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Abstract
We discuss the problem of unique determination of the finite free discrete Schrödinger
operator from its spectrum, also known as the Ambarzumian problem, with various
boundary conditions, namely any real constant boundary condition at zero and Floquet
boundary conditions of any angle. Then we prove the following Ambarzumian-type
mixed inverse spectral problem: diagonal entries except the first and second ones
and a set of two consecutive eigenvalues uniquely determine the finite free discrete
Schrödinger operator.
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1 Introduction

The Jacobi matrix is a tridiagonal matrix defined as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 0 . . . 0

a1 b2 a2
. . .

...

0 a2 b3
. . . 0

...
. . .

. . .
. . . an−1

0 . . . 0 an−1 bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.1)

where n ∈ N, ak > 0 for any k ∈ {1, 2, . . . , n − 1} and bk ∈ R for any k ∈
{1, 2, . . . , n}. When ak = 1 for each k ∈ {1, 2, . . . , n − 1}, the Jacobi matrix (1.1)
defines the finite discrete Schrödinger operator.

Inverse spectral problems aim to recover {ak}n−1
k=1 and {bk}nk=1 fromspectral informa-

tion. Ambarzumian-type problems focus on inverse spectral problems for free discrete
Schrödinger operators, i.e. ak = 1 and bk = 0 for every k, or similar caseswhen bk = 0
for some k.

The study of inverse spectral problems of Schrödinger (Sturm-Liouville) equations
goes back to Ambarzumian’s work on a finite interval [1], and there are vast and
still expanding literature on both continuous (see e.g. [8,12,13,15,20] and references
therein) and discrete (see e.g. [2–11,16,18] and references therein) settings.

In this paper, we first revisit the classical Ambarzumian problem for the finite
discrete Schödinger operator in Theorem 3.3, which says that the spectrum of the
free operator uniquely determines the operator. Then we provide a counterexample,
Example 3.4, which shows that knowledge of the spectrum of the free operator with a
nonzero boundary condition is not sufficient for unique recovery. In Theorem 3.5, we
observe that a non-zero boundary condition along with the corresponding spectrum
of the free operator is needed for the uniqueness result. However, in Theorem 3.6, we
prove that for the free operatorwith Floquet boundary conditions, the set of eigenvalues
including multiplicities is sufficient to get the uniqueness up to transpose.

We also answer the followingmixedAmbarzumian-type inverse problem positively
in Theorem 4.3.

Inverse Spectral Problem Let us consider the discrete Schrödinger matrix Sn,2 as
ak = 1 for k ∈ {1, . . . , n − 1} and b1, b2 ∈ R, bk = 0 for k ∈ {3, . . . , n}. Let us also
denote the free discrete Schrödinger operator by Fn , which is defined as ak = 1 for
k ∈ {1, . . . , n−1} and bk = 0 for k ∈ {1, . . . , n}. If Sn,2 and Fn share two consecutive
eigenvalues, then do we get b1 = b2 = 0, i.e. Sn,2 = Fn?

The paper is organized as follows. In Sect. 2 we fix our notations. In Sect. 3 we
consider the problem of unique determination of the finite free discrete Schrödinger
operator from its spectrum,with various boundary conditions, namely any real constant
boundary condition at zero, and Floquet boundary conditions of any angle. In Sect. 4
we prove the above mentioned Ambarzumian-type mixed inverse spectral problem.
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2 Notations

Let us start by fixing our notation. Let Sn represent the discrete Schrödinger matrix
of size n × n

Sn :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 · · · 0

1 b2 1
. . .

...

0 1 b3
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where bk ∈ R. Let Sn(b, B) denote the discrete Schrödinger matrix Sn satisfying
b1 = b and bn = B. Let us also introduce the following matrices:

Sn(θ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 . . . e2π iθ

1 b2 1
. . .

...

0 1 b3
. . . 0

...
. . .

. . .
. . . 1

e−2π iθ . . . 0 1 bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and Sn,m :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 0 . . . 0

1
. . . 1 0

. . . 0

0 1 bm 1
. . .

...

0 0 1 0
. . . 0

...
. . .

. . .
. . .

. . . 1
0 . . . . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us denote the free discrete Schrödinger matrix of size n × n by Fn :

Fn :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
1 0 1

. . .
...

0 1 0
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

so Fn(b, B) and Fn(θ) are defined accordingly.
In addition, let pn(x) be the characteristic polynomial of Fn with zeroes λ1, . . . , λn

and let qn(x) be the characteristic polynomial of Sn with zeroes μ1, . . . , μn . The
discrete Schrödinger matrix Sn has n distinct simple eigenvalues, so we can order the
eigenvalues as λ1 < λ2 < · · · < λn and μ1 < μ2 < · · · < μn . This property is valid
for any Jacobi matrix and can be found in [19], which provides an extensive study of
Jacobi operators.

Throughout the paper we will discuss our results via matrices using the notations
introduced above, but let us note that the matrices Sn(b, B) and Sn(θ) can be repre-
sented as difference equations.
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Remark 2.1 Given Sn , let us consider the discrete Schrödinger matrix where all bk’s
are the same as in Sn except b1 and bn are replaced by b1 + b and bn + B respectively
for b, B ∈ R, i.e.

Sn + b(δ1, ·)δ1 + B(δn, ·)δn . (2.1)

The discrete Schrödinger matrix (2.1) is given by the difference expression

fk−1 + bk fk + fk+1, k ∈ {1, · · · , n} (2.2)

with the boundary conditions

f0 = b f1 and fn+1 = B fn .

In order to get a unique difference expression with these boundary conditions for a
given discrete Schrödinger matrix, we can think of the first and the last diagonal entries
of the matrix Sn as the boundary conditions at 0 and n + 1 respectively. Therefore
Sn(b, B) denotes the discrete Schrödinger matrix with boundary conditions b at 0, B
at n + 1.

If we consider the difference expression (2.2) with the Floquet boundary conditions

f0 = fne
2π iθ and fn+1 = f1e

−2π iθ , θ ∈ [0, π)

then we get the matrix representation Sn(θ).

3 Ambarzumian problemwith various boundary conditions

Firstly let us obtain the first three leading coefficients of qn(x). This is a well-known
result, but we give a proof in order to make this section self-contained.

Lemma 3.1 The characteristic polynomial qn(x) of the discrete Schrödinger matrix
Sn has the form

qn(x) = xn −
(

n∑
i=1

bi

)
xn−1 +

⎛
⎝ ∑

1≤i< j≤n

bi b j − (n − 1)

⎞
⎠ xn−2 + Qn−2(x),

where Qn−2(x) is a polynomial of degree at most n − 2.

Proof The characteristic polynomial qn(x) is given by det(xIn − Sn). Let us consider
Liebniz’ formula for the determinants

det(A) =
∑
σ∈Sn

sgn(σ )

n∏
i=1

αi,σ (i), (3.1)
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whereA = [αi, j ] is an n×n matrix and sgn is the sign function of permutations in the
permutation group Sn . If we use (3.1) with the identity permutation, then det(xIn−Sn)
becomes

∏n
i=1(x −bi ), so we get that qn(x) is a monic polynomial and the coefficient

of xn−1 is − tr(Sn).
The coefficient of the xn−2 term of qn(x) is formed from the sum of all disjoint

pairs of ai . Hence we obtain
∑

1≤i< j≤n bi b j .

The only other permutation that will yield an xn−2 term is a transposition. However,
if |i − j | ≥ 1, then the product will be zero. Thus we are looking for transpositions
where |i − j | = 1. There are n − 1 of these, namely (1, 2), (2, 3), . . . , (n − 2, n −
1), (n − 1, n). The product is of the form

n∏
i=1

αi,σ (i) = (−1)(−1)(x − b1)(x − b2) · · · (x − bn)

(x − bi )(x − b j )
= xn−2 + rn−3(x),

where rn−3(x) is a polynomial of degree at most n − 3. Since the signature of a
transposition is negative, we derive −xn−2 for each product. Summing over all n − 1
permutations and adding to

∑
1≤i< j≤n bi b j yields our desired result. ��

Corollary 3.2 The characteristic polynomial pn(x) of the free discrete Schrödinger
matrix Fn has the form

pn(x) = xn − (n − 1)xn−2 + Pn−2(x),

where Pn−2(x) is a polynomial of degree at most n − 2.

Proof Simply set bi = 0 for each i ∈ {1, · · · , n} and apply Lemma 3.1. ��
Now let us give a proof ofAmbarzumian problemwithDirichlet-Dirichlet boundary

conditions, i.e. for the matrix Fn(0, 0) = Fn in our notation.

Theorem 3.3 Suppose Sn shares all of its eigenvalues with Fn. Then Sn = Fn.

Proof In order for the two matrices to have all the same eigenvalues, they must have
equal characteristic polynomials. Comparing the results from Lemma 3.1 to Corol-
lary 3.2, we must have

n∑
i=1

bi = 0 and
∑

1≤i< j≤n

bi b j = 0 (3.2)

This leads us to conclude that

n∑
i=1

b2i =
(

n∑
i=1

bi

)2

− 2

⎛
⎝ ∑

1≤i< j≤n

bi b j

⎞
⎠ = 0

which only occurs when all the bi are zero, i.e. Sn = Fn , since bi ∈ R for each
i ∈ {1, · · · , n}. ��
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A natural question to ask is whether or not we get the uniqueness of the free
operator with non-zero boundary conditions. After Theorem 3.3, one may expect to
get the uniqueness of a free discrete Schrödinger operator from a spectrum with non-
zero boundary condition at 0. However, this is not the case because of the following
counterexample:

Example 3.4 Let us define the discrete Schrödinger matrices

A:=
⎛
⎝
2 1 0
1 0 1
0 1 0

⎞
⎠ and B:=

⎛
⎝

−2/(1 + √
5) 1 0

1 1 1
0 1 (1 + √

5)/2

⎞
⎠ .

The matrices A and B have the same characteristic polynomial x3 − 2x2 − 2x + 2,
so they share the same spectrum.

This example shows that Theorem 3.3 is a special case, so in order to get the
uniqueness of a rank-one perturbation of the free operator, we also need to know the
non-zero boundary condition along with the spectrum.

Theorem 3.5 Suppose Sn(b, bn) shares all of its eigenvalues with Fn(b, 0). Then
Sn(b, bn) = Fn(b, 0).

Proof Comparing coefficients of characteristic polynomials of Sn(b, bn) and Fn(b, 0)
like we did in the proof of Theorem 3.3, we get

b +
n∑

i=2

bi = b and b
n∑
j=2

b j +
∑

2≤i< j≤n

bi b j = 0 (3.3)

The first equation of (3.3) gives
∑n

i=2 bi = 0 and using this in the second equation of
(3.3) we get

∑
2≤i< j≤n bi b j = 0. This leads us to conclude that

n∑
i=2

b2i =
(

n∑
i=2

bi

)2

− 2

⎛
⎝ ∑

2≤i< j≤n

bi b j

⎞
⎠ = 0

which only occurs when bi = 0 for each i ∈ {2, · · · , n}, i.e. Sn(b, bn) = Fn(b, 0). ��
Now, we approach the Ambarzumian problem with Floquet boundary conditions.

Let us recall that Sn(θ) and Fn(φ) denote a discrete Schrödinger operator and the
free discrete Schrödinger operator with Floquet boundary conditions for the angles
0 ≤ θ < 1 and 0 ≤ φ < 1, respectively.

The following theoremshows thatwithFloquet boundary conditions, the knowledge
of the spectrum of the free operator is sufficient for the uniqueness up to transpose.

Theorem 3.6 Suppose that Sn(θ) shares all of its eigenvalues with Fn(φ), including
multiplicity, for 0 ≤ θ, φ < 1. Then b1 = · · · = bn = 0 and θ ∈ {φ, 1−φ}, i.e. Sn(θ)

= Fn(φ) or FT
n(φ)
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Proof Let us define D[k, l] as the following determinant of a (l − k + 1)× (l − k + 1)
matrix for 1 ≤ k < l ≤ n:

D[k, l]:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x − bk −1 0 · · · 0

−1 x − bk+1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . x − bl−1 −1
0 · · · 0 −1 x − bl

∣∣∣∣∣∣∣∣∣∣∣∣∣
(l−k+1)

Let us consider the characteristic polynomial of Sn(θ) by using cofactor expansion
on the first row:

|xIn − Sn(θ)| = (x − b1)D[2, n] +

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 · · · 0

−1 x − b3 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . x − bn−1 −1

−e−2π iθ 0 · · · −1 x − bn

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)

+ (−1)n+1
(
−e2π iθ

)

∣∣∣∣∣∣∣∣∣∣∣∣

−1 x − b2 −1 0 · · ·
0 −1 x − b3

. . .
. . .

...
. . .

. . .
. . . −1

0 · · · 0 −1 x − bn−1

−e−2π iθ 0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)

Then by using cofactor expansions on the first row of the determinant in the second
term and on the first column of the determinant in the third term we get

|xIn − Sn(θ)| = (x − b1)D[2, n] + (−1)D[3, n] +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · · · 0

0 x − b4 −1
. . .

.

.

.

0 −1
. . .

. . . 0
.
.
.

. . .
. . .

. . . −1
−e−2π iθ 0 · · · −1 x − bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−2)

+ (−1)n+1
(
−e2π iθ

)
(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 x − b3 −1 0 · · ·
0 −1 x − b4

. . .
. . .

.

.

.
. . .

. . .
. . . −1

0 · · · . . . −1 x − bn−1

0 · · · · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−2)

+ (−1)n+1
(
−e2π iθ

)
(−1)n

(
−e−2π iθ

)
D[2, n − 1]
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Now let’s use cofactor expansion on the first column of the determinant in the third
term. We see that the determinant in the fourth term is the determinant of an upper
triangular matrix. Therefore,

|xIn − Sn(θ)| = (x − b1)D[2, n] − D[3, n]

+ (−1)n−1
(
−e2π iθ

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 · · · 0

x − b4 −1
. . .

. . .
.
.
.

−1 x − b5
. . .

. . . 0

0
. . .

. . . −1 0
−e−2π iθ 0 −1 x − bn−1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−3)

+ (−1)n+1
(
−e2π iθ

) [
(−1)(−1)n−2 + (−1)n

(
−e−2π iθ

)
D[2, n − 1]

]

Finally, observing that the determinant in the third term is that of a lower triangular
matrix, we get

|xIn − Sn(θ)| = (x − b1)D[2, n] − D[3, n] + (−1)n−1
(
−e2π iθ

)
(−1)n−3

+ (−1)2n
(
−e−2π iθ

)
+ (−1)2n+1D[2, n − 1]

= (x − b1)D[2, n] − D[3, n] − D[2, n − 1] − e2π iθ − e−2π iθ

(3.4)

At this point note that D[k, l] is the characteristic polynomial of the following discrete
Schrödinger matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

bk 1 0 · · · 0

1 bk+1 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . bl−1 1

0 · · · 0 1 bl

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore using Lemma 3.1 and Eq. (3.4), we obtain

|xIn − Sn(θ)| = xn −
(

n∑
i=1

bi

)
xn−1 +

⎛
⎝ ∑

1≤i< j≤n

bi b j − (n − 1)

⎞
⎠ xn−2

+ fn−3(x) − e2π iθ − e−2π iθ

(3.5)

where fn−3 is a polynomial of degree at most n−3, independent of θ . Using the same
steps for Fn(φ), we obtain

|xIn − Fn(φ)| = xn − (n − 1)xn−2 + gn−3(x) − e2π iφ − e−2π iφ (3.6)
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where gn−3 is a polynomial of degree at most n − 3, which is independent of φ.
Comparing Eqs. (3.5) and (3.6), like we did in the Proof of Theorem 3.3, we can

conclude that the diagonal entries {bi }ni=1 of Sn(θ) must be zero.
Note that the expression consisting of the first three terms in the right end of

(3.4), (x − b1)D[2, n] − D[3, n] − D[2, n − 1] is independent of θ . In addition, we
observed that b1 = · · · = bn = 0. Therefore using the equivalence of the characteristic
polynomials of Sn(θ) and Fn(φ), we obtain

e2π iθ + e−2π iθ = e2π iφ + e−2π iφ,

which can be written using Euler’s identity as

2 cos(2πθ) = 2 cos(2πφ). (3.7)

Equation (3.7) is valid if and only if θ differs from φ or −φ by an integer. Since
0 ≤ θ, φ < 1, the only possible values for θ are φ and 1 − φ. This completes the
proof. ��

4 An Ambarzumian-typemixed inverse spectral problem

Let us recall that Sn,m denotes the following n × n discrete Schrödinger matrix for
1 ≤ m ≤ n:

Sn,m :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 0 . . . 0

1
. . . 1 0

. . . 0

0 1 bm 1
. . .

...

0 0 1 0
. . . 0

...
. . .

. . .
. . .

. . . 1
0 . . . . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Fn denotes the free discrete Schrödinger matrix of size n × n. In this section our
goal is to answer the following Ambarzumian-type mixed spectral problem positively
for the m = 2 case.

Inverse Spectral Problem If Sn,m and Fn share m consecutive eigenvalues, then do
we get b1 = · · · = bm = 0, i.e. Sn,m = Fn?

When m = 1, this problem becomes a special case of the following result
of Gesztesy and Simon [10]. For a Jacobi matrix given as (1.1), let us consider
the sequences {ak} and {bk} as a single sequence b1, a1, b2, a2, · · · , an−1, bn =
c1, c2, · · · , c2n−1, i.e. c2k−1:=bk and c2k :=ak .

Theorem 4.1 ([10], Theorem 4.2) Suppose that 1 ≤ k ≤ n and ck+1, · · · , c2n−1 are
known, as well as k of the eigenvalues. Then c1, · · · , ck are uniquely determined.
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Proposition 4.2 Let λk = λ̃k for some k ∈ {1, 2, . . . , n − 1}. Then b1 = 0, i.e.
Sn,1 = Fn.

Proof Following the notations of Theorem 4.1, c2, · · · , c2n−1 are known for Sn,1.
Hence by letting k = 1 in Theorem 4.1, we get Sn,1 = Fn . ��

Now let us prove the m = 2 case. Let λ1 < λ2 < · · · < λn denote the eigenvalues
of Fn , and let λ̃1 < λ̃2 < · · · < λ̃n denote the eigenvalues of Sn,2.

Theorem 4.3 Let λk = λ̃k and λk+1 = λ̃k+1 for some k ∈ {1, 2, . . . , n − 1}. Then
b1 = 0 and b2 = 0, i.e. Sn,2 = Fn.

Proof We start by proving the following claim.
Claim: If λk = λ̃k and λk+1 = λ̃k+1 , then either b1 = b2 = 0 or b1 = λk + λk+1

and b2 = 1/λk + 1/λk+1.
Let us consider the characteristic polynomial of Sn,2 using cofactor expansion on

the first row of λI − Sn,2.

det(λI − Sn,2) =

(λ − b1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − b2 −1 0 . . . 0

−1 λ −1
. . .

...

0 −1 λ
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 . . . 0

−1 λ −1
. . .

...

0 −1 λ
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)

Using cofactor expansion on the first row for the first term and the first column for
the second term, we get

det(λI − Sn,2) = (λ − b1)(λ − b2) det(λI − Fn−2)

+ (λ − b1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 . . . 0

0 λ −1
. . .

...

0 −1 λ
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−2)

− det(λI − Fn−2)

Finally, using cofactor expansion on the first column of the second term, we get

det(λI − Sn,2) = [(λ − b1)(λ − b2) − 1] det(λI − Fn−2)

−(λ − b1) det(λI − Fn−3). (4.1)

Note that the cofactor expansions we derived so far are given in [10] in a more
general setting for Jacobi matrices. One just needs to look at (2.4) in [10] and keep in
mind that (2.5) in [10] takes place.
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Since λ̃k = λk and λ̃k+1 = λk+1, right hand side of (4.1) is zero when λ = λk or
λ = λk+1. Therefore for λ = λk or λ = λk+1 we get

(λ − b1)(λ − b2) − 1

λ − b1
= det(λI − Fn−3)

det(λI − Fn−2)
. (4.2)

Equation (4.2) is also valid for Fn , i.e. when b1 = b2 = 0, and the right hand
side of the equation does not depend on b1 or b2 and hence identical for Sn,2 and Fn .
Therefore the left hand side of (4.2) should also be identical for Sn,2 and Fn , when
λ̃k = λk and λ̃k+1 = λk+1. Hence,

(λ − b1)(λ − b2) − 1

λ − b1
= (λ − 0)(λ − 0) − 1

λ − 0
(4.3)

for λ = λk or λ = λk+1. Therefore,

λ(λ − b1)(λ − b2) − λ = (λ2 − 1)(λ − b1)

λ3 − (b1 + b2)λ
2 + b1b2λ − λ = λ3 − b1λ

2 − λ + b1

−b2λ
2 + b1b2λ − b1 = 0

for λ = λ1 or λ = λ2. If b2 = 0, then b1 = 0 from the last equation above, so we can
assume b2 �= 0. Then λ2 − b1λ + b1/b2 = 0 for λ = λk or λ = λk+1.

Since x2 − b1x + b1/b2 is a monic polynomial with two distinct roots x = λk and
x = λk+1, we get

x2 − b1x + b1/b2 = (x − λk)(x − λk+1)

which implies

x2 − b1x + b1/b2 = x − (λk + λk+1)x + λkλk+1

Comparing coefficients we get our claim, since b1 = λk +λk+1, and b1/b2 = λkλk+1
implies

b2 = b1
λkλk+1

= λk + λk+1

λkλk+1
= 1

λk
+ 1

λk+1

Now our goal is to get a contradiction for the second case of the claim, i.e. when
b1 = λk + λk+1 and b2 = 1/λk + 1/λk+1, so let us assume

b1 = λk + λk+1 and b2 = 1/λk + 1/λk+1.

First let us show that b1 and b2 have the same sign. If n is even and k = n/2, then
λk = −λk+1. Hence b1 = b2 = 0. If n is odd and k = (n − 1)/2 or k = (n + 1)/2,
then one of the eigenvalues λk or λk+1 is zero, so b2 is undefined. For all other values
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of k, two consecutive eigenvalues λk and λk+1 and hence b1 and b2 have the same
sign.

Without loss of generality, let us assume both λk and λk+1 are negative and b1 ≤ b2.
Let us define the matrixMn(t) with the real parameter t as follows:

Mn(t):=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−t 1 0 . . . 0

1 −t 1
. . .

...

0 1 0
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the kth eigenvalue of Mn(−b2) is greater than or equal to λ̃k , since
Mn(−b2) ≥ Sn,2. Let us also note thatMn(0) = Fn . Let us denote the kth eigenvalue of
Mn(t)byλk(t) and the corresponding eigenvector by X(t), normalized as ||X(t)|| = 1.
Since Mn(t) is a smooth function of t around 0 and λk is a simple eigenvalue of Fn ,
we get that λk(t) is a simple eigenvalue ofMn(t), λk(0) = λk , and λk(t) and X(t) are
smooth functions of t around 0 (see Theorems 9.7 and 9.8 in [14]). Let us also observe
that Mn(t) is self-adjoint, ||X(t)|| = 1 and Mn(t)X(t) = λk(t)X(t). Therefore the
Hellmann–Feynman Theorem (Theorem 1.4.7 in [17]) implies

λ′
k(t) = 〈X(t),M′

n(t)X(t)〉 = −X2
1(t) − X2

2(t), (4.4)

where X(t)T = [X1(t), X2(t), . . . , Xn(t)]. Since X(t) is a non-zero eigenvector of
the tridiagonal matrix Mn(t), at least one of X1(t) and X2(t) is non-zero. Therefore
by Eq. (4.4), there exists an open interval I ⊂ R containing 0 such that λ′

k(t) < 0
for t ∈ I , i.e. λk(t) is decreasing on I . This implies existence of 0 < t0 < − b2
satisfying

λk > λk(t0) ≥ λk(−b2) ≥ λ̃k .

This contradicts with our assumption that λk = λ̃k . Therefore only the first case of the
claim is true, i.e. b1 = b2 = 0 and hence Sn,2 = Fn . ��
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