = 0, and time-invariant, i.e., t' Ly = Lx 1’ for
allt € R.

(2) It holds that ran(®8) C dom(W,). The restriction to L%fU of the Hankel operator

4+ ®Dm_ has a unique extension to an operator in B(L?, L%ﬁ), which equals

Nz = JT+L>:|L%J— and satisfies |95l < 1D |lsc. 9zl =WoB. (39)

(3) For the causal dual system £¢ we have D e H>®(C*; B(Y, U)), the unique
extension Lsa in B(L2, L%]) of ©4 restricted to L%,Y satisfies

Lsa = SILES, (3.10)

and the L*-analogue of the Hankel operator of the causal dual is Osa =
TyLya |sz = AH5 5. Moreover, we have ran(B?) c dom(Wc*) and
Y

ADsal 2 = ﬁ’EHlL%} = W*xp, (3.11)

(4) Furthermore, if dom(W;k ) is dense in X, then ran(W,) C dom(W,) and

93| domw,) = WoWe. (3.12)

If dom(W,) is dense in X, then ran(W}) C dom(WZ\' ) and

_ wX
9%l domews) = WEWS. (3.13)
Proof Since ® € H>®(C*; B(U, Y)), the operator Ly maps L%]"’ into L?‘; hence Lx,
is causal. Moreover, for every w € R, since Mz intertwines M,,1,, and M, 1, , where

(ewlk)(z) = €1k, we get that Ly commutes with T/ (suppressing the spaces U and
Y in the notation); hence Ly is time invariant. Now letu € L%] have supp(u) C [N, 00)

for some N € R. Then u € dom(Lyx) () dom(®) and tVu € L%]+ C Li)fU for w >
min {0, wg(}. By [31, Corollary 4.6.10(iii)] we have M3 L(Vu) = L@Omy Vo) =
L(®tNu). Hence

™WLsu=LstVu= [,*M@L(tNu) =L@tV =DtVu =" Du.

It follows that Lyu = ®u for every u € L% v - Since the latter subspace is dense in
L%], the only extension to a bounded linear operator on L%] of the restriction of ® to
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L%’U is Ly. Since L is unitary, we have | Lz || = M3z = ||33||oo. This proves item
(D).

By (3.9) and item (1), the operator $)x, coincides with 7. ®Dm_ on L%}J, and hence
$y is the unique extension to an operator in 3 (sz , L?r) of T ®m_ restricted to L%U
Observing that 77 is a contraction on L2, we obtain that |[$x|| < |[Lx| = ||5||oo.
To see that the factorization of Hyx| 13, in (3.9) holds, let u € L%fu and note that
Definition 2.1.4(c) gives that €Bu = 7, DP7_u = Hyu, which is in L%,"’ by the
boundedness of $x. Hence Bu € dom(W,) and Hxu = W,Bu. This establishes
item (2). R R

That ¢ € H®(C*; B(Y, U)) follows directly from ®¢(1) = D(1)* in The-
orem 2.4. By item (2) of the present theorem, which has already been proved, the
restriction of ®¢ = AD®4 to Lﬁ’y has a unique extension to Lya € B(L2 , L%]).
Moreover, Lya = HL’EH, because for all u € L%,U, y € L%Y and some w >
max {0, wy},

(LY. “)L%/ =y, Pu)2 = (v.Du)s o

—w,Y'"w,Y

= (5*3'* “)LZ 2= <©®y’ u)

2,
-0, U 7w, U LU

so that LY, and D® coincide on LE y by the density of L% y in L%,; then also D¢ =
SAD® S and SIL% S coincide on L? , so that Lya = SIL% 1. Letting ¢4 L%(i — L%
denote the injection, we can write )y, = 74+ Lxt(_, and then ﬁg = JT,L;LJF, so that

Hya =14 Lya |Lz;, =An_ Ly s = A9 (3.14)

Now (3.11) follows from (3.14) and (3.9), using the first identity in (3.5), and hence
item (3) is true.

Now assume that dom(WC* ) is dense in X, hence W,, the adjoint of WC* , 18
closed and densely defined. From item (3) in Proposition 3.2 and (3.9), it follows
that $y and W, W, coincide on L%,_U. We now show that ran(W.) C dom(W,)
and that $Hy» and W, W, also coincide on dom(W,). Let u € dom(W,) C L%j_ and
xc = Weu € ran(W). Choose T > O andy € LZ([O, T1; Y) arbitrarily. Then
Lemma 2.5 and item (3) yield

€Ny = (BHT (A%)*y € dom(WX),

while item (2) of Proposition 3.2 and the boundedness of €7 give

T . TN\* T
<Ya ¢ xC>L%/+ tl_lfgo <(Q: ) y. %T[[—t,()]u>X - tl_lfgo <Ya 7T[0,T]Qz%n[—t.o]u)L2([0’T];y)
= tl—1>rgo <y’ n[O,T]f)Enlft,O]quZ([o’T];y) = (y’ n[O,T]S;)Eu>L2([O’T];y> s

using the boundedness of $yx in the last identity. Since the above computation holds
for all y and all T, we have mjo,71€x, = eTx, = o, r1Hxu for all T > 0. This
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shows that €x, = Hxu € L?F. In particular, we have x, € dom(W,) and W, W, u =
W,x. = €x. = Hzu. Equality (3.13) is obtained by applying (3.12) to ¢, using that
= Hﬁ‘éﬂ, as proved above, and the identities in (3.5). O

Corollary 3.5 Let X be a well-posed system with = H>®(C*; B(U,Y)). If ¥ is

controllable, then W, is densely defined; if ¥ is observable, then W;k is densely
defined.

Proof By Theorem 3.4, the finite-time reachable subspace Rea (X) = ran(®8) is con-
tained in dom(W,) and the finite time observable subspace Obs (¥) = ran(B9) is

contained in dom(Wc* ). Thus the claim follows directly from Definition 2.6. m]
We now present two cases where the L2-input and L?-output map are both bounded.

Lemma 3.6 For a well-posed system X, the following hold:

(1) If X is exponentially stable, then W, € B(sz, X)and W, € B(X, L%ﬁ).
(2) If ¥ is passive, then W, and W, are everywhere-defined contractions.

Proof Concerning item (1), if ¥ is exponentially stable, then wg < 0 so that we can
choose w = 0 in order to obtain from (2.7) that € € B(X, L%"') and B € B(Lz_, X).

Then W, = ¢ and WC* — B* are bounded, too, and we have W, = (Wf ) e
B(L?, X).

For item (2), note that a passive system satisfies (1.5) with S(x) = ||x||§( by
definition. For trajectories (u, x,y) on Rt with u = 0, we in particular obtain
Jo Iy ds < [[x(0)]|%, and letting t — oo, we gety € L}". Moreover, by (2.3)
and the definition (3.1) of W, we have ||y||i2+ = ||w0x(0)||i2+ < [Ix(0)I%. This

Y Y
proves that W, is an everywhere-defined contraction, and applying the same argu-

ment to the passive dual >4, using (3.5), gives that WZ\' is a contraction, hence W, is
a well-defined contraction, too. O

The following definition presents the analogues of exact £2-controllability and exact
£2-observability from [9] in the context of well-posed systems.

Definition 3.7 The well-posed system ¥ is (exactly) L*-controllable if Wf is densely
defined and ran(W,) = X. The system X is (exactly) L*-observable if W, is densely
defined and ran(W}) = X. The system X is (exactly) L2-minimal if it is both L2-
controllable and L2-observable.

By (3.5), ¥ is L2-controllable (L>-observable) if and only if £¢ is L?-observable
(L?-controllable). Some differences between £2-controllability/observability and
approximate controllability/observability for discrete-time systems are described in
[9, Proposition 2.7]; here we prove analogous results in the present context, and we
also provide new information on these relationships.

Corollary 3.8 For each well-posed system ¥ as in Definition 2.1, L*-controllability
(L?-observability) implies (approximate) controllability (observability). In particular,
L?-minimality of & implies minimality of %. When we additionally assume that ® €
H>®(C™; B(U,Y)), the following statements are true:
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(D) If 2 is L2-controllable then W,, is bounded.
Q) If 2 is L2-observable then W is bounded.
Q) IfXis L2-minimal then Wi and W, are both bounded and bounded below.

Hence, the assumptions on denseness of the domains of WZ\' and W, impose no
restriction in the study of the bounded real lemma, since in the standard version
(Theorem 1.9) we assume minimality (or even Lz-minimality in Theorem 1.10) and
in the strict version (Theorem 1.12) we assume exponential stability; see Lemma 3.6.

Proof of Corollary 3.8 Assume that ¥ is L?%-observable; then by Definition 3.7,
dom(W,) is dense in X and ran(W}) = X. Since W,, is closed, the comment after
(3.1) gives that ¥ is (approximately) observable. If instead ¥ is L>-controllable, then
¥4 is L?-observable, and further £¢ is observable by what we just proved; hence X
is controllable by Corollary 2.7. R

Now assume that ¥ is L2-controllable and that ® € H*(CT; B(U, Y)). Then
dom(W;k ) is dense by definition, and according to Theorem 3.4, we have X =
ran(W,) C dom(W,), so that W, is bounded by the closed graph theorem. This
completes the proof of item (1), and the proof of item (2) is easy using duality.

In conclusion we prove item (3). By assumption the ranges of W. and W} are equal
to X. From items (1) and (2) we obtain that W, and W} are bounded. The boundedness
of W, and W} together with ran(W.) = X = ran(W}) yields that W, and W} have
bounded right inverses, or, equivalently, W} and W, have bounded left inverses, and
hence the latter are bounded below. O

4 System Nodes and Well-posed Linear Systems

The well-posed systems considered in the present paper can alternatively be formulated
in a differential representation via a so-called system node [ A&5 ]. In this section we
review some of the details of system nodes and describe some related topics relevant
for the paper, including a reformulation of the KYP-inequality in terms of system
nodes. See Chapters 3 and 4 of [31] for full details and many more results on system

nodes.

4.1 Construction of the System Node

Let ¥ = [% % ] be a well-posed linear system as in Definitions 2.1 and 2.2. Let A on
X be the infinitesimal generator of the Co-semigroup 2’, that is,

dom(A) = {x e X

1 1
}}iino Z(Q{’x —Xx) exists} , Ax = }}13%) }—I(Q[’x —X).

Now fix the rigging parameter B € p(A) arbitrarily and define the interpolation
space X1 := dom(A) with the Hilbert space norm ||x||; := |[(8 — A)x||x;theno — A
is an isomorphism from X to X for all « € p(A). Next complete X in the norm
lIxll—1 := [[(B — A)~'x|lx to get the extrapolation space X_;. Then we have the
chain of inclusions
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X1CXCX_ 4.1

with dense and continuous embeddings, and the spaces X, X and X_ form a Gelfand
triple. Moreover, the generator A extends uniquely to a bounded operator A_; in
B(X, X_1) which in turn is the infinitesimal generator of a Co-semigroup 2’ | on
X _1 which extends 2A’. The resolvent set p(A_1) equals p(A); see [31, §3.6] for
further details.

By Theorems 4.2.1 and 4.4.2 in [31] there exist bounded operators B € B(U, X_1),
the control operator, and C € B(X1, Y), the observation operator, that are uniquely
determined by the formulas

0
Bu =/ AT Bu(s)ds, welyy,, (Ex)n)=CUx, xeX. @42

—00

Note that while B maps into X_; and 2(" | acts on Xy, the result after integration in
the first formula still ends up in X.

With A and B defined as above we can form a closed operator A&B: [5] )
dom(A&B) — X by

dom(A&B) = {m ‘ A_ix + Bu e X} and A&B m = A_ix + Bu.

Choose a fixed & € Cyy . For [} | € dom(A&B), we then have

x — (o — A,1)_1Bu =(a — A,1)_1 (ozx —(A_1x+ Bu))
€ (@ —A)~'X = X; = dom(C).

From ®, we can compute the transfer function De HOOL(Cw; BWU,Y)), w > wg, of
¥ via Proposition 2.3. Since o € C,,, we can evaluate D («), and then define

C&D: m > C(x — (@ — A_)"'Bu) + D(@)u. (4.3)

Note that if x € X1, then [§ | € dom(A&B) and C&D [§] = Cx. In general there
is no sensible way to separate out an independent feedthrough operator D € B(U, Y)
except in some special cases, e.g., if at leastone of B: X — U and C: X — Y
is bounded (see Theorems 4.5.2 and 4.5.10 in [31]), or if X is regular (see Chapter
5 in [31]). Rather we think of C&D as an extension of the operator C defined on
X =] )f)l ] c [ #]tothe operator C& D defined ondom(A&B) D [ )61 ] and mapping
into X. After the above steps, we can introduce the system node [ A8 ]: [X] D

dom([ 48] — [¥] with

dom([ 248 ]) = dom(A&B) = dom(C&D)
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cn) 1]~ &ot]]

We next recall Definition 4.7.2 in [31].

and action

Definition 4.1 Suppose that S := [égg] is an operator mapping a dense subspace
dom(S) of [5] into [)}f ] We shall say that S is a system node if it has the following
properties:

(1) Sis closed as an operator from [ ] into [ § ].

(2) The operator A: X D dom(A) — X defined by Ax = A&B [6] on dom(A) =
(xeX | [6 ] € dom(S)} has domain dense in X, and A as an unbounded operator
on X generates a Cp-semigroup on X.

(3) The operator A& B (with dom(A& B) = dom(S)) can be extended to an operator

[4-1 Bl eB(E] X0

(where X _ is the extrapolation space introduced in (4.1)).
@) dom(S) ={[5]e[&]| A-1x + Bu e X}.

Given a system node S = [ A48 | we may define its transfer function Ds(h) by

(A—A_D7'B

ﬁgmu=c&0[
ly

:|u, 5 € p(A), (4.4)

If D is constructed as in Proposition 2.3, then 55 is an extension of D from Cuy to
all of p(A); see [31, Lemma 4.7.5(iii)].

We end this subsection with a result which says that a system node works as the
connecting operator of a well-posed system.

Lemma4.2 (See [31, Theorem 4.6.11()].) Suppose that = = [ 3 3 | is a well-posed

system with associated system node S = [égg ] Let (u, X,y) be a system trajectory

over R with state initial condition x(0) = xo and with u continuous with distribu-

tional derivative W1 in leat v and such that [u)é%)] € dom(S). Then x is continuously
differentiable with values in X, [ﬁg;] € dom(S) for allt > 0, y is continuous with
distributional derivative y in leot v and

X(@t) | _ o [x@)
[y(t)} =S [u(t)] , t>0. 4.5)

4.2 Reconstruction of the Well-posed System

With the systemnode S = [ ég‘g ] constructed fI’OI/I\l Y= [ Qé % ] as above, itis possible
to recover 2, B, €, D and the transfer function D from [ A5 |. We first sketch this
construction, and only afterwards, we discuss the rigour of the construction.
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Clearly 21" is the Co-semigroup generated by A and 9B and € can be recovered via
(4.2), taking for € the unique continuous extension from X to X mapping into leot v
Finally, by [31, Theorem 4.7.14] and its proof, © can be recovered as the unique
extension to a continuous operator from L%’ loc.U 1O L%’ loc,y Of the operator

B'u

Du=t+— C&D [
u(t)

j| , teR, (4.6)

defined for u € HOIJ o« (®; U) with support bounded to the left; see (2.8) for the
definition of this space.

We have seen that the operator [ A&5 ] arising from a well-posed system % as
described in §4.1 is a system node. However, in general, for a system node to give rise
to a well-posed system via the above construction more is needed. We shall follow
Definition 10.1.1 in [31] and use the following terminology: given A equal to the
generator of Cp-semigroup on X and operators B € B(U, X_1) and C € B(X1,7Y),
we say that:

e B is an L?-admissible (here abbreviated to admissible) control operator for A if
the operator 8 defined as in (4.2) maps L%*U into X.

e Cisan L%-admissible (here abbreviated to admissible) observation operator for A
if the operator € defined as in (4.2) is continuous as an operator from X to leut v

The following result describes what additional conditions must be imposed on a
system node, in order to conclude that it induces a well-posed system.

Theorem 4.3 Suppose that S = [égg] is a system node as defined above. Suppose

that the semigroup t +— A" has growth bound ws and let w be any real number
satisfying w > wg(. Then there is a well-posed system [% % ] such that S is the system

node arising from X if and only if

(1) the operator B: U — X _1 is admissible for A,
(2) the operator C: X| — Y is admissible for A, and
(3) the system-node transfer function Dg (4.4) is in H*(C,,; B(U, Y)).

Explicitly, when conditions (1), (2), (3) are satisfied, the associated well-posed system
Y= [%%] is given by

o 1+ A is the Cy-semigroup generated by A,

e B and € are given by formulas (4.2), and

e D € B(L%,loc,u’ L%,ZOC,Y) is a continuous extension of the operator acting on
smooth input functions u given by the formula (4.6).

In this case the associated system X is w-bounded, i.e., (2.7) holds.

Proof Assume that S satisfies conditions (1), (2) and (3) in the statement of the theorem.
Conditions (1) and (2) just say that conditions (i) and (ii) in Theorem 4.7.14 of [31] are
met; once we have proved condition (iii) of this theorem, we may conclude S is an L2-
well-posed system node, which, by Definition4.7.2 in [31], implies that the constructed
system X is well-posed. As a consequence of the Paley-Wiener Theorem [31, Theorem
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10.3.4], it follows from Theorem 10.3.5 in [31] that condition (3) is equivalent to 335
being the transfer function of an operator © in TICZ)(U , Y), that is, a causal, time-
invariant operator in B(L2 ;, L2 ). It then follows from Lemma 2.6.4 in [31] that ©
has a unique “extension after restriction” to an operator in TIC? 7oc(U, Y), which means
it is a continuous, causal, time-invariant operator from L tloc,U into L Lloc.U> which
is precisely what is required for the remaining condition (iii) in Theorem 4.7.14 of
[31]. We may thus conclude that ¥ constructed from S is a well-posed system, which
generates the system node S in the way described in Sect. 4.1. It then follows from the
reverse construction in Sect. 4.2 preceding this theorem that the operator ® is indeed
given by (4.6).

That the operators 2(, B, € and ® that constitute the well-posed system X are
w-bounded, follows from the discussion in Sect. 2 after Definition 2.2.

Conversely, suppose that ¥ constructed from S in the theorem is a well-posed
system. Then it has wg as growth bound, so that 2, B, ¢ and © are w-bounded, by
the above argument. The properties (1)—(3) now follow from Theorem 10.3.6 in [31].

O

4.3 Duality Between Admissible Control/Observation Operators for A/A*

Here we briefly point out the duality between admissible input pairs (A, B) and admis-
sible output pairs (C, A); see also [31, Theorem 6.2.13]. Let A be the generator of a
Co-semigroup 2, B € B(U, X_1) and C € B(X1,7Y).

Let us define A* in the standard way as an unbounded operator on X, and let
X ‘11 cXcX ‘fl be the Gelfand triple as in (4.1), but for A* and using the parameter
B € p(A*) in place of the operator A and the parameter 8 € p(A). Next define
B* € B(X{, U) by identifying U and X with their duals and by viewing X d_l as the
dual of X via the X-inner product to define the duality pairing:

(X7Z>X1’X11:<X»Z)X1 xeXI, ZEX-

Define C* € B(Y, X‘il) analogously. When this is done it is a matter of verification

to see that the operator B* is an admissible observation operator for A* if and only if

B is an admissible control operator for A. Similarly, if C is an admissible observation

operator for A , then C* is an admissible control operator for A*, and vice versa.
Together with the transfer function

D) :=DR)*, A€ p(AY),

evaluated at some arbitrary @ € p(A*), the operators A*, C* and B* amount to an
infinitesimal version of the duality between ¥ and X¢ described in Theorem 2.4; in
fact, the system node for the causal dual >4 s

A&BT" [x X X
|:C&Dj| :[Yj| Ddom([égg] ) — I:Uj|

in the standard sense of unbounded adjoints.
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4.4 KYP-inequalities in terms of System Nodes

In this subsection we show how the standard KYP-inequality (1.13), the strict KYP-

inequality (1.16), and for the semi-strict KYP-inequality (1.17) can be expressed in
terms of the system node S = [ A% ] rather than in terms of the well-posed system
T = [% 3] at least for the case where H is bounded and strictly positive-definite.

The main tool will be Lemma 4.2.

Theorem 4.4 Suppose that ¥ = [% %] is a well-posed system with corresponding
system node S = [égg]. Then the X-KYP inequalities (1.13), (1.16) and (1.17)
correspond to S-KYP inequalities as follows.

(1) A bounded selfadjoint operator H - 0 solves the standard KYP inequality (1.13)
if and only if H satisfies the standard S-KYP inequality:

2Re (H(A&B)[£],x) + I(C&D) [£] 1% < llull®, [£] € dom(S). (4.7)

(2) A bounded selfadjoint operator H »- 0 on X satisfies the strict KYP inequality
(1.16) if and only if H satisfies the strict S-KYP inequality:

2Re (H(A&B) [ ], %)+ 1C&D [ 17+ 8llx ]I < (Hx, x) + (1= 8)|lul®
(4.8)

for all [ﬁ] € dom(S).
(3) A bounded selfadjoint operator H - 0 on X satisfies the semi-strict KYP inequal-
ity (1.17) if and only if H satisfies the semi-strict S-KYP inequality:

2Re (H(A&B)[1],x) + IIC&D [£]11* < (Hx, x) + (1 — &) Jull?

forall [§] € dom(S).

Proof of statement (1) Suppose first that H 3 0 is a selfadjoint operator satisfying the
standard KYP inequality (1.13). Let us apply (1.13) to the case where x = x(0) and u
is equal to the input signal for a smooth trajectory (u, X, y) in the sense of Lemma 4.2.
A B!

Recalling the definition of the action of [ iy

], we see that

1 2 ! 2 1 2 ! 2
| H2x@)]I” + A ly(s)lIds < [|Hz2x(0)||” + A lu(s)[I~ ds 4.9)

for all + > 0. As x is continuously differentiable and u and y are continuous, we may

move ||H %X(O) % over to the left-hand side in (4.9), divide by #, let t — 0, and finally
observe that

%(Hx(s), x(s)) =2Re (Hx(s), x(s)), (4.10)
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in order to arrive at
2Re (H%(0), x(0)) + [[y(0)[*> < [lu(0)||>.

Plugging in the differential system equations (4.5) then leads to

2
< lu()?,

2Re <H(A&B) |:u)200)j| ,x0> + H C&D [u)zg)}

where [ uf%) ] canbe an arbitrary element of dom(S), thereby arriving at (4.7) as wanted.

Conversely, if H satisfies (4.7), we evaluate (4.7) at [’Lﬁ] = [38] taken from a

smooth system trajectory (u(z), x(¢), y(¢)) as in Lemma 4.2 to get

2Re <H(A&B) [l’igg] ,X(s)> + H C&D Bg;]

2
< lu()|I*.

Due to the differential system equations (4.5) we can rewrite this last expression as
2Re (HX(s), X(5)) + ly)|* < [lu(s)])? (4.11)

for all s > 0. Again using (4.10), we can integrate (4.11) from s = O to s = ¢ to arrive
at

1 1
(Hx(1), x(1)) — (Hx(0), x(0)) +/0 ly()II> ds < /0 lu(s)|1* ds
which we can interpret as saying that
H2 0] [2 B [xo H2 0] [x0
0o IlleD||u o Illall’

i.e., the KYP-inequality (1.13) holds for all [){9] € [LZ([OXz] U)] such that u is suffi-

ciently smooth (in the sense used in Lemma 4.2) and [“’E%)] € dom(S). Noting that

=<

the collection all such [)f}’] is dense in [L2([0Xz] Uy ], we see that (1.13) continues to

hold on the space [ 12 ([o)fz],U)] as wanted.

Proof of (2) and (3): The proofs of statements (2) and (3) follow in much the same
way as that for (1). For the case of statement (2), if we assume that H »- 0O satisfies the
strict bounded real lemma (1.16), apply the associated quadratic form to a vector of
the form [XE?) ] coming from a smooth system trajectory (u, X, y), and then also take
into account the interpretation (1.15) for the operator [@’1 A @’A’ B], we can interpret
(1.16) as saying that

1 2 t 1 !
” ol ” +8 [ Ik Pas < 1O+ =) [ jus)Pas
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The above argument for statement (1) then leads us to the conclusion that the differ-
ential form (4.8) is equivalent to the integrated form (1.16).

Statement (3) follows in much the same way. One repeats the argument used for
statement (2) while ignoring the term

(€, D7
R [

in (1.16) and the term §||x||? in (4.8). o

Remark 4.5 Arov and Staffans [5] have worked out a generalized KYP-inequality for
the infinite dimensional, continuous-time setting with solution H possibly unbounded
formulated directly in terms of the system node S = [ &5 | (see Definition 5.6 and
Theorem 5.7 there) to characterize when the transfer function of S is in the Schur class.
It suffices to say here that the definition of solution there involves several auxiliary
conditions in addition to the actual spatial operator inequality, all of which collapse to
the inequality (4.7) in case H is bounded.

5 Examples of Systems with L2-minimality

In this section we consider a few concrete cases where the system ¥ is L?-minimal.
In the first case we assume that the Co-semigroup 2 can be embedded into a Co-
group. We shall first recall some facts about Cp-groups; for further details we refer
to [13, §II.3] and §6.2 in [19]. By a Cp-group we mean a family of linear operators
{' | t € R} on X such that

A0 =1y, AW =A forallr, s e R
and which is strongly continuous at 0:

lin(l)Qltx =x forall x € X,
t—

where the limit is now taken from both sides and not just from the right as in the
semigroup case. The generator of the Co-group {2’ | ¢t € R} is defined to be the
operator A with domain dom(A) given by

dom(A) = {x eX

1
lim — (2" x — x) exists in X} ,
t—0t
again with a two-sided limit, and with action then given by
. 1 t
Ax = hrr(l) ;(Ql x —x), x €dom(A).
t—

Among various characterizations contained in the generation theorem for groups [13,
p. 791, an operator A is a generator of a Cp-group if and only if A and —A are both
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generators of Co-semigroups, say 2, and 2’_, respectively, in which case we recover
A" as

A fort > 0,
gy = [ B forez
A'x fort <O.

The well-known case of a unitary group 2~/ = (A")* = (")~! is the special case
where the generator A is skew-adjoint, A* = —A.

The above characterization of a Co-group 2I” implies that the spectrum of the
generator A is contained in a strip along the imaginary axis:

—wy <Re (M) <wj, forsome wy,wh €R (5.1)

determined by the respective growth bounds of 2(', and 2", see (2.5), and moreover
I x| < Mee® 'lx]| and [ x| < M_e® "|lxll, >0, x€X, (52)

for all ot > wﬁ and corresponding M+ > 0. Using the group property, one can
derive an upper and lower growth bound for the semigroup part:

Lemma 5.1 Let " be a Cy-group with left and right growth bounds given by Wy w;l
Then for every w® > a)i there are constants §, p > 0 such that

S x|l < 1Ax] < pe” x]l, =0, x €X. (5.3)

Proof et M_ > 0 and My > 0 be as in (5.2). Set p = My and § = M-t
The right-hand bound follows immediately. For the left-hand bound, in the second
inequality in (5.2) replace x by A'x and use that A’ = A" = (A")~! to arrive at
x| < M_e® "||U x||, or equivalently, |20 x| > e~ |x]. ]

We say that a Co-semigroup A’ embeds into a Cy-group, if there exists a C-group
(usually also denoted by 1) which coincides with the original semigroup 24 fort € R,
The following proposition characterizes when a Co-semigroup can be embedded into
a Co-group.

Proposition 5.2 For a Cy-semigroup 21" the following are equivalent:

(1) A embeds into a Cy-group;
(2) A" is invertible (in B(X)) for all t > 0;
(3) A" is invertible for some t > 0.

Proof Clearly (2) implies (3). The proposition on page 80 of [13] states the implication
(3) = (1) and the remaining implication (1) = (2) is easy: for > 0 we have A/~ =
A0 = 1x = A~'A, so that 2’ is invertible. a
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If 2" is a Cp-semigroup that embeds into a Cy-group, then it should at least satisfy
(5.3); the upper bound comes for free from the one-sided strong continuity. However,
itis not necessarily the case that a Cy-semigroup 2’ satisfying (5.3) embeds into a Cy-
group. Indeed, take 2’ = rf to be the right translation semigroup on L?(R™). Then
1:_:’ (t > 0) is isometric and hence satisfies the lower estimate ||t;’x|| > Se x|
withd = 1 and w = 0, but rf is not onto, and hence not invertible on L2(R+) for
any t > 0.

We next give some sufficient conditions which guarantee the L2-controllability
and/or L2-observability of a given well-posed linear system X. In fact, we will show
that under the assumptions of the proposition, the system is exactly controllable and/or
exactly observable in any time ¢ > 0; see Definition 9.4.1 in [31].

Proposition 5.3 Suppose that ¥ is a minimal well-posed linear system with transfer
function ® in H*®(CT; B(U,Y)) and with its Cy-semigroup ' invertible on X for
some (and hence all) t > 0. Then:

(1) Assume there exists a closed subspace Uy of U such that the control operator
B € B(U, X_1) maps Uy onto X (viewed as an algebraic subspace of X _1). Then
¥ is L>-controllable.

(2) Assume there exists a closed subspace Yo of Y such that, for the observation
operator C € B(X1,Y), the operator Py,C extends to a bounded operator from
X into Yo which is bounded below. Then T is L*-observable.

(3) Assume that B and C satisfy the conditions of (1) and (2), respectively. Then X is
L%-minimal.

Proof Note that statement (2) follows from (1) applied to >4 and that statement (3)
follows simply by combining statements (1) and (2). Thus it suffices to consider in
detail only statement (1). We may moreover consider the restricted system where the
input signals are restricted to values in Up, since L>-controllability of the restricted
system implies L2-controllability of the original system as long as WZ\' is densely
defined for the original system. Hence we will without loss of generality assume that
B maps U onto X in the sequel.

Since ¥ is observable, by Corollary 3.5 we see that Wc* is indeed densely defined.
Then we may apply Proposition 3.2 to get that L,?U C dom(W,) and W_| 1, = B;
then

Rea(X) = ran(®B) C ran(W,).

To show the Lz—controllability condition ran(W,) = X, we will actually show that ¥
is exactly controllable in any finite time + > 0: For any x € X and § > 0, we will
construct an input signal u € Lz([—é, 0], U) such that Bu = x. For this, let x € X,
and use the surjectivity of B € B(U, X) to find a u € U such that Bu = x. We are
done if we can find u € L2([—8, 0], U) such that Bu = Bu, i.e.,

0
/ A~ Bu(s) ds = Bu.
-4
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As B is surjective, B has a bounded right inverse B, and it is easily checked that the
function

1
u(s) = EBTQEBu, for —8§ <s<0

does the job. O

Remark 5.4 For the infinite dimensional setting, the conditions on B and C in Propo-
sition 5.3 are rather strong. Indeed, if X is infinite dimensional, the surjectivity of B
forces that also the input space U is infinite dimensional, and similarly, injectivity of
C forces dim(Y) = oco. However these hypotheses are not so offensive in our appli-
cation to the proof of the strict infinite dimensional BRL (Theorem 1.12 with proof
to come in §8), as the idea is to embed the nominal system ¥ (which may have finite
dimensional input and/or output spaces) into an auxiliary system X, which does have
infinite dimensional input and output spaces. The one remaining restrictive hypothesis
in Proposition 5.3 (compared to the discrete-time setting of [10]) is that the semigroup
can be embedded in a Co-group. This appears to be unavoidable if one wants to achieve
Lz-controllability (Lz-observability) with a bounded control (observation) operator.
The following example agrees on this observation.

Example 5.5 Here we give an example of a strict Schur-class function ® from U :=
2(Z*T)to Y := U. Later on, in Example 8.2 below, we shall complete the example by
finding explicit the maximal and minimal, bounded and boundedly invertible solutions
of the KYP inequality, as expected by Theorem 1.12.

Take X := U, with the canonical orthonormal basis {¢, | n = 0, 1,2, ...} where
¢, € (*hasaonein position n and zeros elsewhere. Thus each vectorx € X = 02(Zy)
can be represented as x = Y% X, ¢, Where x, = (x, #n)2(z,)and Y2 |xn 12 < o0.
Define A by

A: and)n = Z —(n+ Dx,dn
n=0 n=0

with dom(A) = {x € X | Ax € X}, i.e,,

e¢]

D+ 1D xl* < 00

n=0

dom(A) = {x =" xupy € £*(Zy)
n=0

In particular ¢, € dom(A) for all n. By [31, §4.9], A generates an exponentially
stable diagonal contraction semigroup 2l on X, which is determined by the condition

Wep, =e " Dig, n=0,1,..., (5.4)
since this function is the unique solution of the Cauchy problem x = Ax with x(0) =
O

d
Ee—(n-Fl)t(pn — —(}’l + 1)6—(i1+1)1¢n — Ae_(n+l)l¢;1, t > 0.
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Moreover, ||2'|| = e, so that 2 is also a contraction semigroup, and moreover

In |20
lim =

t—00 t

-1,

which shows that C_; C p(A).
Note that the Cayley transform A of the operator A is determined by

n

Ady = (Ix + A)(1x — A) "¢, = 50

®ns

and since —n/(2+n) — —lasn — 0o, the spectral radius of A is 1. Hence the Cayley
transform does not always map the generator of an exponentially stable semigroup to
an operator which is exponentially stable in the discrete-time sense. Therefore, it is
not possible to reduce the study of the strict bounded real lemma in continuous time to
the discrete-time case in [9, Theorem 1.6] by means of the Cayley transform, as was
done for the non-strict case in [5]. Moreover, the semigroup 2 cannot be embedded
into a group, since (5.1) is violated.
Now observe that

o 2
A dr = ,
/0 (120 ¢ |l 2

and hence the unbounded operator C := 2(—A)% gives W,x =t — C2'x bounded
both from above and below, as an operator from X into L%,‘*', but with norm +/2 it is
not the output map of a passive system; see Lemma 3.6. However, C is an infinite time
admissible observation operator for 2 and the pair (C, A) is L*-observable. If C is
made essentially more unbounded, then it is no longer an admissible observation oper-

ator for 2, and if C is made essentially more bounded, then we lose L>-observability.
By duality, B := %(—A_l)% is an admissible control operator for 2 and (A, B) is
an L2-controllable pair; note that A_; is described by the same formula as A, but the
domain is extended to all of X.

We now have the operators A, B and C. To get a system node we still need to fix
the special point & € C,,, and the corresponding value of the transfer function D (c);

for convenience we take & = 0. The domain of the system node is

X X
dom(A&B) = {M € [U] | A_ix + Bu € X} A&B = [A1 B] |yomiaen)
and the combined feedthrough/observation operator becomes

C&D m —C (x n A:}Bu) + DO, m € dom(A&B). (5.5)
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Specializing (5.5) to x = x,¢, and u = u,, ¢, gives

C&D |:xn¢ni| — zmxnd)n + (5(0) — 1) umdm, xp,u, € C. (56)

Um Pm

On the other hand, specializing (5.5) to x = (A — A_1)"'Bu, we get from (4.4)
that the transfer function is

D =C ((x —A_ D 'Bu+ A:}Bu) + DO

= (—A) 2 — AT AT AN 2u + DO
= A=A "u+DOu, reC_y,

where we in the last step used that (—A)% commutes with (A — A)~!and (—A_l)%

commutes with A:{; it is easy to check directly that the m-accretive operator —A

commutes with the bounded operator (A — A)~!: see [21, Theorem 3.35 on p. 281].
Taking for instance 5(0) := 0, we get from [31, Corollary 3.4.5] that D is a Schur

function, but letting A — oo along the positive real line, we get from [31, Theorem

3.2.9(ii1)] that ©(A)u = u for allu € U, and so D is not a strict Schur function.
However, if we instead set ©(0) := %1[], then we get

D) =10 — A+ % = —%(A +AX-—A"", reC_, (B

which satisfies ||§(A) | < % for A € CT, i.e. this is a strict Schur function. In Exam-
ple 8.2 below, we continue this example, in order to get two extremal solutions to the
bounded KYP inequality (1.14) which are bounded both above and below.

Finally, we observe that, in both of the above cases, D e H® (C*t; B(X)), and
then [31, Theorem 10.3.6(iv)] gives that the system node [ 285 ] is well-posed, but it

C&D
is not passive, as we already saw. We may, however, apply Theorem 1.10 to get that
[ &5 ] is similar to a passive system.

As the preceding example shows, L?-minimality may be an exotic property. We
further add to this conclusion by observing that, in general, unless the point spectrum
of A is confined to a vertical strip, then the pair(A, B) is not L2-observable for any
bounded operator B : U — X. Dually, no bounded C : X — Y makes (C, A) an
L2-observable pair; indeed (ngm C p(A),and soif 0, (A) is not contained in a vertical
strip, then there exists eigenpairs (A, @) of A, suchthat||¢,|| = 1l andRe A, - —o0
as n — o0o. Since ¢, € dom(A), we have for bounded C and Re A,, < O that

Ic”?

00 oo
¢l :/ CA'p,|* dr < ||IC 2/ ReMtdr < — o
1€0nlz0 = | NCAGnlTdr < NCGI" | - e = Z2Re i,

here we used the extension of (5.4) to an arbitrary eigenpair. Thus ¢,, € dom(W,),
and by letting n — oo, we get from W,¢,, = €¢, that |[W,¢,|| — O with [|¢, || = 1.
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This proves that (C, A) is not L2-observable. The statement on controllability can be
obtained by duality. Compare this to (5.1) and Remark 5.4.

We end this section by pointing out that observability can be strengthened into
L?-observability by weakening the norm in the state space and growing it, while
strengthening controllability to LZ-controllability can be achieved by shrinking
the state space and strengthening the norm to make the L2-reachable state space
Hilbert; see [31, Theorem 9.4.7 and Proposition 9.4.9]. Note in particular the close
relation between L2-controllability/observability and the concepts “exact controlla-
bility/observability in infinite time (with bound w = 0)” used by Staffans; see [31,
Definitions 9.4.1-2]. A difference in the approach is that we here force v = 0 and
accept that W, and/or W, may be unbounded, whereas in [31], Staffans is flexible
about w in order to get B and € in (2.7) bounded.

6 The Available Storage and the Required Supply

In this section we return to the notion of storage functions associated with a well-
posed system as in Definition 1.1, which we recall here for the readers convenience:
A function S : X — [0, oo] is called a storage function for the well-posed system X
in (2.1) if $(0) = 0 and for all trajectories (u, X, y) of ¥ on R™ it holds that

S &) + Ionyljae < S &O) + lap,nuls. >0, 6.1)

For systems X that have densely defined Wc* , L?-regular storage functions are defined
as those storage functions that are finite-valued on ran(W,). A storage function S is
called quadratic if there exists a positive semidefinite operator H on X, such that

IH2x|?, x € dom(H?),

S(x) = Sy (x) == 6.2)

00, x ¢ dom(H?).

Quadratic storage functions are of particular interest since they provide spatial solu-
tions to the spatial KYP inequality.

Proposition 6.1 If the well-posed system ¥ has a storage function S, then the transfer
function ® of ¥ has a unique analytic continuation to a Schur function on CV.

Proof From (6.1) it is immediate that every trajectory of ¥ on R with u € L%]J“ and
x(0) = 0 satisfies

0 < 5 x(1)) < Imo.null?as — lmo.ayl2ae. 7> 0. 6.3)
U Y
Letting ¢+ — oo in (6.3), we see thaty € L2+, and we get from (2.3) that

2 2 2
IDulz = Iyl < ulls..
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From 7_®my =0and r°0 = D7’ forall s € R, we get

D7 ulle = ||Ts©“||L2 = ||@“||L2 = ||©“”L2+ = ||u||L2+ =|I7’ u|I

By letting s run over R, we obtain that © restricted to L%’ y has aunique extension to a
time-invariant, causal operator L from L%] into L%, with norm at most 1. This implies
that LLL* : L?(iR; U) — L*(iR; Y) coincides with a multiplication operator M
with symbol F € H®(C*; B(U, Y)) satisfying [Flloc = ILLL*| = ||L|| < 1.

Hence, F' € Sy ,y. Moreover, F is an extension of ’i) because for u € L by [31,

Corollary 4.6.10(iii)] (see the last part of Proposition 2.3) we have

F)(Lw)() = (LLW() = (LDWR) = DA (L)), & € Cay,

where wg := max {wg(, 0}. From EL%/"' = H5+, we now get 6|Cw0 = F|(C,,,O' The

continuation F of ® to the open connected set CT is unique since C,,, has an interior
cluster point. O

Proposition 6.2 Assume that S = Sy is of the form (6.2) with H on X positive
semidefinite. Then Sy is a storage function for X if and only if H is a spatial solution
to the KYP inequality (1.12)—(1.13).

Proof Let S be quadratic, i.e., S = Sy as in (6.2) for some positive semidefinite
operator H on X. First assume that S is a storage function for X, so that (6.1) holds for
all trajectories (u, X, y) on R*t of £.Pick? > 0,x9 € dom(H%) andu € Lz([O, t]; U)
arbitrarily. By (2.1) and (2.3),

x(t) = A'xo +B'a and 7wy := €'x0 +D'u, 1 >0,

define a trajectory (u, X, y) on [0, #] of ¥ with x(0) = xo. Now (6.1) and S(xp) < oo
imply that S(x(¢)) < 0o, and hence that 2'xg + B'u = x(1) € dom(H%). Taking
first u = 0 and then xop = 0, we get (1.12).

Since § = Sy, we obtain that

1 Qlt %t 2
S x(1) + Imo.yl2 = H [H ’ 0} [ x(t) }H H [fgz ﬂ [@ @t} [ff]
1 2
and S (xo) + [[u|® = H [’f) ﬂ [)ﬂ
Hence (6.1) is equivalent to
[ 11 1
u - u
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Since x¢g € dom(H %), t > 0andu € L%([0, r]; U) were chosen arbitrarily, we obtain
(1.13). Conversely, it is clear that (1.13) implies (6.4) and hence that (6.1) holds. O

Next we explain how solutions to the spatial KYP-inequality for a well-posed
system relate to the solutions to the spatial KYP-inequality of the dual system.

Proposition 6.3 Let X be a well-posed system with causal dual $¢. A positive definite
operator H on X is a spatial solution to the KYP-inequality for ¥ if and only if H ™!
is a spatial solution to the KYP-inequality for ©%: For all t > 0 it holds that

A* dom(H™2) C dom(H™2), €*L2([0,1]: Y) C dom(H ™)
and

5 STRI =N TEN Be i) e

The proof could be carried out by mechanically imitating the proof of [10, Proposi-

tion 5.3], replacing [ 2 B ] by [ o @i
of our theory, we illustrate how some continuous-time results can be imported from
the discrete-time case by discretization using lifting of the input and output signals,

combined with sampling of the state, as described in [31, §2.4].

] However, as Proposition 6.3 is not a core result

Proof of Proposition 6.3 That (6.5) is a correct statement of the spatial KYP inequality
for 9, with solution denoted by H -3 instead of by H %, follows from Lemma 2.5,
the unitarity of [ 0 Ag ] and the fact that [HO% (1)] commutes with [(1) ( Ag)* ]

Now let H be a solutlon to the spatial KYP equality in the sense of Theorem 1.9
and fix t+ > 0 arbitrarily. Then H is also a solution to the spatial KYP inequality
for the discrete time system [é%] = [Qéf g ] with input space L2([0, T1; U), state
space X and output space L2([0, T1;Y), in the sense of [10, Theorem 1.3]. Then
[10, Proposition 5.3] gives that H~! is a solution to the spatial KYP inequality for
the discrete-time system [ 2B ]" := [%t,i g,i ], so that (6.5) holds. Since t > 0 was
arbitrary, we obtain the result. O

In Proposition 6.1 we proved that the existence of a storage function implies that
the transfer function coincides with a Schur function on some right half-plane. In order
to prove the converse implication, we now introduce the available storage

Sa(x0) = Sup <|Iﬂ[o,z]YI|iz+ - IITF[o,z]VIIiH) , Xo€X, (6.6
Y U

veL, U t>0

where in the supremum, y is the output signal of the trajectory on R* of %, with input
v and initial state xq, as well as the required supply

Sy (x0) := inf 101V 2 TT| 2,,xeX, 6.7
r (x0) vyl (II [£.0] IILz I [t,O]yany) 0 (6.7)
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where

_ | (v,x,y) is atrajectory of ¥ on R,
Uy = {(V, y, 1) € L%’IOC,U” x R ( y) J y }

x(0) = xp, supp(mr_v) C [t,0]

We need the following lemma in order to prove that S, and S, are storage functions
if® e SU,Y~

Lemma 6.4 Let (u,X,y) be a trajectory on R™ with x(0) = 0, of a system ¥ whose
transfer function is in Sy y. Then

2 2
||7T[0,t]Y||L2+ =< ||7T[0,t]u||L2+, t > 0.
Y U

Proof By Theorem 3.4, the operator Ly in (3.8) is a contraction from L%] into L% ,such

that Lyu = Du forallu € L%]J“. By (2.3), y = Du, so that item (4) of Definition 2.1
gives

710,01y = 70,970,110 + 70, 1D (1.00)U = (0,11 L 7T[0,.10 + 7[0,1T DT 71, 00)1

=m0, Lxmo,qu+ ‘L'_IJT[_I’()]Z)JT_FL'III = mj0,,)Lx7(0,/u,
and then [|7rjo,ny|l = ll7rj0,1 Lz 70, ull < ll7(0,17ull- m|

In the next result, we do not assume minimality, in contrast to many similar results
in the literature.

Theorem 6.5 Assume that the well-posed system ¥ has transfer function in Syy.
Then S, and S, are storage functions for ¥, which are extremal in the sense that every
other storage function S for ¥ satisfies

Sa(x0) = S(x0) < Sy(x0), xo € X. (6.8)

Proof Step 1: S, is a storage function for X.. Choose v = 0 in (6.6) to obtain that
Sa(x0) = Oforall xo € X.On the other hand, by Lemma 6.4, ||7z[0, 1yl — ll7[0.. I < 0
for all trajectories (v, X, y) on R* with v € LZZOJ;,U and x(0) = 0, and all > 0. Thus
S,(0) =0.

Let (u, X, y) be a system trajectory of ¥ over RT and fix¢t > 0. Letv € le(j_c,U and
write Xy and yy for the state and output trajectory on R™ of ¥ corresponding to the
input v and initial state xy(0) = x(¢). Define

V.X.3) == 0.0 (W, X, y) + 77 (V, Xy, Yy).
Since xy(0) = x(z), trajectory property (4) listed after Definition 2.2 gives that (V, X, ¥)

is also a trajectory of ¥ over R™ with X(0) = x(0). For every s > 0, using (6.6), we
now have
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2 2
0,519 1221 — Iei0,57 1122,
Y U
_ —t 2 —t o2
= ||7T[t,t+s]'5 YV||L2+ - ||7T[z,z+s]‘r V||L2+
Y U

12 JI12 2 2
= 700,415l 24 = 70,0457V 117 24 = ll7710.00¥ 117 24 + ll710.7l7 2
Y 1% Y 1%

t t
= Sa(x(o))+/0 lu(o)ll7 de —/0 Iyl ds.

Taking supremum over v € LIZJ;U and s > 0 it follows that S, satisfies (6.1).

Step 2: S, is a storage function for X. For xo ¢ ran(*B) it follows from (2.4) that
Uy, = ¥, sothat S, (xg) = inf ¥ = co > 0. Now assume that xo € ran(®5) and choose
vV € L%’ZOC’ y With Br_v = xg and 1 < 0 with supp(r_v) C [z, 0] arbitrarily. Let
(v, Xy, yy) be the associated trajectory of ¥ on R, so that xy(¢) = Bmw_1'v = 0 and
xy(0) = Br_v = xq. By trajectory property (2), t’ (v, Xy, Yy) is a trajectory of ¥ on
RT with (t'xy)(0) = xy(¢) = 0. Then Lemma 6.4 gives that

It ,00¥vll 2= = N0, -t ywll 2+ < I7wp0,—T' VIl 24 = Il 01Vl 2
LY LY LU LU
that is,
7zt 01Vl 2= = g 01yvll 2 = 0.

Taking the infimum over all pairs (v,?) € L%,loc,U x R™ with Br_v = x¢ and
supp(—_v) C [t, 0], we conclude that S,(xg) > 0. For x9 = 0, we may make the
particular choice v = 0 in (6.7), in order to get S,.(0) <0 —0=0.

To see that S, satisfies (6.1), we give a similar argument as in Step 1. Let (u, X, y)
be a system trajectory of ¥ over Rt and fix t > 0. If x(0) ¢ ran(*B), then S, (x(0)) =
inf # = oo, and hence (6.1) is satisfied. Now assume that x(0) € ran(B), say with
x(0) = Bvy. Then supp(vg) C [s, 0] for some s < 0 and we let (v, Xy, yy) be an
arbitrary trajectory of X over R with m_v = vp; then also xy(0) = Br_v = x(0).
Define

VX9 =7 (v, Xy, yv) + 7' (0, X, y).
Using that xy(0) = x(0), we obtain from trajectory properties (5) and (3) that (V, X, ¥)

is a trajectory of ¥ over R with supp(w_¥) C [s — ¢, 0] and X(0) = x(¢). Then we
have from (6.7) that

2 2
715,011 2 = s, 01yl 2-
[s,0] Ly [s,01Yv Ly
tol2 2
= I7[s—1,—11T V||L27 - ”n[s—t,—t]rtyanZ—
U Y
112 112 1112 o2
= I7s—1.00Vll 2= = W75 —r,00¥ 117 2= = e~ .oz ull ;o + 7017 ¥l 2
1% Y U Y

t t
er(X(t))—/0 lu()II dr+/0 ly(o)lI5 dr.
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Taking the infimum over all (v, yy, s) € Uy,, we obtain that (6.1) holds for § = ;.
Hence S, is a storage function.

Step 3: Every storage function S for ¥ satisfies S, < S < S,. Let S be an arbitrary
storage function for ¥ and choose xg € X. If S(xg) = oo, then certainly S, (xg) <
S(x0). Hence assume S(xg) < oo. Now let (u, x, y) be an arbitrary trajectory of ¥ on
R* with x(0) = x¢ and fix a ¢ > 0. Since S(x(0)) = S(xg) < 00, by (6.1) we obtain
that S(x(¢)) < oco. Reordering (6.1), we obtain that

Im0.¥12: — lroaul?; < SX(0) — SX() < S(xo)-
Y U

Taking the supremum over all trajectories (u, X, y) of £ on R™ with x(0) = x( and
all r > 0, we obtain that S, (xg) < S(xg). Hence S, (xg) < S(x¢) forall xg € X.

Now we turn to the inequality for S,. If xo ¢ ran(®B), then S, (x9) = oo, and we
clearly have S(xp) < S, (xp). Hence, assume thatxy € ran(*8) and letu € L%‘U be such
that xo = Bu. Let (u, X, y) be the uniquely determined trajectory for X over R with
input u, and fix ¢ < 0 such that supp(u) C [¢, 0]. Since x(¢) = Br_t'u = BO = 0,
trajectory properties (1) and (2) give that

@X,9) :=met’ (u,x,y)

is a trajectory of ¥ over R™, with X(0) = 0 and X(—¢) = x(0) = xo. Hence S(X(0)) =
0. By (6.1), we then have
It ol = It oyl = w0, wlias = 70,0 7'Yl 24
= ”77[0,—t]’ﬁ||i%]+ - IIﬂ[o,—z]S"llizﬁ
> SX(=1)) = S(xo).
Now, in the left hand side of the inequality, take the infimum over all trajectories

(u,x,y) of ¥ on R such that x(0) = x¢, and all # such that supp(z_u) C [z, 0]. It
then follows that S, (xg) > S(xg). O

Combining Proposition 6.1 and Theorem 6.5, we get the following corollary.

Corollary 6.6 The transfer function of a well-posed system % has an analytic contin-
uation in the Schur class if and only if ¥ has a storage function.

Next we derive more explicit formulas for S, and S, in terms of the operators
constituting X, and we determine quadratic storage functions for X, leading to, in
general unbounded, solutions to the KYP inequality for X. For this purpose, assume
Dle+ M dom(®) has an analytic. continuation to a function in Sy y. By item (1) of
Theorem 3.4, the operator Ly in (3.8) decomposes as

_[%s 07 [Ly Ly
B[] e
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with 5 the L*-Hankel operator of (3.9). Sinced € Sy,y,wehave|Ls| = Mzl =
IP]looc < 1. Hence, also Ty, Hy and Ty are contractions. In the statement of the

lemma, the reader should recall the notation Dy := (I — T*T)% used to denote the
defect operator of a Hilbert-space contraction operator 7, as defined at the end of §1.

Lemma 6.7 Let ¥ = [ D ] be a well-posed system, such that D e Su.y. Define W,
as in §3 and decompose Ly in (3.8) as in (6.9). Then

Sa(@o) = sup [Woxo +Tzulljor — Ul o €dom(Wo),  (6.10)
ueL+

SGo) = _inf Dz, ul?

ueLZ;],x0=%u

e M0 EX, 6.11)

and S;(xg) = o0 in case xo ¢ dom(W,). Finally, S,(xo) < oo if and only if xg €
Rea (X) = ran(®B).

Note that for each xo € X, formula (6.10) exhibits S, (xp) as the norm squared of
W, xo in the Brangesian complement of the space ran(¥x); see the notes to Chapter
I of [29], or [6, §3].

Proof of Lemma 6.7 We start with S,. Using (6.6), (2.3) and (2.1), it follows that

Sa(xo) = sup <||c:’xo+©fv||§z+—||n[o,t]v||§2+>, x0 € X.
Y U

2+
veL,UC'U, >0

In case xo ¢ dom(W,), we have €xo ¢ L2", and fixing v = 0 in the preceding
supremum, we see that

Sa(x0) = sup | €' XO||L2+ = sup 710, t]€x0||L2+ = 0.
t>0 t>0

Now take xg € dom(W,). Then €' xg = 719,,yW,x0. Fornow, fixs > Oandv € leut U-

Combining the causality and time-invariance of ®, see item (4) of Definition 2.1, it
follows that 0 1® = m}0,/]P7(—c0,r]- By Theorem 3.4 and because supp(v) C
[0, 00), we have D'v = 1[0, 1D 70,1V = 70,11 L= 70,01V = 70,01 % = 7[0.1]V- Thus S,

can be written as

Sa(x0) = sup (nn[o,t](woxo+izn[o,t]v>||’jzy+—||n[o,,]v||i§+>.

2+
VELj .y 1>0

Next we show that 7[p ;] can be removed everywhere in the right hand side. Set
W =70,V € L%]Jr, so that

Im10.0(Woo + Txmio.a¥) 2 = Imo.nVly».

2 2
= lrt0.n(Woxo + Tew) 22 — IWI32. < [Woxo +Towi}ar = W),
U
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It follows that S, (x¢) is dominated by the right-hand side of (6.10), and equality is
approached as t — o0. Thus (6.10) holds.

Now we turn to the proof of the formula for S,. If xo ¢ Rea(X) = ran(®8), then
Uy, = ¥ Sr(xp) = oo in (6.7) as in Step 3 in the proof of Theorem 6.5 and in this
case (6.11) is correct. Next suppose that xo € Rea(X) = ran(®B) so the set U, # 0.
Let (v, y, t) be an arbitrary element of *U,,. Thus supp(7_v) C [z, 0], (v, y) embeds
into a system trajectory (v, X, y) of ¥ on R such that x(0) = xp.

By (2.4), combined with the causality and time-invariance of ©, we have

Ty = T_DOV=m_Dn_v= JT_QJT[,,Q]V = ﬂ[,ﬁo]@ﬂ[;,o]v = TT£,01¥-

In particular, the value of ||7_v||> — |7_y|> = ||JT[,,()]V||2 - ||7r[t,0]y||2 only depends
onu:=7m_V € L%?J, and thus we may assume without loss of generality that v €
L2 . In that case, Theorem 3.4 shows thaty = ®u = Lyu and by (6.9) we have
n_y =n_Or_u= ‘Ign_v. Thus

2
NIz, 0]V||L27 ||7T[t,O]Y||L2— ll7r— Vllef 1Tsm_v|? = | Dz, 7_v|?

Ly
(6.12)

Ly

As (v,y, t) was chosen to be an arbitrary element of %,, and v € L%}j satisfies
xo = Bu, we conclude that S, (xg) (as defined by (6.7)) is greater than or equal to the
right-hand side of (6.11).

To conclude that in fact equality holds, just note that starting from u € L oy With
xo = ‘Bu one obtains a triple (v, y, ¢) in U, by taking v := u, letting t < 0 be such
that supp(;r—v) = supp(u) C [¢, 0], and defining x and y by (2.4). Then (6.12) shows
that S, (xp) is dominated by the right-hand side of (6.11), and hence the expressions
for S, are equal, as claimed. |

By the preceding analysis, S, (xg) = oo precisely when xo ¢ Rea (¥) = ran(®8)
which in general is a proper subset of ran(W..); hence it is not an L2-regular storage

function as defined at the beginning of §6. However, assuming that dom (W;k ) isdense,
we can define the following version of S,:

S.(x0):= inf [|Dzul’

xo0 € X, (6.13)
ueW; ! ({xo)

L2 )
where

W, ({x0}) := {u € dom(W,) | Weu = xo}.

Proposition 6.8 Assume that the well-posed system X has transfer function in Sy .y
and that Wc* is densely defined. Then S, and S, are L2-regular storage functions.
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Proof We first prove that S, is an L2-regular storage function. Clearly S,.(x0) =0
for all xo € X. Also, for xp = 0 we can selectu := 0 € W;l ({0}), obtaining that
S5,(0) < ||D§):O||2 = 0. Hence §,(0) = 0.

Next we prove that S, satisfies the energy inequality (6.1). To this end, fix a system
trajectory (U, X, ) of ¥ over R™ and at > 0. If X(0) ¢ ran(W,) then S, (X(0)) =
inf # = oo and (6.1) holds; otherwise let u € W;l {X(0)}) L%]_. Then define

w = () = o' (u+ ) € L7, (6.14)
and note that
o2 2 ~2
u _ = |ul|5.- + |l7To.qu . 6.15
0172 = >+ o (6.15)

We claim that
() uw e WX} and  (2) Txw® =1 Egu+m0).  (6.16)

For claim (1), note that item (3) of Proposition 3.2 implies that t'7[o ;U € L%‘U isin
dom(W,) and

chtﬂ[o,t]’ﬁ = %‘L’tﬂ[o’t]ﬁ = %ﬂ_ft’ﬁ = %lﬁ.

Also, item (4) of Proposition 3.2 yields that t’u is in dom(W.) and W.t'u =
A'W.u = A'X(0). Therefore we have that u® € dom(W,) and

Wou® = Wetlu + Wetlmpo gt = A'X(0) + B0 = X(1),

using (2.3) in the last identity. Next we prove claim (2). By item (1) of Theorem 3.4
and (6.9),

7 Lyt =7 t'Ly = t'm_sols

= ' &+ 10,192 T— + 70,1 TxT4).
Therefore, from (6.14), we get

‘?{fzuo =n_Lyu®° = N_szt(ll +7T[0,t]ﬁ)

= o' Esu+ 70,19z u + 70,1 T2 70,1H),
and furthermore, by (3.12),
0,09z = 710, WoWeu = 710,1W,X(0) = 710,1€X(0) = €'X(0).
On the other hand, using item (1) of Theorem 3.4 and causality, we obtain

ﬂ[oit]gzn[o),]ﬁ = n[o,f]gﬂ[oit]ﬁ =2.
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Combining the above computations we find that
Teu® =/ (Tgu + €'X(0) + D) = ' (Txu + 710,11Y)s

again using (2.3) in the last step. This proves claim (2).
Claim (2) implies that ||T>;u°||22, = ||T>;u||22, + 70,1 y|| L2+ Combining this

with (6.15), we find that

), — 1 T5®)2, = [lul?,- — [Txul?

L= L L3

112 w112
L + 0. nul 2, = llio.ny 2.

By claim (1) in (6.16), 77" (W 1(X(0)) + @) C W, 1(X(1)), and so we get that

inf e, — | Txu®|?

2—
weW, (X)) Ly

Ly

< inf Ju?

T ~2 2
L. 1Tzl + oW — .09
ueW,  ({x(0)

Ly

This shows that S, satisfies the energy inequality (6.1), and hence it is a storage
function. We already established that S, is a storage function.

The boundedness of S, on ran(W,) follows from Corollary 6.9 below, and then S,
is finite on ran(W.), since (6.8) holds with § = S,. This completes the proof that S,
is L>-regular. O

Corollary 6.9 Assume that the well-posed system % has a transfer function D e Suy
and that W7 is densely defined. Then for all xy € X we have

IWoxollj2s = Sa(x0) < S,(x0) = inf fulj,.,

ueW; ! ({xo})

with ||W(,x0||22+ to be interpreted as oo in case xo ¢ dom(W,). Moreover, S, (xo) <

oo precisely when xo € ran(W,).

Proof The first inequality is obtained by selecting u = 0 for the input signals in
the supremum in (6.10). The second inequality follows from (6.8), using that S, is
a storage function for ¥ by Proposition 6.8. The final inequality follows from the
definition of S, in (6.13) and the fact that Dz, is contractive. If xo ¢ ran(W,), then
the infimum in (6.13) is taken over an empty set, leading to S,.(xg) = oo. O

We next establish that the storage functions S, and S, are in fact quadratic.

7 Quadratic Descriptions of S; and S,

In the sequel, we will need the concept of a core for a closed operator, which we recall
here from [27, p. 256]: the set D C dom(T) is a core for the closed operator T if
the operator closure of T'|p = T equals T, or in words, a closed operator is uniquely
determined by its restriction to a core.
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In case X is a well-posed system whose transfer function De Su.y, then the L?-
transfer map Ly in (3.8) is contractive. Hence, with respect to the decomposition in
(6.9), we have

> 0;

D%*:, —TEY_)E
—H5T% DE% — 95 H%
2 x* -t

D% — 9393 SETE:|EO.

I—LyLy=| % >
—%39x Dz,

I —LgLi = [
(7.1)

Since Ly is a contraction, so are Ty, “S;E, ‘Ez and T* , and hence their defect operators
Dsz., Dg; , Dgz and D@% are well defined. The inequalities in (7.1) imply in particular
that

D3, = 939 and Di > 939

Assuming, in addition, that ¥ is minimal, ran(W.) and ran(W}) are dense in X,
by Corollary 3.5 and items (3) of Propositions 3.2 and 3.1, respectively, so that the
factorizations of item (4) in Theorem 3.4 apply:

_ _ wX
93| domew,) = WoWe and 9% domws) = W2 Wi

The following lemma follows from Lemma A.1 in Appendix A below, combined with
(6.9), (A.1), (3.12) and (A.2):

Lemma 7.1 Assume that the minimal well-posed system ¥ has transfer function in
Su.y. Then:

(1) There exists a unique closable operator X, with domainran(W.) C X, with range
contained in ker(DTE YL, and which satisfies the factorization

W0|ran(Wc) = DTEXa- (7.2)

Moreover, ran(W,) is a core for the closure X, of X, and this closure is injective
with range contained in ker(Dy;: )t

(2) There exists a unique closable operator X, with domain ran(W}) C X, range
contained in ker(Dgz)J—, that satisfies the factorization

Wilkanows) = Dz X (7.3)

The range of W} is a core for the injective closure X, of X, and ran(X,) L
ker(Dgﬂ% ).

Next we introduce operators H, and H,, which give rise to the quadratic storage
functions Sy, (x) = (Hyx, x) and Sy, (x) = (H,x, x) which are equal to the available
storage function S,(x) and the L’-regularized required supply S, (x) respectively,
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at least for x € ran(W,). Assume that ¥ is minimal and has transfer function in
Su .y, so that X, and X, in Lemma 7.1 are densely defined, closable operators with

injective closures X, and X,., respectively. Then, i:iu is selfadjoint with unique
positive, selfadjoint, injective square root |X,| = (ijia)% satisfying dom(|X,|) =
dom(ia); see for instance [27, §VIIL.9]. We now set H, = XZX,I so that Ha% = |Xa |
Analogously,1 set |X,| == (ijir)% and H, = (ijir)*l, s0 th?t H,% = 1|§,|*1,

with dom(H,”) = ran(|X,|). Note that the operators H;, H, >, H,> and H, ? are all
closed. The following theorem follows directly from Theorem A.2 in Appendix A.

Theorem 7.2 Let X be a minimal well-posed system which has transfer function in
Su.y. Define X, X4, Xy, X, as in Lemma 7.1 and H, and H, as in the preceding

1
paragraph. Then the dense subspace ran(W.) of X is contained in the domains of H;}
1

and H?, and S, and S, satisfy

1
S,(x0) = I1X4lx0lI? = I|H2 x0l|?, xo € ran(W,),
a(x0) = [[IXalxoll” = I1Hd xoll 0 (We) (7.4)

1
x -1, 2 2.2
S, (x0) = I1X; " xoll” = [1H  x0ll*, x0 € ran(W,.).
1 _1

Moreover, ran(W.) is a core for H; and ran(W?) is a core for H, *.
Note that Theorem 7.2 is not strong enough to justify the conclusion that S, and
S, are quadratic storage functions, since the identities in (7.4) only hold on ran(W,)

1 1

which might be strictly contained in the domains of H; and H,?, respectively. Later
on, in Theorem 7.4 below, we will show that H, and H, are spatial solutions to
the KYP inequality of ¥ under the assumptions of Theorem 7.2, so that H, and H,
induce quadratic storage functions by Theorem 1.9. These may differ from S, and
S, outside ran(W,). However, if the initial state of a trajectory (u, X, y) of X on R*
satisfies x(0) € ran(W,), then x(¢) € ran(W,) for all + > 0, by items (3) and (4)
of Proposition 3.2. For such state trajectories, S, and S, coincide with Sy, and Sp,,
respectively.

It is of interest to work out the corresponding results for the causal dual system ¢
explicitly in terms of objects related to the original system X. Using (3.10) and (6.9),
one gets that the Laurent operator Ly for =4 is

Lo _[Fxe 0] _[oA] [Tz 0] o4

2T 950 Tea | T |0 H: T2| |S0
ATEA 0 ] |:L2_:| |:L2_:|

= x =~ : — .
[Hﬁzﬂ ATES L§+ L%+

Furthermore, from (3.5) we see that the dual L?-output and dual L2-input operators
are given by

W = aw?, We = wig. (7.5)
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Apply Lemma 7.1 with £¢ in place of ¥ to see that the operator X g obtained from
item (1) is determined by

d d d d
Wo'ran(Wf) = D‘I;d X, = Dﬂi'zﬂxa = HD%gﬂxa’ (7.6)

where the last equality can be verified by simply squaring ADz 5= 0.
On the other hand, by (7.5) and Lemma 7.1 applied to ¥ we have

Wl anewey = AW lancwssy = AW [anws) = Dz X,

By combining these last two expressions we get that ran(HXZ — X,) C ker(Dz,),
and since ran(X,) is also perpendicular to this kernel, we may conclude that

once we use (7.6) to observe that

d 1L N
ran(IX7) Cerr(Dg*zd) =ker(D§2) .

By duality, we immediately get HX? = X_, and then the operators Had and Hrd
associated with the dual system X9, as in the paragraph preceding Theorem 7.2, are
related to H, and H, via

H'=H™' and H'=H " (7.7
Therefore, Theorem 7.2 applied to the causal dual system leads us to the following

formulas for the available storage and L2-regularized required supply for the causal
dual system X9,

Theorem 7.3 Let ¥ be a minimal well-posed system which has transfer function in

Su.y. Define X, X4, X, X, as in Lemma 7.1 and H, and H, as in Theorem 7.2. Then

_1 _1
ran(W?) is contained in the domains of H, * and H, *, and the available storage Sg
and the L?-regularized required supply Qf for the causal dual system X% are given by

1
d 3¢ 2 o4 2 3.2
Sq (x0) = 11X, 1x0lI” = 11X, [x0lI” = [|H, *x0ll” for xo € ran(W}),

1
d <4, -1 2 < =1, 2 2.2
S7(x0) = I1X, |~ xoll” = I1Xal™ x0lI” = | Ha *x0ll” for xo € ran(W},).

Using the above results, we will next show that the solutions H, and H, to the
spatial KYP-inequality (1.13) associated with ¥ are minimal and maximal spatial
solutions respectively for certain subclasses of spatial solutions.

Theorem 7.4 Let ¥ be a minimal well-posed system which has transfer function in
Su.y. Then the operators H, and H, defined above are spatial solutions to the KYP-
inequality (1.13). Moreover, for all spatial solutions H to (1.13) the following hold:
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(1) Ifran(W,) is a core for H%, then H, < H;
1
(2) Ifran(W}) is a core for H™ 2, then H < H,.

Proof We first prove the claims regarding H,. By items (3) and (4) of Proposition 3.2
it follows that

ran(*B) C ran(W,) and 2’ ran(W,) C ran(W,), t € RT.

1

In particular, Theorem 7.2 yields ran(®8) C dom(H, ), implying B’ L2([0,t]; U) C
1

dom(H, ). Moreover, the fact that S, (x) = Sy, (x) for a

521’ %t X ran(W,)
% )0 S0 <[ o B0 B Lefin]- o

Squaring on both sides and restricting to u = 0, we get

1 1 1
IHZ A x||> < |HZ A x)? + 1€ ]1> < |HZ x|, x € ran(W,),
hence

1 !
IHZ A x| < | Hg x|l, x € ran(We). (7.9)

l 1
Now take ¥ € dom(H;) and fix r > 0. Since ran(W,) is a core for H; by
Theorem 7. 2 there exists a sequence xn € ran(W,), n € Z, such that x,, — X and

H Xp — H ¥ in X. In particular, H; x, is a Cauchy sequence. Applying (7.9) with
X = X, — X;;, we obtain that

1 1 1 1
NHZ U x,, — H2 U x| < |HZ X — HZ x|l = 0 asn,m — 0.

Hence H, %Qltxn is also a Cauchy sequence, thus convergent in X. Also, 2'x,, con-
verges to QI’x because Ql’ is bounded. Slnce Ha2 is closed, it follows that 2('X

is in dom(H ) and H} Q[’x = lim,_ o H} Q[ Xn. In particular, we proved that
! dom(H ) C dom(H; ) We have now proved that (1.12) holds. The fact that
the spatial KYP inequality (1.13) holds on dom(H, %) EB L2([0, 1]; U) now also fol-
lows easily from (7. 8) and the fact that forx € dom(H ) and x,, € ran(W,) as above

wehaveH X, — H X, H? QI’x — QltHzx and ¢'x, — ¢'X.
Assume next that H is any solution to the spatial KYP-inequality (1.13) with the

property that ran(W,) is a core for H 2, By Proposition 6.2 and Theorem 6.5, we have

1
| HZ I = Sa(x) < Sp(n) = | H2 x|, x € ran(W,). (7.10)
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~ 1 . ~
Take X € dom(H ?) arbitrarily, and let x, € ran(W,.), n € Z,, so that x,, — X
1 1 . . . 1
and H2x, — H?2X; such a sequence exists since ran(W,) is a core for H?2, by
. . 1 .
assumption. Reasoning as above, the sequence H2x,,n € Z, is a Cauchy sequence,

1

and the inequality (7.10) implies that H} x,,n € Z,is a Cauchy sequence as well. The
1 1 1 1

closedness of H; then implies thatX € dom(H,?) and H; x, — H; X. Consequently,

1
dom(H %) C dom(H,2?) and the inequality (7.10) extends to all x € dom(H > ), which
proves that H, < H, and the proof of statement (1) is complete.

The proof of statement (2) requires drawing on results for the causal dual system
4 as well as results for ¥ itself. We note from (7.5) that ran(W}) = ran(Wf). Note
also by Proposition 6.3 that H is a solution of the spatial KYP-inequality (1.13) for
¥ if and only if H~! is a solution of the spatial KYP-inequality (6.5) for £¢. Thus

ran(W}) being a core for H -3 where H solves the KYP-inequality (1.13) for X is

the same as ran(Wf) being a core for (H _1)% where H ™! solves the KYP-inequality
(6.5) for =¢. We conclude that the hypothesis for statement (2) in the theorem is the
same as the hypothesis for statement (1), but applied to £¢ rather than to . Hence, if
we assume the hypothesis for statement (2), we can use the implication in statement
(1) already proved to conclude that Hud < H~Y, where (7.7) gives Hf = Hr_l, and

thus we have Hr_1 < H~'. Now [1, Proposition 3.4] gives us the desired inequality
H < H,. O

Remark 7.5 Theorem 7.4 states that H, and H, are both positive definite spatial solu-
tions to the KYP inequality (1.13), provided X is a minimal well-posed system which
has transfer function in Sy y, and they are the minimal and maximal spatial solutions
at least within a certain subset of the collection of spatial solutions. To be precise, if
GKx denotes the collection of all positive definite spatial solutions to (1.13), then H,
is the minimal element in

Q\IJCE,COre = {H € GKy | ran(W,) is a core for H%}
while H, is the maximal element in
g’l\cg,cm :={H € GKx | ran(W}) is a core for H%}.

That we cannot claim that H, is the minimal element in Gy, despite the fact that S,
is the minimal storage function for X, is because in general we only managed to prove
that S, and Sy, coincide on ran(W,).

In [5] another analysis of the spatial solutions to the KYP for well-posed linear
systems is obtained, with somewhat different extremality results. This may result
from the fact that the analysis conducted in [5] is done at the level of system nodes,
and that the requirements there are slightly different. More precisely, in [5] it is not
assumed that the well-posed system X is minimal, but rather, for spatial solutions
H it is assumed, in addition, that the well-posed system Xy obtained by applying

H?2 as a pseudo-similarity is minimal, and in that case the minimal and maximal
solutions are those that correspond to the so-called optimal and *-optimal solutions.
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Note that because of the applied pseudo-similarity, the KYP-inequality for Xz always
has a bounded and boundedly invertible solution, namely 1y. Why there are no core
restrictions in [5], which correspond to those that we have in the present paper, is
unclear to us at this stage.

If in addition to the minimality and a Schur class transfer function we also have
L2-controllability or L2-observability, more can be said about the operators H, and
H,.

Corollary 7.6 Let X be a minimal well-posed system which has transfer function in
Su.y. Then the following holds:

(1) If £ is L*-controllable, then H, and H, are bounded.
(2) If ¥ is L*-observable, then H; ' and H~" are bounded.

Proof Assumethat ¥ is L?-controllable, that s, dom(W;k )isdenseandran(W.) = X.
1 1
Since X = ran(W,) is contained in the domains of H; and H,” by Theorem 7.2, it
1 1

follows that H;? and H,? are bounded by the closed graph theorem; hence H, and H,
are also bounded. Statement 2 follows by applying statement 1 to X¢. O

8 Proofs of the Bounded Real Lemmas

In this section we prove the bounded real lemmas posed in the introduction. We start
with a proof of Theorem 1.9.

Proof of Theorem 1.9 The implication (5) = (4) is trivial and many of the other impli-
cations have been proved in the preceding sections: that (4) = (1) follows from
Proposition 6.1; the equivalence (2) < (5) follows from Proposition 6.2, together
with the statement that the same H works in both items; Theorem 7.4 shows that (1)
= (2). Hence it follows that (1) & (2) & (4) < (5).

Next, we show that (3) = (5). Assume that item (3) holds, say that I : X D
dom(I") — X° implements a pseudo-similarity from ¥ = [Qé % ] to a passive well-
posed system £° = [ % 2] with state space X°. In that case H := I'*T and
its positive semidefinite square root are well-defined positive definite operators, and
dom(H %) = dom(T") by [27, § VIIL.9]. We next prove that Sg in (6.2) is a quadratic
storage function for . For this, pick zg € dom(H %) arbitrarily and let (u, z, y) be a
trajectory of ¥ on R™ with initial state x(0) = zq. Setting x(¢) := I'z(¢), t > 0, and
xo = I'zp we get that (u, X, y) is a trajectory of £° on R* with initial state xq, since

x(t) = Tz(t) = T z0 + B'a) = A T'z(0) + B°'u,
and
¢°Trz(0) + Du = Cxp + Du =y.

By passivity, every trajectory (u, X,y) of £° on R™ satisfies (6.1) with S(xg) =
lxo ||§(o, and by considering x(t) = I'z(¢), we see that also (6.1) holds with S replaced



The Infinite-Dimensional Bounded Real Lemmas... Page590f77 84

by Sy and x replaced by z. If zg ¢ dom(H %) then Sy (z¢) = 00, and the modification
of (6.1) is still true. We have proved that Sy is a quadratic storage function for X,
where H = I'*T".

Finally, we prove that (1) = (3). Assume the transfer function D of ¥ isin Suy,
more precisely, that it has an analytic continuation to a function in Sy y. In that case
® coincides with the transfer function of some minimal passive well-posed system
on some right half-plane, by Theorem 11.8.14 in [31]. Hence we have two minimal
well-posed systems whose transfer functions coincide on some right half-plane, of
which one is passive. Then Theorem 9.2.4 in [31] (see also [5, Theorem 4.11]) implies
that the two systems are pseudo-similar. In particular, X is pseudo-similar to a passive
well-posed system. O

Next we turn to the proof of Theorem 1.10.

Proof of Theorem 1.10 By Corollary 3.8, the L?-minimality of ¥ implies that ¥ is
minimal. Assume item (3) holds, i.e., ¥ is similar to a passive system. Then, in
particular, ¥ is pseudo-similar to a passive system, and since ¥ is minimal we can
conclude from the implication (3) = (1) in Theorem 1.9 that the transfer function ®
is in Sy y. Hence item (1) holds.

Next we show that (2) = (3). Assume that the operator H on X is a bounded,
strictly positive definite solution to the KYP inequality (1.14). In that case I' := H 2
can serve as a similarity to a passive system. Indeed, for each ¢ > 0, set

A pe]  [H2o|[2 B ][H20
oo 1] 0 1)

Then we have
HIU = A H?, HIB =B, ¢ =¢'H), D = 8.1)

Furthermore, (1.14) implies that [Q@(Z,t %Z;] is contractive for each r > 0. Clearly,

the relation between 2’ and 2°’ in (8.1) with H > bounded and boundedly invertible
implies that 2(°" inherits the properties of a Co-semigroup from 2A’. Next, define 28°,
¢° and D° via the limits in (2.2), adding o where appropriate. It is then easy to check
that (8.1) extends to

HI = A H?, HIB=B°, ¢=¢°HI, D=09°

and via these relations it follows that the requirements on the Cy-semigroup 2° and
the operators B°, €° and ©° to form a well-posed system (Definition 2.1) carry over
from 2/, B, € and D. We have proved that [ %; B ] is a passive system that is similar
to [Qé % ] via the similarity I' = H %; hence item (3) holds.

To establish the mutual equivalence of all three items, it remains to prove that (1) =
(2). Hence assume that ©® € Sy y. Since ¥ is minimal, Theorem 7.4 gives that H, and
H, are spatial solutions to the KYP-inequality (1.13). However, the L2-minimality of
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¥ implies that H, and H, are bounded and boundedly invertible, by Corollary 7.6.
Thus H, and H, are bounded, positive definite operators on X with bounded inverses,
and hence both are bounded and strictly positive definite. Since H, and H, are bounded
solutions to the spatial KYP inequality (1.13), it is immediate that H, and H, also
satisfy the standard KYP inequalit)//\ (1.14). Hence statement (2) holds.

Next we prove that C™ C dom(®) if there is some bounded and boundedly invert-
ible I' that implements the similarity from X to a passive system X°. Assume this and
recall that by Proposition 2.3, dom (D) = C,,,. Since 2° is a contraction semigroup,
as implied by passivity, we get from (2.5) that

_InflRA| _InIT7Y 4+ In |27 + In || T
wg = lim ——— < lim =
t—00 t t—00 1t

w9 < 0.

We established above that every bounded, strictly positive definite solution H to
the KYP inequality provides a similarity via H 2. The converse implication follows
from the final statement in Theorem 1.9.

We already noted that H, and H, are both bounded and strictly positive definite, and
that X is approximately controllable, so that ran(®8) is dense in X. By Theorem 6.2,
every solution H to the spatial KYP inequality (1.13) defines a storage function Sg,
which by Theorem 6.5 is wedged between S, and S,: S;(x) < Sy (x) < Sy (x) for all
x € X. Moreover, combining item (3) in Proposition 3.2 with (6.11) and (6.13), we
get that S, (x) = S, (x) for all x € ran(®B) C ran(W,). Then (7.4) gives

1 1 1
|Hg x|l < |H2x|| < [|H/ x|, x € ran(B).

Since ran(®8) is dense in X, these inequalities in fact hold on all of X, and we get that H
inherits boundedness from H,, while strict positive definiteness carries over to H from
H,. Hence every generalized solution H to the spatial KYP is also a bounded, strictly
positive definite solution to the standard KYP inequality (1.14), and H, < H < H,
holds. O

In case the transfer function is a strict Schur class function and 2 is exponentially
stable, to obtain a bounded, strictly positive definite solution H to the standard KYP
inequality (1.14), it suffices to have only L?-controllability or L?-observability:

Proposition 8.1 Ler X = [ % % ] be a minimal, exponentially stable well-posed system
with transfer function ® in the strict Schur class S(z,,y. Then H, and H;l are bounded

and are given by

H, = WZD%; W, and H ' = WCD%in. (8.2)

Furthermore, H Uis bounded if and only if ¥ is L*-observable and H, is bounded if
and only if ¥ is L*-controllable.
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Proof By Lemma 3.6, the exponential stability guarantees that the operators W, and
W, are bounded. Moreover, because D e SO U,y Dzx and Dz are boundedly invert-
ible. It follows that the operators X, and X, in Lemma 7.1 are given by

-1 —1
X, = Dg»)ﬂzwohan(wc) and X, = D?E:-Ewﬂran(w;ﬁ)»

and hence they extend uniquely to bounded operators X, = D; W, and X, =
z
D%l W from X into L§+ and Laz, respectively. The boundedness of and formulas for
z

H, = XZXG and H! = Xfir now follow directly. Moreover, given the boundedness
of W, and W, we have that L?-observability and L>-controllability are equivalent to
W, and W} being bounded below, respectively, from which the last claim follows. O

Using Proposition 8.1, we can obtain explicitly the extremal KYP solutions H,
and H, arising from the minimal realization for the strict Schur-class transfer function
(5.7) which was already discussed in Example 5.5, thereby illustrating Proposition 8.1
and item (5) of Theorem 1.12.

Example 8.2 In Example 5.5, we considered the diagonal system ¥ with operators

Vi 1
Wy =", B, = "2+ Con=2n ¥ 1y, n=0.1,....
leading to W,, determined by
(Wotn) (1) = 2/n + 1e” "D, 1 >0, (8.3)

being bounded from both below and above.

In order to apply the formula for H, in (8.2), we additionally need some information
on the action of the adjoint of Ty in (6.9). Combining the latter with item (1) of
Theorem 3.4, we get Ty, = D | 2+ and we next compute this operator using (4.6).

Because of (4.2), and item (3) of Proposition 3.2,

1 0
Wof () = 3Vi T 1 [ eV dsg,, felt 64)
—00
and B = Wc| 12 - Combining the above with (5.6) and 5(0) = %1(/ gives for all
LU

feL?, candn=1.2,...that

t
D(f()pn) =t > (n+1)e "+ / TS £(s)ds ¢y — %f(r)qsn, t eR.
(8.5)
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Foralln =0,1,...and u = Y00, fudm, fm € LZF, it then holds that
(Temre— ey dn, M)L2U+

= <7{+e_(n+1)¢n, Tz Z fm()¢m>
12+

m=1

= / et 0:(D fu (V) (1) dt

0

[ee] t l
— / e—(n+l)t ((n + 1)6—(n+1)t/ e(n+l)sfn (s)ds — Ef" (Z)) dr
0 0

oo o0 1 o0
=/ (n+ 1)e<"+”an(s)/ e 2D gr g — Ef e~ DI dr = 0.
0 s 0

Hence, (Igmre_(nﬂ)q&n =0forn =0,1,..., which implies that
Dy (Tae—uatybn) = Te—urnydn = D2 (Tae_guanbn).
Using (8.2) and (8.3), we then easily calculate
o
Hodn = WiW,od, = 41 + 1) / 20 41 g, =29,
0

ie.,that H, =2 - 1y.
Now proceeding to H,., we get from (8.4) that

W:¢’n = ) T—€nt1Pn,

and we need to evaluate D%z on this. By item (1) of Theorem 3.4 and (8.5),

e(nJrl)l

t
(Lym_eni1¢)(t) = (n + e~ 1 / A0S ds ¢, — ¢n=0, 1<0,

—00

so that D%i T_ent1¢n = T—ept1¢,. Then (8.2) and (8.4) give

Hep = (WWH g, =8¢,

Finally, by Theorem 1.10, all solutions H to the spatial KYP inequality for X are
bounded and strictly positive definite; in fact they satisfy 2- 1y < H < 8- 1.

We now turn to the proof of the strict bounded real lemma, stated as Theorem 1.12.
Proof of (2a) = (2b), (3a) = (3b), (4a) = (4b), (5a) = (5b). Note that these are
tautologies following from the definitions. O
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Proof of (2a) & (3a) & (4a) = (5a). Let us assume (2a). Thus there is a bounded,
strictly positive definite H on X satisfying (1.16) for some é > 0. As we saw in the

proof of (2) = (3) in Theorem 1.10, I" := H 3 is an invertible change of state-space
coordinates x° := I'x transforming the well-posed linear system £ = [ %% ] to the

system
so_ [20 B _[rar—'rs
Tl | T [ ertt |
and moreover, for each r > 0, the map
(et ye! x°(0) x°(1)
»ot = :
|:¢°’ @Oti| |:M°|[0,z] i ¥°lio.1

has the same form when considered as a transformation of X/ = [Qé,’ %f ]:

o [rAr-! !
XU = Q‘F‘l D!
Note that the inequality (1.16) can be interpreted as the statement that the system
trajectories (u, X, y) of X satisfy

2 2 2
”FX(t)” + ||Y|[0,t] ||L2([0’t];y) + 8”X|[0,t] ”LZ([O,I];X)

) 5 (8.6)
< ITXO)2 + (1 = ®)lulonl22 o0y > O

Using that (u, X, y) is a system trajectory for X if and only if (u°, x°, y°) = (u, I'x, y)
is a system trajectory for £° and the simple estimate ||['x| < ||| - ||x||, we get from
(8.6) that

o 2 2 o 2
”X (t)” + ||Y|[0,t]||Lz([OJ];Y) +8/”X |[0’t]”L2([0,t];X)

. 5 5 8.7)
< IO+ (1 =& o220, >0,

where 8’ := min(8, §/||I'[|?) > 0. In (8.7), we can still replace § by 8’ < &, and the
result then translates back to (1.16) holding for the system X° with H = 1x and §
replaced by 8’ > 0, and (3a) is established.

Conversely, assume (3a), so that ¥ is similar to a strictly passive system X°
via an invertible I': X — X°, and let (u, X, y) be a system trajectory of X. Then
(u°, x°,y°) = (u, I'x, y) is a system trajectory of X° such that (8.7) holds for some
§ =& > 0. Setting H = I'*I" > 0 and observing that |x||/|T~"|| < |ITx]|, we
obtain from (8.7), with 8” := min(8, §/||['~!||?) > 0, that

1
IH2XO 1% + 1¥110.0117 2 40,0707 8 IXl10.0117 2 00,019

1
< 1H2xO]* + (1= 8") lwlo.nl172 0.0
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This in turn is equivalent to H being a bounded, strictly positive-definite solution to
(1.16) with § replaced by 8” > 0. Hence (2a) < (3a).

Next note that (2a) < (4a) follows from the discussion in Remark 1.13. Finally
(4a) = (5a) is a tautology. O
Proofof (2b) < (3b) < (4b) = (5b). (2b) < (3b) is a simpler version of the above proof
of (2a) < (3a), where one works with (1.17) in place of (1.16) and the manipulations of
8 associated to the now absent term ||X][o /] ||i2 (0.11: ) &T€ not needed. The equivalence
of (2b) and (4b) is again a consequence of the observations in Remark 1.13. Finally,
(4b) = (5b) is a tautology. O
Proof of (5b) = (1). Assume that X satisfies condition (5b), so that ¥ has a semi-strict
storage function § satisfying (1.9), repeated here (in the case t; = 0, t, = ¢) for the
reader’s convenience: There is a § > 0 such that

t t
S(x(0)) + / Iy)IPds < Sx(0) + (1 —6) / lu(s)|2ds, 0,
0 0

for all trajectories (u,X,y) of & on RT. As S(x) (and hence S(x(¢))) has values in
[0, oc], we certainly then also have

t t t
/0 Iy)IPds < Sx() + fo Iy)IP ds < SxO) + (1 — 8) fo Jus) I ds

for all such system trajectories (u,X,y) and r > 0. In particular, let us consider
only those system trajectories initialized to satisfy x(0) = 0. Then using that storage
functions by definition satisfy S(0) = 0 and ignoring the middle in the preceding
chain of inequalities, we see that

t t
/ ly()II*ds < (1 — 5)/ lus)|*ds, ¢ > 0.
0 0
Letting ¢ tend to 400 then gives us
Y172 ) < (L= O ul72gs -
Applying the Plancherel Theorem and taking Laplace transforms then gives us
V132 r yy < (= ONWIZ2 s gy,

where, as noted in (2.9), ¥ = Mz; see also (3.7). Hence [Mg]| < +/1 — 38 and
therefore

1D oo (et 8w, vy = IMzll < vV/1-6 <1,

ie., D is in the strict Schur class with C+ C dom(ﬁ), and we have arrived at statement
(1) as wanted. O
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Next we work towards a proof of the remainder of Theorem 1.12, namely that the
implication (1) = (2a) holds under the additional hypothesis that 2 is exponentially
stable and that at least one of the hypotheses (H1), (H2), (H3) holds. The tool for this
analysis is to dilate X into a well-posed system X, for which there exists a bounded
and boundedly invertible solution H to the KYP-inequality for X,; this H then turns
out to be a bounded and boundedly invertible solution of the strict KYP-inequality for
the original well-posed system X. The details are as follows.

The first step is to embed the system node S of ¥ into a larger system node S, via
a procedure which we call e-regularization. We extend the operators B € B(U, X_1)

C
and C € B(Xy, Y) to operators B, = [B elx] € B([%] ,X_1and C, = [slx] IS
0
B(X1, [l% ]). Using the operators B, and A we define [A&B]E with domain

X X
dom([A&B]):={ | u | e |U ' A_ix + B, [”] eXt= [dom(A&B)],
€ uj X
Ui X
and action given by
A&B| =|A_1 B =|A&B ¢lyx|.
[ | =[A-1 B] dom([A&B]S) [ elx]
Next we define [C&D], on dom([C&D],) = dom([A&B],) by
o u
[C&D], | u | :=C: (x —(@—A_1)"'B, [m])
ui
D(a) eCla—M"r
+le(@—A_)'B X (a—A)! [ul] (8.8)

SIU 0

where o € p(A) is the same number « as used in the definition of C& D via formula

(4.3) as part of the definition of [ A&5 ], and where D(«) is the value at « of the transfer

function D for the original well-posed system X. It is now an easy exercise to verify

that S; := [ Eégg;z ] is a system node in the sense of Definition 4.1.

Our next goal is to apply Theorem 4.3 to show that S; is the system node arising
from a well-posed linear system X,. Note that Theorem 4.3 calls for a choice of
o € R with wg < w. Here we shall be assuming that 2l is exponentially stable, i.e.,
that wg < 0. Hence we have the option (which we shall use) of taking @ = 0 in the
application of Theorem 4.3. For this case it is customary to simplify the terminology
0-bounded (i.e., p-bounded for the case P = Q) to simply bounded. Thus B, €, ©
being bounded means that the operators B, €, © appearing in (2.7) satisfy

B eB(LY,X), CeBX, LY, DeB(L, LY.
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The following lemma encodes the main properties of the e-regularized system node S; .
In particular we see that we view the e-regularization process as producing a dilation
at three levels:

e at the system node level: S, can be seen as a dilation of S;
e at the transfer-function level: ’De can be seen as a dilation of ’D

] can be seen as a dilation of [9( B ]

e at the well-posed level: [Qlt B &t D

¢l DL

Lemma 8.3 Assume that ¥ = [QQ[ %] is an exponentially stable well-posed system
with associated system node S = [é‘&%g] with a strict Schur class transfer function

De S(I)J,Y' Then, for all € > 0, the operator

_[A&B7] ._ [ [4&B]:
Se=[26D]. = [[C&D]e]

constructed above is the system node of a minimal, exponentially stable, bounded,
well-posed system X, with transfer function O, given by

R DGy eCG.—A)!
DM =|er—A_D'B 2r—A)"" |, ArepA). (8.9)
81U 0

For & > 0 sufficiently small, ©, is also in the strict Schur class over C¥.
t

For each t > 0 the t-dependent operators [Ql B

o o ] for the well-posed system %

have the form

A B B ¥ X
[2{; %g} e D D L2((0.11. U) L2([0,11,Y)
GO |G D D5 0., X) L*([0,11, X) |
0 elz2q0.0) O b L2([0, 1], U)
(8.10)

with !, B!, & and D' equal to the t-dependent operators determined by the original
system ¥ and B, €, D, D} and ’Dg some operators acting between appropriate
spaces.

If ¥ is L?-controllable (L*-observable), then also %, is L*-controllable (L?-
observable).

Proof We already left as an exercise for the reader to check that S; is a system node.
In order to prove that S, is the system node of a well-posed system X, we prove that
conditions (1)—(3) of Theorem 4.3 are satisfied.

First we verify that B, is an admissible control operator for A. For all [l',’l] €

L% U x x» the formula for B, gives

u 0 0
%8[ }:/ Ql:‘iBu(s)ds+sf A 5uy(s)ds € X. 8.11)

uj —00 —00
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The first term lands in X since B is admissible for A. The second term lands in X by the
compact support of u; and the uniform boundedness of 2l on compact intervals. Thus
B; is an admissible control operator for A. We next observe that C, is an admissible
observation operator for A, i.e., that

C
X = ely | Alx , x € dom(A),
0

t>0

can be extended to a continuous linear operator from X to leot vxxxy> indeed, C is
admissible for A and from wg < 0, we get

T 2.2
2M
f e x| dr < — =
0

2
llxfl=

This completes the verification of conditions (1) and (2) in Theorem 4.3.
__Inorder to verify condition (3), we first prove formula (8.9) for the transfer function
D, of the system node S;. To this end, we use formulas (4.4) and (8.8) to compute:

_ (= A)'B
D:(1) = [C&D], Iy 0
0 Ix

C
=lelx | (A=A —(@—A_D7") [B elx]
0

D(a) eCla — A)~!
+lel@a—A_DIB 2(a@— A7 |, repd),
SIU 0

and observing that the (1, 1) entry equals C&D [
condition (3) in Theorem 4.3 applied to S,, we need to verify that each block entry
appearing in the formula (8.9) for ®, isin H*(C*; B(K, L)) for the relevant K, L =
X, U,Y as appropriate. Since the original system ¥ is well-posed with wg < 0, we
can apply [31, Lemma 10.3.3] (with parameter w taken to be w = 0) to conclude that

(A—Afl})_l B :I, we get (8.9). To verify

A A=A A 0—A_)D'B, A>COL—A)"!, recCT,

are all in H*® over C* as wanted. With these observations in hand, it then becomes
clear that choosing ¢ > 0 sufficiently small implies that 55 is in the strict Schur
class too. Moreover, it now follows from Theorem 4.3 that S; is the system node of a
bounded, well-posed system X, which is exponentially stable, since the C-semigroup

1 t
is the same as that of the original system . The formula (8.10) for [ilf gf ] is a
straightforward consequence of the construction. -
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We next discuss minimality. Fixing any x € X perpendicular to ran(°B,), we get
from (8.11) that for all u; € L%,;(:

0
0= <x, 8/ A5y (s) ds> =efs > A%, wy), 0. (8.12)
X

—00 X

By the density of L%} in L2, the continuous function s — 2~*x must vanish on
(—00,0), and letting s — 07, we get that x = 0, i.e., that X is (approximately)
controllable. Since C} = [C* elx 0], (8.12) gives that £ is controllable, i.c., =
is observable; hence X, is minimal. As 2( is exponentially stable by assumption, it
follows that W,. . is bounded by Lemma 3.6, and hence it follows from (8.11) that
Wee = [WC Ws] for some bounded operator W, : Li_ — X; now it is trivial from
Definition 3.7 that X inherits L?-controllability from . By (3.5), the bounded L>-
controllability map of X¢ is [W35I W, 0], and so X} is L>-controllable, i.e., T is
L2-observable, whenever X is L2-observable. O

Now we can prove the last part of Theorem 1.12.
Proof of (1) = (2a) in Theorem 1.12. To complete the proof of Theorem 1.12 it
remains to show that (1) = (2a) holds under the assumption that 2 is exponentially
stable an/d\ that at least one of the additional conditions (H1), (H2) or (H3) holds.
Assume D € S?]’Y. Let X, be the e-regularized system constructed above, where we

take ¢ > 0 small enough, so that the transfer function 55 of X, is still a strict Schur
class function.

We claim that each of the conditions (H1), (H2) and (H3) implies that the standard
KYP-inequality for X, has a bounded, strictly positive definite solution H. Assuming
(H1), note that clearly the operators B, and C; satisfy the conditions of Proposition 5.3,
so that item (3) of Proposition 5.3 implies that ¥, is L?-minimal. Then the L2-minimal
standard bounded real lemma, Theorem 1.10, shows that the standard KYP-inequality
for X, has a bounded, strictly positive definite solution H,. In fact, both the operators
H., and H,, associated with the available storage and required supply of X, are
bounded and strictly positive definite.

For (H2) and (H3), note that X, is minimal and exponentially stable. Therefore, by
Proposition 8.1, H; , and Hefrl are bounded and their inverses are bounded precisely
when X is L?-observable and L2-controllable, respectively. Since, by Lemma 8.3, L>-
observability of ¥ implies L2-observability of X, and likewise for L2-controllability,
itfollows that H, , is abounded, strictly positive definite solution to the KYP inequality
for X, whenever (H3) holds, while (H2) implies that H, , is a bounded, strictly positive
definite solution to the KYP inequality for X.

Hence, assuming (H1), (H2) or (H3) as well as the exponential stability, we obtain
a bounded, strictly positive definite solution H to the standard KYP inequality for X,.
Our next goal is to show that this H is also a solution to the strict KYP inequality
(1.16) for the original system X, and thereby arrive at (2a) and complete the proof
of (1) (and extra hypotheses) = (2a). We first need to probe a little deeper into the
structure of X.
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We shall have need for more explicit formulas for the operators ¢ and D/, appearing
in (8.10). It is easy to see from the definition of C. that Ql’lz X — L2([O, t], X) is
given by

¢l xo > (s — 8915x0>

0<s<t

As for ’th, what we know from (8.9) is that
LD = Mg,
where L is the bilateral Laplace transform, and where by (8.9) we know that
DyM)=¢e(.—A_)"'B, 1ep(A). (8.13)

In general for a well-posed linear system ¥ = [ %3 ] it is difficult to compute the
input-output map © explicitly from the transfer function 6(A). However for the case
here, where ®» is a simple expression in terms of the resolvent of the semigroup
generator A, from experience with the reverse direction of computing the frequency-
domain transfer function from the time-domain system equations, we conjecture that

N
D5l (s — 8/(; Ql“{Bu(r)dr) :

0<s<t

indeed this is correct, because it agrees with the observation that (8.13) is the transfer
function for the special case C&D = [¢1x 0], followed by application of (4.6) for this
special C&D.

We conclude that if (u, X, y) is a system trajectory on R with x(0) = xo, then

e | 0 s (s exts =¢ele) , DY .1,
CEAR s ©) el Pl
where the right hand side is defined in (1.15).

Let us now suppose that H is bounded strictly positive-definite solution of the

standard KYP-inequality associated with the e-regularized well-posed system X;.
Then H satisfies

) o o ([ R]<[6,)
Q:é @é LZ([OJI’[g]) Q:é @é =10 1[?([0,1]3[%]) .
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Compressing this inequality to X @ L>([0, ¢], U) and writing out [2} g,i ] yields

[0 10
0 1z2¢0.01.0)

oA B * A B
¢! 9 H 0 ¢ )

> 01
B SQ:IIX,A ECDZA,B LZ([O,t],[%]) gqx,A 892,3

L 0 el 0 el2qonu)
_Qlt thi|* [H 0 i| |:Qll %til 5 |:Q:ll* Ai| . .

= + ¢ X +
_@t @t 0 ILZ([OJ],Y) Q:[ @t @2*3 [ IX,A A,B]

n |:0 0 }
0821L2([0,t],U) ’

. 0
Subtracting [0 21

20 U)] from both sides gives (1.16) with § = &2 > 0 and this
completes the proof. 0

Acknowledgements The authors thank the anonymous referees for their helpful remarks. This work is
based on research supported in part by the National Research Foundation of South Africa (NRF) and
the DSI-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS). Any opinion,
finding and conclusion or recommendation expressed in this material is that of the authors and the NRF
and CoE-MaSS do not accept any liability in this regard.

Funding Open access funding provided by Abo Akademi University (ABO).

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. An Operator Optimization Problem

In this section we consider a general operator optimization problem used in §7. Con-
sider a contractive Hilbert space operator matrix:

o] [K K>
L_[H Tz}.[Rl}e[RJ. (A1)

In particular, the operators 77, 7> and H are contractive and hence bounded. Note that
H has a different meaning here in the appendix than in the main part of the paper.
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Further assume that H admits a factorization
Hdgomw,) = W1 W2, (A.2)

where for some auxiliary Hilbert space X, the operators Wi : dom(W;) C X — R»
and W, : dom(W;) C K1 — X are closed and densely defined. In particular, W; and
W, then have closed, densely defined adjoints W} and W, respectively. Moreover,

H |gomwy) = Wy W7,

since (A.2) implies that ran(W;) C dom(Wp), and then for all x € dom(W;) and
y € dom(W;), it holds that (W Wax, y) = (Wax, Wiy). Then W}y € dom(W}),
and the boundedness of H gives

(x, WSW{y) = (Wi Wax, y) = (x, H*Y).

Since dom(W),) is dense, Wy W[y = H*y for all y € dom(W/"). In particular, also
ran(W}) C dom(Wy).

The objective of this appendix is to study the functions S_— : X — [0, oo] and
S+ : X — [0, oo] determined by the general optimization problems

S_(xo) = { SUPhery [Wixo + Toh||> — ||h]I>  if xo € dom(W))
-0 00 if xo ¢ dom(Wy)

' - (A3)
ey k|I* = ITik||*  if xo € ran(W.
S+(X()) = {lookewz l({xo}) ” ” ” 1 ” ifxger ( 2)

if xg ¢ ran(W3).

In order to analyze these functions we define operators X; and X, on X in the
following lemma, which amounts to Lemma 7.1, but formulated in a logically more
optimal general context.

LemmaA.1 Let Ty, To, H, Wi and W3 be as above. The following are true:

(1) Assume that Wy has dense range. Then there exists a unique closable operator X
from X to Ry with dense domain equal to ran(W), ran(X;) L ker(DTz*) and

Wiltanows) = DryXi. (A4)

Moreover, ran(W>) is a core for the closure X, of X1 and ran(X;) L ker(DTz*). If
additionally Wy is injective, then X is injective too.

(2) If Wy is injective, then there exists a unique closable operator X, from X to K
with dense domain ran(W7{), ran(Xp) L ker(Dr,), and

Wz*lran(Wl*) = DT1 Xo. (A.S5)

Moreover, ran(W{") is a core for the closure X5 of Xo, whose range is still perpen-
dicular to ker(Dr,). If W» has dense range, then X, is injective.
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The proof requires the use of the Moore-Penrose generalized inverse, which we
reproduce from [10, (4.31)]; see also [22].Let W : X — R beaclosed, densely defined
Hilbert-space operator. Define the operator wT: R > dom(W") - dom(W) C X
by dom(WT) :=ran(W) & ran(W)J-,

WiWx = Pyapyrx, x €dom(W), W'| =0,

ran(W)+
where Pyeyy1 is the orthogonal projection in X onto ker(W)=L.

Proof Item (2) is obtained by applying item (1) to [ (1) (’) ] L* [ (1) (’) ] and hence we provide
a detailed proof for item (1) only.

We start with the construction of X;. The fact that L in (A.1) is contractive implies
that LT + HH* < 1g,, so that D%z* > HH*. By Douglas’ lemma, there exists a
unique contraction Y from K into R, with DT;YI = H and ran(Y) L ker(DTz*).

Next, write W; for the Moore-Penrose generalized inverse of W;. Then W; has domain
equal to ran(W5), since W5 has dense range.
Now we define

X =YW,

We claim that this operator X has the required properties. Clearly, X is a well-defined
operator with dense domain dom(X;) = ran(W,). Furthermore,

D7; Xy = Dy Y\ Wy = HW) = WiWaW) = Wi lran(ws)-

We have ran(X) C ran(Y) so that also ran(X;) L ker(DTz*). This establishes that
X has the stated properties. If X/ also has these properties, then ran(X; — X}) C
ker(DTz*) N ker(DTz*)L, so that X| = X, and uniqueness is also clear.

Next we prove that X is closable. Let {x4 }x>0 be a sequence indom(X) = ran(W>)
such that x; — 0. Assume that Xjx; — y € R». Then

lim Wixy = lim DpxXixp = Dpxy
k—>00 k—oo 2 2

since DTz* is bounded and Xjx; — y. Since Wj is closed and we have x; — 0
while Wix;y — Dr;y, we see that 0 = W0 = Dy y. Since Xjx; L ker(DTz*), also
y L ker(DTZ*). But then Dpyy = 0 implies y = 0, and hence X is closable.

Write X for the closure of X;. Then X = X; |ran(w,) and 11 follows by the deﬁilition
of the closure of a closable operator that ran(W>) is a core of X ;. Moreover, ran(X;) C
ran(X;) C ker(Dzp)*.

Let x € dom(X;) with X;x = 0. Then there exists a sequence {Xi}rez, in
dom(X;) = ran(W>) such that x; — x in X and X;x; — 0 in R;. Since DTz* is
bounded, we have

lim Wixg = lim DpxXix;y = D70 = 0.
k—o00 k—oo 2 2
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Thus xp — x and Wix; — 0. The fact that W is a closed operator implies_that
x € dom(Wp) and Wix = 0. If W is injective, then x = 0, and it follows that X is
also injective in that case. O

Let X and X& be as d_eﬁned in Lemma A.1 with closures X; and X». By Theorem
VIIL.32 in [27], X and X7 admit polar decompositions:

X =UX|| and X; = U,[Xy],
where fork =1, 2, |§k| = (XZXk)% is the positive self—adjgint square root of Xzik,

which has dom(|Yk|) = dom(Xy). If X; is injective, then X is iliective, and Uy is
then an isometry with ran(Uy) equal to the closure of the range of Xj.

Theorem A.2 Let T, T», H, W and W3 be as above with Wy injective and W» having
denie range. _Deﬁne S_ and S as in (A.3). Then ran(W5) is contained in the domains
of 1X1| and |X5|~" and we have

S—(x0) = I1Xilxol* and S (xo) = X2l %0l forxo € ran(Wa).

Moreover, ran(W5) is a core for X | and ran(W") is a core for 1Xs|.

Proof We start with the formula for S_. First note that
ran(W>) = dom(X;) € dom(X;) = dom(|X{]).

Let xg € ran(W3) and h € Ry. Then Wixg = DTZ*XIXO and

IWixo + Tah||> — |11 = | DgyXaxo + Tah|)> — |21
= Iz Xixol” + 2Re (DrXix0, Tah) + | T2k — ||A|?
= | D7y XixolI*+2Re (Dg;Xix0, Tah) = | Dp k> (A6)

Furthermore, TZ*DTZ* = Dp, Tz*, see for instance [15, p. 665], and then
(DryXixo, Tah) = (T; DryXixo, h) = (D, T; Xy x0, h) = (T3 X1 x0, D1, h),
so that

2Re (D X1xo, Tah) = 2Re (T5X1x0, Dryh)
= I T5 X x01* + | Dk l|* — 1 T5 X150 — Dy ]|

Inserting this back into (A.6), we obtain

IWixo + Tohl|* = |21 = Dy Xixoll* + 175X x0]1* — [ T5X1x0 — Dryh||?
= (1 = I T)X1x0, X1x0) + (T2 T5 X1 x0, Xi.x0)
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— IT5"X1x0 — Dpy 112
= [IXixoll* — [IT5X1x0 — Dr, /1%

Hence we find that
S—(x0) = [X1x0]* — inf |75 X1x0 — Dryhl?
1

Y 2 : 2
= [IIXilxoll* — inf |75 Xix0 — Dpy k"
hERl

It remains to show that the infimum over Rj is 0. By construction ran(Xj) L ker(DTz*),

and hence X xg is in ran(DTz*). Note that 75 maps ran(DTz*) into ran(Dr, ), since for
every w € ran(DT;), there exists a sequence v, such that DTz* vx — w and then

Tyw = lim Tz*DTz* v = lim D7, TS vi € ran(Dr, ).
k— o0 k— 00

Thus T2*X1x0 is in ran(Dr, ), and this implies that we can approximate Tz*Xlxo with
vectors of the form Dr,h, h € Ry, so that the infimum is 0, as claimed.
Now we turn to Sy. We first argue that the factorization (A.5) transfers to

W2 = X3 D, ldom(Ws)- (A7)

Indeed, for all x € ran(W]) = dom(X3) and k € dom(W>), since ran(W) C
dom(W5) and D7, is bounded, we see that

(x, Wak) = (Wyx, k) = (D1, Xox, k) = (Xox, Dr,k),

from which we see that D7,k € dom(X3) and X5 D7,k = W)k as claimed.

The polar decomposition X, = U,|X3| gives X; = |X2|U§“ by the boundedness
of U,. Hence W) = |X2|U§*DT1 |[dom(W,) and it follows that ran(W») C ran(|Xz)) =
dom(|Xy|h).

Now, for xg € ran(W,) we have

Si(xo) = inf k| — |T1k|* = inf ID7, k||?
keW{l({xo}) kedom(W2), X5 Dy k=xo

= inf vl
UEDTI dom(W>), Xﬁv:xo

Hence, we look for the infimum of || ||%el over the affine set

{v € Dy, dom(W>) | X3v = xo}.



The Infinite-Dimensional Bounded Real Lemmas... Page750f77 84

Since dom(W>) is dense, D7, bounded, and D7, dom(W>) C dom(X}) by (A.7), the
set in the infimum can be replaced by

iv € ran(Dr;) mdom(Xi) ‘ Xiv = xo} .
We thus have

S4(xp) = inf ll>>  inf vl (A.8)
veran(Dr))N(X3) = ({xo}) veX3) " ({xo})

because we in the right-hand side dropped one of the conditions on the set. More-
over, (X;)_l({xo}) = v + ker(X}) for some unique vy € ker(Xi)J— = ran(Xy) C
ran(D7,), and therefore the two infima in (A.8) are in fact both equal to lvoll?. We
next verify that vo = U2|le_1xo; indeed this vector is in ran(X3) L ker(X3) and

Xov0 = 1Xo| U5 Ua X " xo = X! X2l "L xo = xo,
where we used the isometricity of U;. Then finally
S+ (x0) = 021X x0l1* = 11X2) ™ Lxo 12

It remains only to prove that the claim regarding the core of |Xj| follows from
the corresponding property of X; established in Lemma A.1. Pick v € dom(|X;|) =
dom(Xy) arbitrarily and let D be a core for X then there exists a sequence v, € D
such that v, — v and Xzv, — Xjv. Using that Uy in the polar decomposition
X = Uklik| is isometric, we get

Xk |vn = U Xivy — UiXpv = [Xg|v,

and hence, every core for X is also a core for |§k|. O
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