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Abstract
For a compact set K ⊂ C

n , let A ⊂ C(K ) be a function algebra containing the poly-
nomials C[z1, · · · , zn]. Assuming that a certain regularity condition holds for A, we
prove a commutant-lifting theorem for A-isometries that contains the known results for
isometric subnormal tuples in its different variants as special cases, e.g., Mlak (Studia
Math. 43(3): 219–233, 1972) and Athavale (J. Oper. Theory 23(2): 339–350, 1990;
Rocky Mt. J. Math. 48(1): 2018; Complex Anal. Oper. Theory 2(3): 417–428, 2008;
NewYork J.Math. 25: 934–948, 2019). In the context of Hilbert-A-modules, our result
implies the existence of an extension map ε : HomA(S1, S2) → HomC(∂A)(H1,H2)

for hypo-Shilov-modules Si ⊂ Hi (i = 1, 2). By standard arguments, we obtain an
identification HomA(S1, S2) ∼= HomA(H1 � S1,H2 � S2) where Hi is the minimal
C(∂A)-extension of Si (i = 1, 2), provided thatH1 is projective and S2 is pure. Using
embedding techniques, we show that these results apply in particular to the domain
algebra A = A(D) = C(D)∩O(D) over a product domain D = D1×· · ·×Dk ⊂ C

n

where each factor Di is either a smoothly bounded, strictly pseudoconvex domain or a
bounded symmetric and circled domain in someCdi (1 ≤ i ≤ k). This extends known
results from the ball and polydisc-case, Guo (Studia Math. 135(1): 1–12, 1999) and
Chen and Guo (J. Oper. Theory 43: 69–81, 2000).
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1 A-Isometries

Let H be a separable complex Hilbert space. A spherical isometry is a commuting
tuple T = (T1, · · · , Tn) ∈ B(H)n of bounded linear operators onH that satisfies the
condition T ∗

1 T1 + · · · + T ∗
n Tn = 1H. Athavale proved in [3] that spherical isometries

are subnormal with normal spectrum σn(T ) conained in ∂Bn , a fact which provides
them with a natural A(Bn)-functional calculus, where A(Bn) = { f ∈ C(Bn) :
f |Bn is holomorphic} denotes the ball algebra. Replacing A(Bn) with a general func-
tion algebra A ⊂ C(K ) on a compact set K ⊂ C

n and ∂Bn with its Shilov-boundary
∂A, one arrives at the notion of A-isometry as introduced by Eschmeier in [16] (see
below for a precise definition). It is this general setting in which we will formulate
most of our results. We use the same notations as in [14] and [17]. A reader familiar
with one of these works may readily proceed with Sect. 2.

Subnormal tuples

A tuple T ∈ B(H)n is called subnormal, if there is a commuting tuple of normal
operators U ∈ B(̂H)n on a Hilbert space ̂H ⊃ H such that H is invariant for the
components of U and T = U |H. We suppose in the following that U is minimal
in the sense that the only reducing subspace for U containing H is ̂H. The normal
spectrum of T is defined as σn(T ) = σ(U ), where σ(U ) denotes the Taylor spectrum
ofU . This is independent of the special choice ofU . By a result of Putinar, the spectral
inclusion σn(T ) ⊂ σ(T ) holds. Spectral theory for normal tuples asserts the existence
of a so-called scalar spectral measure, i. e., a finite positive Borel measure μ on σ(U )

with the property that there exists an isomorphism of von Neumann algebras

�U : L∞(μ) → W ∗(U ) ⊂ B(̂H) mapping zi �→ Ui (i = 1, · · · , n),

called the L∞-functional calculus of U . (Note that such a measure μ is unique up to
mutual absolute continuity.) One then defines the restriction algebra

RT = { f ∈ L∞(μ) : �U ( f )H ⊂ H},
which is aw∗-closed subalgebra of L∞(μ) containing the polynomialsC[z] in n com-
plex vairables z = (z1, · · · , zn). By [10, Proposition 1.1], the induced w∗-continuous
algebra homomorphism

γT : RT → B(H), f �→ �U ( f )|H
is isometric again. It satisfies the following uniqueness property:

γT ( f |σn(T ))= f (T ) (whenever f ∈O(W ), W ⊂ C
n open and W ⊃ σ(T )),

(1.1)

where the symbol f (T ) on the right-hand side is meant in the sense of Tay-
lor’s holomorphic functional calculus (see, e.g., [18], Chapter 2). To see this,
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recall that the L∞-calculus �U satisfies a spectral mapping theorem of the form
σ(�U ( f1), · · · , �U ( fk)) = F(σ (U )) for every k-tuple F = ( f1, · · · , fk) ∈ C(K )k

with k ∈ N (see, e. g., [29], Section 0.3 and the references therein). A well-known
uniqueness result for Taylor’s functional calculus (cp. Theorem 5.2.4 in [18]) then
guarantees that �U ( f ) = f (U ) for every f ∈ O(W ) if W ⊂ C

n is any open set
containing σ(U ). If we even assume that W ⊃ σ(T ), we can apply Lemma 2.5.8
in [18] to the inclusion map i : H → ̂H as intertwiner of T and U to deduce that
f (U )|H = f (T ) for f ∈ O(W ). Hence the asserted uniqueness (1.1) follows.

A-subnormal tuples, A-isometries

Fix a compact set K ⊂ C
n and letC(K ) denote the algebra of all continuous complex-

valued functions equipped with the supremum norm. For a closed subalgebra A ⊂
C(K ), we write ∂A for the Shilov boundary of A, i.e. the smallest closed subset of K
such that ‖ f ‖∞,K = ‖ f ‖∞,∂A . Following Eschmeier, [16], we define:

Definition 1.1 Suppose that A ⊂ C(K ) is a closed subalgebra containing C[z]. A
subnormal tuple T ∈ B(H)n is said to be A-subnormal, if σn(T ) ⊂ K and RT ⊃ A.
If, in addition, σn(T ) ⊂ ∂A, then T is said to be an A-isometry. An A-isometry
consisting of normal operators is called A-unitary.

Natural choices for A to consider are algebras of disc-algebra type, that is,

A(D) = { f ∈ C(D) : f |D is holomorphic} ⊂ C(D),

where D ⊂ C
n is a suitably chosen bounded open set. As pointed out above, setting

A = A(Bn) yields exactly the class of spherical isometries, whereas A(Dn)-isometries
(D ⊂ C stands for the open unit disc) are precisely commuting tuples whose compo-
nents are isometric operators on H.

Let now T ∈ B(H)n be an A-subnormal tuple for A ⊂ C(K ) as in the definition,
and fix a scalar spectral measure μ of its minimal normal extension. Via trivial exten-
sion, we may regard μ as an element of M+(K ), the set of all finite regular Borel
measures on K . Since RT is w∗-closed and assumed to contain A, the restriction of
γT to the algebra

H∞
A (μ) = A

w∗ ⊂ L∞(μ)

is well defined. By the properties of γT stated above, it therefore induces an isometric
and w∗-continuous isomorphism onto its image Ta(T ) = γT (H∞

A (μ)) (the set of all
so-called analytic T -Toeplitz operators). To keep the notation simple, we denote the
induced map again by γT , and call it the canonical H∞-functional calculus of T :

γT : H∞
A (μ) → Ta(T ) ⊂ B(H), f �→ �U ( f )|H.
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A-unitary dilations

Let again T ∈ B(H)n be A-subnormal with minimal normal extension U ∈ B(̂H)n .
As a ∗-homomorphism, the map �U |C(K ) : C(K ) → B(̂H) is completely contrac-
tive, and hence so is γT |A : A → B(H), if A is regarded as an operator subspace
of C(K ). Since both embeddings A ⊂ C(K ) and A ⊂ C(∂A) induce the same oper-
ator space structure on A (see [27, Theorem 3.9]), a theorem of Arveson (see, e.g.,
[27, Corollary 7.7]) asserts that there exists an A-unitary tuple V ∈ B(K)n on aHilbert
space K ⊃ H such that

γT ( f ) = PH�V ( f )|H ( f ∈ A).

We call such a tuple an A-unitary dilation of T . When restricted to the smallest closed
subspace that containsH and reduces V , it is said to be a minimal A-unitary dilation.

2 Regularity

If T ∈ B(H)n is an A-subnormal tuple, then one can use its canonical functional
calculus γT to carry over approximation properties of the underlying function algebra
A to the algebra Ta(T ) of analytic Toeplitz operators. As it turns out, of particular
interest are approximation properties of A that are related to the so-called abstract
inner function problem. In its classical form, the inner function problem asks if there
are non-constant bounded analytic functions θ : Bn → C on the unit ball Bn such
that their radial limit θ̃ : ∂Bn → C satisfies |θ̃ | = 1 σ -a.e. (so-called inner functions).
Here, σ denotes the normalized surface measure on ∂Bn . In his celebrated work [1],
Aleksandrov succeded to solve the inner function problem for what he called “regular
triples” (A, K , μ) (cf. Corollary 29 therein and Proposition 2.6 below for a suitable
formulation in our context). The triple (A(Bn),Bn, σ ) models the classical context.
The precise definition of regularity reads as follows:

Definition 2.1 Let K ⊂ C
n compact and A ⊂ C(K ) a closed subalgebra.

(a) Forμ ∈ M+(K ), the triple (A, K , μ) is called regular (in the sense ofAleksandrov
[1]), if for every ϕ ∈ C(K ) with ϕ > 0, there is a sequence ( fk) in A satisfying
| fk | < ϕ (on K ) for all k ∈ N and limk→∞ | fk | = ϕ (μ-a.e. on K ).

(b) We call the algebra A ⊂ C(K ) itself regular, if (A, K , μ) is regular for every
measure μ ∈ M+(K ) with supp(μ) ⊂ ∂A.

Note that the condition on the support ofμ in part (b) of the preceding definition results
from the fact that the stated inclusion necessarily holds for regular triples. A concrete
source of regular triples is the following embedding criterion due to Aleksandrov:

Theorem 2.2 (Aleksandrov [2, Theorem 3]) Let A ⊂ C(K ) be a function algebra on
a compact set K . Suppose that, for some m ∈ N, there exists an injective map F ∈ Am

such that F(∂A) ⊂ ∂Bm. Then, A ⊂ C(K ) is regular.

Using this criterion, one can show that the algebra A(D) is regular for various kinds
of open sets D ⊂ C

n , among them bounded symmetric and circled domains, and



A-Isometries and Hilbert-A-Modules Over Product Domains Page 5 of 23 71

relatively compact, strictly pseudoconvex open subsets of Cn , or even of a Stein sub-
manifold of Cn (cp. [1, 2] and [11, Corollary 2.1.3 (e)]). By constructing a suitable
embedding, we show the following result for product domains:

Theorem 2.3 Let k ∈ N and Di ⊂ C
di be open sets with di ∈ N for 1 ≤ i ≤ k, each

of which is either a strictly pseudoconvex domain with C2 boundary or a bounded
symmetric and circled domain. Then the algebra A(D1×· · ·×Dk) ⊂ C(D1×· · ·×Dk)

is regular.

We first recall some basic facts about bounded symmetric domains: By definition, a
bounded domain D ⊂ C

d is symmetric if, for each z ∈ D, there exists a biholomorphic
map sz : D → D possessing z as isolated fixed point such that sz ◦ sz = idD . We
assume that D is circled at the origin, i. e., 0 ∈ D and zD ⊂ D for z ∈ C with
|z| = 1. Every set of this type is convex [24, Corollary 4.6] and the Shilov boundary
of A(D) consists precisely of those points in D with maximal Euclidean distance from
the origin in Cd [24, Theorem 6.5]. Since every finite product of bounded symmetric
and circled domains is again of this type, we only have to consider one such factor in
Theorem 2.3. To keep the notations in the proof simple, we restrict ourselves to the
case

D = D1 × D2 × D3,

where D1 and D2 are strictly pseudoconvex sets and D3 is the circled and bounded
symmetric factor. This is no restriction, since the result is well-known for k = 1 (see
the references given above), whereas the cases k = 2 and k > 3 can be handled by
straight-forward modifications of our construction described below. In the following,
we write SD = ∂A(D).

To start with, let us fix real numbers r1, r2, r3 > 0 such that

Di ⊂ ri · Bdi (1 ≤ i ≤ 2) and D3 ⊂ r3 · Bd3 , SD3 = D3 ∩ (r3 · ∂Bd3).

We first calculate the Shilov boundary of D. From the existence of peaking func-
tions for every boundary point of a strictly pseudoconvex domain (see Range
[28, Corollary VI.1.14]), it follows that SDi = ∂Di for the strictly pseudoconvex
factors i = 1, 2.

Lemma 2.4 SD = ∂D1 × ∂D2 × SD3 .

Proof Fix an arbitrary z = (z1, z2, z3) ∈ D1 × D2 × D3. Since f (·, z2, z3) ∈ A(D1),
there is a w1 ∈ ∂D1 such that | f (z1, z2, z3)| ≤ | f (w1, z2, z3)|. Repeating the
argument twice, we obtain w2 ∈ ∂D2 and w3 ∈ SD3 such that | f (z1, z2, z3)| ≤
| f (w1, w2, w3)|. This shows that ∂D1 × ∂D2 × SD3 is a boundary for A(D). Now fix
w = (w1, w2, w3) in the latter product set. To finish the proof, it suffices to observe
that h(z1, z2, z3) = h1(z1) · h2(z2) · h3(z3) is a peaking function for w, if hi ∈ A(Di )

is a peaking functions for wi (i = 1, 2, 3). For the strictly pseudoconvex factors, such
functions exist by the reference given above. For D3, we may take the restriction of a
peaking function for w3 in A(r3 · Bd3). ��
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The key ingredient in the proof of Theorem 2.3, is an embedding theorem of Løw
[25, Theorem 3]. Reduced to what we need, this theorem says the following: Given
a strictly pseudoconvex domain D ⊂ C

n with C2-boundary and a strictly positive
continuous function φ : ∂D → (0,∞), there exists a mapping g ∈ A(D)l for some
natural number l such that |g(z)| = φ(z) for every z ∈ ∂D.

Proof of Theorem 2.3 Since, by assumption, Di ⊂ ri · Bdi for i = 1, 2, the functions

φi (z) = (r2i − |z|2) 1
2 (z ∈ ∂Di , i = 1, 2) are strictly positive if | · | denotes the

Euclidean norm onCdi . By the cited theorem of Løw, we find gi ∈ A(Di )
li (i = 1, 2)

with |gi (z)| = φi (z) (z ∈ ∂Di ). Then we set r =
√

r21 + r22 + r23 and define

F(z)=(1/r) · (

z, g1(z1), g2(z2)
) ∈ C

m (z=(z1, z2, z3)∈D1 × D2×D3 = D),

to obtain an injective mapping F ∈ A(D)m with m = d1 + d2 + d3 + l1 + l2 which,
for z = (z1, z2, z3) ∈ ∂D1 × ∂D2 × r3 · ∂Bd3 , satisfies

|F(z)|2 = (1/r2) ·
(

|z1|2 + |z2|2 + r23 + (r21 − |z1|2) + (r22 − |z2|2)
)

= 1.

Together with Lemma 2.4 and the fact that SD3 ⊂ r3 · ∂Bd3 , this yields the inclusion
F(SD) ⊂ ∂Bm . The desired regularity now follows as an application of Aleksandrov’s
embedding criterion stated as Theorem 2.2 above. ��
Remark 2.5 Let F ∈ A(D)m , and let | · | denote the Euclidean norm and 〈·, ·〉 the
Euclidean scalar-product on C

m . By considering scalar-valued functions of the form
〈F(·), F(w)〉 with suitably chosen w ∈ D, one can show that |F | takes its maximum
value on the Shilov boundary SD , and that F must be constant if |F | takes itsmaximum
at some point inside D. In view if this, we can – for further reference – state some
additional properties of the map F constructed in the proof of Theorem 2.3, namely
F(D) ⊂ Bm and F(D) ⊂ Bm . Moreover, we remark that the map F : D → F(D)

is a homeomorphism, as it is a continuous bijection from a compact space onto a
Hausdorff space.

As for the scope of Theorem 2.3, we should remark that every bounded open
set D ⊂ C with C2 boundary is strictly pseudoconvex, cp. the remark at the end
of Section 1.5 in [22]. So, in particular A(D) ⊂ C(D), is regular for polydomains
D = D1 × · · · × Dk with C2-bounded domains Di ⊂ C (i = 1, · · · , k).

Now, let (A, K , μ) be a regular triple. In analogy with the classical case we define
a μ-inner function to be an element of the set

Iμ = {

θ ∈ H∞
A (μ) : |θ | = 1 (μ-a.e. on ∂A)

}

.

Our study of A-isometries in the following sections relies on a density result for
such abstract inner functions taken from [14]. It is a slight variation of Aleksan-
drov’s corresponding result [1, Corollary 29]. In its original form, it says that, given
the regularity of (A, K , μ), the w∗-closure of the set Iμ in L∞(μ) contains the set
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{[ f ]μ : f ∈ A, | f | ≤ 1 everywhere on K } supposed that μ is a continuous measure.
Continuity means in this context that every one-point set hasμ-measure zero. The key
point here is that the following result holds without any continuity assumption on μ.

Proposition 2.6 (see [14, Proposition 2.4 and Corollary 2.5]) If (A, K , μ) is a regular
triple and A ⊃ C[z]. Then we have

H∞
A (μ) = LH

w∗
(Iμ) and L∞(μ) = LH

w∗
({θη : θ, η ∈ Iμ}),

where LH
w∗

denotes the w∗-closed linear hull.

Note that, in the context of the preceding proposition, the first of these density relations
implies the second one: The w∗-closed linear hull on the right is easily seen to be a
w∗-closed subalgebra of L∞(μ) that is closed under complex conjugation. Since it
contains the restrictions of all polynomials (by the first density relation), it actually
must be all of L∞(μ).

It has turned out (cp. [14, 17, 19]) that this kind of density is exactly what is needed
for operator-theoretic applications. So we define:

Definition 2.7 Let K ⊂ C
n compact, A ⊂ C(K ) a closed subalgebra.

(a) Given a measure μ ∈ M+(K ), the triple (A, K , μ) will be called w∗-regular, if
H∞

A (μ) = LH
w∗

(Iμ), and L∞(μ) = LH
w∗

({θη : θ, η ∈ Iμ}) hold.
(b) We simply call the algbera A itselfw∗-regular, if the triple (A, K , μ) isw∗-regular

for every measure μ ∈ M+(K ) with supp(μ) ⊂ ∂A.
(c) If A ⊃ C[z], then an A-isometry is called w∗-regular, if the triple (A, K , μ) is

w∗-regular, where μ ∈ M+(∂A) denotes the scalar-valued spectral measure of a
minimal normal extension of T .

Theorem 2.3 provides natural examples of w∗-regular function algebras. Further
examples are the so called unit-modulus algebras introduced by Guo and Chen in
[9, Definition 2.4].

3 Commutant Lifting for A-Isometries

The aimof this section is to prove the following commutant-lifting theorem that applies
by the preceding section in particular to all algebras of the form A(D1 × · · · × Dn)

where each of the factors Di is either a bounded strictly pseudoconvex domain with
C2-boundary, or a bounded sysmmetric and circled domain.

Theorem 3.1 Let K ⊂ C
n be a compact set and A ⊂ C(K ) a closed, w∗-regular

subalgebra that contains C[z]. Suppose that T1 ∈ B(H1)
n is an A-subnormal tuple

withminimal A-unitary dilationU1 ∈ B(̂H1)
n and that T2 ∈ B(H2)

n is an A-isometry
with minimal normal extension U2 ∈ B(̂H2)

n. Then every operator X ∈ B(H1,H2)

satisfying

XγT1( f ) = γT2( f )X ( f ∈ A)
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possesses a unique extension to an operator ̂X ∈ B(̂H1, ̂H2) with the property that

̂X�U1( f ) = �U2( f )̂X ( f ∈ C(∂A)).

This extension satisfies ‖̂X‖ = ‖X‖. If X has dense range, then so has ̂X. If U1 is
even an A-unitary extension of T1 and, in addition, X is isometric, then so is ̂X.

The above theorem contains several known intertwining results for subnormal
isometric tuples as special cases (note that all but the last one require T1 to be an
A-isometry):

• A result of Guo (see [21, Lemma 3.6]) from the context of normal Hilbert modules.
Actually our proof is inspired by Guo’s idea. But his hypotheses are rather special:
Roughly speaking, both tuples are assumed to be spherical isometries, and the
spectral measures of their minimal normal extensions are assumed to be absolutely
continuous with respect to the surface measure of the sphere.

• An intertwining result for spherical isometries by Athavale (Proposition 8 in [3]).
More generally, the analogous result for so called ∂D-isometries introduced by
Athavale in [4], where D ⊂ C

n is a relatively compact strictly pseudoconvex
domain: Our Theorem 3.1 implies Athavale’s Theorem 3.2.
We carry out the details for the convenience of the reader: First of all, note that
A(D) is w∗-regular according to the remark preceding Theorem 2.3. Now, if
we choose a domain � ⊃ D in such a way that O(�)|D is dense in A(D)

(called HKL-superdomain in [4], see Remark 2.1 therein; for the existence, cp.
[11, Corollary 2.1.3 (b)] and the references therein), then every ∂D-isometry with
σ(T ) ⊂ � is actually an A(D)-isometry: To see this, note thatRT containsO(�),
since γT extends theO(�)-functional calculus for T as observed in (1.1), Sect. 1,
and henceRT ⊃ A(D) for density reasons. In Athavales result, two ∂D-isometries
Tk = (Tk,1, · · · , Tk,n) ∈ B(Hk)

n (k = 1, 2) are assumed to satisfy the inclusion
σ(T1) ∪ σ(T2) ⊂ � and an intertwining relation of the form

XT1,i = T2,i X (i = 1, · · · , n).

To apply our theorem, it remains to check that XγT1( f ) = γT2( f )X for every f ∈
A(D) hold in this case. But the assumed intertwining relation for the components
immediately implies that X f (T1) = f (T2)X for f ∈ O(�), where f (Tk) is built
using the holomorphic functional calculus. Again, the uniqueness of the canonical
H∞-calculi of T1 and T2 then implies that XγT1( f ) = γT2( f )X for all f ∈ O(�).
So by the density of O(�)|D in A(D), the hypothesis of Theorem 3.1 is indeed
satisfied.

• An intertwining result for so-called S�-isometries [6, Theorem 2.1]. We sketch
the main arguments: For a relatively compact, convex set � ⊂ C

n with 0 ∈ �, it
follows from the Oka-Weil theorem and radial approximation thatC[z] is dense in
A(�). So in this case, the condition RT ⊃ A(�) is always fulfilled. This shows in
particular that S�-isometries (where � is a Cartan domain of type I, II, III, or IV)
as defined by Athavale in [6] are A-isometries with A = A(�), which is known
to be regular for bounded symmetric and circled domains. Again, for uniqueness
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reasons of the involved functional calculi, a componentwise intertwining relation
implies the one assumed in our theorem. For another class of convex domains,
where the domain algebra is regular, cp. [5] (see Proposition 2.5 therein for the
regularity, and Proposition 4.6 for the corresponding commutant-lifting result).
The sets considered there are special complex ellipsoids.

• Réolon’s analogous result for K -isometries (cp. Proposition 3.5.18 in [29]) which
are by definition A-isometries with A = C[z] ⊂ C(K ), where K ⊂ C

n

compact and A is assumed to be regular in our sense. This class contains in par-
ticular finite commuting tuples of isometries, which were first treated by Mlak
[26, Proposition 5.2].

We should further remark that all but the first cited result rely on a lemma of Mlak
on spectral dilations [26, Lemma 4.1]. In contrast, we give an alternative and ele-
mentary proof by writing down an explicit formula for ̂X , based on an idea of Guo
[21, Lemma 3.6].

For the proof of Theorem 3.1, we need an operator-theoretic version of themeasure-
theoretic density assumption from Definition 2.7. To formulate it appropriately, let us
fix the following notation: Given two measures μ, ν ∈ M+(∂A) with μ � ν, let

rν
μ : L∞(ν) → L∞(μ)

denote the canonical map defined by [ f ]ν �→ [ f ]μ for every bounded measurable
function f : ∂A → C. Clearly, every rν

μ is a w∗-continuous and contractive *-homo-
morphism.

Given an A-unitary tuple U ∈ B(̂H)n with scalar-valued spectral measure μ � ν,
we denote by �ν

U the composition

�ν
U = �U ◦ rν

μ : L∞(ν) → B(̂H).

As a consequence of Proposition 2.6, we have:

Lemma 3.2 Let (A, K , ν) be a w∗-regular triple and U ∈ B(̂H)n an A-unitary tuple
with scalar-valued spectral measure μ ∈ M+(∂A) satisfying μ � ν. Then, for every
subspace H ⊂ ̂H, the set

̂H0 = LH{�ν
U (θη)h : θ, η ∈ Iν, h ∈ H} ⊂ ̂H

is the smallest closed subspace of ̂H that containsH and reducesU. (Here, LH stands
for the norm-closed linear hull in ̂H.)

Proof We first show that ̂H0 reduces U . Towards this, let θ0, η0 ∈ Iν . Obviously,
�ν
U (θ0η0) maps the set

{�ν
U (θη)h : θ, η ∈ Iν, h ∈ H}

into itself. By linearity and continuity, we may pass to LH , so

�ν
U (θη)̂H0 ⊂ ̂H0 (whenever θ, η ∈ Iν).
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Since invariant subspaces are preserved underw∗-limits, thew∗-regularity assumption
(cf. Definition 2.7) allows us to conclude that �ν

U ( f )̂H0 ⊂ ̂H0 for every f ∈ L∞(ν).
By taking f to be zi and zi (i = 1, · · · , n), we see that ̂H0 is actually reducing forU .
Standard arguments based on the theorems of Stone-Weierstraß and Lusin yield the
stated minimality. ��
Besides the above density result, an essential ingredient of the proof is the simple
observation that, for every θ ∈ Iν , the operator �ν

U (θ) is isometric, since it evidently
satisfies �ν

U (θ)∗�ν
U (θ) = �ν

U (θθ) = 1H. (Actually, it is even unitary as θ is the
inverse of θ in L∞(ν), but isometry will suffice for our purposes.)

Proof of Theorem 3.1 For k = 1, 2, let μk ∈ M+(K ) denote the trivial extensions
of scalar spectral measures of Uk to elements in M+(K ). The proof will actually
work if we replace the hypothesis on A to be a w∗-regular function algebra with
the following weaker but more technical one: There exists a measure ν ∈ M+(∂A)

such that (A, K , ν) is w∗-regular and μ1, μ2 � ν. Let us fix such a measure ν for
the rest of the proof. (Under the original hypothesis of the theorem, ν = μ1 + μ2
evidently has the desired properties.) Throughout the proof, we use the abbreviations
�ν
Uk

= �Uk ◦ rν
μk

: L∞(ν) → B(̂Hk) and γ ν
Tk

= γTk ◦ rν
μk

: H∞
A (ν) → B(H) for

k = 1, 2.
We first define ̂X on a dense subset of ̂H1 (cf. Lemma 3.2) in the obvious way,

namely

̂X

(

∑

i∈F
�ν
U1

(θ iηi )hi

)

=
∑

i∈F
�ν
U2

(θ iηi )Xhi , (3.1)

where F ⊂ N denotes a finite set and θi , ηi ∈ Iν, hi ∈ H are arbitrary elements for
i ∈ F . To see that this is well defined, we estimate the norm of the right-hand side. If
we define π = ∏

i∈F θi , then π ∈ Iν , and so the operator �ν
U2

(π) is isometric. This
yields

∥

∥

∥

∥

∥

∑

i∈F
�ν
U2

(θ iηi )Xhi

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

∑

i∈F
�ν
U2

(πθ iηi )Xhi

∥

∥

∥

∥

∥

(3.2)

From the very definition ofπ , the functionsπθ i belong to Iν for every choice of i ∈ F .
Since, in addition, X maps into H2, and U2 is an A-unitary extension of T2, we may
replace �ν

U2
with γ ν

T2
. Then we use the intertwining relation γT2( f )X = XγT1( f ) =

X PH�U1( f )|H ( f ∈ A) from the hypothesis. We restate this as

〈γT2( f )Xh, k〉 = 〈�U1( f )h, X∗k〉 ( f ∈ A, h, k ∈ H).

to see that it extends by w∗-WOT-continuity to

γ ν
T2( f )X = X PH�ν

U1
( f )|H ( f ∈ H∞

A (ν)).
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These considerations allow us to continue expression (3.2) as follows

· · · =
∥

∥

∥

∥

∥

∑

i∈F
γ ν
T2(πθ iηi )Xhi

∥

∥

∥

∥

∥

≤ ‖X‖ ·
∥

∥

∥

∥

∥

∑

i∈F
�ν
U1

(πθ iηi )hi

∥

∥

∥

∥

∥

= ‖X‖ ·
∥

∥

∥

∥

∥

∑

i∈F
�ν
U1

(θ iηi )hi

∥

∥

∥

∥

∥

, (3.3)

where we again used the isometry of�ν
U1

(π) in the last step. First of all, this shows that
̂X is indeed well defined (and then, by construction, linear) on the space F of all finite
linear combinations of vectors of the form �ν

U1
(θ iηi )hi with θi , ηi ∈ Iν, hi ∈ H1.

Moreover, the estimate derived in (3.2)–(3.3) briefly says that

‖̂Xx‖ ≤ ‖X‖ · ‖x‖ (x ∈ F). (3.4)

In particular, ̂X maps Cauchy-sequences in F ⊂ ̂H1 to Cauchy-sequences in ̂H2 and
thus can be continuously extended to a linear map on the closure F, which coincides
with ̂H1 by Lemma 3.2. This map has obviuously norm less than ‖X‖, and a look at
the assumed density (Definition 2.7 (b)) and the defining formula (3.1) for ̂X shows
that it actually has the desired intertwining property.

In view of Lemma 3.2 and (3.1), ̂X has dense range if so has X . Moreover, if
U1 is even an A-unitary extension of T1, then we may drop the operator PH in the
considerations preceding estimate (3.3). Thus, if X is isometric, then equality holds
in (3.3) and (3.4) with ‖X‖ = 1.

To finish the proof, note that an operator ̂X satisfying the intertwining relation
from the statement of the theorem necessarily fulfills ̂X�ν

U1
( f ) = �ν

U1
( f )̂X , because

C(∂A) is w∗-dense in L∞(ν). Consequently, it satisfies (3.1), and therefore coincides
with the extension constructed above. ��

When specialized to one A-isometry, Theorem 3.1 reads as follows:

Corollary 3.3 Let T ∈ B(H)n be aw∗-regular A-isometry withminimal normal exten-
sion U ∈ B(̂H)n. Then, every element X ∈ Ta(T )′ possesses a unique extension to
an element ̂X ∈ (U )′.

Combining Theorem 3.1 and Lemma 1 from [3]), we can draw another standard
conclusion in this context (cp. Athavale [3, Proposition 9]):

Corollary 3.4 If two w∗-regular A-isometries are quasi-similar, then their minimal
unitary extensions are unitarily equivalent.

4 Lifting of Module Homomorphisms

Let A ⊂ C(K ) be function algebra, i. e., a closed subalgebra of C(K ) that separates
the points of K . Recall that a Hilbert-A-module is a Hilbert space H together with a
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continuous bilinear map

A × H → H, ( f , h) �→ f · h

turning H into an A-module in the algebraical sense. Given f ∈ A, we write M f

(or MH
f , if we want to emphasize the underlying space) for the continuos linear

multiplication operatorH → H, h �→ f · h with f ∈ A. The continuous linear map
�H : A → B(H), f �→ M f will be referred to as the underlying representation of
H. The Hilbert module H is called contractive, if so is �H.

Definition 4.1 Let A ⊂ C(∂A) be a function algebra. A Hilbert-A-module S is called
a hypo-Shilov-module, if there exists a Hilbert-C(∂A)-module H such that S ⊂ H is
an A-submodule. In this case,H is called aC(∂A)-extension ofH. IfH is contractive,
S is called a Shilov module over A.

Given this definition, the following further notations are natural: The extension H

of a (hypo-)Shilov-module is called minimal, if C(∂A) · S is dense in H. A hypo-
Shilov-module is called reductive, if it is a C(∂A)-submodule of H, and pure, if no
non-zero subspace of it is reductive.

The key observation for applying Theorem 3.1 in the context of Hilbert modules is
the following simple lemma which says that A-isometries and Shilov-A-modules are
essentially the same.

Lemma 4.2 Let A ⊂ C(K ) be a closed subalgebra containing C[z].
(a) If S ⊂ H is a Shilov-A-module with minimal contractive C(∂A)-extensionH, then

Mz ∈ B(S)n is an A-isometry with minimal normal extension Mz ∈ B(H)n.
(b) Conversely, if T ∈ B(S)n is an A-isometry with minimal normal extension U ∈

B(H)n, then, introducing the multiplications A × S → S, ( f , h) �→ f · h =
γT ( f )h on H and C(∂A) × H → H, ( f , h) �→ f · h = �U ( f )h on H turns
S ⊂ H into a Shilov module over A with minimal C(∂A)-extension H.

Proof Since, in part (a), the representation �H : C(∂A) → B(H), f �→ M f is
assumed to be contractive, it is a ∗-homomorphism (see [15, Theorem 1.12]) and thus
gives rise to a normal tuple Mz = (Mz1 , · · · , Mzn ) ∈ B(H)n with Taylor spectrum
σ(Mz) ⊂ ∂A. Since S is an A-submodule of H, we have the inclusion

M f S ⊂ S (for every f ∈ A). (4.1)

This implies at first that T = Mz |S is subnormal with normal extension U = Mz ∈
B(H)n . Since, by assumption,C(∂A)·S is dense inH, it follows thatU is aminimal nor-
mal extension of T . By a Stone-Weiertraß argument, the identity �H( f ) = �U ( f ),
where �U is the canonical L∞-calculus of U (see Sect. 1) holds for all f ∈ C(∂A).
Hence the inclusion (4.1) from above actually says that RT ⊃ A as required in the
definition of an A-isometry. This observation completes the proof of part (a). Part (b)
is obvious. ��
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By an A-module homomorphism X : H → K between two Hilbert-A-modules we
mean a bounded linear map that respects the module multiplication in the sense that
X( f · h) = f · Xh whenever f ∈ A and h ∈ H. We write HomA(H,K) to denote
the set of all A-module homomorphisms fromH to K.

Let now two Shilov modules S1, S2 with minimal C(∂A)-extensions H1,H2 be
given. Using the identifications from the preceding proof, namely γTk ( f ) = MHk

f |Sk
( f ∈ A) and �Uk ( f ) = MHk

f ( f ∈ C(∂A)), the following identities are evident:

HomA(S1, S2) = {X ∈ B(S1, S2) : γT1( f )X = XγT2( f ) : f ∈ A}
HomC(∂A)(H1,H2) = {X ∈ B(H1,H2) : �U1( f )X = X�U2( f ) : f ∈ C(∂A)}.

As a last ingredient for the extension theorem we aim for (Theorem 4.4), we need the
following well-known fact:

Theorem 4.3 (cp. [15, Theorem 1.9]) Let H be a Hilbert-C(K )-module. Then H is
similar to a contractive C(K )-moduleK, i. e., there exists an invertible C(K )-module
map (a similarity map) X : H → K.

Now we are ready to prove the main result of this section. In the case A = A(Bn), this
appears as Lemma 3.6 in [21] (where it is stated for Shilov-modules only, and under
an additional continuity assumption). For a unit modulus algebra A, the corresponding
result appears as Proposition 2.5 in [9]. Our theorem contains both as special cases.

Theorem 4.4 Let Sk be hypo-Shilov modules over A with C(∂A)-extensions Hk (k =
1, 2). Suppose that A ⊃ C[z] is w∗-regular. Then there exists a map

ε : HomA(S1, S2) → HomC(∂A)(H1,H2) with ε(X)|S1 = X .

IfH1 is minimal, then ε is unique.

Proof The proof is divided into three steps.
Step I: Reduction to the minimal case. To prove the existence of ε, we may assume that
Hk are minimal C(∂A)-extensions of Sk (k = 1, 2). To see this, let Kk are arbitrary
C(∂A)-extensions of Sk , and set Hk = C(∂A) ·Kk Sk , which is minimal. Then H1
is a reducing submodule of K1, whence the projection PH1 ∈ B(K1) is a C(∂A)-
module homomorphism, as is the inclusion map iK2 : H2 → K2 (for trivial reasons).
Assuming the existence-assertion of the theorem to hold for the minimal extensions
Hk , we may set

ε′(X) = iK2 ◦ ε(X) ◦ PK1 ∈ HomC(∂A)(K1,K2) (X ∈ HomA(S1, S2))

to obtain an extension mapping ε′ : HomA(S1, S2) → HomC(∂A)(K1,K2) in the
general case. To finish the first step, we have to justify that replacingK2 withH2 does
not impose any restriction on the uniqueness assertion either: But if H1 is assumed
to be minimal (as it is in the uniqueness part), then every ̂X ∈ HomC(∂A)(H1,K2)

satisfies ̂X(C(∂A) ·S1) ⊂ C(∂A) ·S2 and thus has range inH2 = C(∂A) · S2, and may
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actually considered an element of HomC(∂A)(H1,H2). So in what follows, we may
and shall assumeHk to be a minimal extension of Sk (k = 1, 2).
Step II: Reduction to the Shilov-case. According to Theorem 4.3, we find invertible
Hilbert-C(∂A)-module maps

Sk : Hk → Kk (k = 1, 2)

onto contractive Hilbert-C(∂A)-modules. Since restrictions Sk |Sk : Sk → SkSk are
also invertible A-module maps, the vertical maps in the following diagram

HomA(S1, S2) HomC(∂A)(H1,H2)

HomA(S1S1, S2S2) HomC(∂A)(K1,K2),

C

ε

̂C
εS

which are defined as “conjugations”

C(X) = (S2|S2) ◦ X ◦ (S1|S1)−1 (X ∈ HomA(S1, S2))
̂C(̂X) = S2 ◦ ̂X ◦ S−1

1 (̂X ∈ HomC(∂A)(H1,H2))

are bijections. Assuming the theorem to hold for Shilov-modules and their minimal
extensions, there is an extensionmap εS fromHomA(S1S1, S2S2) toHomC(∂A)(K1,K2)

as stated in the theorem, which we take as the lower horizontal map of the diagram.
We define the upper horizontal map so to make the diagram commutative. To state it
explicitly,

ε(X) = S−1
2 ◦ εS

(

(S2|S2) ◦ X ◦ (S1|S1)−1) ◦ S1 (X ∈ HomA(S1, S2)).

The stated extension property ε(X)|S1 = X for X ∈ HomA(S1, S2) is obvious.
Moreover, using the diagram, it is easy to see that ε is unique with the stated extension
property if and only if so is εS with the corresponding property.
Step III: The Shilov-case with minimal extensions. So we may finally assume that Sk
are Shilov-modules with minimal C(∂A)-extensions Hk for k = 1, 2. By Lemma 4.2
(a) and the subsequent remarks on A-module homomorphisms, the statement of the
theorem is nothing but a reformulation of Theorem 3.1. Thus, the proof is complete.

��

The existence of a lifting map of the above type implies by standard arguments
the existence of an “Hom-isomorphism theorem” for hypo-Shilov-modules and their
complements (cp. [21] and [9]). To give an appropriate formulation (see Theorem 6.1
below), we need the concept of projectivity, which is introduced and studied for A(D)-
modules over product domains in the next section.
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5 Projectivity and Injectivity Over Product Domains

Let HA denote the category of Hilbert-A-modules. An object H ∈ HA is called
projective, if for every pair of objects H1,H2 ∈ HA together with A-module maps
X2 : H → H2 and X1

2 : H1 → H2 with X1
2 onto, there exists an A-module map

X1 : H → H1 such that the following diagram is commutative

H1

H H2.

X1
2

∃X1

X2

A moduleH ∈ HA is called injective, if for every pairH1,H2 ∈ HA with A-module
maps Y1 : H1 → H and Y 2

1 : H1 → H2 such that Y 2
1 is injective with closed range,

there exists an A-module map Y2 : H2 → H such that Y1 = Y2 ◦ Y 2
1 .

We refer to [7] for the homological background. Proposition 2.1.5 therein relates
the characterization of injective and projective objects to the vanishing of cohomology
groups Ext1HA

(K,H) defined as follows: Two short exact sequences

E : 0 −→ H
A−→ J

B−→ K −→ 0 and E ′ : 0 −→ H
A′−→ J′ B′−→ K −→ 0

in the categoryHA are called equivalent if there exists a morphism X ∈ HomA(J, J′)
making the diagram

E : 0 H J K 0

E ′ : 0 H J′ K 0

A

X

B

A′ B′

commutative. The first cohomology group is then defined by

Ext1HA
(K,H) = {[E]; E : 0 → H

A→ J
B→ K → 0 is an exact sequence inHA

}

.

The zero element of Ext1HA
(K,H) is the split extension

0 −→ H
iH−→ H ⊕ K

PK−→ K −→ 0,

where iH and PK denote the canonical inclusion and projection, respectively. In terms
of Ext-groups, an elementK ∈ HA is projective, if and only if Ext1HA

(K,H) = 0 for

every H ∈ HA, and injective, if and only if Ext1HA
(H,K) = 0 for every H ∈ HA.

It was shown by Carlson and Clark [8] for D = D
n , by Guo [21] for D = Bn

(under an additional continuity assumption on the underlying modules related to the
surface measure on ∂Bn) and by Eschmeier and the author [13] in full generality for
every strictly pseudoconvex bounded open set and every bounded symmetric domain
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D ⊂ C
n that Ext1HA

(K,H) = 0 and Ext1HA
(H,K) = 0, whenever H is a Hilbert-

C(SD)-module. Themain result of this section says that this remains true in the product
setting we studied in Sect. 2:

Theorem 5.1 Let k ∈ Nand Di ⊂ C
di be boundedopen setswith di ∈ N for1 ≤ i ≤ k,

each of which is either a strictly pseudoconvex domain with C5 boundary or a bounded
symmetric and circled domain, and let D = D1 × · · · × Dk be the product domain. If
H is a Hilbert-C(SD)-module, then we have

Ext1HA(D)
(K,H) = 0 and Ext1HA(D)

(H,K) = 0

for every Hilbert-A(D)-module K.

To prove this, we basically use an emedding argument similar to the one used to
deduce the bounded symmetric case from the strictly pseudoconvex one in [13] (see
the remarks preceding Corollary 3.2 therein). While the embedding used in the latter
case was the trivial one (namely, the inclusion of a bounded symmetric and circled
domain into its envelopping ball), the construction of a suitable embedding is the
non-trivial part in the product setting under consideration.

In preparation of the main construction we show the following auxiliary lemma:

Lemma 5.2 Let D1 ⊂ C
m and D2 ⊂ C

k be bounded open sets and assume that D2 is
convex. Then, the mapping

S : A(D1 × D2) −→ A(D2, A(D1)), (S f )(z2) = f (·, z2) for z2 ∈ D2

is an isometric isomorphism. Here, A(D2, A(D1)) ⊂ C(D2, A(D1)) is the closed
subspace consisting of those functions that are analytic on D2, viewed as functions
with values in the Banach space A(D1).

Proof It is elementary to check that S, viewed as amap A(D1×D2) → C(D2, A(D1))

is a well-defined isometry. To see that it actually maps into A(D2, A(D1)), we have
to make sure that S f |D2 is analytic as a function with values in A(D1). Since A(D1)

isometrically embeds as a subspace into H∞(D1) (by restriction), it suffices to check
the holomorphy of S f |D2, viewed as a map D2 → H∞(D1). But this follows from
[12, Lemma 5.4], which settles the corresponding identification H∞(D1 × D2) ∼=
H∞(D2, H∞(D1)). So the map S from the statement of the theorem is actually a
well-defined isometry. To conclude the proof, it suffices to check that S is surjective.
Towards this, let f ∈ A(D2, A(D1)) be given. Applying a suitable translation, we
may assume that D2 contains the origin. Using the uniform continuity of f , one
shows that, for r ↑ 1 (0 < r < 1), the functions fr defined by fr (z) = f (r z) which
are holomorphic on the open set Dr = (1/r) · D2 ⊃ D2 converge to f uniformly on
D2. Thus we can choose a sequence (rn) in such a way that the functions

fn = frn ∈ O(Drn , A(D1)) satisfy ‖ f − fn‖∞,D2
<

1

n
for n ≥ 1.
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In view of the well known identification O(Drn )̂⊗A(D1) ∼= O(Drn , A(D1)) (see,
e. g., [30]), where the latter space carries the topology of uniform convergence on
compact subsets, we can choose, for each n ≥ 1, a natural number kn and functions
ϕn
i ∈ O(Drn ) and hni ∈ A(D1) (1 ≤ i ≤ kn) such that

∥

∥

∥ fn − ∑kn
i=1ϕ

n
i ⊗ hni

∥

∥

∥∞,D2
<

1

n
,

where (ϕn
i ⊗ hni ) ∈ O(Drn , A(D1)) denotes the function acting as (ϕn

i ⊗ hni )(z) =
ϕn
i (z) ·hni for z ∈ Drn ). In a final approximation step, wemake use of the (polynomial)

convexity of D2 and use the Oka-Weil theorem to find polynomials (pni )1≤i≤kn inC[z]
such that

‖pni − ϕn
i ‖∞,D2

<
(

n · kn · max
i=1,··· ,kn

‖hni ‖∞,D2

)−1
(1 ≤ i ≤ kn)

for each fixed n ≥ 1. By construction, we have

∥

∥

∥ f − ∑kn
i=1 p

n
i ⊗ hni

∥

∥

∥∞,D2
<

2

n
+ ∑kn

i=1‖pni − ϕn
i ‖∞,D2

· ‖hni ‖∞,D1
<

3

n
n−→ 0.

To finish the proof, it suffices to observe that the functions gni defined by gni (z1, z2) =
pni (z1) · hni (z2) (z1 ∈ D1, z2 ∈ D2) obviously belong to A(D1 × D2) and are mapped
to pni ⊗ hni via S. This shows that S has dense range and thus is surjective, as desired.

��
The previous lemma helps us to handle the symmetric factor in the following

embedding theorem. The strictly pseudoconvex parts will be handled by combin-
ing the embedding theorems of Fornaess [20, Theorem 9] and Løw [25] with a result
of Jacóbczak [23, Theorem 1] on the existence of extension operators.

Proposition 5.3 Let D = D1×· · ·×Dk ⊂ C
n be a product domain as in the statement

of Theorem 5.1. Then there exist constants N ∈ N, r > 0 and a mapping F ∈ A(D)N

such that, with B = r · BN , the following assertions hold:

(a) F : D → F(D) ⊂ C
N is a homeomorphism.

(b) F(D) ⊂ B and F(SD) ⊂ ∂B.
(c) The composition operator CF : A(B) → A(D), f �→ f ◦ F, has dense range.

Proof As in the proof of Theorem 2.3, we may restrict ourselves to the case

D = D1 × D2 × D3 ⊂ C
d1 × C

d2 × C
d3 ,

where D1 and D2 are strictly pseudoconvex factors and D3 is a bounded symmetric
and circled open set. The proof is divided into three steps:
Step I: Reduction to the case of convex domains.All of the following assertions hold for
i = 1, 2: Since Di is a Stein compactum and hence holomorphically convex, we may
apply Fornaess’ embedding theorem [20, Theorem 9] (in the special case X = C

di ),



71 Page 18 of 23 M. Didas

to obtain holomorphic maps ψi : Cdi → C
mi and strictly convex bounded domains

Ci ⊂ C
mi with C5-boundary such that

• ψi is biholomorphic onto a closed subvariety M ′
i = ψ(Cdi ) ⊂ C

mi ,
• ψi (Di ) ⊂ Ci and ψi (C

di \ Di ) ⊂ C
mi \Ci (and consequently1 ψi (∂Di ) ⊂ ∂Ci ),

and
• M ′

i intersects ∂C transversally.

If we set Mi = ψi (Di ) and note that Mi = M ′
i ∩ Ci (with transversal intersection

at ∂Ci ), then these sets fulfill exactly the hypotheses of [23, Theorem 1] (cp. also the
Remark preceding Section 4 therein).Wewriteψ = (ψ1, ψ2) : D1×D2 → M1×M2
and consider the following commuting diagram

A(C1 × C2 × D3) A(D1 × D2 × D3)

A(D3, A(C1 × C2)) A(D3, A(M1 × M2)) A(D3, A(D1 × D2)),

∼=

R=C(ψ,id)

∼=
1⊗RM 1⊗Cψ

(5.1)
where

• the vertical maps are given by the identification established in the previous lemma,
• the map 1 ⊗ RM acts by pointwise restriction to M = M1 × M2, i. e., (1 ⊗

RM f )(z) = f (z)|M for z ∈ D3 and f ∈ A(D2, A(C1 × C2)),
• the mapping 1 ⊗ Cψ acts by pointwise application of the composition operator
Cψ : A(M1 × M2) → A(D1 × D2), f �→ f ◦ ψ ,

• the upper horizontal map R (whichwe think of as a restrictionmap) is by definition
the composition operator with the map (ψ, id) : D1×D2×D3 → C1×C2×D3.

It is elementary to check that the diagram commutes. We claim that R is surjective,
which lifts our problem to a product of convex sets (in the upper left corner). Since
1⊗Cψ is obviously a topological isomorphism (with inverse 1⊗Cψ−1 ), the difficulty
lies in checking that 1 ⊗ RM is surjective. By a result of Jacóbczak [23, Theorem 1]
(and the remark at the end of Section 3 therein), there is a continuous linear extension
operator

E : A(M1 × M2) → A(C1 × C2) such that (E f )|M = f ( f ∈ A(M1 × M2)).

Defining 1⊗E : A(D3, A(M1×M2)) → A(D3, A(C1×C2)) by the pointwise action
of E on A(D3, A(M1 × M2))-functions, we obtain a bounded linear right inverse for
1 ⊗ RM , and the claimed surjectivity follows.
Step II: Embedding a product of convex domains into a ball. Towards an application
of Løw’s embedding theorem to the sets Ci as in the proof of Theorem 2.3 on p. 4,
Let us choose ri > 0 such that Ci ⊂ ri · Bmi (i = 1, 2) and D3 ⊂ r3 · Bd3 with

1 For a strictly pseudoconvex bounded open set D ⊂ C
n , one can show that ∂D = ∂D: While “⊃”

trivially holds for all open sets, the reverse inclusion follows as an application of the maximum principle
for a strictly plurisubharmonic defining function. From the two inclusions stated in the original version of
Fornaess’ theorem we can therefore deduce that ψi (∂Di ) ⊂ ψi (Di ) ⊂ Ci and ψi (∂Di ) = ψi (∂Di ) ⊂
ψi

(

Cdi \ Di
) ⊂ Cmi \ Ci . Together, these two inclusions yieldψi (∂Di ) ⊂ ∂Ci = ∂Ci , as asserted above.
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SD3 = D3 ∩ r3 · ∂Bd3 . Then, exactly as in the cited proof, the application of Løw’s
theorem yields a map

G : C1 × C2 × D3 → C
N ,

z �→ (z, g1(z1), g2(z2)) (z = (z1, z2, z3) ∈ C1 × C2 × D3) (5.2)

with gi ∈ A(Ci )
li for suitable li ∈ N, such that with r =

√

r21 + r22 + r23 and B =
r · BN with N = m1 + m2 + d3 + l1 + l2 the following assertions hold (consider
Remark 2.5):

• G : C1 × C2 × D3 → G(C1 × C2 × D3) is a homeomorphism,
• G(SC1×C2×D3) ⊂ ∂B,
• G(C1 × C2 × D3) ⊂ B.

To argue as in the referenced proof, note that the sets Ci are strictly pseudoconvex (as
they are strictly convex, cp. p. 529 of [20]), so SC1×C2×D3 = ∂C1 × ∂C2 × (D3 ∩ r3 ·
∂Bd3). To finally obtain a map F ∈ A(D)N as in the statement of the theorem, we set

F = G ◦ (ψ, id) : D1 × D2 × D3
(ψ1,ψ2,id)−−−−−−→ C1 × C2 × D3

G−−−−→ B ⊂ C
N .

Properties (a) and (b) from the assertion of the theorem are valid by construction, so
it remains to check that (c) holds.
Step III: The range of CF : A(B) → A(D), f �→ f ◦ F is dense. By construction,
CF is the composition

CF : A(B)
CG−→ A(C1 × C2 × D3)

R−→ A(D),

where CG( f ) = f ◦G and R is the upper horizontal map from (5.1). To complete the
proof, it suffices to check thatCG : A(B) → A(C1×C2×D3)has dense range.Assum-

ing that, for a moment, it follows immediately that CF (A(B)) ⊃ R(CG(A(B))) =
R(A(C1 × C2 × D3)) = A(D), since R is surjective as we have seen in Step I.

So let us finally aim for the density of CG . After a suitable translation, we may
of course assume that the set C1 × C2 × D3 ⊂ C

m contains the origin. Using radial
approximation and the fact that the set C1 × C2 × D3 is polynomially convex, it
suffices to check that the range of CG contains the polynomials in z = (z1, · · · , zm).
Since CG is a unital algebra homomorphism, it suffices to check that the range of CG

contains the (restrictions) of the coordinate projections π1, · · · , πm : Cm → C, i. e.,
πi (z) = zi . But, by construction (see (5.2) above), G acts as the identity on the first
m components,

G(z1, · · · , zm) = (z1, · · · , zm, · · · ) ∈ C
N (z ∈ C1 × C2 × D3 ⊂ C

m),

so if we denote the coordinate functions on C
N with πN

j : CN → C, then we clearly

have πN
j |B ∈ A(B) and
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(πN
j |B) ◦ G(z) = z j = π j (z)

for j = 1, · · · ,m and z = (z1, · · · , zm) ∈ C1 × C2 × D3.

This observation finishes the proof. ��
Proof of Theorem 5.1 Let a short exact sequence E : 0 −→ H

A−→ J
B−→ K −→ 0

in the category HA(D) be given, where H extends to a C(SD)-module. For the first
statement, we have to show that there is an A(D)-module map X : J → H ⊕ K

making the diagram

E : 0 H J K 0

E ′ : 0 H H ⊕ K K 0

A

X

B

iH PK

commutative in HA(D). Towards this, let F : D → B be the embedding constructed
in Proposition 5.3. Note that H,K and J can be viewed as A(B)-modules when we
introduce the module multipliation

A(B) × H → H, ( f , h) �→ f • h = ( f ◦ F) · h,

analogously forK, J. Since F(SD) ⊂ ∂B, this module structure extends to a C(SD)-
module structure for H. As the Ext1-group is known to vanish in the ball case by
[13, Theorem 3.1], there is an A(B)-module homomorphism X making the above
diagram commuting in the category of A(B)-modules. But since the image of the
composition operator CF : A(B) → A(D), f �→ f ◦ F , has dense range, the map
X ∈ HomA(B)(J,H ⊕ K) actually turns out to be an A(D)-module homomorphism
by the continuity of the (original) module multiplication. This proves that [E] = 0 and
thus Ext1HA(D)

(K,H) = 0, as we claimed. The second half of the assertion follows
analogously. ��
As a direct consequence, by [7, Proposition 2.1.5], we have:

Corollary 5.4 Let k ∈ N and Di ⊂ C
di be bounded open sets with di ∈ N for

1 ≤ i ≤ k, each of which is either a strictly pseudoconvex domain with C5 boundary
or a bounded symmetric and circled domain, and let D = D1 × · · · × Dk. Then every
Hilbert-C(SD)-module H is projective and injective in the category HA(D).

6 A Hom-Isomorphism Theorem

Let H be a Hilbert-A-module and S ⊂ H a closed A-submodule, that is, a closed
subspace satisfying MH

f S ⊂ S for f ∈ A. If we write PS, PS⊥ ∈ B(H) for the

orthogonal projections with ranges S and S⊥, respectively, then the identity

PS⊥MH
f PS⊥MH

g − PS⊥MH
f g = PS⊥MH

f (PS⊥ − 1)MH
g = −PS⊥MH

f PSM
H
g = 0,
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valid for arbitrary f , g ∈ A shows that S⊥ carries a natural A-module structure, where
the module multiplication is given by

f ·S⊥ h = PS⊥( f · h) ( f ∈ A, h ∈ S⊥).

Furthermore, the space HomA(H1,H2) can be equipped with an A-module structure
by setting f · X = X ◦ MH1

f ( f ∈ A, X ∈ HomA(H1,H2)).

Theorem 6.1 Let A ⊂ C(∂A) be a w∗-regular function algebra containing the
polynomialsC[z], and let S1, S2 be hypo-Shilov modules over A with minimal C(∂A)-
extensions H1,H2. IfH1 is projective and S2 is pure, then the map

β : HomA(S1, S2) → HomA(S⊥
1 , S⊥

2 ), X �→ PS⊥
2
ε(X)|S⊥

1

is an isomorphism of A-modules, where ε : HomC(∂A)(H1,H2) → HomA(H1,H2)

denotes the extension map from Theorem 4.4.

Proof For the convenience of the reader, we repeat the known argument from the proof
of [21, Theorem 3.7]. The map β from the statement of the theorem is defined in such
a way that the following diagram commutes:

0 S1 H1 S⊥
1 0

0 S2 H2 S⊥
2 0

X

i1

ε(X)

P
S⊥
1

β(X)

i2
P
S⊥
2

Only the bijectivity of β requires an argument. To see that β is injective, suppose that

β(X) = 0 for some X ∈ HomA(S1, S2). It follows immediately that ε(X)H1 ⊂ S2
is a reducing submodule. Since S2 is assumed to be pure, we conclude that ε(X) = 0
and thus X = 0, as desired.

For the surjectivity, let an arbitrary Y ∈ HomA(S⊥
1 , S⊥

2 ) be given. By the assumed
projectvity ofH1, we may choose an A-module homomorphism X ′ : H1 → H2 such
that PS⊥

2
X ′ = Y PS⊥

1
. Setting X = X ′|S1, it follows that ε(X) = X ′ from uniqueness,

and so β(X) = PS⊥
2
X ′|S⊥

1 = Y . ��
The limiting factor for an application of the preceding theorem is the projectivity

of H1. In view of the fact that every C(SD)-extension of a Hilbert-A(D)-module
is projective for D ⊂ C

n if D is either (i) a bounded strictly pseudoconvex set or
(ii) a circled bounded symmetric domain (see [13, Theorem 3.1]) or (iii) a product
of finitely many such domains (Theorem 5.1), the above result allows us to extend
Guo [21, Theorem 3.7] and Chen and Guo [9, Theorem 3.5] to these kinds of sets. In
particular, the restriction to Shilov-modules and the additional continuity assumption
made in [21] to handle the ball case are not necessary.

Corollary 6.2 Let k ∈ N and Di ⊂ C
di be bounded open sets with di ∈ N for

1 ≤ i ≤ k, each of which is either a strictly pseudoconvex domainwithC5 boundary or
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a bounded symmetric and circled domain, and let A = A(D)with D = D1×· · ·×Dk.
Assume that Si are hypo-Shilov modules with minimal C(SD)-extensions Hi (i =
1, 2) and that H2 is pure. Then we have an isomorphism β : HomA(D)(S1, S2) →
HomA(D)(H1,H2) as stated in the above theorem.
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