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Abstract
Using the spectral theory on the S-spectrum it is possible to define the fractional
powers of a large class of vector operators. This possibility leads to new fractional
diffusion and evolution problems that are of particular interest for nonhomogeneous
materials where the Fourier law is not simply the negative gradient operator but it is
a nonconstant coefficients differential operator of the form

T =
3∑

�=1

e�a�(x)∂x�
, x = (x1, x2, x3) ∈ �,

where, � can be either a bounded or an unbounded domain in R
3 whose boundary

∂� is considered suitably regular, � is the closure of � and e�, for � = 1, 2, 3 are the
imaginary units of the quaternions H. The operators T� := a�(x)∂x�

, for � = 1, 2, 3,
are called the components of T and a1, a2, a3 : � ⊂ R

3 → R are the coefficients
of T . In this paper we study the generation of the fractional powers of T , denoted
by Pα(T ) for α ∈ (0, 1), when the operators T�, for � = 1, 2, 3 do not commute
among themselves. To define the fractional powers Pα(T ) of T we have to consider
the weak formulation of a suitable boundary value problem associated with the pseudo
S-resolvent operator of T . In this paperwe consider two different boundary conditions.
If � is unbounded we consider Dirichlet boundary conditions. If � is bounded we
consider the natural Robin-type boundary conditions associated with the generation of
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the fractional powers of T represented by the operator
∑3

�=1 a
2
� (x)n�(x)∂x�

+ a(x)I ,
for x ∈ ∂�, where I is the identity operator, a : ∂� → R is a given function and
n = (n1, n2, n3) is the outward unit normal vector to ∂�. The Robin-type boundary
conditions associated with the generation of the fractional powers of T are, in general,
different from the Robin boundary conditions associated to the heat diffusion problem
which leads to operators of the type

∑3
�=1 a�(x)n�(x)∂x�

+ b(x)I , x ∈ ∂�. For this
reason we also discuss the conditions on the coefficients a1, a2, a3 : � ⊂ R

3 → R of
T and on the coefficient b : ∂� → R so that the fractional powers of T are compatible
with the physical Robin boundary conditions for the heat equations.

Keywords Fractional powers of vector operators · S-spectrum · S-spectrum
approach · Fractional diffusion processes · Robin boundary conditions

Mathematics Subject Classification 47A10 · 47A60

1 Introduction

Fractional diffusion and fractional evolution equations take into account nonlocal
phenomena giving a better description of the physical realitywith respect to differential
laws.Themost successful variationof the heat equation that takes into account nonlocal
effects is the fractional heat equation where the Laplace operator is replaced by the
fractional Laplacian. There are several ways to define fractional powers of operators
which are, in general, not equivalent. Using the spectral theory on the S-spectrum,
see [3,16,17,22], a new class of fractional diffusion and evolution problems can be
considered. In particular the S-spectrum approach to fractional diffusion problems
has been considered in [16] where the fractional powers of quaternionic operators are
systematically treated.

Using these new techniques based on the S-spectrumwe can generate the fractional
Fourier laws starting from the differential Fourier law and the associated boundary con-
ditions.Thismethodhas the advantage tomodify only theFourier lawwithout changing
the conservation of energy laws in the fractional heat equation for nonhomogeneous
materials. To recall this method and its advantages we need some notation. An element
in the quaternions H is of the form s = s0 + s1e1 + s2e2 + s3e3, where s0, s� are real
numbers (� = 1, 2, 3), Re(s) := s0 denotes the real part of s and e�, for � = 1, 2, 3,
are the imaginary units which satisfy the relations: e21 = e22 = e23 = e1e2e3 = −1.
The modulus of s is defined as |s| = (s20 + s21 + s22 + s23 )

1/2 and the conjugate is given
by s = s0 − s1e1 − s2e2 − s3e3. In the sequel we will denote by S the unit sphere of
purely imaginary quaternions, an element j in S is such that j2 = −1.

With our approach� can be either a bounded or an unbounded domain inR
3 whose

boundary ∂� is sufficiently regular, � denotes the closure of �. We consider vector
operators of the form
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T =
3∑

�=1

e�T�, (1.1)

where the components T� of T , � = 1, 2, 3, are defined by T� := a�(x)∂x�
, x ∈ �,

and we suppose that the coefficient a1, a2, a3 : � ⊂ R
3 → R of T are not necessarily

nonconstant. From the physical point of view the operator T , defined in (1.1), can
represent the Fourier law for nonhomogeneous materials, but it can represent also
different physical laws. In general the operator T models the way the flux varies
in a linear isotropic or anisotropic diffusion problem. Our goal is to generate the
fractional powers of T when the operators T�, for � = 1, 2, 3 do not commute among
themselves. The vector part of the fractional powers Pα(T ), for α ∈ (0, 1), of T is
called the fractional Fourier law associated with T .

It is important to observe that using the spectral theory on the S-spectrum to define
the fractional powers of a vector operator T , one has to specify the boundary conditions
associated with the operator T . When T is the Fourier law for the heat diffusion
problems with the homogeneous Dirichlet boundary condition, there are no further
boundary conditions that are necessary to generate the fractional powers of T . In the
case � is bounded we studied this problem in the papers [14,18,19]. In this paper we
consider the case in which � is unbounded.

In the paper [20] we have studies the fractional powers of T with Robin-type
boundary conditions, where� is bounded, and the components T�, of T , for � = 1, 2, 3
commute among themselves. It turns out that the Robin-type boundary conditions
necessary to generate the fractional powers of T and the classical Robin boundary
conditions of the heat equation are different. In this paper we study the generation of
the fractional powers when the components T�, of T , for � = 1, 2, 3 do not commute
among themselves and the relation between the two type Robin boundary conditions.

In order to set the problem we need some results of the spectral theory on the
S-spectrum. We will work in an Hilbert space but our techniques allow to define the
fractional powers of operators in quaternionic Banach spaces.

2 Problems andmain results on the fractional powers of vector
operators

We consider a two-sided quaternionic Banach space V and we denote the set of closed
quaternionic right linear operators on V by K(V ). The Banach space of all bounded
right linear operators on V is indicated by the symbol B(V ) and is endowed with the
natural operator norm. For T ∈ K(V ), we define the operator associated with the
S-spectrum as:

Qs(T ) := T 2 − 2Re(s)T + |s|2I, for s ∈ H (2.1)

where Qs(T ) : D(T 2) → V , where D(T 2) is the domain of T 2. We define the
S-resolvent set of T as

ρS(T ) := {s ∈ H : Qs(T ) is invertible and Qs(T )−1 ∈ B(V )}
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and the S-spectrum of T as

σS(T ) := H\ρS(T ).

The operator Qs(T )−1 is called the pseudo S-resolvent operator. For s ∈ ρS(T ),
the left S-resolvent operator is defined as

S−1
L (s, T ) := Qs(T )−1s − TQs(T )−1 (2.2)

and the right S-resolvent operator is given by

S−1
R (s, T ) := −(T − Is)Qs(T )−1. (2.3)

The fractional powers of T , denoted by Pα(T ), are defined as follows: for any
j ∈ S, for α ∈ (0, 1) and v ∈ D(T ) we set

Pα(T )v := 1

2π

∫

− jR
S−1
L (s, T ) ds j s

α−1T v, (2.4)

or

Pα(T )v := 1

2π

∫

− jR
sα−1 ds j S

−1
R (s, T )T v, (2.5)

where ds j = ds/ j . These formulas are a consequence of the quaternionic version
of the H∞-functional calculus based on the S-spectrum, see the book [16] for more
details. For the generation of the fractional powers Pα(T ) a crucial assumption on the
S-resolvent operators is that, for s ∈ H\{0} with Re(s) = 0, the estimates

∥∥∥S−1
L (s, T )

∥∥∥B(V )
≤ 	

|s| and
∥∥∥S−1

R (s, T )

∥∥∥B(V )
≤ 	

|s| , (2.6)

hold with a constant	 > 0 that does not depend on the quaternion s. It is important to
observe that the conditions (2.6) assure that the integrals (2.4) and (2.5) are convergent
and so the fractional powers are well defined.

For the definition of the fractional powers of the operator T we can use equivalently
the integral representation in (2.4) or the one in (2.5). Moreover, they correspond to
a modified version of Balakrishnan’s formula that takes only spectral points with
positive real part into account.

A crucial problem is to determine the conditions on the coefficients a1, a2, a3 : � ⊂
R
3 → R, of the operator T defined in (1.1), such that the purely imaginary quaternions

are in the S-resolvent set ρS(T ). This is a necessary condition, see formulas (2.4) and
(2.5), since in the quaternionic case the map s �→ sα , for α ∈ (0, 1) is not defined for
s ∈ (−∞, 0) and, unlike in the complex setting, it is not possible to choose different
branches of sα in order to avoid this problem. For this reason it is of great importance
to assume the condition Re(s) ≥ 0 that avoids the half real line (−∞, 0].

Regarding the boundary conditions of Robin-type, we will study the following
problem associated with the fractional powers of the operator T .
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Problem 2.1 (Existence of the fractional powers with Robin-like boundary condi-
tions). Let � be a bounded domain. Let T be the vector operators defined in (1.1)
where the coefficients a1, a2, a3 : � ⊂ R

3 → R are suitable regular functions. Let
F : � → H be a given function and denote by u : � → H the unknown function
satisfying the boundary value problem:

{ (
T 2 − 2s0T + |s|2I)u(x) = F(x), x ∈ �,∑3

�=1 a
2
� (x)n�(x)∂x�

u(x) + a(x)u(x) = 0, x ∈ ∂�,
(2.7)

where a : ∂� → R is a given function and n = (n1, n2, n3) is the outward unit
normal vector to ∂�.

(I) Determine the conditions on the coefficients a : ∂� → R, a1, a2, a3 : � ⊂ R
3 →

R such that the boundary value problem (2.7) has a unique solution in a suitable
function space when Re(s) = 0.

(II) Under the conditions in (I) determine the conditions on the coefficients such that
the S-resolvent operators satisfy the estimates (2.6).

(III) Given the stationary heat equation for nonhomogeneous materials with Robin
boundary conditions:

{
div T (x)v(x) = 0, x ∈ �,

b(x)v(x) +∑3
�=1 a�(x)n�(x)∂x�

v(x) = 0, x ∈ ∂�,
(2.8)

where v : � → R, n = (n1, n2, n3) is the outward unit normal vector to ∂�

and b : ∂� → R is a given continuous function, determine the conditions on the
coefficients a, b : ∂� → R, a1, a2, a3 : � ⊂ R

3 → R such that the boundary
condition in (2.8) implies the boundary condition in (2.7) (see Remark 2.2).

Remark 2.2 The operator

3∑

�=1

a2� (x)n�(x)∂x�

is associated with the boundary condition of problem (2.7) that naturally arises in the
definition of the bilinear form associated with the existence of the pseudo S-resolvent
operator as a bounded linear operator, while the operator

n · T (x) =
3∑

�=1

a�(x)n�(x)∂x�

in associated with the boundary condition of the problem (2.8) that naturally arises as
a physical flux condition.

Remark 2.3 In the paper [20] we have investigated some possible solutions of the
boundary value problem (2.7), in different Hilbert spaces, depending on the spectral
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parameter s ∈ Hwhere the operator T = ∑3
�=1 e�T�, defined in (1.1), has commuting

components T�, for � = 1, 2, 3. Such analysis can be done also when the components
T�, for � = 1, 2, 3 do not commute. In this paper we focus our attention on the spectral
problem where s ∈ H and Re(s) = 0 because this is the case of interest for the
definitions (2.4) with (2.5) so that we can generate the fractional powers of T .

Regarding the boundary Dirichlet conditions for the unbounded domains, we will
study the following problem associated with the fractional powers of the operator T .

Problem 2.4 (Existence of the fractional powers with Dirichlet boundary conditions
for unbounded domains) Let� be an unbounded domain. Let T be the vector operator
defined in (1.1) where the coefficients a1, a2, a3 : � ⊂ R

3 → R are suitable regular
functions. Let F : � → H be a given function and denote by u : � → H the unknown
function satisfying the boundary value problem:

{ (
T 2 − 2s0T + |s|2I)u(x) = F(x), x ∈ �,

u(x) = 0, x ∈ ∂�.
(2.9)

(I) Determine the conditions on the coefficients a1, a2, a3 : � ⊂ R
3 → R such that

the boundary value problem (2.9) has a unique solution in a suitable function space
when Re(s) = 0.

(II) Under the conditions in (I) determine the conditions on the coefficients such that
the S-resolvent operators satisfy the estimates (2.6).

2.1 Summary of themain results of the paper

In Sect. 3 we give the weak formulation of Problems 2.1 and 2.4. In Sect. 4 we prove,
under the condition a ∈ C0(∂�, R) and on the coefficients a1, a2, a3 ∈ C1(�, R) of
the operator T defined in (1.1), the existence and the uniqueness of the weak solutions
of the problems and suitable estimates on the pseudo S-resolvent operators. Precisely
we summarize the results in the following points.

(A) The existence and uniqueness of the weak solution of Problem 2.1 is stated in
Theorem 4.4 where we define the constants

CT := min
�=1,2,3

inf
x∈�

(a2� (x)), C ′
T :=

3∑

i,�=1

‖a�∂x�
ai‖∞, Ka,� := C2

∂�‖a‖∞,

where ‖ · ‖∞ denotes the sup norm, and we assume

CT − C ′
TCP − Ka,�

(
1 + C2

P

)
> 0 and CT > 0,

whereCP is the Poincaré-Wirtinger constant andC∂� are a given constant that depends
on ∂�. Under the above conditions the boundary value Problem (2.7) has a unique
weak solution u ∈ H(�, H) := {

u ∈ H1(�, H) : ∫
�
u(x)dx = 0

}
, for s ∈ H\{0}

with Re(s) = 0.
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(B) In the case we work on unbounded domains the weak solution to Problems
2.4 is stated in Theorem 4.9, i.e., the boundary value Problem (2.9) has a unique
weak solution u ∈ H1

0 (�, H), for s ∈ H\{0} with Re(s) = 0 when we assume that
a1, a2, a3 ∈ C1(�, R) ∩ L∞(�)

M :=
3∑

i, j=1

‖ai∂xi (a j )‖L3(�) < +∞, CT − 4M > 0, CT > 0.

Observe that the condition M < +∞, in the case of the unbounded domains, is nec-
essary to get the estimate (4.25) through the Sobolev-Gagliardo-Nirenberg inequality.

(C) In both cases (A) and (B) we proved the following estimates

‖u‖2L2 ≤ 1

s2
Re(bs(u, u)), ‖T (u)‖2L2 ≤ c Re(bs(u, u)),

where c > 0 is a given constant, bs(u, u) is the bilinear form associated with the weak
formulation of the problems and the estimates hold for all s ∈ H\{0} with Re(s) = 0
.

(D) In Sect. 5, based on the estimates in point (C), we prove the estimates (2.6)
for the S-resolvent operators and we define the fractional powers of T using formula
(2.4) or equivalently using (2.5).

(E) Finally, consider the point (III) of the Problem 2.1. Suppose that there exists a
constant μ such that the functions a1, a2, a3 satisfy the conditions

a1(x) = a2(x) = a3(x) = μ for all x ∈ ∂� (2.10)

and the coefficients a and b are such that

a(x) = μb(x) for all x ∈ ∂�. (2.11)

Then the relation
∑3

�=1 a�(x)n�(x)∂x�
+b(x)I = 0, implies

∑3
�=1 a

2
� (x)n�(x)∂x�

+
a(x)I = 0, for x ∈ ∂�. Observe that, using (2.10) and (2.11), for x ∈ ∂�, we have

3∑

�=1

a2� (x)n�(x)∂x�
+ a(x)I = μ2

3∑

�=1

n�(x)

∂x�
+ μb(x)I = μ

( 3∑

�=1

a�(x)n�(x)∂x�
+ b(x)I

)
. (2.12)

3 The weak formulation of the Problems 2.1 and 2.4

In the following � can be either a bounded or an unbounded domain of R
3 according

to the problem that we will consider. The boundary ∂� of � is assumed to be of class
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C1 even though for some lemmas in the sequel the conditions on the open set � can
be weakened. We define

L p := L p(�, H) :=
{
u : � → H :

∫

�

|u(x)|p dx < +∞
}

.

The space L2 with the scalar product:

〈u, v〉L2 := 〈u, v〉L2(�,H) :=
∫

�

u(x)v(x) dx,

where u(x) = u0(x) + u1(x)e1 + u2(x)e2 + u3(x)e3 and v(x) = v0(x) + v1(x)e1 +
v2(x)e2 + v3(x)e3 for x = (x1, x2, x3) ∈ � is a Hilbert space. We furthermore
introduce the quaternionic Sobolev space

H1 := H1(�, H) :=
{
u ∈ L2(�, H) : ∃ g�, j (x) ∈ L2(�, R), � = 1, 2, 3, j = 0, 1, 2, 3

such that
∫

�

u j (x)∂x�
ϕ(x)dx = −

∫

�

g�, j (x)ϕ(x)dx, ∀ϕ ∈ C∞
c (�, R)

}
,

where C∞
c (�, R) is the set of real-valued infinitely differentiable functions with com-

pact support on �. If u ∈ H1 then ∂x�
(u j ) = g� j for � = 1, 2, 3, and j= 0, 1, 2, 3.

With the quaternionic scalar product

〈u, v〉H1 := 〈u, v〉H1(�,H) := 〈u, v〉L2 +
3∑

�=1

〈
∂x�

u, ∂x�
v
〉
L2 ,

we have that H1(�, H) becomes a quaternionic Hilbert space and the norm is defined
by

‖u‖2H1 := ‖u‖2H1(�,H)
:= ‖u‖2L2 + ‖u‖2D,

where we have set

‖u‖2D :=
3∑

�=1

∥∥∂x�
u
∥∥2
L2 .

As usual the space H1
0 (�, H) is the closure of the space C∞

0 (�, H) in H1(�, H)

with respect to the norm ‖ ·‖H1 . Now we give to the problems (2.7) and (2.9) the weak
formulations in order to apply the Lax-Milgram lemma in the space H1(�, H) and
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H1
0 (�, H), respectively. From the Definition 1.1 of the operator T , we have

Qs(T ) = T 2 − 2s0T + |s|2I
= (−(a1∂x1)

2 − (a2∂x2)
2 − (a3∂x3)

2)

+e1(a3∂x3(a2)∂x2 − a2∂x2(a3)∂x3) + e2(a3∂x3(a1)∂x1 − a1∂x1(a3)∂x3)

+e3(a1∂x1(a2)∂x2 − a2∂x2(a1)∂x1) − 2s0T + |s|2I,

where

Scal(Qs(T )) := (−(a1(x)∂x1)
2 − (a2(x2)∂x )

2 − (a3(x3)∂x )
2 + |s|2)I

is the scalar part of Qs(T ) and

Vect(Qs(T )) := e1(a3∂x3(a2)∂x2 − a2∂x2(a3)∂x3) + e2(a3∂x3(a1)∂x1 − a1∂x1(a3)∂x3)

+e3(a1∂x1(a2)∂x2 − a2∂x2(a1)∂x1) − 2s0T

is the vector part. We consider the bilinear form

〈Qs(T )u, v〉L2 =
∫

�

Qs(T )u(x)v(x) dx

for functions u, v in class C2(�, H). Using the definition of Qs(T ) we have

〈Qs(T )u, v〉L2 = 〈T 2u, v〉L2 − 2s0〈Tu, v〉L2 + |s|2〈u, v〉L2 .

Integrating by parts we obtain

〈Scal(Qs(T ))u, v〉L2 =
3∑

�=1

∫

�

a�(x)∂x�
(u(x))

(
∂x�

a�(x)
)
v(x) dx

+
3∑

�=1

∫

�

a�(x)∂x�
(u(x))a�(x)∂x�

v(x) dx

−
3∑

�=1

∫

∂�

n�(x)a
2
� (x)

(
∂x�

u(x)
)

v(x) dS(x) + |s|2〈u, v〉L2 ,
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wheredS(x) is the infinitesimal surface area of ∂�. Ifweuse the boundary condition
in (2.7), i.e.,

∑3
�=1 a

2
� (x)n�(x)u(x)∂x�

+ a(x)u(x) = 0, we get

〈Scal(Qs(T ))u, v〉L2 = 1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x)

)
v(x) dx

+
3∑

�=1

∫

�

a�(x)∂x�
(u(x)) a�(x)∂x�

(v(x)) dx

+
∫

∂�

a(x)u(x)v(x) dS(x) + |s|2〈u, v〉L2 .

Instead, if we use the boundary condition in (2.9), we obtain

〈Scal(Qs(T ))u, v〉L2 = 1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x)

)
v(x) dx

+
3∑

�=1

∫

�

a�(x)∂x�
(u(x)) a�(x)∂x�

(v(x)) dx .

Relying on the above considerations we can give the following two definitions.

Definition 3.1 Let � be a bounded domain in R
3 with the boundary ∂� of class C1,

let a ∈ C0(∂�, R) and a1, a2, a3 ∈ C1(�, R). We define the bilinear form:

bs(u, v) :=
3∑

�=1

∫

�

a�(x)∂x�
(u(x)) a�(x)∂x�

(v(x)) dx + 1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x)

)
v(x) dx

+〈Vect(Qs(T ))u, v〉L2 + |s|2〈u, v〉L2 +
∫

∂�

a(x)u(x)v(x) dS(x), (3.1)

for all functions u, v ∈ H1(�, H).

Definition 3.2 Let � be either a bounded or an unbounded domain in R
3 with the

boundary ∂� of class C1, let a1, a2, a3 ∈ C1(�, R). We define the bilinear form:

bs(u, v) :=
3∑

�=1

∫

�

a�(x)∂x�
(u(x)) a�(x)∂x�

(v(x)) dx + 1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x)

)
v(x) dx

+〈Vect(Qs(T ))u, v〉L2 + |s|2〈u, v〉L2 , (3.2)

for all functions u, v ∈ H1
0 (�, H).

Definition 3.3 Let H be the Hilbert space H1(�, H) or some of its closed subspaces,
where � is either a bounded or an unbounded domain in R

3. We say that u ∈ H is
the weak solution of the Problem 2.7 or of the Problem 2.9 for some s ∈ H if, given
F ∈ L2(�, H), we have

bs(u, v) = 〈F, v〉L2 , for all v ∈ H,
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where bs is the bilinear form defined in (3.1) or (3.2).

4 Weak solutions of the Problems 2.1 and 2.4

In this section we prove existence and uniqueness of the weak solutions of Problems
2.1 and 2.4 (Definition 3.3), using Lax-Milgram lemma. Moreover, we need crucial
estimates on the S-resolvent operators in order to define the fractional powers of the
operator T .

To prove existence and uniqueness of the weak solutions it will be sufficient to show
that the bilinear forms bs(·, ·), in Definitions 3.1 or 3.2, are continuous in H1(�, H)

and they are coercive in an appropriate closed subspace of H1(�, H)where the choice
of these subspaces depend on the boundary conditions of the problems.

First we prove the continuity while the coercivity will be proved in Sect. 4.1 for
the first problem and in Sect. 4.2 for the second one. As a direct consequence of
the coercivity, we will prove an L2 estimate for the weak solution u that belongs to
a subspace of H1(�, H) and also we will prove an L2 estimate for the term T (u).
These L2 estimates will be crucial in order to prove the boundedness of the pseudo
S-resolvent operator Qs(T ) and the estimates (2.6).

We recall that the bilinear form

bs(·, ·) : H1(�, H) × H1(�, H) → H,

for some s ∈ H, is continuous if there exists a positive constant C(s) such that

|bs(u, v)| ≤ C(s)‖u‖H1‖v‖H1 , for all u, v ∈ H1(�, H).

We note that the constant C(s) depends on s ∈ H but does not depend on u and
v ∈ H1(�, H).

The continuity of the bilinear forms bs(u, v) can be obtained in a similar way as
described in [20] and in [18]. For the bilinear form (3.1), we need suitable estimates
of the boundary term

Lemma 4.1 Let u ∈ H1(�, H) and let � be a bounded domain with ∂� is of class
C1. Furthermore let a ∈ C0(∂�, R), then we have

∣∣∣∣
∫

∂�

a(x)|u(x)|2dS(x)

∣∣∣∣ ≤ sup
x∈∂�

|a(x)|C2
∂�‖u‖2H1(�,H)

,

where C∂� is the constant in formula (4.1).

Proof It follows from the scalar valued case see [10, p.315], precisely, suppose that
u ∈ H1(�, R) and � is a bounded domain in R

3 with boundary ∂� of class C1. Then
u|∂� ∈ H1/2(∂�), and there exists a positive constant C∂� such that

‖u‖H1/2(∂�,R) ≤ C∂�‖u‖H1(�,R). (4.1)
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From estimate (4.1) we get the statement. ��

Proposition 4.2 (Continuity of bs) Let � be a bounded domain in R
3 with boundary

∂� of class C1. Assume that a ∈ C0(∂�, R) and a1, a2, a3 ∈ C1(�, R). Then the
terms in the bilinear form bs(·, ·) defined in (3.1) satisfy the estimates:

∣∣∣∣∣

3∑

�=1

∫

�

a�(x)∂x�
(u(x)) a�(x)∂x�

(v(x)) dx

∣∣∣∣∣ ≤ sup
�=1,2,3, x∈�

(a2� (x))‖u‖D‖v‖D,

∣∣∣∣∣
1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x)

)
v(x) dx

∣∣∣∣∣ ≤ 1

2
sup

�=1,2,3, x∈�

(∂x�
(a2� (x)))‖u‖D‖v‖L2

(4.2)

and

∣∣〈Vect(Qs(T ))u, v〉L2

∣∣ ≤
(
2 sup
i �=�=1,2,3, x∈�

(|ai (x)∂xi a�(x)|) + 2|s0| sup
�=1,2,3, x∈�

(|a�(x)|)
)

‖u‖D‖v‖L2 , (4.3)
|s|2|〈u, v〉L2 | ≤ |s|2‖u‖L2‖v‖L2 , (4.4)

while for the boundary term in (3.1) the following inequality holds:

∣∣∣∣
∫

∂�

a(x)u(x)v(x) dS(x)

∣∣∣∣ ≤ sup
x∈∂�

|a(x)|C2
∂�‖u‖H1‖v‖H1 , (4.5)

where C∂� is the constant in Theorem 4.1. Moreover, the bilinear forms bs(·, ·) are
continuous from H1(�, H) × H1(�, H) → H, i.e., there exits a constant C(s) > 0
such that

|bs(u, v)| ≤ C(s)‖u‖H1(�,H)‖v‖H1(�,H), (4.6)

for all s ∈ H.

Proof The above estimates are proved in [20] apart from (4.3) that follows by similar
arguments. ��

4.1 Weak solution of the Problem 2.1

Because of the Robin-type boundary conditions the natural space to obtain existence
and uniqueness of the weak solution of the problem (2.7) is the closed subspace
H(�, H) of H1(�, H) defined by

H(�, H) :=
{
u ∈ H1(�, H) :

∫

�

u(x)dx = 0

}
,
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with the norm

‖u‖2H := ‖u‖2D =
3∑

�=1

∥∥∂x�
u
∥∥2
L2 .

Weadapt to the quaternionic setting the Poincaré–Wirtinger’s inequality (see for exam-
ple [24, p.275]).

Corollary 4.3 Let � be a bounded domain in R
3 with boundary ∂� of class C1 and let

u ∈ H(�, H). Then we have

‖u‖2L2(�;H)
≤ C2

P‖u‖2H for any u ∈ H,

where CP is the Poincaré–Wirtinger constant in (4.7).

Proof Under the above hypotheses on the bounded domain � in R
3 the Poincaré–

Wirtinger inequality claims that for all u ∈ H1(�, R) the following inequality holds:

∥∥∥∥u − |�|−1
∫

�

u(x)dx

∥∥∥∥
L2(�,R)

≤ CP‖∇u‖L2(�,R), (4.7)

where CP does not depend on u. The quaternionic case follows from estimate (4.7). ��
Theorem 4.4 Let� be a bounded domain inR

3 with boundary ∂� of class C1. Assume
that a ∈ C0(∂�, R) and let T be the operator defined in (1.1) with coefficients a1, a2,
a3 ∈ C1(�, R). Define the following constants:

CT := min
�=1,2,3

inf
x∈�

(a2� (x)), C ′
T :=

3∑

i,�=1

‖a�∂x�
ai‖∞, Ka,� := C2

∂�‖a‖∞, (4.8)

where ‖ · ‖∞ denotes the sup norm and C∂� is the constant in Theorem 4.1. Moreover,
assume that

CT − C ′
TCP − Ka,�

(
1 + C2

P

)
> 0 and CT > 0, (4.9)

where CP is the constant in (4.7). Then:
(I) The boundary value Problem (2.7) has a unique weak solution u ∈ H(�, H),

for s ∈ H\{0} with Re(s) = 0, and

‖u‖2L2 ≤ 1

s2
Re(bs(u, u)). (4.10)

(II) Moreover, we have the following estimate

‖T (u)‖2L2 ≤ CRe(bs(u, u)), (4.11)
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for every u ∈ H(�, H), and s ∈ H\{0} with Re(s) = 0, where

C := 1 − C ′
TCp

CT
− Ka,�(1 + C2

P )

CT
.

Proof Step (I). To prove the existence and uniqueness of the weak solution using
the Lax-Milgram Lemma, it is sufficient to prove the coercivity of the bilinear form
bs(·, ·), made explicit in the Definition 3.1, since its continuity is proved in Proposition
4.2. First we write explicitly Re b js1(u, u), where we have set s = js1, for s1 ∈ R and
j ∈ S:

Re b js1 (u, u) = s21‖u‖2L2 +
3∑

�=1

‖a�∂x�
u‖2L2

+Re

(
1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x�)

)
u(x) dx + 〈Vect(Q js1 (T ))u, u〉L2

)

+
∫

∂�

a|u(x)|2 dS(x).

By the Cauchy-Schwartz inequality and Lemma 4.1, we have

Re b js1(u, u) ≥ s21‖u‖2L2 + CT

3∑

�=1

‖∂x�
u‖2L2 − C ′

T

3∑

�=1

‖∂x�
u‖L2‖u‖L2 − Ka,�‖u‖2H1 .

Since

‖u‖2H1 ≤ (1 + C2
P )‖u‖2H,

we obtain

Re bs(u, u) ≥ s21‖u|2L2 +
(
CT − C ′

TCP − Ka,�

(
1 + C2

P

))
‖u‖2H. (4.12)

By the hypothesis, we know that

K� := CT − C ′
TCP − Ka,�

(
1 + C2

P

)
> 0,

thus the following estimates hold:

Re b js1(u, u) ≥ K�‖u‖2H (4.13)

and
Re b js1(u, u) ≥ s21‖u‖2L2 . (4.14)

In particular the inequality (4.14) implies the inequality (4.10), while the inequality
(4.13) implies the coercivity of b js1(·, ·) and, by the Lax-Milgram Lemma, we have
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that for any w ∈ L2(�, H) there exists a unique uw ∈ H such that

b js1(uw, v) = 〈w, v〉L2 , for all v ∈ H and for all s1 ∈ R.

Step (II). What remains to prove is the inequality (4.11). Starting from (3.1) and
applying theCauchy-Schwartz inequality, Lemma4.1 for the boundary term,Corollary
4.3 for the term ‖u‖L2 and the inequality

3∑

�=1

‖∂x�
u‖2L2 ≤ 1

CT

3∑

�=1

‖a�∂x�
u‖2

we have:

Re b js1 (u, u) ≥
3∑

�=1

‖a�∂x�
u‖2L2 +

∫

∂�

a|u(x)|2 dS(x)

+ Re

(
3∑

�=1

∫

�

a�(x)∂x�
(u(x))∂x� (a�(x)) u(x) dx + 〈Vect(Q js1 (T ))u, u〉L2

)

≥
3∑

�=1

‖a�∂x�
u‖2L2 − K ′

a, �

(
1 + C2

P

)

CT

3∑

�=1

‖a�∂x�
u‖2L2 − C ′

T

3∑

�=1

‖∂x�
u‖L2‖u‖L2

≥
3∑

�=1

‖a�∂x�
u‖2L2 − K ′

a, �

(
1 + C2

P

)

CT

3∑

�=1

‖a�∂x�
u‖2L2 − C ′

T CP

3∑

�=1

‖∂x�
u‖2L2

≥
3∑

�=1

‖a�∂x�
u‖2L2 − K ′

a, �

(
1 + C2

P

)

CT

3∑

�=1

‖a�∂x�
u‖2L2 − C ′

T CP

CT

3∑

�=1

‖a�∂x�
u‖2L2 .

Collecting the term
∑3

�=1 ‖a�∂x�
u‖2

L2 , observing that, with some computations, we
have:

3∑

�=1

‖a�∂x�
u‖2L2 = ‖Tu‖2L2 (4.15)

and since the condition (4.9) holds, we get the desired inequality (4.11):

Re b js1(u, u) ≥
(
1 − C ′

TCP

CT
− Ka,�(1 + C2

P )

CT

)
3∑

�=1

‖a�∂x�
u‖2L2 = C‖Tu‖2L2 ,

where we have set

C := 1 − C ′
TCP

CT
− Ka,�(1 + C2

P )

CT
.

��
Although the technique for proving Theorem 4.4 is different from the technique

used in Theorem 4.1 of [14], we note that the condition (4.9) differs from the condition



114 Page 16 of 27 F. Colombo et al.

in Theorem 4.1 of [14] for some terms that arise since in this article we supposed the
components of T are non commutative and a Robin-type condition on the boundary
of � instead of a Dirichlet condition.

4.2 Weak solution of the Problem 2.4

In Theorem 4.4we proved the invertibility of the operatorQs(T ) in the casewhere� is
a bounded domain. To invert the operatorQs(T ) in the case where � is an unbounded
domain, we adapt the strategy explained in Theorem 4.4 but, due to the unboundedness
of �, we will need more restrictive assumptions on the coefficients of T . In fact, the
coefficients of T are such that the first derivatives of the coefficients of the operator
Qs(T ) belong to the space L3(�, H). We need a couple of lemmas, that are well
known to adapt the Sobolev–Gagliardo–Nirenberg inequality to the quaternions.

We recall formula (5) in Theorem 8.8 p.212 in [10] and we give a sketch of the
proof for the sake of completeness.

Lemma 4.5 For any u ∈ W 1,1(R), we have

‖u‖L∞(R) ≤ ‖u′‖L1(R). (4.16)

Proof We prove the statement for v ∈ C1
0(R), the general case will follow from the

fact that C1
0(R) is dense in W 1,1(R). We have:

v(x) =
∫ x

−∞
v′
i (x) dx

thus we can conclude that

sup
x∈R

|v(x)| ≤
∫ +∞

−∞
|v′(x)| dx . (4.17)

If v ∈ W 1,1(R) then there exists a sequence v j ∈ C1
0(R) such that v j

W 1,1−→ v.
Inequality (4.17) implies the convergence of the sequence to v in L∞(R). Thus the
estimate (4.17) holds true for any v ∈ W 1,1(R). ��

The following lemma can be proved for R
n even though we will consider the case

R
3. It is Lemma 9.4 p.278 in [10] and we give a sketch of the proof.

Lemma 4.6 Let Fi ∈ Ln−1(Rn, R) for i = 1, . . . , n such that Fi does not depend on
xi . Then

∫

Rn
|F1 · · · Fn| dV ≤

n∏

i=1

(∫

Rn−1
|Fi |n−1 dVi

) 1
n−1

,

where dVi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn.
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Proof The proof follows by an induction argument. The case n = 2 is a consequence
of the following fact:

∫

R2
|F1(x2) · F2(x1)|dx1 ∧ dx2 =

∫

R

|F1(x2)|
∫

R

|F2(x1)| dx1 dx2

=
∫

R

|F1(x2)| dx2 ·
∫

R

|F2(x1)| dx1.

Now we suppose that we have proved the statement in the case n = k − 1 when
k > 2 is an integer. By the Hölder inequality we have

∫

Rn−1
|F1 · · · Fk |dV1 ≤

(∫

Rn−1
|F1|n−1 dV1

) 1
n−1 ·

(∫

Rn−1
|F2 · · · Fk | n−1

n−2 dV1

) n−2
n−1

.

(4.18)
By induction we obtain

(∫

Rn−1
|F2 · · · Fk | n−1

n−2 dV1

) n−2
n−1 ≤

⎡

⎣
n∏

j=2

(∫

Rn−2

(
|Fj | n−1

n−2

)n−2
d(V1) j

) 1
n−2

⎤

⎦

n−2
n−1

=
n∏

j=2

[∫

Rn−2
|Fj |n−1 d(V1) j

] 1
n−1

. (4.19)

Integrating over x1 the inequality (4.18) and using the inequality (4.19), we have

∫

Rn
|F1 · · · Fk |dV ≤

(∫

Rn−1
|F1|n−1 dV1

) 1
n−1 ·

∫

R

n∏

j=2

[∫

Rn−2
|Fj |n−1 d(V1) j

] 1
n−1

dx1

Hölder inequality≤
n∏

j=1

(∫

Rn−1
|Fj |n−1 dVj

) 1
n−1

,

which concludes the proof. ��
Sowe finally have the Sobolev–Gagliardo–Nirenberg inequality for the quaternions

obtained by adapting Theorem 9.9, p.278 in [10] and using the above lemmas.

Lemma 4.7 For any u ∈ H1(Rn, H), we have u ∈ L
2n
n−2 (Rn, H) and the following

estimate holds true

‖u‖L2n/(n−2)(Rn ,H) ≤ Kn

n∑

i=1

‖∂xi u‖L2(Rn ,H),

where

Kn := 2n − 2

n − 2
.
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Proof We can suppose u ∈ C1
0(R

n, H). First we observe that:

∣∣∣∂xi
(
|u| 2n−2

n−2

)∣∣∣ =
∣∣∣∣∂xi

[(
|u|2

) n−1
n−2

]∣∣∣∣

= 2n − 2

n − 2

(
|u|2

) n−1
n−2−1

∣∣∣∣∣∣

3∑

j=0

u j∂xi u j

∣∣∣∣∣∣

≤ 2n − 2

n − 2
|∂xi u||u| n

n−2 , (4.20)

so we have

[∫

Rn
|u| 2n

n−2 dV

] n−2
2n ≤

[∫

Rn

n∏

i=1

sup
xi∈R

|u(y1, . . . , yi−1, xi , yi+1, . . . , yn)| 2
n−2 dV

] n−2
2n

Lemma 4.6≤
⎡

⎣
n∏

i=1

(∫

Rn−1
sup
xi∈R

|u(y1, . . . , yi−1, xi , yi+1, . . . , yn)| 2n−2
n−2 dVi

) 1
n−1

⎤

⎦

n−2
2n

Lemma 4.5+(4.20)≤
[

n∏

i=1

(
2n − 2

n − 2

∫

Rn
|u| n

n−2 |∂xi u| dV
) 1

n−1
] n−2

2n

Hölder inequality≤

⎡

⎢⎢⎣

⎛

⎜⎝
2n − 2

n − 2

(∫

Rn
|u| 2n

n−2 dV

) 1
2

⎛

⎝
n∑

j=1

∫

Rn
|∂x j u|2 dV

⎞

⎠

1
2
⎞

⎟⎠

n
n−1

⎤

⎥⎥⎦

n−2
2n

.

The above chain of inequalities can be summarized by the following inequality

‖u‖
L

2n
n−2 (Rn ,H)

≤
(
2n − 2

n − 2

) n−2
2n−2 ‖u‖

n
2n−2

L
2n
n−2 (Rn ,H)

[
n∑

i=1

‖∂xi u‖L2(Rn ,H)

] n−2
2n−2

.

Thus we conclude that

‖u‖
L

2n
n−2 (Rn ,H)

≤ 2n − 2

n − 2

n∑

i=1

‖∂xi u‖L2(Rn ,H). (4.21)

If u ∈ H1(Rn, H) then there exists a sequence u j ∈ C1
0(R

n, H) such that u j
H1−→ u.

Inequality (4.21) implies the convergence of the sequence to u in L
2n
n−2 (Rn, H). Thus

the estimate (4.21) holds true for any u ∈ H1(Rn, H). ��
We are now ready to prove the continuity of the bilinear forms bs(·, ·) defined in

(3.2)
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Proposition 4.8 Let � be an unbounded domain in R
3 with boundary ∂� of class

C1. Let T be the operator defined in (1.1) with coefficients a1, a2, a3 ∈ C1(�, R) ∩
L∞(�, R). Suppose that

M :=
3∑

i, j=1

‖ai∂xi (a j )‖L3(�) < +∞ (4.22)

Then for any u, v ∈ H1
0 (�, H) we have

∣∣∣∣∣

3∑

�=1

∫

�

a�(x)∂x�
(u(x)) a�(x)∂x�

(v(x)) dx

∣∣∣∣∣ ≤ sup
�=1,2,3, x∈�

(a2� (x))‖u‖D‖v‖D
(4.23)

2s0|〈Tu, v〉| ≤ 2s0 sup
�=1,2,3, x∈�

(|a�(x)|)‖u‖D‖v‖D (4.24)

and

∣∣∣∣∣
1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x�)

)
v(x) dx + 〈Vect(Q js1(T ))u, v〉L2(�)

∣∣∣∣∣

≤ MK3‖u‖D‖v‖D . (4.25)

Moreover, the bilinear forms bs(·, ·), defined in Definition 3.2, are continuous from
H1
0 (�, H) × H1

0 (�, H) → H, i.e., there exists a constant C(s) > 0 such that

|bs(u, v)| ≤ C(s)‖u‖D‖v‖D, (4.26)

for all s ∈ H.

Proof The estimates (4.23) and (4.24) follow by the boundedness of the coefficients
a�’s and by the Hölder inequality. We prove the estimate (4.25). First we observe that
since u, v ∈ H1

0 (�, H), we can extend u and v by 0 outside � and we still have
u, v ∈ H1(Rn, H). For a general function u ∈ L2(�, H), we define

ũ(x) :=
{

u(x) i f x ∈ �,

0 i f x ∈ �c

Thus we have

1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x)

)
v(x) dx + 〈Vect(Qs(T ))u, v〉L2(�)

= 1

2

3∑

�=1

∫

Rn

˜
∂x�

(u(x)) ˜∂x�

(
a2� (x)

)
ṽ(x) dx + 〈 ˜Vect(Qs(T))̃u, ṽ〉L2(Rn).
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Eventually, by theHölder inequality, Lemma4.7 (for the case n = 3) and hypothesis
(4.27), we have that:

∣∣∣∣∣
1

2

3∑

�=1

∫

R3

˜
∂x�

(u(x)) ˜∂x�

(
a2� (x)

)
ṽ(x) dx + 〈 ˜Vect(Qjs1(T))̃u, ṽ〉L2(R3)

∣∣∣∣∣

Hölder inequality≤
(

3∑

�=1

‖∂̃x�
u‖L2(R3)

)
3∑

i, j=1

(∫

R3

∣∣∣ãi∂xi a j ṽ

∣∣∣
2
dV

) 1
2

Hölder inequality+(4.22)≤ ‖u‖D
3∑

i, j=1

⎛

⎝
(∫

R3

∣∣∣ãi∂xi a j

∣∣∣
2· 32

dV

) 2
3
(∫

R3
|̃v|2·3dV

) 1
3

⎞

⎠

1
2

= M‖u‖D ‖̃v‖L6(R3)

Lemma 4.7≤ K3M‖u‖D‖v‖D .

The continuity of bs(·, ·) for all s ∈ H is a direct consequence of the estimates
(4.23), (4.24) and (4.25). ��
Theorem 4.9 Let� be an unbounded domain inR

3 with boundary ∂� of class C1. Let
T be the operator defined in (1.1) with coefficients a1, a2, a3 ∈ C1(�, R)∩L∞(�, R).
Suppose that

M :=
3∑

i, j=1

‖ai∂xi (a j )‖L3(�) < +∞ (4.27)

and
CT := min

�=1,2,3
inf
x∈�

(a2� (x)) > 0, CT − MK3 > 0 (4.28)

where K3 = 4 is the constant in Lemma 4.7 for n = 3. Then:
(I) The boundary value Problem (2.9) has a unique weak solution u ∈ H1

0 (�, H),
for s ∈ H\{0} with Re(s) = 0, and

‖u‖2L2 ≤ 1

s2
Re(bs(u, u)). (4.29)

(II) Moreover, we have the following estimate

‖T (u)‖2L2 ≤ CRe(bs(u, u)), (4.30)

for every u ∈ H1
0 (�, H), and s ∈ H\{0} with Re(s) = 0, where

C := CT − MK3

CT
.

Proof In order to use the Lax-Milgram Lemma to prove the existence and the unique-
ness of the solution for the weak formulation of the problem, it is sufficient to prove the
coercivity of the bilinear form bs(·, ·) in Definition 3.2 since the continuity is proved
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in Proposition 4.8. First we write explicitly Re b js1(u, u), where we have set s = js1,
for s1 ∈ R and j ∈ S:

Re b js1 (u, u) = s21‖u‖2L2 +
3∑

�=1

‖a�∂x�
u‖2L2

+Re

(
1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x)

)
u(x) dx + 〈Vect(Q js1 (T ))u, u〉L2

)
.

(4.31)

By the estimate (4.25) applied in the case u = v we have

∣∣∣∣∣
1

2

3∑

�=1

∫

�

∂x�
(u(x))∂x�

(
a2� (x�)

)
u(x) dx + 〈Vect(Q js1(T ))u, u〉L2(�)

∣∣∣∣∣

≤ MK3‖u‖2D . (4.32)

Finally using the inequality (4.32) in (4.31), we obtain

Re b js1(u, u) ≥ s21‖u‖2L2 + (CT − MK3) ‖u‖2D.

By the hypothesis (4.28) we know that

K� := CT − MK3 > 0

thus the quadratic form b js1(·, ·) is coercive for every s1 ∈ R and the following
estimates hold:

Re b js1(u, u) ≥ min
(
K�, s21

)
‖u‖H1 . (4.33)

In particular we have
Re b js1(u, u) ≥ s21‖u‖2L2 . (4.34)

As a consequence the inequality (4.34) implies the inequality (4.10). The inequality
(4.33) implies the coercivity of b js1(·, ·) and, by the Lax-Milgram Lemma, we have
that for any w ∈ L2(�, H) there exists uw ∈ H1

0 (�, H), for s1 ∈ R\{0} and j ∈ S,
such that

b js1(uw, v) = 〈w, v〉L2 , for all v ∈ H1
0 (�, H).

What remains to prove is the inequality (4.11). Starting from (3.2), applying the
inequality (4.32) and observing that

3∑

�=1

‖∂x�
u‖2L2 ≤ 1

CT

3∑

�=1

‖a�∂x�
u‖2L2
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we have:

Re b js1(u, u) ≥
3∑

�=1

‖a�∂x�
u‖2L2 + Re

( 3∑

�=1

∫

�

a�(x)∂x�
(u(x))∂x� (a�(x)) u(x) dx

+ 〈Vect(Q js1(T ))u, u〉L2

)

≥
3∑

�=1

‖a�∂x�
u‖2L2 − MK3

CT

3∑

�=1

‖a�∂x�
u‖2L2

≥ CT − MK3

CT

3∑

�=1

‖a�∂x�
u‖2L2

= C‖Tu‖2L2 ,

where we have set

C := CT − MK3

CT

and this concludes the proof. ��
Remark 4.10 As we have mentioned in the introduction the case � bounded with
homogeneous Dirichlet boundary conditions has already been investigated in our pre-
vious work. Above we have treated the case when � is unbounded. In the case � is
bounded the condition (4.27) is not required.

5 The estimates for theS-resolvent operators and the fractional
powers of T

After we prove existence and uniqueness results for the weak solutions of the problems
we discussed in the previous sections we can give meaning to the boundary condition
using classical results on regularity of elliptic equations up to the boundary. In the case
of Robin boundary conditions this requires the assumptions that the boundary has to
be more regular, in the case of second order operators the boundary has to be of class
C2 if we want to have solutions in H2. In fact we can speak of the normal derivative
∂νu of a function u ∈ H2(�, R) (more in general we can set this problem in W 2,p

for 1 ≤ p < ∞), we set ∂nu := (∇u)|∂� · n, where n is the unit normal vector to ∂�.
This has meaning since (∇u)|∂� ∈ L2(∂�) for � ⊂ R

N bounded. For the regularity
of the Neumann problem see p.299 in [10]. Using the estimates in Theorem 4.4 for
the case of the Robin-type boundary conditions or estimate in Theorem 4.9, for the
case of the Dirichlet boundary conditions in unbounded domains, we can now show
in both cases that the S-resolvent operator of T decays fast enough along the set of
purely imaginary quaternions.
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Theorem 5.1 Under the hypotheses of Theorem 4.4 or the hypotheses of Theorem 4.9,
the operator Qs(T ) is invertible for any s = js1, for s1 ∈ R\{0} and j ∈ S and the
following estimate

‖Qs(T )−1‖B(L2) ≤ 1

s21
(5.1)

holds. Moreover, the S-resolvent operators satisfy the estimates

‖S−1
L (s, T )‖B(L2) ≤ 	

|s| and ‖S−1
R (s, T )‖B(L2) ≤ 	

|s| , (5.2)

for any s = js1, for s1 ∈ R\{0} and j ∈ S, with a constant 	 that does not depend
on s.

Proof We saw in Theorem 4.4 (respectively, Theorem 4.9) that for all w ∈ L2(�, H)

there exists uw ∈ H (respectively uw ∈ H1
0 (�, H)), for s1 ∈ R\{0} and j ∈ S, such

that

b js1 (uw, v) = 〈w, v〉L2 , for all v ∈ H(�, H) (respectively, for all v ∈ H1
0 (�, H)).

Thus we can define the inverse operator Q js1(T )−1(w) := uw for any
w ∈ L2(�, H) (we note that the range of Q js1(T )−1 is in H(�, H) (respec-
tively in H1

0 (�, H))). The inequality (4.10) (respectively (4.29)), applied to u :=
Q js1(T )−1(w), implies:

s21‖Q js1(T )−1(w)‖2L2

(4.10) (respectively(4.29))≤ Re b js1(Q js1(T )−1(w), Q js1(T )−1(w))

≤ |b js1(Q js1(T )−1(w), Q js1(T )−1(w))|
≤ |〈w, Q js1(T )−1(w)〉L2 |
≤ ‖w‖L2‖Q js1(T )−1(w)‖L2 , for any w ∈ L2(�, H).

(5.3)

Thus we have

‖Q js1(T )−1‖B(L2) ≤ 1

s21
, for s1 ∈ R\{0} and j ∈ S.

The estimates (5.2) follow from the estimate (4.11) (respectively (4.30)). Indeed
we have

C‖Tuw‖2 (4.11) (respectively(4.30))≤ Re(b js1(uw, uw))

≤ |b js1(uw, uw)|
≤ |〈w, uw〉L2 |
≤ ‖w‖L2‖uw‖L2

(5.1)≤ 1

s21
‖w‖2L2 ,
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for s1 ∈ R\{0} and j ∈ S. This estimate implies

∥∥∥TQ js1(T )−1w

∥∥∥
L2

= ‖Tuw‖L2 ≤ 1√
C |s1|

‖w‖L2

thus we obtain ∥∥∥TQ js1(T )−1
∥∥∥B(L2)

≤ 1√
C |s1|

. (5.4)

In conclusion, if we set

	 := 2max

{
1,

1√
C

}
,

estimates (5.4) and (5.1) yield

∥∥∥S−1
R (s, T )

∥∥∥B(L2)
=
∥∥∥(T − sI)Qs(T )−1

∥∥∥B(L2)

≤
∥∥∥TQs(T )−1

∥∥∥B(L2)
+
∥∥∥sQs(T )−1

∥∥∥B(L2)
≤ 	

|s1| (5.5)

and

∥∥∥S−1
L (s, T )

∥∥∥B(L2)
=
∥∥∥TQs(T )−1 − Qs(T )−1s

∥∥∥B(L2)

≤
∥∥∥TQs(T )−1

∥∥∥B(L2)
+
∥∥∥Qs(T )−1s

∥∥∥B(L2)
≤ 	

|s1| , (5.6)

for any s = js1 ∈ H\{0}. ��

Thanks to the above results, we are now ready to establish our main statement.

Theorem 5.2 Under the hypotheses of Theorem 4.4 or the hypotheses of Theorem 4.9,
for any α ∈ (0, 1) and v ∈ D(T ), the integral

Pα(T )v := 1

2π

∫

− jR
sα−1 ds j S

−1
R (s, T )T v

converges absolutely in L2.

Proof The right S-resolvent equation implies

S−1
R (s, T )T v = sS−1

R (s, T )v − v, ∀v ∈ D(T )
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and so

1

2π

∫

− jR

∥∥∥sα−1 ds j S
−1
R (s, T )T v

∥∥∥
L2

≤ 1

2π

∫ −1

−∞
|t |α−1

∥∥∥S−1
R (− j t, T )

∥∥∥
B(L2)

‖T v‖L2 dt

+ 1

2π

∫ 1

−1
|t |α−1

∥∥∥(− j t)S−1
R (− j t, T )v − v

∥∥∥
L2

dt

+ 1

2π

∫ +∞

1
tα−1

∥∥∥S−1
R ( j t, T )

∥∥∥
B(L2)

‖T v‖L2 dt .

As α ∈ (0, 1), the estimate (5.2) now yields

1

2π

∫

− jR

∥∥∥sα−1 ds j S
−1
R (s, T )T v

∥∥∥
L2

≤ 1

2π

∫ +∞

1
tα−1	

t
‖T v‖L2 dt + 1

2π

∫ 1

−1
|t |α−1

(
|t | 	|t | + 1

)
‖v‖L2 dt

+ 1

2π

∫ +∞

1
tα−1	

t
‖T v‖L2 dt

< +∞.

��
We conclude this paper with some comments.

(I) In the literature there are several non linear models that involve the fractional
Laplacian and even the fractional powers of more general elliptic operators, see
for example, the books [11,31].

(II) The S-spectrum approach to fractional diffusion problems used in this paper is
a generalization of the method developed by Balakrishnan, see [5], to define
the fractional powers of a real operator A. In the paper [15] following the book
of M. Haase, see [27], has been developed the theory on fractional powers of
quaternionic linear operators, see also [2,13].

(III) The spectral theorem on the S-spectrum is also an other tool to define the frac-
tional powers of vector operators, see [1] and for perturbation results see [12].

(IV) An historical note on the discovery of the S-resolvent operators and of the S-
spectrum can be found in the introduction of the book [17].

The most important results in quaternionic operators theory based on the S-
spectrum and the associated theory of slice hyperholomorphic functions are
contained in the books [3,4,16,17,21,22,25,26], for the case on n-tuples of oper-
ators see [23].

(V) Our future research directions will consider the development of ideas from one
and several complex variables, such as in [6–9,28–30] to the quaternionic setting.
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