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Abstract
In this paper, we give several characterizations of Herglotz–Nevanlinna functions
in terms of a specific type of positive semi-definite functions called Poisson-type
functions. This allows us to propose a multidimensional analogue of the classical
Nevanlinna kernel and a definition of generalized Nevanlinna functions in several
variables. Furthermore, a characterization of the symmetric extension of a Herglotz–
Nevanlinna function is also given. The subclass of Loewner functions is discussed as
well, along with an interpretation of the main result in terms of holomorphic functions
on the unit polydisk with non-negative real part.
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1 Introduction

Let us denote by C
+n the poly-upper half-plane in C

n , i.e.

C
+n := (C+)n = {

z ∈ C
n
∣∣∀ j = 1, 2, . . . , n : Im[z j ] > 0

}
.
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Here, we consider the following class of functions.

Definition 1.1 A function q : C+n → C is called a Herglotz–Nevanlinna function if
it is holomorphic and has non-negative imaginary part.

This is a well-studied class of functions, appearing e.g. in [2,3,25–28,33,37,38].
Particularlywhenconsidering such functions of onevariable, they appear inmanyareas
of complex and functional analysis and numerous applications. Some examples of
these include the moment problem [4,29,35], the theory of Sturm-Liouville problems
and perturbations [6,7,14,18], when deriving physical bounds for passive systems
[9] or as approximating functions in certain convex optimization problems [16,17].
Applications concerning functions of several variables appear e.g. when considering
operator monotone functions [2] or with representations of multidimensional passive
systems [38].

Herglotz–Nevanlinna functions admit a powerful integral representation theorem,
cf. Theorem 2.1, that characterizes this class of functions in terms of a real number a,
a vector b ∈ [0,∞)n and a positive Borel measure μ onRn satisfying two conditions.
The one-variable version this representation is considered a classical result attributed
to Nevanlinna [29] and Cauer [11], see also [18]. The multi-dimensional case of this
representation was considered in e.g. [25,26,37,38].

For Herglotz–Nevanlinna functions of one variable, it follows as an immediate con-
sequence of the integral representation theorem mentioned above that a holomorphic
function q : C+ → C has non-negative imaginary part if and only if the function

(z, w) �→ q(z) − q(w)

z − w

is positive semi-definite on C
+ × C

+, see also Sect. 4. This result gives rise to the
so-called Nevanlinna kernel, see also Sect.4.2, which plays a fundamental role in e.g.
the theory of generalized Nevanlinna functions and their applications [13,21,23,24].

The main goal of this paper is to first give a characterization when a function
q : C+n → C is aHerglotz–Nevanlinna function by investigating the difference q(z)−
q(w) for z,w ∈ C

+n . This is obtained inTheorem4.1,which establishes that a function
q as above is a Herglotz–Nevanlinna function if and only if it holds that

q(z) − q(w) =
n∑

j=1

d j (z j − w j ) + 1

(2 i)n−1

n∏

j=1

(z j − w j ) · D(z,w)

for all z,w ∈ C
+n , where d and D are as specified in the theorem. In the proof of

this result, a crucial role is played by Poisson-type functions which are positive semi-
definite functions of a very particular type, see Sect. 3.1. This result then allows us
to derive an analogous characterization to the one mentioned above using a suitable
analogue of the Nevanlinna kernel in several variables. This is presented in Theorem
4.4, which establishes that a function q as before is a Herglotz–Nevanlinna function
if and only if the function
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(z,w) �→ (2 i)n−1
∏n

j=1(z j − w j )

(
q(z) − q(w)

)

is positive semi-definite on C+n × C
+n .

The structure of the paper is as follows. After the introduction in Sect. 1 we recall
the integral representation theorem for Herglotz–Nevanlinna function along with the
necessary corollaries in Sect. 2. Required prerequisites concerning positive semi-
definite functions are collected in Sect. 3, with Sect. 3.1 focusing on Poisson-type
functions. Themain results of the paper are presented in Sect. 4, with Sect. 4.2 focusing
on the Nevanlinna kernel in several variables, Sect. 4.3 presenting an extension of the
main result to symmetric extensions of Herglotz–Nevanlinna functions and Sect. 4.4
discussing the subclass of Loewner functions. Finally, Sect. 5 interprets the main
result of the paper in the language of holomorphic functions on the unit polydisk with
non-negative real part.

2 The Integral Representation Theorem

Herglotz–Nevanlinna functions are primarily studied via their corresponding integral
representation theorem, the statement of which requires us to first introduce some
notation. Given ambient numbers z ∈ C \R and t ∈ R, consider first the expressions

N−1(z, t) := 1
2 i

(
1

t−z − 1
t−i

)
,

N0(z, t) := 1
2 i

(
1

t−i − 1
t j +i

)
,

N1(z, t) := 1
2 i

(
1

t+i − 1
t−z

)
.

Note that N0(z, t) ∈ R and is independent of z ∈ C \ R, while
N−1(z, t) = N1(z, t)

for all z ∈ C \ R and t ∈ R. Define now the kernel Kn : (C \ R)n × R
n → C

n as

Kn(z, t) := i

(
2

n∏

j=1

(
N−1(z j , t j ) + N0(i, t j )

) −
n∏

j=1

N0(i, t j )

)

= i

(
2

(2 i)n

n∏

�=1

(
1

t� − z�

− 1

t� + i

)

− 1

(2 i)n

n∏

�=1

(
1

t� − i
− 1

t� + i

))

. (2.1)

We note that, in addition to the kernel Kn , the standard Poisson kernel of C+n and
its relation to Im[Kn] may also be written using the expression N−1, N0 and N1 [26,
Prop. 3.3].
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We may now recall the integral representation theorem for Herglotz–Nevanlinna
functions of several variables, cf. [26, Thm. 4.1].

Theorem 2.1 A function q : C+n → C is a Herglotz–Nevanlinna function if and only
if q can be written as

q(z) = a +
n∑

�=1

b�z� + 1

πn

∫

Rn
Kn(z, t)dμ(t), (2.2)

where a ∈ R, b ∈ [0,∞)n and μ is a positive Borel measure on R
n satisfying the

growth condition

∫

Rn

n∏

�=1

1

1 + t2�
dμ(t) < ∞ (2.3)

and the Nevanlinna condition

∑

ρ∈{−1,0,1}n

−1∈ρ∧1∈ρ

∫

Rn

n∏

j=1

Nρ j (z j , t j )dμ(t) = 0 (2.4)

for all z ∈ C
+n. Furthermore, for a given function q, the triple of representing param-

eters (a, b, μ) is unique.

An important corollary of this result is the description of the growth of a Herglotz–
Nevanlinna function at infinity in a Stoltz domain. Generally, an (upper) Stoltz domain
with centre t0 ∈ R and angle θ ∈ (0, π

2 ] is the set

{z ∈ C
+ | θ ≤ arg(z − t0) ≤ π − θ}.

The symbol z ∨−→ ∞ then denotes the limit |z| → ∞ in any Stoltz domain with centre
0. The growth of a Herglotz–Nevanlinna function is then captured by the vector b, as
it holds for any � ∈ {1, . . . , n} that

b� = lim
z�

∨−→ ∞
q(z)
z�

, (2.5)

see e.g. [26, Cor. 4.6(iv)]. In particular, the above limit is independent of the entries
of the vector z at the non-�-th positions.

3 Positive Semi-Definite Functions

Consider the following definition, cf. [3, p. 3002].
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Definition 3.1 Let� ⊆ C
n be an open set.A function F : �×� → C is calledpositive

semi-definite if for all m ≥ 1 and every choice of m vectors z1, z2, . . . , zm ∈ � and
m numbers c1, c2, . . . , cm ∈ C it holds that

m∑

i, j=1

F(zi , z j ) ci c j ≥ 0. (3.1)

Note that we do not impose any regularity (or analyticity) on the function F ,
although the majority of the positive semi-definite functions that will be considered
in this paper will be holomorphic in the first n variables and anti-holomorphic in the
second n variables.

Alternative, one can say that a function F : � × � → C is positive semi-definite
if for all m ≥ 1 and every choice of m vectors z1, z2, . . . , zm ∈ � it holds that the
matrix

⎡

⎢⎢⎢
⎣

F(z1, z1) F(z1, z2) . . . F(z1, zm)

F(z2, z1) F(z2, z2) . . . F(z2, zm)
...

...
. . .

...

F(zm, z1) F(zm, z2) . . . F(zm, zm)

⎤

⎥⎥⎥
⎦

m×m

is a positive semi-definite matrix.

Remark 3.2 We note here that what we here call positive semi-definite functions are
sometimes referred to as positive semi-definite kernels, e.g. in [5,10,32]. Our termi-
nology stems from e.g. [3, p. 3002] and refers to functions of 2n complex variables.
These functions should not be confused with positive semi-definite functions in the
sense of e.g. [32, Def. 1.3.1], which refers to functions of one real variable.

The following elementary properties now follow from Definition 3.1 and will be
used later on, see e.g. [32, Sect. 1.3] for a proof.

Lemma 3.3 If F1 and F2 are two positive semi-definite functions on � × �, then the
functions F1 + F2 and F1F2 are also positive semi-definite. Furthermore, for any
positive semi-definite function F on � × �, it holds that F(z, z) ≥ 0 and

F(z,w) = F(w, z)

for any z,w ∈ �.

Example 3.4 Let � ⊆ C
n and let f : � → C be a holomorphic function. Then, the

function

F : (z,w) �→ f (z) f (w)
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is positive semi-definite on � × �. Indeed, if m ≥ 1, z1, z2, . . . , zm ∈ � and
c1, c2, . . . , cm ∈ C, then

m∑

i, j=1

F(zi , z j ) ci c j =
m∑

i, j=1

f (zi )ci f (z j )c j = | f (z1)c1 + · · · + f (zm)cm |2 ≥ 0.

Note that the last equality above holds by a combinatorial expansion of the square of
an absolute value of a sum of complex numbers, i.e. if m ∈ N and ζ1, . . . , ζm ∈ C,
then

|ζ1 + · · · + ζm |2 = (ζ1 + · · · + ζm)(ζ1 + · · · + ζm)

= ζ1ζ1 + ζ1ζ2 + ζ2ζ1 + · · · + ζmζm =
m∑

i, j=1

ζiζ j

as desired. ♦

3.1 Poisson-Type Functions

In later sections, we will mostly look at functions on the poly-upper half-plane. There,
the following class of functions is of major importance.

Definition 3.5 A function F : C+n × C
+n → C is called a Poisson-type function if

there exists a positive Borel measure μ on R
n satisfying the growth condition (2.3)

such that

F(z,w) = 1

πn

∫

Rn

n∏

�=1

1

(t� − z�)(t� − w�)
dμ(t)

for all z,w ∈ C
+n . In this case, we say that the function F is given by the measure μ.

There are several important remarks to be made here. First, the name of these
functions refers to their connection to the Poisson kernel of C+n which will become
apparent in the proof of Lemma 3.8 later on. Second, the above definition makes sense
as the assumption that the measure μ satisfies the growth condition (2.3) assure that
the integral

∫

Rn

n∏

�=1

1

(t� − z�)(t� − w�)
dμ(t)

is well-defined for z,w ∈ C
+n . Third, the normalizing factor π−n is present so that

the function given by the Lebesgue measure λR equals 2 i(z − w)−1. Finally, it is not
immediately clear fromDefinition 3.5 whether the correspondence between a function
F and a measure μ constitutes a bijection, though this will turn out to be the case later
on, cf. Lemma 3.8.
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We will now show three elementary, but important, properties of Poisson-type
functions.

Lemma 3.6 Let F be a Poisson-type function given by a measure μ. Then, the function
F is positive semi-definite on C

+n × C
+n.

Proof Let m ∈ N be arbitrary and choose freely m vectors z1, z2, . . . , zm ∈ C
+n and

m numbers c1, c2, . . . , cm ∈ C. In this case, we calculate that

m∑

i, j=1

F(zi , z j ) ci c j = 1

πn

∫

Rn

m∑

i, j=1

[
ci c j

n∏

�=1

1

(t� − (zi )�)(t� − (z j )�)

]
dμ(t)

= 1

πn

∫

Rn

m∑

i, j=1

[
ci

n∏

�=1

1

t� − (zi )�
· c j

n∏

�=1

1

t� − (z j )�

]
dμ(t)

= 1

πn

∫

Rn

∣∣∣∣

m∑

i=1

[
ci

n∏

�=1

1

t� − (zi )�

] ∣∣∣∣

2

dμ(t) ≥ 0,

where the last equality follows by the same combinatorial argument used in Example
3.4. This finishes the proof. �


Lemma 3.7 Let F be a Poisson-type function given by a measure μ. Then, it is holo-
morphic in its first n variables, anti-holomorphic in its second n variables and satisfies
the growth condition that for every j ∈ {1, . . . , n} we have

lim
z j

∨−→ ∞
F(z,w) = lim

w j
∨−→ ∞

F(z,w) = 0. (3.2)

Proof Fix first an arbitrary w ∈ C
+n and consider the function z �→ F(z,w) on C+n .

This function is holomorphic as the kernel

n∏

�=1

1

(t� − z�)(t� − w�)

is holomorphic in the z-variables for every t ∈ R
n while the function

z �→ 1

πn

∫

Rn

n∏

�=1

1

|t� − z�||t� − w�|dμ(t)

is locally uniformly bounded on compact subsets of C+n due to fact that the measure
μ satisfies the growth condition (2.3). An analogous argument may now be repeated
to show that, for every z ∈ C

+n , the function w �→ F(z,w) is anti-holomorphic on
C

+n .
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To prove that the function F satisfies the growth conditions (3.2), it suffices to only
consider the case when z1

∨−→ ∞, as all other cases may be treated analogously. In this
case, we note, for z,w ∈ C

+n , that

|F(z,w)| ≤ 1

πn

∫

Rn

n∏

j=1

1

|t j − z j ||t j − w j |dμ(t)

= 1

πn

∫

Rn

∣∣∣∣
t1 − i

t1 − z1

∣∣∣∣
1

|t1 − i||t1 − w1|
n∏

j=2

1

|t j − z j ||t j − w j |dμ(t).

As z1
∨−→ ∞, we may assume that Im[z1] > 1, yielding that

∣∣∣∣
t1 − i

t1 − z1

∣∣∣∣ ≤ 1

for all t1 ∈ R. Furthermore, the function

t �→ 1

|t1 − i||t1 − w1|
n∏

j=2

1

|t j − z j ||t j − w j |

is integrable with respect to the measure μ on R
n as μ satisfies the growth condition

(2.3). Thus, by Lebesgue’s dominated convergence theorem, we have that

lim
z1

∨−→ ∞
F(z,w) = 1

πn

∫

Rn
lim

z1
∨−→ ∞

n∏

�=1

1

(t� − z�)(t� − w�)
dμ(t) = 0.

Note now that the function F is positive semi-definite by Lemma 3.6, implying, by
Lemma 3.3, that F(z,w) = F(w, z) for any z,w ∈ C

+n . Hence,

lim
w j

∨−→ ∞
F(z,w) = lim

w j
∨−→ ∞

F(w, z) = 0.

This finishes the proof. �


Lemma 3.8 Let F be a Poisson-type function given by a measure μ. Then, the measure
μ may be reconstructed form the function F via the Stieltjes inversion formula. More
precisely, let ψ : Rn → R be a C1-function for which there exists some constant C ≥ 0
such that |ψ(x)| ≤ C

∏n
j=1(1 + x2j )

−1 for all x ∈ R
n. Then, it holds that

lim
y→0+

∫

Rn
ψ(x) ·

n∏

j=1

y j · F(x + i y, x + i y)dx =
∫

Rn
ψ(t)dμ(t). (3.3)
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Proof We only need to observe that for a Poisson-type function F , it holds that

n∏

j=1

y j · F(x + i y, x + i y) = 1

πn

∫

Rn
Pn(x + i y, t)dμ(t),

where Pn denotes the Poisson kernel of the poly-upper half-plane which, we recall, is
defined for z ∈ C

+n and t ∈ R
n as

Pn(z, t) :=
n∏

j=1

Im[z j ]
|t j − z j |2 .

The statement then follows immediately from the properties of the Poisson kernel as
in the proof of the Stieltjes inversion formula for Herglotz–Nevanlinna functions of
several variables, see [26, p. 1197]. �


Recall now that the representing measure of a Herglotz–Nevanlinna function sat-
isfies the Nevanlinna condition (2.4) in addition to the growth condition (2.3). As
satisfying condition (2.3) suffices for a positive Borel measure on R

n to define a
Poisson-type function, it is apparent that Poisson-type function given by represent-
ing measures of Herglotz–Nevanlinna functions constitute a smaller subclass. This is
reflected by the following condition.

Lemma 3.9 Let F be a Poisson type function given by a measure μ. Then, the function

z �→
n∏

j=1

Im[z j ] · F(z, z) (3.4)

is pluriharmonic onC+n if and only if the measure μ satisfies the Nevanlinna condition
(2.4).

Proof We have already noted in the proof of Lemma 3.8 that

n∏

j=1

Im[z j ] · F(z, z) = 1

πn

∫

Rn
Pn(z, t)dμ(t).

The statement of the lemma now follows from [26, Prop. 5.2 and 5.3]. �


Example 3.10 Consider the Poisson-type function F given by the measure π2δ(0,0),
where δ(0,0) denotes the Dirac measure at (0, 0) ∈ R

2, i.e.

F(z,w) = 1

z1 w1 z2 w2
.
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Via Lemma 3.9, we may determine whether this measures satisfies the Nevanlinna
condition (2.4). Calculating e.g. that

∂2

∂z1∂z2
Im[z1] Im[z2] F(z, z) = −1

4

∂2

∂z1∂z2

(z1 − z1)(z2 − z2)

|z1|2|z2|2
= −1

4
· ∂

∂z1

z1 − z1
|z1|2 · ∂

∂z2

z2 − z2
|z2|2 = −1

4
· 1

z12
· −1

z22
�= 0,

sufficing to conclude that the function (z1, z2) �→ Im[z1] Im[z2] F(z, z) is not pluri-
harmonic. ♦

4 Characterization Via Positive Semi-Definite Functions

Let us begin by shortly recalling how Herglotz–Nevanlinna functions in one variable
are characterized via positive semi-definite functions, see e.g. [15]. When n = 1,
Theorem 2.1 states that q : C+ → C is a Herglotz–Nevanlinna function if and only
if there exists numbers a ∈ R and b ≥ 0 as well as a positive Borel measure μ on R

satisfying
∫
R
(1 + t2)−1dμ(t) < ∞ such that

q(z) = a + b z + 1

π

∫

R

(
1

t − z
− t

1 + t2

)
dμ(t)

for all z ∈ C
+, cf. [8,18]. This representation implies immediately that

q(z) − q(w) = b (z − w) + (z − w)
1

π

∫

R

1

(t − z)(t − w)
dμ(t) (4.1)

for all z, w ∈ C
+. Equivalently, one may reformulate the above equality to say that

for every Herglotz–Nevanlinna function q the function

(z, w) �→ q(z) − q(w)

z − w
= b + 1

π

∫

R

1

(t − z)(t − w)
dμ(t)

is positive semi-definite on C
+ × C

+. Conversely, if q : C+ → C is a holomorphic
function for which the function

F : (z, w) �→ q(z) − q(w)

z − w

is positive semi-definite onC+ ×C
+, then q must be a Herglotz–Nevanlinna function.

This is seen evaluating the function F at z = w and using Lemma 3.3. This charac-
terization also leads to the introduction of the Nevanlinna kernel and generalized
Nevanlinna functions, which we will return to in Sect. 4.2.

The next objective is therefore to determine whether a decomposition analogous to
(4.1) holds for Herglotz–Nevanlinna functions of several variables.
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4.1 TheMain Theorem

Our main result is the following.

Theorem 4.1 Let n ∈ N and let q : C+n → C be a holomorphic function. Then, q is
a Herglotz–Nevanlinna function if and only if there exists a vector d ∈ [0,∞)n and a
positive semi-definite function D on C

+n ×C
+n satisfying the growth condition (3.2)

such that the equality

q(z) − q(w) =
n∑

j=1

d j (z j − w j ) + 1

(2 i)n−1

n∏

j=1

(z j − w j ) · D(z,w) (4.2)

holds for all z,w ∈ C
+n.

Furthermore, let (a, b, μ) be the representing parameters of the function q in the
sense of Theorem 2.1. If a = 0, the correspondence between the function q and the
parameters d and D is unique and it holds that d = b and that D is the Poisson-type
function given by the measure μ.

Remark 4.2 Unlike in Theorem 2.1, the object that captures the sign of the imaginary
part of the function is nowapositive semi-definite function rather than aBorelmeasure.
Note, however, that one can hop between the two using Lemma 3.8.

Proof PART 1: Assume first that q is a Herglotz–Nevanlinna function. Then, we wish
to deduce that it admits a decomposition of the form (4.2) for some vector d and
some positive semi-definite function D on C+n ×C

+n . Since a Herglotz–Nevanlinna
function q is uniquely determined by its data (a, b, μ) in the sense of Theorem 2.1, it
may be uniquely written as the sum

q = qa + qb + qc,

where qa is given by the data (a, 0, 0), qb is given by the data (0, b, 0) and qc is given
by the data (0, 0, μ). Hence, it suffices to prove the desired result for each of these
three special cases separately.

Case 1.a: If a Herglotz–Nevanlinna function q is given by the data (a, 0, 0) in the
sense of Theorem 2.1, then it holds, for every z,w ∈ C

+n that q(z) − q(w) = 0.
Thus, to satisfy equality (4.2), one may chose d = 0 and D ≡ 0.

Case 1.b: If a Herglotz–Nevanlinna function q is given by the data (0, b, 0) in the
sense of Theorem 2.1, then it holds, for every z,w ∈ C

+n , that

q(z) − q(w) =
n∑

j=1

b j (z j − w j )

Thus, to satisfy equality (4.2), one may chose d = b and D ≡ 0.
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Case 1.c: If a Herglotz–Nevanlinna function q is given by the data (0, 0, μ) in the
sense of Theorem 2.1, it holds, for every z,w ∈ C

+n , that

q(z) − q(w) = 1

πn

∫

Rn

(
Kn(z, t) − Kn(w, t)

)
dμ(t).

In order to be able to describe the difference Kn(z, t) − Kn(w, t) more precisely, we
introduce the expression

Pn(z,w, t) :=
n∏

�=1

(
N−1(z�, t�) + N0(i, t�) + N1(w�, t�)

)

= 1

(2 i)n

n∏

�=1

(
1

t� − z�

− 1

t� − w�

)
= 1

(2 i)n

n∏

�=1

z� − w�

(t� − z�)(t� − w�)
. (4.3)

This expression can be thought of as an "extended" Poisson kernel of C
+n , as

Pn(z, z, t) equals the usual Poisson kernel of C+n .
We now claim that the equality

1

2 i

(
Kn(z, t) − Kn(w, t)

) = Pn(z,w, t)

−
∑

ρ∈{−1,0,1}n

−1∈ρ∧1∈ρ

n∏

j=1

Nρ j (ερ j (z j , w j ), t j ) (4.4)

holds for every t ∈ R
n and every z,w ∈ (C \ R)n , where the choice of variable ε� is

determined by

ε�(α, β) :=
⎧
⎨

⎩

α ; � = −1,
i ; � = 0,

β ; � = 1,
(4.5)

i.e. the choice ε� ensures that the the first input of the term N−1 is always taken form
the vector z and that the first input of the term N1 is always taken form the vector
w. Note that this is a stronger statement than needed, as for our current goal it would
suffice to consider z,w ∈ C

+n .
The proof of equality (4.4) follows closely the proof of the special casewhen z = w,

presented in [26, Prop. 3.3]. To that end, we observe that

Kn(w, t) = −i

(
2

n∏

j=1

(
N1(w j , t j ) + N0(i, t j )

) −
n∏

j=1

N0(i, t j )

)
.
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Expanding now the following products as sums yields

n∏

j=1

(
N−1(z j , t j ) + N0(i, t j ) + N1(w j , t j )

)

= ∑

ρ∈{−1,0,1}n

n∏

j=1
Nρ j (ερ j (z j , w j ), t j ),

n∏

j=1

(
N1(w j , t j ) + N0(i, t j )

) = ∑

ρ∈{−1,0,1}n

−1/∈ρ

n∏

j=1
Nρ j (ερ j (z j , w j ), t j ),

n∏

j=1

(
N−1(z j , t j ) + N0(i, t j )

) = ∑

ρ∈{−1,0,1}n

1/∈ρ

n∏

j=1
Nρ j (ερ j (z j , w j ), t j ),

n∏

j=1
N0(i, t j ) = ∑

ρ∈{−1,0,1}n

−1/∈ρ∧1/∈ρ

n∏

j=1
Nρ j (ερ j (z j , w j ), t j ),

and hence

1

2 i

(
Kn(z, t) − Kn(w, t)

)

=
n∏

j=1

(
N−1(z j , t j ) + N0(i, t j )

) +
n∏

j=1

(
N1(w j , t j ) + N0(i, t j )

) −
n∏

j=1

N0(i, t j )

=
∑

ρ∈{−1,0,1}n

n∏

j=1

Nρ j (ερ j (z j , w j ), t j ) −
∑

ρ∈{−1,0,1}n

−1∈ρ∧1∈ρ

n∏

j=1

Nρ j (ερ j (z j , w j ), t j )

= Pn(z,w, t) −
∑

ρ∈{−1,0,1}n

−1∈ρ∧1∈ρ

n∏

j=1

Nρ j (ερ j (z j , w j ), t j ),

as desired.
Using formula (4.4), we deduce that

q(z) − q(w) = 2 i

πn

∫

Rn
Pn(z,w, t)dμ(t)

−
∑

ρ∈{−1,0,1}n

−1∈ρ∧1∈ρ

2 i

πn

∫

Rn

n∏

j=1

Nρ j (ερ j (z j , w j ), t j )dμ(t). (4.6)

Since

2 i

πn

∫

Rn
Pn(z,w, t)dμ(t) = 1

(2 i)n−1

n∏

j=1

(z j − w j )
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· 1

πn

∫

Rn

n∏

j=1

1

(t j − z j )(t j − w j )
dμ(t),

due to the definition of Pn , we may choose D as the Poisson-type function given by
the measure μ. This is indeed a valid choice, as a Poisson-type function is positive
semi-definite onC+n ×C

+n due to Lemma 3.6 and satisfies the growth condition (3.2)
due to Lemma 3.7.

Finally, we claim that

∫

Rn

n∏

j=1

Nρ j (ερ j (z j , w j ), t j )dμ(t) = 0

for every vectors z,w ∈ C
+n and every indexing vector ρ as in the sum in formula

(4.6), i.e. with at lest one entry equal to 1 and at least one entry equal to −1. To infer
this, we observe that once an indexing vector ρ has been chosen, we may combine the
vectors z,w ∈ C

+n into a single vector ξ ∈ C
+n via setting

ξ j :=
⎧
⎨

⎩

z j ; ρ j = −1,
i ; ρ j = 0,

w j ; ρ j = 1.

Hence,

Nρ j (ερ j (z j , w j ), t j ) = Nρ j (ξ j , t j )

and the desired result follows from the fact that the measureμ satisfies the Nevanlinna
condition (2.4), cf. [26, Thm. 5.1]. Note that it is important that we may write the
choice ερ j in terms of a single vector from C

+n , as [26, Thm. 5.1 (b)] only implies
the desired result in the case where the first inputs of the terms N−1 and N1 are taken
from the same vector.

In conclusion, formula (4.6) provides a decomposition of the form (4.2) where the
function D is chosen as described above and d = 0. This finishes part 1 of the proof.

PART 2: Assume now that q : C+n → C is a holomorphic function for which
there exists some vector d ∈ [0,∞)n and some positive semi-definite function D on
C

+n ×C
+n such that equality (4.2) holds for all z,w ∈ C

+n . To show that q must be
a Herglotz–Nevanlinna function, we only need to check that Im[q] ≥ 0. To that end,
we may choose z = w in equality (4.2) to get

2 i Im[q(z)] = 2 i
n∑

j=1

d j Im[z j ] + 2 i
n∏

j=1

Im[z j ] · D(z, z).

Diving both sides by 2 i and noting that D(z, z) ≥ 0 by Lemma 3.3 yields the desired
result.
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As such, the only remaining step is to show that the vector d must be equal to b
and that the function D must be the Poisson-type function given by the measure μ.
For the former, we calculate using formula (2.5) that, one one hand,

lim
z�

∨−→ ∞
q(z) − q(w)

z�

= b�.

On the other hand, using decomposition (4.2), we have

lim
z�

∨−→ ∞
q(z) − q(w)

z�

= d� + 1

(2 i)n−1

n∏

j=1
j �=�

(z j − w j ) · lim
z�

∨−→ ∞
D(z,w) = d�

due to the assumption that the function D satisfies the growth condition (3.2).
Since we know by now that the function q is a Herglotz–Nevanlinna function, it

is represented by some data (a, b, μ) in the sense of Theorem 2.1. By Part 1 of the
proof, it holds that

q(z) − q(w) =
n∑

j=1

b j (z j − w j ) + qc(z) − qc(w),

where the function qc is a Herglotz–Nevanlinna function given by the data (0, 0, μ).
However, by assumption, the function q also admits a decomposition of the form
(4.2), where we already know that b� = d� for all � ∈ {1, . . . , n}. Comparing this
decomposition with the one above yields that

D(z,w) = (2 i)n−1
∏n

j=1(z j − w j )

(
qc(z) − qc(w)

)
.

However, by Step 1.c of Part 1 of the proof, it holds that

qc(z) − qc(w) = 1

(2 i)n−1

n∏

j=1

(z j − w j ) · 1

πn

∫

Rn

n∏

�=1

1

(t� − z�)(t� − w�)
dμ(t),

implying that the function D is necessarily the Poisson-type function given by the
measure μ, finishing Part 2 of the proof. �


A slight reformulation of this result can be stated as follows.

Corollary 4.3 A function q : C+n → C is a Herglotz–Nevanlinna function if and only
if there exists a number a ∈ R, a vector b ∈ [0,∞)n and a Poisson-type function D
satisfying condition (3.4) such that the formula

q(z) = (
a − i D(i 1, i 1)

) +
n∑

j=1

b j z j + 1

(2 i)n−1

n∏

j=1

(z j + i) · D(z, i 1) (4.7)
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holds for all z ∈ C
+n.

Proof Note first that the integral of the kernel Kn with respect to ameasureμ satisfying
the growth condition may be written in terms of the Poisson-type function D given by
the same measure as

1

πn

∫

Rn
Kn(z, t)dμ(t) = 1

(2 i)n−1

n∏

j=1

(z j + i) · D(z, i 1) − i D(i 1, i 1).

The statement of the corollary now follows from Theorem 2.1, Theorem 4.1 and
Lemma 3.9. �


4.2 The Nevanlinna Kernel in Several Variables

For any holomorphic function q : C+ → C, one can consider its Nevanlinna kernel
Kq : C+ × C

+ → C, defined by

Kq(z, w) := q(z) − q(w)

z − w
.

In general, this kernel may be considered with regards to either a scalar-, matrix- or
operator-valued function q, see e.g. [12,20–22]. As summarized in the introduction to
Sect. 4, it holds that a function q : C+ → C is a Herglotz–Nevanlinna function if and
only if Kq is positive semi-definite.

An analogous characterization for Herglotz–Nevanlinna functions of several vari-
ables, based on Theorem 4.1, is the following.

Theorem 4.4 Let q be a holomorphic function on C
+n. Then, q is a Herglotz–

Nevanlinna function if and only if the function

(z,w) �→ (2 i)n−1
∏n

j=1(z j − w j )

(
q(z) − q(w)

)

is positive semi-definite on C
+n × C

+n. In that case, it holds that

(2 i)n−1
∏n

j=1(z j − w j )

(
q(z) − q(w)

) =
n∑

j=1

b j

n∏

�=1
� �= j

2 i

z� − w�

+ D(z,w),

where the vector b is as in representation (2.2) and the function D is as described in
Theorem 4.1.

Proof If the function q is represented by the data (a, 0, 0) or (0, 0, μ), then the result
follows immediately by steps 1.a and 1.c of the proof of Theorem 4.1. If, instead, the
function q is represented by the data (0, b, 0), it holds that
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(2 i)n−1
∏n

j=1(z j − w j )

(
q(z) − q(w)

) =
n∑

j=1

b j

n∏

�=1
� �= j

2 i

z� − w�

.

Since the function

(z, w) �→ 2 i

z − w

is positive semi-definite on C+ × C
+, the result then follows by Lemma 3.3.

For the converse statement, we only need to show that Im[q(z)] ≥ 0 which may be
done as in Part 2 of the proof of Theorem 4.1. �

Corollary 4.5 Let F be a positive semi-definite function on C

+n × C
+n. Then,

F(z,w) = (2 i)n−1
∏n

j=1(z j − w j )

(
q(z) − q(w)

)
(4.8)

for some Herglotz–Nevanlinna function q if and only if there exists a vector d ∈
[0,∞)n and a Poisson-type function D satisfying condition (3.4) such that

F(z,w) =
n∑

j=1

d j

n∏

�=1
� �= j

2 i

z� − w�

+ D(z,w) (4.9)

for all z,w ∈ C
+n.

Proof If the function F can be written in terms of a Herglotz–Nevanlinna function q
as in formula (4.8), then the result follows by Theorem 4.1 and Theorem 4.4.

Conversely, assume that there exists a vector d and a Poisson-type function D as
in the Corollary such that equality (4.9) holds. Let σ be the positive Borel measure
satisfying the growth condition (2.3) that gives the function D. By Lemma 3.9, the
measure sigma also satisfies the Nevanlinna condition (2.4) due to the assumption on
the function D. Hence, we may define a Herglotz–Nevanlinna function q via Theorem
2.1 using the data (0, d, σ ). The result now follows by Theorem 4.4. �


Using Theorem 4.4, we may now propose a multi-dimensional analogue to
the classical Nevaninna kernel that generalizes its core property of characterizing
Herglotz–Nevanlinna functions.

Definition 4.6 Let q : C+n → C be a holomorphic function. Then, its Nevanlinna
kernel Kq : C+n × C

+n → C is defined as

Kq(z,w) := (2 i)n−1
∏n

j=1(z j − w j )

(
q(z) − q(w)

)
.



109 Page 18 of 29 M. Nedic

When n = 1, the Nevanlinna kernel is used to define generalized Nevanlinna
functions. A meromorphic function q : C+ → C with domain of holomorphy
Dom(q) ⊆ C

+ is called a generalized Nevanlinna function of class Nκ(C+) if its
Nevanlinna kernelKq has κ negative squares [21, p. 187]. We recall thatKq having κ

negative squares means that for arbitrary N ∈ N and arbitrary z1, . . . , zN ∈ C
+ the

matrix

(Kq(zi , z j )
)N

i, j=1

has at most κ negative eigenvalues and κ is minimal with this property.
Using Definition 4.6, generalized Nevanlinna functions of several variables may be

introduced completely analogously.

Definition 4.7 A meromorphic function q : C+n → C with domain of holomorphy
Dom(q) ⊆ C

+n is called a generalized Nevanlinna function of class Nκ(C+n) if its
Nevanlinna kernel Kq has κ negative squares.

The detailed study of this class of functions lies outside the scope of this paper.

4.3 Decomposition of the Symmetric Extension

We recall that the integral expression in formula (2.2) is well-defined for any z ∈
(C \ R)n , which may be used to extend any Herglotz–Nevanlinna function q from
C

+n to (C \ R)n . This extension is called the symmetric extension of the function q
and is denoted as qsym.We note that the symmetric extension of aHerglotz–Nevanlinna
function q is different from its possible analytic extension as soon as μ �= 0, cf. [26,
Prop. 6.10]. The symmetric extension also satisfies a particular variable-dependence
property, cf. [26, Prop. 6.9].

Just as a Herglotz–Nevanlinna function q can always be symmetrically extended
to (C \R)n via its integral representation (2.2), so too can we consider the symmetric
extension of a Poisson-type function. This symmetric extension will automatically be
positive semi-definite on (C \R)n × (C \R)n as the proof of Lemma 3.6 still remains
valid even if the variables z and w are taken from (C \R)n instead. However, a direct
analogue of Theorem 4.1 does not hold, as the following example shows.

Example 4.8 Consider the Herglotz–Nevanlinna function q given by q(z1, z2) =
−(z1 + z2)−1 for (z1, z2) ∈ C

+2. This function in represented by the data (0, 0, μ) in
the sense of Theorem 2.1, where the measure μ is defined, for any Borel set U ⊆ R

2,
as

μ(U ) := π

∫

R

χU (t,−t)dt .

Here, χU denotes the characteristic function of the set U . The function D from The-
orem 4.1 can then be calculated using standard residue calculus and equals

D(z,w) = 2 i (z1 + z2 − w1 − w2)

(z1 − w1)(z2 − w2)(z1 + z2)(w1 + w2)
.
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Table 1 The symmetric
extension of the function D from
Example 4.8

Dsym(z, w) z ∈ w ∈
2 i (z1+z2−w1−w2)

(z1−w1)(z2−w2)(z1+z2)(w1+w2)
C

+ × C
+

C
+ × C

+
2 i

(z1+w2)(z2−w2)(w1+w2)
C

− × C
+

C
+ × C

+
2 i

(z2+w1)(z1−w1)(w1+w2)
C

+ × C
−

C
+ × C

+
2 i (z1+z2+w1+w2)

(z1+w2)(z2+w1)(z1+z2)(w1+w2)
C

− × C
−

C
+ × C

+
2 i

(z1+z2)(z2+w1)(z2−w2)
C

+ × C
+

C
− × C

+
2 i (z1−z2−w1+w2)

(z1−w1)(z2+w1)(z1+w2)(z2−w2)
C

− × C
+

C
− × C

+

0 C
+ × C

−
C

− × C
+

−2 i
(z1+z2)(z1−w1)(z1+w2)

C
− × C

−
C

− × C
+

2 i
(z1+z2)(z1−w1)(z1+w2)

C
+ × C

+
C

+ × C
−

0 C
− × C

+
C

+ × C
−

2 i (−z1+z2+w1−w2)
(z1−w1)(z2+w1)(z1+w2)(z2−w2)

C
+ × C

−
C

+ × C
−

−2 i
(z1+z2)(z2+w1)(z2−w2)

C
− × C

−
C

+ × C
−

−2 i (z1+z2+w1+w2)
(z1+w2)(z2+w1)(z1+z2)(w1+w2)

C
+ × C

+
C

− × C
−

−2i
(z1−w1)(z2+w1)(w1+w2)

C
− × C

+
C

− × C
−

−2i
(z2−w2)(z1+w2)(w1+w2)

C
+ × C

−
C

− × C
−

2i(−z1−z2+w1+w2)
(z1+z2)(z1−w1)(z2−w2)(w1+w2)

C
− × C

−
C

− × C
−

Furthermore, also using standard residue calculus, the symmetric extension of the
function q can be calculated to be

qsym(z1, z2) =

⎧
⎪⎪⎨

⎪⎪⎩

−(z1 + z2)−1 ; (z1, z2) ∈ C
+ × C

+,

(i − z1)−1 ; (z1, z2) ∈ C
− × C

+,

(i − z2)−1 ; (z1, z2) ∈ C
+ × C

−,

(z1 + z2)−1 + (i − z1)−1 + (i − z2)−1 ; (z1, z2) ∈ C
− × C

−,

while the values of Dsym are shown in Table 1.
If we now choose e.g. z ∈ C

+ × C
− and w ∈ C

− × C
+, we see that

1

i − z2
+ 1

i + w1
= qsym(z) − qsym(w) �= 1

(2 i)n−1

n∏

j=1

(z j − w j ) · Dsym(z,w) = 0,

implying the presence of an error term. ♦

The following proposition gives a characterization of the symmetric extension of a
Herglotz–Nevanlinna functions in analogy to Theorem 4.1.

Proposition 4.9 Let n ∈ N and let f : (C \ R)n → C be a holomorphic function.
Then, f = qsym for some Herglotz–Nevanlinna function q if and only if there exists
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a vector d ∈ [0,∞)n and a positive Borel measure σ on R
n satisfying the growth

condition (2.3) and the Nevanlinna condition (2.4) such that the equality

f (z) − f (w) =
n∑

j=1

d j (z j − w j ) + 1

(2 i)n−1

n∏

j=1

(z j − w j )

·Dsym(z,w) − E(z,w) (4.10)

holds for all z,w ∈ (C \ R)n. Here, Dsym denotes the symmetric extension of the
Poisson-type function D given by the measure σ , the error term E is defined as

E(z,w) :=
∑

ρ∈{−1,0,1}n

−1∈ρ∧1∈ρ

2 i

πn

∫

Rn

n∏

j=1

Nρ j (ερ j (z j , w j ), t j )dσ(t)

and the choice of variable ε� is defined by formula (4.5).

Proof Assume first that f = qsym for some Herglotz–Nevanlinna function q given
by the data (a, b, μ) in the sense of Theorem 2.1. As in the proof of Theorem 4.1,
we separately investigate three case with respect to the representing parameters of the
function q. Cases 1.a and 1.b, i.e. when the function q is either represented by data of
the form (a, 0, 0) or (0, b, 0) may be considered completely analogously as before.

If, instead, a Herglotz–Nevanlinna function q is given by the data (0, 0, μ) in the
sense of Theorem 2.1, it holds that

qsym(z) − qsym(w) = 1

πn

∫

Rn

(
Kn(z, t) − Kn(w, t)

)
dμ(t)

for every z,w ∈ (C \ R)n . Using formula (4.4), which we already originally proved
holds for z,w ∈ (C \ R)n , we deduce that

qsym(z) − qsym(w) = 2 i

πn

∫

Rn
Pn(z,w, t)dμ(t)

−
∑

ρ∈{−1,0,1}n

−1∈ρ∧1∈ρ

2 i

πn

∫

Rn

n∏

j=1

Nρ j (ερ j (z j , w j ), t j )dμ(t).

Since

2 i

πn

∫

Rn
Pn(z,w, t)dμ(t) = 1

(2 i)n−1

n∏

j=1

(z j − w j ) · Dsym(z,w),

the result follows.
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Conversely, define a Herglotz–Nevanlinna function q via representation (2.2) using
the data (Re[ f (i . . . , i)], d, σ ). By what we just proved, it holds that

f (z) − f (w) = qsym(z) − qsym(w) (4.11)

for all z,w ∈ (C \ R)n . When z = w, the above equality implies that

Im[ f (z)] = Im[ f (q)]

for all z ∈ (C \ R)n . Therefore,

f (z) = q(z) + C(z),

where the function C equals a real constant on each connected component of (C\R)n .
By construction,

Re[q(i, . . . , i)] = Re[ f (i, . . . , i)],

implying that C ≡ 0 onC+n and hence f = qsym onC+n . Finally, when z ∈ (C\R)n

is arbitrary and w = (i, . . . , i), equality (4.11) implies that f = qsym on (C \ R)n .
This finishes the proof. �


4.4 Loewner Functions

Theorem 4.1 provides a universal description of the difference q(z) − q(w) for a
Herglotz–Nevanlinna function q and z,w ∈ C

+n . Another approach one can take is
to ask instead that this difference may be written in a specific form. This leads us to
consider the following class of functions, cf. [3, p. 3003].

Definition 4.10 A holomorphic function h : C+n → C is called a Loewner function
(on C

+n) if there exist n positive semi-definite functions F1, . . . , Fn on C
+n × C

+n ,
such that the equality

h(z) − h(w) =
n∑

�=1

(z� − w�)F�(z,w). (4.12)

holds for all z,w ∈ C
+n .

Due to Lemma 3.3, it is easily seen that every Loewner function is also a Herglotz–
Nevanlinna function. The converse result is dependant on the number of variables n.
When n = 1, it follows from the results summarized in the beginning of Sect. 4 that
every Herglotz–Nevanlinna function is also a Loewner function. If n = 2, this still
holds, with the result being a consequence of a theorem concerning Schur function on
the polydisk, see [1] and [3, Thm. 1.4]. When n ≥ 3, Loewner functions form a proper
subclass of Herglotz–Nevanlinna functions, with the result being a consequence of the
theory of commuting contractions [30,36].
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Using the Nevanlinna kernel, we may describe Loewner functions in the following
way.

Proposition 4.11 Let h : C+n → C be a holomorphic function. Then, h is a Loewner
function if and only if there exist n positive semi-definite functions F1, . . . , Fn on
C

+n × C
+n such that the equality

Kh(z,w) =
n∑

�=1

F�(z,w)

n∏

j=1
j �=�

2 i

z j − w j
(4.13)

holds for all z,w ∈ C
+n.

Proof If h is a Loewner function, it admits a decomposition of the form (4.12) for
some positive semi-definite functions F1, . . . , Fn onC+n ×C

+n . Using this to rewrite
the difference h(z) − h(w) in the definition of Kh gives equality (4.13).

Conversely, assuming equality (4.13) holds for some positive semi-definite func-
tions F1, . . . , Fn on C

+n × C
+n . Then, multiplying both sides of the equality with

(2 i)−n+1 ∏n
j=1(z j − w j ) gives a decomposition of the from (4.12), as desired. �


For n = 1, decomposition (4.12) coincides with decomposition (4.2), implying that
a given Loewner function admits precisely one decomposition of the form (4.12). For
n ≥ 2, decomposition (4.12) is not-necessarily unique and the functions F1, . . . , Fn

are not necessarily Poisson-type functions. To illustrate this, consider the following
two examples.

Example 4.12 Let h(z1, z2) := i for all (z1, z2) ∈ C
+2. Then, it holds that

h(z1, z2) − h(w1, w2) = (z1 − w1) · 2 i

z1 − w1
+ (z2 − w2) · 0

= (z1 − w1) · 0 + (z2 − w2) · 2 i

z2 − w2

= (z1 − w1) · 2k1i

z1 − w1
+ (z2 − w2) · 2k2i

z2 − w2
,

where k1, k2 ≥ 0 with k1 + k2 = 1. Thus, this function h admits infinitely many dif-
ferent decompositions of the form (4.12). It is also noteworthy that while the function

(z1, w1) �→ 2 i

z1 − w1

is a Poisson-type function on C
+ × C

+, the function

F : ((z1, z2), (w1, w2)) �→ 2 i

z1 − w1

is not a Poisson-type function on C
+2 × C

+2, though it still is positive semi-definite
on C

+2 × C
+2. Indeed, if it were, it would be given by some measure μ, which one
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would be able to reconstruct via the Stieltjes inversion formula (3.3). Taking ψ to be
any function as in Lemma 3.8, we calculate that

0 ≤
∫∫

R2
|ψ(x1, x2)| y1 y2 F(x + i y, x + i y)dx =

∫∫

R2
|ψ(x1, x2)| y2dx

≤ C π2 y2
y→0−−−→ 0,

where the constant C comes from the assumptions on the function φ. Therefore, the
measureμwould have to be the zero-measure, an impossibility given that the function
F is not identically zero.

As a Herglotz–Nevanlinna function, the function h can be written as

h(z1, z2) − h(w1, w2) = 1

2 i
(z1 − w1)(z2 − w2)D(z,w),

where the function D is as specified in Theorem 4.1 and equals

D((z1, z2), (w1, w2)) := −4

(z1 − w1)(z2 − w2)
.

Let us now attempt to rewrite the above decomposition as

h(z1, z2) − h(w1, w2) = (z1 − w1) ·
(

z2 − w2

2 i
D(z,w)

)

︸ ︷︷ ︸
:=F1(z,w)

+(z2 − w2) · 0.

The function F1, defined in the above way, can be shown to be equal to

F1((z1, z2), (w1, w2)) = 2 i

z1 − w1
,

providing, thusly, a valid decomposition of the form (4.12). ♦

Example 4.13 Let h(z1, z2) := −(z1 + z2)−1 for all (z1, z2) ∈ C
+2. Then, it holds

that

h(z1, z2) − h(w1, w2) = − 1

z1 + z2
+ 1

w1 + w2
= z1 + z2 − w1 + w2

(z1 + z2)(w1 + w2)

= (z1 − w1)
1

(z1 + z2)(w1 + w2)
+ (z2 − w2)

1

(z1 + z2)(w1 + w2)

for all z,w ∈ C
+2. The function

F : ((z1, z2), (w1, w2)) �→ 1

(z1 + z2)(w1 + w2)
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is indeed positive semi-definite onC+2×C
+2, as it is of the same form as the functions

in Example 3.4.However, it can be shown via an analogous reasoning as in the previous
example that this functions is not a Poisson-type function.

As a Herglotz–Nevanlinna function, the function h admits a decomposition of the
form

h(z1, z2) − h(w1, w2) = 1

2 i
(z1 − w1)(z2 − w2)

· 2 i (z1 + z2 − w1 − w2)

(z1 − w1)(z2 − w2)(z1 + z2)(w1 + w2)︸ ︷︷ ︸
=D(z,w)

for all z,w ∈ C
+2. Investigating whether this decomposition can be rewritten into a

decomposition of the form (4.12) as in the previous examples leads us to consider the
function

(z,w) �→ z1 − w1

2 i
D(z,w) = z1 + z2 − w1 − w2

(z2 − w2)(z1 + z2)(w1 + w2)
.

However, this function is no longer positive semi-definite. Indeed, choose m = 2,
z1 = (i,−2 + i), z2 = (2 + i, 2 i), c2 = 1 and

c1 =
√
377 − 7

2132
(−33 − 113 i).

Then, it holds that

2∑

i, j=1

(zi )1 − (z j )1

2 i
D(zi , z j )ci c j = 4901 − 255

√
377

8528
∼= −0.00588701 < 0.

Hence, a decomposition of the form (4.12) cannot always be constructed formadecom-
position of the form (4.2) via the process that was exhibited in the previous example.♦

5 Holomorphic Functions on the Unit Polydisk with Non-Negative
Real part

Historically, the idea to investigate the difference (or sum) of the values of a holo-
morphic function with a prescribed sign of its imaginary or real part dates back to the
1910’s. A fundamental result from this era is due to Pick [31, p. 8], who proved, in
modern terms, that for any holomorphic function f : D → C with non-negative real
part it holds that

f (ξ) + f (η)

1 − ξ η
= 1

π

∫

[0,2π)

1

(ei s − ξ)(e−i s − η)
dν(s),
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where ξ, η ∈ D and ν is the representing measure of the function f in the sense of the
Riesz-Herglotz representation theorem [34, p. 76]. Using the Cayley transform and
its inverse, recalled explicitly later on, this result may be reinterpreted in the language
of Herglotz–Nevanlinna functions where it reproduces the results summarized in the
beginning of Sect. 4.

When considering functions of several variables, Korányi and Pukánszky gave
an integral representation for holomorphic functions on the unit polydisk with non-
negative real part [19, Thm. 1]. Additionally, they gave a criterion to determine when
a function defined a priori on a subset of Dn of a particular type can be extended to
holomorphic function on the whole of Dn with non-negative real part [19, Thm. 2].
The latter condition of the latter theorem is expressed in terms of a certain function
being positive semi-definite. Interestingly, this positive semi-definite function turns
out to be a real constant multiple of the one appearing in the following adaptation of
Theorem 4.1.

Proposition 5.1 Let f : Dn → C be a holomorphic function. Then, f has non-negative
real part if and only if the

(ξ , η) �→ 2n−1
∏n

j=1(1 − ξ jη j )
· ( f (ξ) + f (η)

)
(5.1)

is positive semi-definite on D
n × D

n.

Remark 5.2 The normalizing factor 2n−1 has no impact on the conclusion of the propo-
sition, unlike the factor (2 i)n−1 appearing in Theorem 4.4. Furthermore, the function

(ξ , η) �→
n∏

j=1

1

1 − ξ jη j
,

where ξ , η ∈ D
n , is sometimes referred to as the Szegő kernel of Dn , cf. [19, p. 450].

Proof Recall first that the Cayley transform ϕ : C → C
+ is defined as

ϕ(ζ ) = i
1 + ζ

1 − ζ
,

while its inverse ϕ−1 : C+ → D is given by

ϕ−1(z) = z − i

z + i
.

Furthermore, if a change of variables between s ∈ (0, 2π) and t ∈ R is given by
ei s = ϕ−1(t), then

ds = 2

1 + t2
dt or dt = 1

1 − cos(s)
ds.



109 Page 26 of 29 M. Nedic

Let now f : Dn → C be a holomorphic function with non-negative real part. Then,
the function

q(z) := i f (ϕ−1(z1), . . . , ϕ
−1(zn))

is a Herglotz–Nevanlinna function. By Theorem 4.1, it holds that

q(z) − q(w) =
n∑

j=1

b j (z j − w j ) + 1

(2 i)n−1

n∏

j=1

(z j − w j )

· 1

πn

∫

Rn

n∏

j=1

1

(t j − z j )(t j − w j )
dμ(t), (5.2)

where b andμ are the representing parameters of the functionq in the sense ofTheorem
2.1. Define now ξ , η ∈ D

n and s ∈ (0, 2π)n via ξ j := ϕ−1(z j ), η j := ϕ−1(w j ) and
ei s j := ϕ−1(t j ) for j = 1, 2, . . . , n. In this notation, f (ξ) = −i q(z) and equality
(5.2) becomes

i f (ξ) + i f (η)

= i

n∑

j=1

b j

(
1 + ξ j

1 − ξ j
+ 1 + η j

1 − η j

)
+ in

(2 i)n−1

n∏

j=1

(
1 + ξ j

1 − ξ j
+ 1 + η j

1 − η j

)

· 1

(2π)n

∫

(0,2π)n

n∏

j=1

(1 − ξ j )(1 − η j )

(ei s j − ξ j )(e−i s j − η j )
dν(s)

= 2 i
n∑

j=1

b j
1 − ξ jη j

(1 − ξ j )(1 − η j )
+ i

2n−1

n∏

j=1

(1 − ξ jη j )

· 1

πn

∫

(0,2π)n

n∏

j=1

1

(ei s j − ξ j )(e−i s j − η j )
dν(s). (5.3)

Here, the measure ν on (0, 2π)n is a reparametrization of the measure μ obtained by
setting

dμ(t) =
n∏

j=1

1

1 − cos(s j )
dν(s).

Note now that by standard residue calculus it holds for every ξ, η ∈ D that

1

π

∫

[0,2π)

1

(ei s − ξ)(e−i s − η)
ds = 2

1 − ξ η
.
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Hence, for every j = 1, 2 . . . , n, we may write

2 i b j
1 − ξ jη j

(1 − ξ j )(1 − η j )
= i

2n−1

n∏

j=1

(1 − ξ jη j )

· 1

πn

∫

[0,2π)n

n∏

j=1

1

(ei s j − ξ j )(e−i s j − η j )
dσ j (s),

where σ j is a measure on [0, 2π)n defined as

σ j := λ[0,2π) × · · · × λ[0,2π) × 2πb jδ0︸ ︷︷ ︸
j−th coordinate

×λ[0,2π) × · · · × λ[0,2π).

Here, λ[0,2π) denotes the Lebesgue measure on [0, 2π) and δ0 denotes the Dirac
measure at zero. We also extend the measure ν to a measure ν̃ on [0, 2π)n by setting

ν̃|(0,2π)n := ν and ν̃|[0,2π)n\(0,2π)n := 0.

Denote now

σ̃ := ν̃ +
n∑

j=1

σ j .

Using this, equality (5.3) may be rewritten as

f (ξ) + f (η) = 1

2n−1

n∏

j=1

(1 − ξ jη j ) · 1

πn

∫

[0,2π)n

n∏

j=1

1

(ei s j − ξ j )(e−i s j − η j )
dσ̃ (s).

Note finally that the function

(ξ , η) �→ 1

πn

∫

[0,2π)n

n∏

j=1

1

(ei s j − ξ j )(e−i s j − η j )
dσ̃ (s) (5.4)

is positive semi-definite on D
n × D

n , which follows by an analogous calculation as
was done in the proof of Lemma 3.6. This finishes the first part of the proof.

Conversely, assume that we have a function f : Dn → C for which the function
(5.1) is positive semi-definite on Dn ×D

n . To show that f has non-negative real part,
we only need to evaluate the function (5.1) at ξ = η and use Lemma 3.3. This finishes
the proof. �

Remark 5.3 The Nevanlinna kernel and the function (5.1) are not equivalent under
the Cayley transform. More precisely, let ϕ and ϕ−1 be the Cayley transform and its
inverse as in the proof of Proposition 5.1, let z,w ∈ C

+n and ξ , η ∈ D
n be such that

ξ j := ϕ−1(z j ) and η j := ϕ−1(w j ) and let q : C+n → C be a Herglotz–Nevanlinna
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function and f : Dn → C be a holomorphic function with non-negative real part such
that q(z) = i f (ξ). Then,

(2 i)n−1
∏n

j=1(z j − w j )

(
q(z) − q(w)

) �= 2n−1
∏n

j=1(1 − ξ jη j )
· ( f (ξ) + f (η)

)
.

An analogous non-equivalence under the Cayley transform holds for Poisson-type
function and function of the type (5.4).
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