
Complex Analysis and Operator Theory (2022) 16:15
https://doi.org/10.1007/s11785-021-01187-3

Complex Analysis
and Operator Theory

Norm Estimates for Selfadjoint Toeplitz Operators
on the Fock Space

Antonio Galbis1

Received: 11 May 2021 / Accepted: 21 November 2021 / Published online: 16 January 2022
© The Author(s) 2022

Abstract
An estimate for the norm of selfadjoint Toeplitz operators with a radial, bounded
and integrable symbol is obtained. This emphasizes the fact that the norm of such
operator is strictly less than the supremum norm of the symbol. Consequences for
time-frequency localization operators are also given.
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1 Introduction

The Bargmann-Fock space F2(C) is the Hilbert space consisting of those analytic
functions f ∈ H(C) such that

‖ f ‖2F =
∫
C

| f (z)|2e−π |z|2 d A(z) < +∞,

where d A(z) denotes the Lebesgue measure. F2(C) admits a reproducing kernel
Kw(z) = eπwz, which means that
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f (w) = 〈 f , Kw〉, f ∈ F2(C).

The normalized monomials

en(z) =
(

πn

n!
) 1

2

zn, n ≥ 0,

form an orthonormal basis. For a fixed a ∈ C the translation operator

Wa : F2(C) → F2(C), (Wa f ) (z) = f (z − a)e− π
2 |a|2+π za,

is an isometry (see [14, Proposition 2.38]). We denote dλ(z) = e−π |z|2d A(z), so
F2(C) is a closed subspace of L2(C, dλ). The orthogonal projection

P : L2(C, dλ) → F2(C)

is the integral operator

(P f ) (z) =
∫
C

f (w)Kw(z) dλ(w).

For a measurable and bounded function F on C the Toeplitz operator with symbol F
is defined as

TF ( f )(z) = P(F f )(z) =
∫
C

F(w) f (w)Kw(z) dλ(w).

The systematic study ofToeplitz operators on the Fock space started in [3,4]. Since then
it has been a very active research area.We refer to [14, Chapter 6], where boundedness
and membership in the Schatten classes is discussed.

It is obvious that

TF : F2(C) → F2(C)

is a bounded operator and

‖TF ( f )‖ ≤ ‖F f ‖L2(C,dλ) ≤ ‖F‖∞ · ‖ f ‖.
In particular, ‖TF‖ ≤ 1 whenever ‖F‖∞ ≤ 1. If moreover TF is compact, which
happens for instance when F ∈ L1(C), then ‖TF‖ is strictly less than 1 but, as far
as we know, no precise estimate for the norm is known. The main result of the paper
gives a bound for ‖TF‖ in the case that the symbol F is radial, real-valued, and
satisfies some integrability condition. For Toeplitz operators with radial symbols we
refer to [11]. Besides Toeplitz operators on the Fock space we consider time-frequency
localization operatorswithGaussianwindow, also known as anti-Wick operators. They
were introduced by Daubechies [7] as filters in signal analysis and can be obtained
from Toeplitz operators on the Fock space after applying Bargmann transform.
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2 Toeplitz Operators on the Fock Space

The Toeplitz operator defined by a real valued symbol F is self-adjoint. This is imme-
diate from the identity

〈TF ( f ), g〉 =
∫
C

F(z) f (z)g(z)dλ(z)

for all f , g ∈ F2(C). In this case we have

‖TF‖ = sup
‖ f ‖=1

|〈TF ( f ), f 〉| ≤ sup
‖ f ‖=1

∫
C

|F(z)| · | f (z)|2dλ(z).

A symbol F is said to be radial with respect to a ∈ C if F(z) = g(|z − a|) for
some bounded and measurable function g on [0,+∞). The main result of the paper
is as follows.

Theorem 1 Let F ∈ L1(C)∩ L∞(C) be a real-valued and radial symbol with respect
to a ∈ C. Then

‖TF‖ ≤ ‖F‖∞
(
1 − exp

(
− ‖F‖1

‖F‖∞

))
.

An expression for the norm of Toeplitz operators with radial symbols can be found
in [11] but it is unclear how the estimate provided by Theorem 1 can be obtained from
it.

For the proof wewill need some auxiliary results. First we observe that for |F(z)| =
g(|z|) and f = ∑∞

n=0 bnen we have, after changing to polar coordinates,

∫
C

|F(z)| · | f (z)|2dλ(z) =
∞∑
n=0

|bn|2
∫
C

g(|z|)|en(z)|2 dλ(z)

=
∞∑
n=0

|bn|22π
∫ ∞

0
g(r)πn r

2n+1

n! e−πr2 dr

=
∞∑
n=0

|bn|2
∫ ∞

0
g
(√

t

π

) tn
n!e

−t dt .

The d-dimensional Lebesgue measure of a set Ω ⊂ R
d is denoted |Ω| both for d = 1

and d = 2.

Lemma 1 Let I ⊂ [0,+∞) be a measurable set with finite Lebesgue measure. Then

1

n!
∫
I
sne−s ds ≤ 1 − e−|I |.
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Proof (a) We first assume that I is a finite union of bounded intervals. The function
h(s) = sn

n! e
−s attains its absolute maximum at s = n. Then h increases on [0, n]

and decreases on [n,+∞). We consider a ≤ n ≤ b such that

n − a = |I ∩ [0, n]| , b − n = |I ∩ [n,+∞)|.

Then

1

n!
∫
I
sne−s ds ≤

∫ b

a
h(s) ds = e−a

n!
∫ b−a

0
(t + a)ne−t dt

=
n∑

k=0

(
n

k

)
an−k

n! e−a
∫ |I |

0
tke−t dt

=
n∑

k=0

an−k

(n − k)!e
−a 1

k!
∫ |I |

0
tke−t dt

≤ sup
0≤k≤n

1

k!
∫ |I |

0
tke−t dt =

∫ |I |

0
e−t dt .

For the last identity observe that

1

k!
∫ s

0
tke−t dt = 1 − e−s

k∑
j=0

s j

j ! .

(b) For a general measurable set I with finite measure the conclusion follows from
part (a) and the fact that for every ε > 0 there is a set J , finite union of bounded
intervals, with the property that

|J \ I | + |I \ J | ≤ ε.

�

Lemma 2 Let (Ik)Nk=1 be disjoint sets with finite measure and 0 ≤ εk ≤ 1 for every
1 ≤ k ≤ N . Then, for every p ∈ N0 we have

N∑
k=1

εk

∫
Ik

t p

p!e
−t dt ≤ 1 − exp

(
−

N∑
k=1

εk |Ik |
)

.

Proof We denote by n the number of indexes k such that 0 < εk < 1 and we proceed
by induction on n. For n = 0 this is the content of Lemma 1. Let us now assume
n = 1. Let 1 ≤ j ≤ N be the coordinate with the property that 0 < ε j < and check
that

ψ(ε) :=
∑
k �= j

∫
Ik

t p

p!e
−t dt + ε

∫
I j

t p

p!e
−t dt + exp

⎛
⎝−

∑
k �= j

|Ik | − ε|I j |
⎞
⎠ ≤ 1
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for every 0 ≤ ε ≤ 1. In fact,ψ(0) ≤ 1 andψ(1) ≤ 1 follow fromLemma 1.Moreover,
the critical point ε0 of ψ satisfies

∫
I j

t p

p!e
−t dt = |I j | exp

⎛
⎝−

∑
k �= j

|Ik | − ε0|I j |
⎞
⎠ .

Hence

ψ(ε0) =
∑
k �= j

∫
Ik

t p

p!e
−t dt + ε0|I j | exp

⎛
⎝−

∑
k �= j

|Ik | − ε0|I j |
⎞
⎠

+ exp

⎛
⎝−

∑
k �= j

|Ik | − ε|I j |
⎞
⎠

=
∑
k �= j

∫
Ik

t p

p!e
−t dt + (

1 + ε0|I j |
)
exp

⎛
⎝−

∑
k �= j

|Ik | − ε|I j |
⎞
⎠ .

Since

1 + ε0|I j | ≤ exp
(
ε0|I j |

)

we conclude

ψ(ε0) ≤
∑
k �= j

∫
Ik

t p

p!e
−t dt + exp

⎛
⎝−

∑
k �= j

|Ik |
⎞
⎠ ≤ 1.

Let us assume that the Lemma holds for n = � (0 ≤ � < N ) and let n = � + 1. We
consider the function ψ : [0, 1]�+1 → R defined by

ψ(ε) :=
�+1∑
k=1

εk

∫
Ik

t p

p!e
−t dt +

∑
j

∫
J j

t p

p!e
−t dt + exp

⎛
⎝−

∑
k

εk |Ik | −
∑
j

|J j |
⎞
⎠

for ε = (ε1, . . . , ε�+1). The induction hypothesis means that ψ(ε) ≤ 1 whenever ε

is in the boundary of [0, 1]�+1. The lemma is proved after checking that ψ(ε0) ≤ 1,
where ε0 is a critical point of ψ. Proceeding as before,

ψ(ε0) =
(

�+1∑
k=1

εk |Ik | + 1

)
e−∑

k εk |Ik |e−∑
j |J j | +

∑
j

∫
J j

t p

p!e
−t dt

≤ exp

⎛
⎝−

∑
j

|J j |
⎞
⎠ +

∑
j

∫
J j

t p

p!e
−t dt ≤ 1.

�
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Proof of Theorem 1 We first assume a = 0, that is, F is radial. After replacing F by
G = F

‖F‖∞ if necessary we can assume that ‖F‖∞ = 1. Since F is radial we have

F(z) = g
(|z|). We aim to prove that

∫
C

∣∣g(|z|)∣∣ · | f (z)|2 e−π |z|2 d A(z) ≤ 1 − exp

(
−2π

∫ ∞

0
r |g(r)| dr

)

for every entire function f (z) = ∑∞
p=0 bpep such that

∑∞
p=0 |bp|2 = 1. We have

∫
C

∣∣g(|z|)∣∣ · |F(z)|2 e−π |z|2 d A(z) =
∞∑
p=0

|bp|2
∫ ∞

0

∣∣∣∣∣g
(√

t

π

)∣∣∣∣∣ · t
p

p!e
−t dt .

Let us first assume

g =
N∑

k=1

εkχIk , |εk | ≤ 1, (1)

where (Ik)Nk=1 are disjoint intervals. Then, Lemma 1 gives

∞∑
p=0

|bp|2
∫ ∞

0

∣∣∣∣∣g
(√

t

π

)∣∣∣∣∣ · t
p

p!e
−t dt ≤ 1 − exp

(
−

N∑
k=1

|εk ||Jk |
)

= 1 − exp

(
−2π

∫ ∞

0
r |g(r)| dr

)

= 1 − exp (−‖F‖1) .

We used Jk =
{
t :

√
t
π

∈ Ik
}
and |Jk | = 2π

∫
Ik
rdr . Theorem 1 is proved for g as in

(1). Let us now assume that ‖g‖∞ ≤ 1 and g ∈ L1(R+, rdr) ∩ L∞(R+). Then there
is a sequence (gn)n of step functions as in (1) such that

lim
n→∞

∫ ∞

0
|gn(r) − g(r)| rdr = 0.

We put Fn(z) := gn(|z|). According to [12, Theorem 3.5] there is a constant K > 0
such that

‖TG‖ ≤ K sup
z∈C

∫
D(z,1)

|G| d A (2)

for every bounded symbol G, which implies
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lim
n→∞ ‖TF − TFn‖ ≤ K lim

n→∞ ‖Fn − F‖1 = 0.

We finally conclude

‖TF‖ ≤ 1 − exp
( − ‖F‖1

)
.

In the case a �= 0, the identity

∫
C

g
(|z − a|)| f (z)|2dλ(z) =

∫
C

g
(|u|) |(W−a f )(u)|2 dλ(u)

and the fact that W−a is an isometry gives the conclusion. We can also argue from the
fact that W−a ◦ TF = TG ◦ W−a, where G(z) = g

(|z|). �


In particular, if Ω ⊂ C presents radial symmetry with respect to some point then

∫
Ω

| f (z)|2 dλ(z) ≤
(
1 − e−|Ω|) ·

∫
C

| f (z)|2 dλ(z) (3)

for every f ∈ F2(C).

The question arises whether inequality (3) holds for every subset Ω. This is related
to a conjecture by Abreu and Speckbacher in [1] (see the next section). We do not
have an answer to this question except for monomials or its translates.

Example 1 Let kw = e− π
2 |w|2Kw be the normalized reproducing kernel of F2(C).

Then, for every set Ω ⊂ C with finite measure we have

∫
Ω

|kw(z)|2 dλ(z) ≤ 1 − e−|Ω|.

Proof In fact, kw = Ww (e0) . Hence

∫
Ω

|kw(z)|2dλ(z) =
∫

Ω−w

dλ(z)

and the conclusion follows from the fact that the last integral attains its maximum
when Ω is a disc centered at w (see the comment after [1, Conjecture 1]). �


It is easy to check that when Ω is a disc centered at point ω the inequality in
Example 1 is an identity.

Proposition 1 Let Ω ⊂ R
2 be a set with finite measure. Then, for every n ∈ N and

a ∈ C,
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∫
Ω

|Wa(en)(z)|2 dλ(z) ≤ 1 − e−|Ω|.

Proof Since

∫
Ω

|Wa(en)(z)|2 dλ(z) =
∫

Ω−a
|en(z)|2 dλ(z)

we can assume that a = 0. For every θ ∈ [0, 2π ] we denote

Ωθ =
{
r ≥ 0 : reiθ ∈ Ω

}
.

Then

∫
Ω

|en(z)|2 dλ(z) = πn

n!
∫

Ω

∣∣zn∣∣2 e−π |z|2 d A(z)

= πn

n!
∫ 2π

0

( ∫
Ωθ

r2ne−πr22πr dr

)
dθ

2π

=
∫ 2π

0

( ∫
Iθ

tn

n!e
−t dt

)
dθ

2π
,

where

Iθ =
{
t = πr2 : r ∈ Ωθ

}
.

Since |Ω| < ∞ then a.e. θ ∈ [0, 2π ] we have

|Iθ | = 2π
∫

Ωθ

rdr < +∞.

Moreover, by Lemma 1,

∫ 2π

0

(∫
Iθ

tn

n!e
−t dt

)
dθ

2π
≤

∫ 2π

0

(
1 − e−|Iθ |) dθ

2π
.

Finally we consider the convex function f (t) = e−t − 1 and the probability measure
dθ
2π and put h(θ) = |Iθ |. Jensen’s inequality gives

f

(∫ 2π

0
h(θ)

dθ

2π

)
≤

∫ 2π

0
f (h(θ))

dθ

2π
,

which means
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∫ 2π

0

(
1 − e−|Iθ |) dθ

2π
≤ 1 − exp

(
−

∫ 2π

0
|Iθ | dθ

2π

)

= 1 − exp

(
−

∫ 2π

0

(∫
Ωθ

r dr

)
dθ

)

= 1 − e−|Ω|. �

We finish the section with some examples of setsΩ with infinite Lebesgue measure

for which the Toeplitz operator with symbol F = χΩ has norm as small as we want.

Proposition 2 For every ε > 0 there exists Ω with infinite Lebesgue measure such
that

∫
Ω

| f (z)|2dλ(z) ≤ ε

∫
C

| f (z)|2dλ(z)

for every f ∈ F2.

Proof Let K > 0 as in (2) and let (Ωn)n be a sequence of bounded sets with Lebesgue
measure |Ωn| = ε

K and such that dist(Ωn,Ωm) > 2 whenever n �= m, and take Ω =
∪n∈NΩn .Since eachdisc D(z, 1)meets atmost one setΩn wehave |Ω∩D(z, 1)| ≤ ε

K .

The estimate (2) turns out ‖TχΩ ‖ ≤ ε, which gives the conclusion. �


3 Time-Frequency Localization Operators

For F ∈ L1(C) we denote by HF : L2(R) → L2(R) the localization operator

HF f =
∫
C

F(z) 〈 f , π(z)h0〉 π(z)h0 d A(z).

Here h0(t) = 21/4e−π t2 is the Gaussian and π(z) is the time-frequency shift, defined
for z = x + iω as

(
π(z) f

)
(t) = e2π iωt f (t − x), f ∈ L2(R).

In case F is the characteristic function of a set Ω we write HΩ instead of HχΩ . We
refer to [5] or [6, Chapter 4] for general facts concerning localization operators.

For f , g ∈ L2(R), the expression

(
Vg f

)
(z) := 〈 f , π(z)g〉

is the short time Fourier transform of f with window g, known as Gabor transform
in the case where the window g = h0 is the Gaussian.

If F is real-valued then HF is a selfadjoint operator on L2(R), hence

‖HF‖ = sup
‖ f ‖2=1

|〈HF f , f 〉| ≤ sup
‖ f ‖2=1

∫
C

|F(z)| · ∣∣(Vh0 f ) (z)
∣∣2 d A(z).
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There is a connection between localization operators and Toeplitz operators on the
Fock space via the Bargmann transform.

The Bargmann transform is the surjective and unitary operator

B : L2(R) → F2(C)

defined as

(B f
)
(z) = 21/4

∫
R

f (t)e2π t z−π t2− π
2 z

2
dt .

It was introduced in [2] and has the important property that the Hermite functions are
mapped into normalized analytic monomials. More precisely, B(hn) = en, where hn
is defined via the so called Rodrigues formula as

hn(t) = 21/4√
n!

( −1

2
√

π

)n

eπ t2 dn

dtn

(
e−2π t2

)
, n ≥ 0.

Then (hn)n≥0 forms an orthonormal basis for L2(R). The Gabor transform of Hermite
functions is well-known (see for instance [9, Chapter 1.9]). In fact, for z = x + iξ,

〈hn, π(z)h0〉 = e−iπxξ− π
2 |z|2

√
πn

n! z
n . (4)

Since for z = x + iξ we have ( [10, 3.4.1])

(
Vh0 f

)
(x,−ξ) = eiπxξ · (B f

)
(z) · e− π |z|2

2

then, for every f ∈ L2(R) and F ∈ L1(C) ∩ L∞(C) we obtain

∫
C

|F(z)| · ∣∣(Vh0 f ) (z)
∣∣2 d A(z) =

∫
C

|F(z)| · ∣∣(B f
)
(z)

∣∣2 dλ(z).

Consequently, all the estimates in the previous section can be translated into estimates
concerning localization operators.

Abreu, Speckbacher conjecture in [1] that, among all the sets with a given measure,
‖HΩ‖ attains its maximumwhenΩ is a disc, up to perturbations of Lebesgue measure
zero. This turns out to be equivalent to the validity of inequality (3) for every function
in the Fock space or, equivalently, to the fact that

‖ f ‖22 ≤ e|Ω|
∫
C\Ω

∣∣(Vh0 f )(z)
∣∣2 d A(z) ∀ f ∈ L2(R).
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In this regard it is worth noting that Nazarov [13] proved the existence of two absolute
constants A, B such that

‖ f ‖22 ≤ AeB·|S|·|�|
(∫

R\S
| f |2 +

∫
R\�

| f̂ |2
)

for every f ∈ L2(R) and for any pair (S, �) of sets with finite measure. Also, it
follows from [8, Theorem 4.1] that for every set Ω ⊂ R

2 thin at infinity and for every
g ∈ L2(R) there exist a constant C > 0 such that

‖ f ‖22 ≤ C
∫
C\Ω

∣∣(Vg f )(z)∣∣2 d A(z) ∀ f ∈ L2(R).

From Theorem 1 and Proposition 1 we get the following.

Corollary 1 Let F ∈ L1(C)∩ L∞(C) be a real-valued and radial symbol with respect
to a ∈ C. Then

‖HF‖ ≤ ‖F‖∞
(
1 − exp

(
− ‖F‖1

‖F‖∞

))
.

Corollary 2 Let Ω ⊂ R
2 be a set with finite measure. Then, for every n ∈ N,

|〈HΩhn, hn〉| ≤ 1 − e−|Ω|.

We fix a non-zero window g ∈ L2(R). The modulation space M1(R), also known
as Feichtinger algebra, is the set of tempered distributions f ∈ S ′(R) such that

‖ f ‖M1 :=
∫
C

|〈 f , π(z)g〉| d A(z) < +∞.

The use of different windows g in the definition of M1(R) yields the same spaces with
equivalent norms. It is well known that M1(R) is continuously included in L2(R) and

‖ f ‖2 = ‖Vg f ‖2 ≤ ‖Vg f ‖1
whenever f ∈ M1(R) and ‖g‖2 = 1. See for instance [10, 3.2.1] for the first identity.

Proposition 3 Let Ω ⊂ R
2 be a set with finite measure. Then, for every f ∈ M1(R)

and n ∈ N0 we have

∫
Ω

∣∣(Vh0 f ) (z)
∣∣2 d A(z) ≤ ‖Vhn f ‖21 · (

1 − e−|Ω|).

Proof It suffices to prove the proposition under the additional assumption that
‖Vhn f ‖1 = 1. Fixed n ∈ N0 we consider the set

B := {π(z)hn : z ∈ C} ⊂ L2(R).
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Then

B◦ :=
{
g ∈ L2(R) : |〈g, π(z)hn〉| ≤ 1

}
=

{
g ∈ L2(R) : ‖Vhn g‖∞ ≤ 1

}
.

We have

|〈 f , g〉| = ∣∣〈Vhn f , Vhn g〉
∣∣ ≤ ‖Vhn f ‖1 · ‖Vhn g‖∞ ≤ 1

for every g ∈ B◦, which means that f ∈ B◦◦. According to the bipolar theorem,

f = L2 − lim
k→∞ fk

where each fk is in the absolutely convex hull of B. For each k ∈ Nwe can find scalars
(α j )

N
j=1 and points (z j )Nj=1 such that fk = ∑N

j=1 α jπ(z j )hn and
∑N

j=1 |α j | ≤ 1.
Then

( ∫
Ω

∣∣(Vh0 fk) (z)
∣∣2 d A(z)

) 1
2

=
( ∫

Ω

|〈 fk, π(z)ϕ〉|2 d A(z)

) 1
2

≤
N∑
j=1

|α j |
(∫

Ω

∣∣〈π(z j )hn, π(z)ϕ〉∣∣2 d A(z)

) 1
2

=
N∑
j=1

|α j |
(∫

Ω

∣∣〈hn, π(z − z j )ϕ〉∣∣2 d A(z)

) 1
2

=
N∑
j=1

|α j |
(∫

Ω−z j
|〈hn, π(z)ϕ〉|2 d A(z)

) 1
2

=
N∑
j=1

|α j |
∣∣〈HΩ−z j hn, hn〉

∣∣ 12 ≤ (
1 − e−|Ω|) 1

2 .

Finally,

∫
Ω

∣∣(Vh0 f ) (z)
∣∣2 d A(z) = lim

k→∞

∫
Ω

∣∣(Vh0 fk) (z)
∣∣2 d A(z) ≤ 1 − e−|Ω|.

�

The next result is a direct consequence of Proposition 2.

Corollary 3 For every ε > 0 there exists Ω with infinite Lebesgue measure such that

‖HΩ‖ ≤ ε.
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