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Abstract
In this paperwe consider generalizedHardy spaces in the octonionic setting associated
to arbitrary Lipschitz domains where the unit normal field exists almost everywhere.
First we discuss some basic properties and explain structural differences to the asso-
ciative Clifford analysis setting. The non-associativity requires special attention in the
definition of an appropriate inner product and hence in the definition of a generalized
Szegö projection. Whenever we want to apply classical theorems from reproducing
kernel Hilbert spaces we first need to switch to the consideration of real-valued inner
products where the Riesz representation theorem holds. Then we introduce a gen-
eralization of the dual Cauchy transform for octonionic monogenic functions which
represents the adjoint transform with respect to the real-valued inner product 〈·, ·〉0
together with an associated octonionic Kerzman–Stein operator and related kernel
functions. Also in the octonionic setting, the Kerzman–Stein operator that we intro-
duce turns out to be a compact operator. A motivation behind this approach is to find
an approximative method to compute the Szegö projection of octonionic monogenic
functions offering a possibility to tackle BVP in the octonions without the explicit
knowledge of the octonionic Szegö kernel which is extremely difficult to determine
in general. We also discuss the particular cases of the octonionic unit ball and the
half-space. Finally, we relate our octonionic Kerzman–Stein operator to the Hilbert
transform and particularly to the Hilbert–Riesz transform in the half-space case.
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1 Introduction

In the recent years one noted an increasing interest in the study of generalizations of
Bergman and Hardy spaces in the setting of octonionic monogenic function theory.

In [26] JinxunWang and Xingmin Li determined the Bergman and the Szegö kernel
for octonionic monogenic functions on the unit ball. In their follow-up paper [27] they
proved a representation formula for the octonionic Bergman kernel of upper half-
space. In our recent paper [19] we managed to set up an explicit formula for the
octonionic Szegö kernel of upper half-space as well as for the octonionic Szegö and
Bergman kernel of strip domains that are bounded in the real direction. Our method
used octonionic generalizations of the cotangent and cosecant series. However, due to
the lack of associativity in the octonions, our proof relies on the property that the strip
domains that we considered are bounded in the real direction only. In one part of our
proof we explicitly exploited that a product of three elements a, b, c ∈ O where one
of these factors lies in the real axis is associative. This is not the case anymore when
other directions than the real one are involved. To determine explicit formulas for the
Bergman and the Szegö kernel therefore is even more difficult than in the associative
case of working in Clifford algebras.

Note that in classical function theory the Szegö projection which involves the Szegö
kernel plays a crucial role in the resolution of singular boundary value problems for
octonionic monogenic functions.

However, already in the 1970s one discovered in the context of complex and
harmonic analysis that there is an alternative possibility to evaluate the Szegö pro-
jection without having an explicit formula for the Szegö kernel, namely one can use
Kerzman–Stein operators, see for instance the classical references [2,17]. Afterwards,
Kerzman–Stein theory has been generalized extensively to the associative Clifford
analysis setting, see for example [3,5,6,8,9,25].

In [22] Xingmin Li, Zhao Kai and Qian Tao successfully introduced a Cauchy
transform in the octonionic setting and were able to set up related Plemelj projection
formulas together with a basic toolkit to study operators of Calderon–Zygmund type
acting on octonionic monogenic functions defined on some Lipschitz surfaces. See
also the more recent paper [18] where further connections to harmonic analysis are
addressed.

In this paper we present an attempt to introduce a generalization of the dual Cauchy
transform in the octonionic setting togetherwith an associatedKerzman–Stein operator
and a related octonionic Kerzman–Stein kernel. The lack of associativity needs to be
carefully taken into account and requires particular attention and arguments.

In particular, the non-associativity requires a re-definition as well as a different
interpretation of the classical constructions. A crucial need is to properly adapt the
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definition of an appropriately inner product on the corresponding Hardy space of
octonionic monogenic functions.

Firstwenote that in [26,27] the authors used twodifferent definitions of an octonion-
valued inner product; one particular definition for the unit ball setting and another one
for the half-space setting. An open question was to find out a general explanation for
that necessity and to figure out a general scheme behind these particular choices.

After having introduced the basic notions in Sect. 2, in Sect. 3we turn to the question
how to carefully define octonionic monogenic Hardy spaces for general Lipschitz
domains that have a smooth boundary almost everywhere.We introduce twodefinitions
of an inner product that can be applied for all these domains. In the particular setting
of the unit ball, the octonionic inner product that we first consider coincides exactly
with the particular one considered in [26]. In the half-space setting it also coincides
with the particular definition given in [27]. So, we understand how these different
definitions arise and how they fit together within a general theory. Furthermore, in
the case of associativity that particular inner product always coincides with the inner
product considered in complex and Clifford analysis. Additionally, we prove that
the octonionic Hardy space really has always a continuous point evaluation. However,
special attention is requiredwhen addressingproperties like orthogonality or aFischer–
Riesz representation theorem which in turn is essential in the definition of an adjoint.
Here, we cannot directly work with the octonionic inner product. Due to the lack of
the O-linearity which in turn is a consequence of the non-associativity, we do not
have a Cauchy–Schwarz inequality in general. One possible way to overcome this
problem is to work with a real-valued inner product that may be derived from the
octonionic one by taking its scalar part whenever we need to apply classical theorems
for reproducing kernel spaces. In terms of this inner product all the classical notions
then can be well-defined.

As a consequence of the non-associativity, the construction of an adjoint Cauchy
transform is a non-trivial problem, too. Furthermore, it crucially relies on the particular
definition of the special inner product. The adjoint that we present in this paper has
to be understood in the sense of the real-valued inner product 〈·, ·〉0. Nevertheless, all
our constructions are completely compatible with the classical ones as soon as one
has associativity.

After having introduced a Kerzman–Stein kernel we prove some basic properties
of the related octonionic Kerzman–Stein operators. It is a skew symmetric operator
and the kernel vanishes exactly if and only if the domain is the octonionic unit ball. In
fact our proposal for a dual Cauchy transform coincides with the Cauchy transform
exactly and exclusively in the case of the unit ball providing us with a nice analogy to
the classical theory.

Furthermore, we show that this octonionic version of the Kerzman–Stein operator
is a compact operator.

Compactness is a key ingredient if we want to develop an approximative construc-
tion method to evaluate the octonionic Szegö projection and to compute the Szegö
kernel functions purely relying on the global Cauchy kernel and the particular geom-
etry of the boundary of the domain.

Again we pay special attention to the particular context of the octonionic unit ball
and octonionic upper half-space. Finally, we relate the octonionic Kerzman–Stein
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operator to the Hilbert transform and particularly to the Hilbert–Riesz transform in
the half-space case.

2 Preliminaries

2.1 Basics on Octonions

The famous theorem of Hurwitz tells us that R, C, the Hamiltonian skew field of
the quaternions H and the octonions O invented by Graves and Cayley are the only
real normed division algebras up to isomorphy. The octonions represent an eight-
dimensional real non-associative algebra over the field of real numbers. Following for
instance [1,28] and many other classical references, one can construct the octonions
by applying the so-called Cayley–Dickson doubling process. To leave it simple, let
us take two pairs of complex numbers (a, b) and (c, d). Then one defines an addition
and multiplication operation on these pairs by

(a, b) + (c, d) := (a + c, b + d), (a, b) · (c, d) := (ac − db, ad + cb)

where · represents the classical complex conjugation. Subsequentially, this automor-
phism is extended to an anti-automorphism by defining (a, b) := (a,−b) on this
set of pairs of numbers (a, b). We just have constructed the real Hamiltonian quater-
nions H. Each quaternion can be written as x = x0 + x1e1 + x2e2 + x3e3 where
e2i = −1 for i = 1, 2, 3. Furthermore, we have e1e2 = e3, e2e3 = e1, e3e1 = e2 and
ei e j = −e j ei for all mutually distinct i, j ∈ {1, 2, 3} like for the usual vector product
on R3-vectors. Already this relation exhibits that H is not commutative anymore, but
it is still associative.

After applying once more this duplication process (now on pairs of quaternions),
then one has constructed the octonions O. In real coordinates these can be expressed
in the form

x = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

where e4 = e1e2, e5 = e1e3, e6 = e2e3 and e7 = e4e3 = (e1e2)e3. Like for quater-
nions, we also have e2i = −1 for all i = 1, . . . , 7 and ei e j = −e j ei for all mutual
distinct i, j ∈ {1, . . . , 7}. The way how the octonionic multiplication works is easily
visible from the following table.

In contrast to a lot of other papers we label the multiplicative algebraic independent
units by e1, e2 and e3 and use the same notation as in [1]. Note that in this notation the
quaternions are represented by the elements of the form x = x0 + x1e1 + x2e2 + x4e4,
since in our definition we have e4 := e1e2. Here e3 in another algebraic independent
unit. To present expressions like sums in a compact form we also formally use the
notation e0 := 1.

As one can also verify by means of this table, we have lost the associativity. Nev-
ertheless, we still deal with a division algebra. Furthermore, the octonions satisfy the
alternative property and they still form a composition algebra.
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· e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e5 −e2 −e3 −e7 e6
e2 −e4 −1 e6 e1 e7 −e3 −e5
e3 −e5 −e6 −1 −e7 e1 e2 e4
e4 e2 −e1 e7 −1 −e6 e5 −e3
e5 e3 −e7 −e1 e6 −1 −e4 e2
e6 e7 e3 −e2 −e5 e4 −1 −e1
e7 −e6 e5 −e4 e3 −e2 e1 −1

We have theMoufang rule (ab)(ca) = a((bc)a) holding for all a, b, c ∈ O. Taking
especially c = 1, then one obtains the flexibility condition (ab)a = a(ba).

Let a = a0 +
7∑

i=1
ai ei be an element ofO. We call �(a) := a0 the real part of a. ai

will be called the i-part of a in the sequel.
The inherited conjugation map imposes the properties e j = −e j for all j =

1, . . . , 7 while it leaves the real component invariant, i.e. we have a0 = a0 for all
a0 ∈ R. Applying the conjugation to the product of two octonions a, b ∈ O then one
gets ab = b a, like in the quaternionic setting.

The Euclidean norm and standard scalar product from R
8 can be expressed in the

octonionic setting in the way

〈a, b〉 :=
7∑

i=0

aibi = �{ab} = �{ab}

and |a| := √〈a, a〉 =
√

7∑

i=0
a2i . The norm composition property |a b| = |a||b| holds

for all a, b ∈ O. Every non-zero octonion a ∈ O is invertible with a−1 = a/|a|2,
which means that there are no zero-divisors in O.

Another important octonionic calculation rule is the identity

(ab)b = b(ba) = a(bb) = a(bb) (1)

which is true for all a, b ∈ O and, �{b(aa)c} = �{(ba)(ac)} for all a, b, c ∈ O. An
explicit proof is presented for example in [11] Proposition 1.6. Analogously, one can
prove that (ab)b = b(ba) = a(bb). Another fundamental property that we are going
to use is that all a, b, c ∈ O satisfy

〈ab, c〉 = 〈b, ac〉, (2)

cf. [22] Corollary 3.5. This property will be of crucial importance for the existence of
an octonionic adjoint operator in the context of real-valued inner products.

We also use the notation B8(p, r) := {x ∈ O | |x− p| < r} (resp. B8(p, r) := {x ∈
O | |x − p| ≤ r}) for the eight-dimensional solid open (resp. closed) ball of radius
r centered around p in the octonions. By S7(p, r) we address the seven-dimensional
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sphere S7(p, r) := {x ∈ O | |x − p| = r}. If x = 0 and r = 1 then we simply denote
the unit ball and the unit sphere by B8 and S7, respectively. The notation ∂B8(p, r)
means the same as S7(p, r) throughout the whole paper.

2.2 Basics on Octonionic Monogenic Function Theory

In this subsectionwe summarize themost important function theoretic properties. Like
in the context of quaternions and Clifford algebras, also the octonions offer different
approaches to introduce generalizations of complex function theory.

From [10,20,24] and elsewhere we recall

Definition 2.1 LetU ⊆ O be an open set. Then a real differentiable function f : U →
O is called left (resp. right) octonionic monogenic if D f = 0 (resp. fD = 0). Here,

D := ∂
∂x0

+
7∑

i=1
ei

∂
∂xi

denotes the octonionic Cauchy–Riemann operator, where ei are

the octonionic units introduced above. If f satisfies D f = 0 (resp. fD = 0) we call
f left (resp. right) octonionic anti-monogenic.

In contrast to quaternionic andClifford analysis, the set of left (right) octonionicmono-
genic functions does neither form a right nor a leftO-module. Following [16], a simple
counterexample can be presented by taking the function f (x) := x1−x2e4. It satisfies
D[ f (x)] = e1−e2e4 = e1−e1 = 0. However, g(x) := ( f (x))·e3 = (x1−x2e4)e3 =
x1e3 − x2e7 satisfies D[g(x)] = e1e3 − e2e7 = e5 − (−e5) = 2e5 
= 0. The lack of
associativity obviously destroys the modular structure of octonionic monogenic func-
tions which already represents one substantial difference to Clifford analysis. Clifford
analysis in R

8 and octonionic analysis are essentially different function theories, see
also [15].

However, alike in Clifford analysis, also octonionic monogenic functions satisfy a
Cauchy integral theorem, cf. for instance [21].

Proposition 2.2 (Cauchy’s integral theorem)
Let G ⊆ O be a bounded 8-dimensional connected star-like domain with an ori-

entable strongly Lipschitz boundary ∂G. Let f ∈ C1(G,O). If f is left (resp. right)
octonionic monogenic inside of G, then

∫

∂G

dσ(x) f (x) = 0, resp.
∫

∂G

f (x)dσ(x) = 0

where dσ(x) =
7∑

i=0
(−1)i ei

∧
dxi= n(x)dS(x), where

∧
dxi= dx0 ∧ dx1 ∧ · · · dxi−1 ∧

dxi+1 · · ·∧dx7 andwhere n(x) is the outward directed unit normal field at x ∈ ∂G and
dS(x) = |dσ(x)| the ordinary scalar surface Lebesgue measure of the 7-dimensional
boundary surface.

Following [20], another structural difference to Clifford analysis is reflected in the lack
of a direct analogue of the Stokes formula. Even in the cases where simultaneously
D f = 0 and gD = 0 holds, we do not have in general that
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∫

∂G

g(x) (dσ(x) f (x)) = 0 nor
∫

∂G

(g(x)dσ(x)) f (x) = 0.

Again, the obstruction to get such an identity in general is caused by the non-
associativity. Following [22] one has

∫

∂G

g(x) (dσ(x) f (x)) =
∫

G

(

g(x)(D f (x)) + (g(x)D) f (x) −
7∑

j=0

[e j ,Dg j (x), f (x)]
)

dV

where [a, b, c] := (ab)c−a(bc) stands for the associator of three octonionic elements.
A very particular situation is obtained when inserting for g the left and right octonionic
monogenic Cauchy kernel

q0 : O\{0} → O, q0(x) := x0 − x1e1 − · · · − x7e7
(x20 + x21 + · · · + x27 )

4
= x

|x |8 .

From [21,24] and elsewhere we may recall:

Proposition 2.3 (Cauchy’s integral formula) Let U ⊆ O be a non-empty open set and
G ⊆ U be an 8-dimensional compact oriented manifold with a strongly Lipschitz
boundary ∂G. If f : U → O is left (resp. right) octonionic monogenic, then for all
x /∈ ∂G

χ(x) f (x) = 3
π4

∫

∂G
q0(y − x)

(
dσ(y) f (y)

)
,

χ(x) f (x) = 3
π4

∫

∂G

(
f (y)dσ(y)

)
q0(y − x),

where χ(x) = 1 if x is in the interior of G and χ(x) = 0 if x in the exterior of G.

Thewayhow the parenthesis are put is crucial again. Putting the parenthesis differently,
leads in the left octonionic monogenic case to the different formula of the form

3

π4

∫

∂G

(
q0(y − x)dσ(y)

)
f (y)

= χ(x) f (x) +
∫

G

7∑

i=0

[
q0(y − x),D fi (y), ei

]
dy0 · · · dy7,

again involving the associator, cf. [21]. The volume integral term appearing addi-
tionally always vanishes in associative algebras, such as in Clifford or quaternionic
analysis.

To round off this preliminary section we wish to emphasize that there also exist
alternative powerful extensions of complex function theory to the octonionic setting.
For instance there is the complementary theory of slice-regular octonionic functions
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which is essentially different from that of octonionic monogenic functions, although
there are connections by Fueter’s theorem or the Radon transformation. The classical
approach (see [12]) extends complex-analytic functions from the plane to the octo-
nions by applying a radially symmetric model fixing the real line. More recently, see
for instance [14] and [13], one also started to study octonionic slice-regular extensions
departing differently from monogenic functions that are defined in the quaternions.
However, in this paperwe restrict ourselves to entirely focus on the theory of octonionic
monogenic functions, although we also expect that one can successfully establish sim-
ilar results in the alternative framework of slice-regular functions in O. Apart from
octonionic monogenic function theory and slice-regular octonionic function theories
there are even more possibilities for introducing further complementary function the-
ories in octonions.

3 Main Results

Throughout this section let � ⊂ O be a simply-connected orientable domain with
a strongly Lipschitz boundary, say � = ∂�, where the exterior normal field exists
almost everywhere. Let us denote by n(y) the exterior unit normal octonion at a point
y ∈ ∂�.

Next, let H2(∂�,O) be the closure of the set of L2(∂�)-octonion-valued functions
that are left octonionic monogenic functions inside of � and that have a continuous
extension to the boundary ∂�. For a lot of interesting insight in the general study of
octonionic Hilbert spaces we also refer the interested reader to [23] where the focus
is put on different aspects.

3.1 Attempts to Define an Octonionic Monogenic Szegö Projection

To introduce a meaningful generalization of a Hardy space in the octonionic setting,
one first needs to define a properly adapted inner product. Being inspired by the
preceding papers [26,27] we first consider the following definition:

Definition 3.1 For any pair of octonion-valued functions f , g ∈ L2(∂�) one defines
the following R-linear octonion-valued inner product

( f , g)∂� := 3

π4

∫

∂�

(n(x)g(x)) (n(x) f (x))dS(x)

= 3

π4

∫

∂�

(g(x) n(x)) (n(x) f (x))dS(x),

where dS(x) again represents the scalar Lebesgue surface measure on ∂�.

When it is clear to which domain we refer, we omit the subindex ∂� for simplicity.
Note that the factor 3

π4 is part of this definition. By a direct calculation one observes

that (·, ·) is R-linear. For all octonion-valued functions f , g, h ∈ L2(∂�) and all
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α, β ∈ R we have ( f + g, h) = ( f , h) + (g, h) and (α f , gβ) = α( f , g)β. Notice
that in view of the lack of associativity (·, ·) is only R-linear but not O-linear. The
lack of O-linearity however implies some serious obstacles, since we cannot rely on
a Cauchy–Schwarz inequality. Consequently, we cannot rely on a direct analogue of
the Fischer–Riesz representation theorem using this definition of inner product.

We still may observe that (·, ·) is Hermitian in the sense of the octonionic conjuga-
tion, since

( f , g) = 3

π4

∫

∂�

(n(x)g(x)) (n(x) f (x))dS(x)

= 3

π4

∫

∂�

(n(x) f (x)) (n(x)g(x))dS(x)

= (g, f ).

One may also directly observe that

( f , f ) = 3

π4

∫

∂�

( f (x) n(x)) (n(x) f (x))dS(x) = 3

π4

∫

∂�

| f (x)|2dS(x) = ‖ f ‖2L2 ,

since the product inside the integral is generated by only two elements n(x) and f (x)
and hence it is associative according to Artin’s theorem.

Endowed with this inner product it is suggestive to call H2(∂�,O) the (left) octo-
nionic monogenic Hardy space of � in some wider sense. Note that the term “space”
has to be understood in the sense of a real vector spacewhen using this octonion-valued
inner product.

Remark 3.2 Notice further that if we were in an associative setting (such as in complex
or Clifford analysis), then one would have

(g(x) n(x)) (n(x) f (x)) = g(x)|n(x)|2 f (x) = g(x) f (x).

So, one re-discovers the usual definition of the Hardy space inner product used in the
classical framework.

In the octonionic setting the introduction of the normal field n inside these brackets
makes a difference. It allows us to recognize the Cauchy transform in the framework
of this inner product. This in turn permits us to use the special properties of the Cauchy
transform in this context. Furthermore, it gives us a hint what might be a meaningful
octonionic monogenic definition of a generalization of the adjoint Cauchy transform
(again in a wider sense) and how to define a compact Kerzman–Stein operator.

Remark 3.3 In the particular casewhere� = B8(0, 1) is the octonionic unit ball which
has been addressed in [26] one has exactly that n(x) = x . In this case the inner product
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(·, ·) simplifies to

( f , g)S7 = 3

π4

∫

∂B8(0,1)

(x g(x)) (x f (x))dS(x)

and we re-obtain exactly the definition introduced in [26].
In the special case where � = H+(O) = {x ∈ O | x0 > 0} is the octonionic

half-space, one has even more simply that n(x) = −1. Now the corresponding inner
product reduces to

( f , g)H+ = 3

π4

∫

∂H+
g(x) f (x)dS(x) = 3

π4

∫

R7

g(x) f (x)dx1dx2 · · · dx7

like in the classical associative cases of complex and Clifford analysis. The use of the
usual inner product suggested for the treatment of the half-space in [27] thus makes
completely sense and fits well in that context.

A crucial question is to ask whether or not there always exists a reproducing ker-
nel function. For the case of the unit ball, upper half-space and strip domains being
bounded in the x0-direction the existence has been shown by presenting an explicit
kernel function that is octonionic monogenic in the first variable and octonionic
anti-monogenic in the second variable which in fact turned out to reproduce all f
belonging to H2 using exactly this definition of inner product. Here, one actually
exploited the Cauchy integral formula. In order to apply Cauchy’s integral formula,
the presence of the normal field is indeed crucially important. Actually, in the case of
the unit ball, the octonionic Szegö projection defined by [S f ](y) := ( f , S(·, y))S7
where S(x, y) = 1−x y

|1−x y|8 obviously is octonionic monogenic in x and octonionic anti-
monogenic in y, coincides with the Cauchy transformation when using exactly that
definition, cf. [26]. A similar relation has been proved for the half-space x0 > 0 where
we have [S f ](y) := ( f , S(·, y))H+ with S(x, y) = x+y

|x+y|8 for all f ∈ H2(∂H+).
Finally, an analogous formula has been established for strip domains being bounded
in the x0-direction, see [19].

However, for other domains the existence of an octonionic monogenic Szegö kernel
is far from being evident. This will be explained in what follows.

First we point out that it is still very easy to prove

Proposition 3.4 Let � ⊂ O be a general simply-connected orientable domain where
the exterior unit normal exists almost everywhere. The set H2(∂�,O) equipped with
the above mentioned octonion-valued inner product satisfies the Bergman condition.

Proof Suppose that � ⊂ O is an arbitrary bounded or unbounded orientable domain
with a sufficiently smooth boundary and let x ∈ �. Let B8(x, R) be the eight-
dimensional open ball centered at x with radius R where one chooses R > 0 such that
the solid ball B8(x, R) ⊂ �. Then, relying on the version of the octonionic Cauchy
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integral given in Proposition 2.3 we get that

| f (x)|2 =
∣
∣
∣
∣
3

π4

∫

∂�

q0(y − x) (n(y) f (y))dS(y)

∣
∣
∣
∣

2

=
∣
∣
∣
∣
3

π4

∫

∂B8(x,R)

q0(y − x) (n(y) f (y))dS(y)

∣
∣
∣
∣

2

.

Note that due to the absence of the O-linearity we cannot simply apply the inequality
of Cauchy–Schwarz like proposed in [4]. However, we may rely on Cauchy’s integral
formula and the norm property of the octonions which luckily ensure that

| f (x)|2 ≤ const(B8(x, R))
3

π4

∫

∂B8(x,R)

| f (y)|2dS(y)

≤ const(B8(x, R))‖ f ‖2L2(∂�)
,

where const(B8(x, R)) is a constant which just depends on the domain. Hence, we
indeed have a continuous point evaluation as a consequence of the validity of the
octonionic Cauchy integral formula. ��
However, due to the absence of a direct analogue of a Fischer–Riesz representation
theorem, we cannot directly use the previously established property to guarantee the
existence of a reproducing kernel function.

One possible way to overcome this problem is to consider first the real-valued inner
product defined by

〈 f , g〉0 := �{( f , g)}.

Using this real-valued inner product instead one can apply all the well-known theo-
rems and properties of a classical reproducing kernel Hilbert space. See also [7] where
a similar idea has been applied to the Clifford analysis case. The Clifford case how-
ever was easier to handle because the associativity permitted a complete equivalent
treatment of the corresponding function spaces. Using the real-valued inner product
or the Clifford-valued inner product is equivalent due to linearity and associativity. In
the octonionic case we have to be more careful.

In view of the property (2) 〈ab, c〉 = 〈b, ac〉 for all a, b, c ∈ O we have an
invariance of that real-valued inner product of the form 〈n f , ng〉0 = 〈 f , g〉0 for any n
with |n| = 1. This is due to nn = 1 and a consequence of the property that [n, n, a] = 0
for any a, n ∈ O. So, the real-valued inner product can equivalently be rewritten in
the form

〈 f , g〉0 =
∫

∂�

�
{
g(x) f (x)

}
dS(x).
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The property (2) also provides us with the necessary compatibility condition to define
for any octonionic R-linear functional T a uniquely defined adjoint T ∗ such that
〈T f , g〉0 = 〈 f , T ∗g〉0. In particular, when equipping H2(∂�,O) now with this real-
valued inner product 〈·, ·〉0, one indeed always gets a uniquely defined reproducing
kernel S0x : y �→ S0x (y) := S0(x, y) in H2(∂�) called the octonionic Szegö ker-
nel with respect to 〈·, ·〉0. It reproduces the harmonic real part f0 of an octonionic
monogenic function f

[S0 f ](x) := 〈 f , S0x 〉0 = f0(x) ∀ f ∈ H2(∂�,O).

Let us now investigate the reproduction behavior of the other components of an
octonion-valued function f (x) = f0(x) + f1(x)e1 + · · · + f7(x)e7 belonging to
H2(∂�). Here fi always denotes the real component of the part of f belonging to ei
also called the i-part of f . If f ∈ H2(∂�), then all the real components fi are har-
monic functions fromO toR. Similarly, we define for all i = 1, . . . , 7 the real-valued
inner products

〈 f , g〉i := {( f , g)}i =
∫

∂�

{(n(y) g(y)) (n(y) f (y))}i dS(y),

referring to the i-part of the octonionic expression ( f , g). For each i = 1, . . . , 7
there exists a unique reproducing kernel Si x : y �→ Si x (y) := Si (x, y) in H2(∂�)

that exactly reproduces the harmonic i-part fi of an octonionic monogenic function
f ∈ H2(∂�)—now with respect to the inner product 〈·, ·〉i , i.e.:

[Si f ](x) := 〈 f , Si x 〉i = fi (x) ∀ f ∈ H2(∂�,O).

Now we can introduce a total octonionic monogenic Szegö projection by

[S f ] :=
7∑

i=0

〈 f , Si 〉i ei . (3)

Per construction it satisfies [S f ](x) =
7∑

i=0
fi (x)ei = f (x) for all f ∈ H2(∂�). The

projection S0 f is exactly its real part. An open question is to ask: When is it possible
to represent the total Szegö projection S in a global form of the way

[S f ](x) := 3

π4

∫

∂�

(n(y)S(x, y)) (n(y) f (y))dS(y)? (4)

At this point we wish to recall that actually in the particular cases where � is the unit
ball, the half-space or a strip domain bounded in the real direction we can in fact write
S f can in such a global form involving an explicit kernel function S(x, y) reproducing
all f ∈ H2(∂�) as in all detail mentioned above.
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However, the projection S does not always have the usual properties that we are
used to observe from the classical Szegö projection. Thus, in the general case one has
to reproduce componentwisely by using the real-valued inner products instead.

Note that in view of the Hermitian property one has the symmetric relation

[Si (y, x)]i = [Si y(x)]i = 〈Si y, Si x 〉i = 〈Si x , Si y〉i = [Si x (y)]i = [Si (x, y)]i
for all i-parts from i = 0, . . . , 7.

A simple but very important property is the following

Corollary 3.5 The total Szegö projection defined in (3) is an R-linear operator, satis-
fying

S[α f + βg] = αS[ f ] + βS[g]

for all octonion-valued f , g ∈ L2(∂�) and all α, β ∈ R.

Proof By using the definition we directly may read off that

S[α f + βg] =
7∑

i=0

〈α f , Si 〉i ei +
7∑

i=0

〈βg, Si 〉i ei

= α

7∑

i=0

〈 f , Si 〉i ei + β

7∑

i=0

〈g, Si 〉i ei
= αS[ f ] + βS[g].

��
Let us now analyze whether one can associate with the Szegö projection some

notions of orthogonality.
We first may observe that even in the context of the octonion-valued inner product

(·, ·) there exists a uniquely defined projection P : L2(∂�) → H2(∂�,O) such that
( f −P f , g) = 0 for all f ∈ L2(∂�) and g ∈ H2(∂�). Since ( f + h, g) = ( f , g) +
(h, g) for all f , h ∈ L2(∂�) and g ∈ H2(∂�) one has that ( f −P f , g) = 0 if and only
if ( f , g) = (P f , g). However, the absence of a direct analogue of the Fischer–Riesz
representation theorem does not immediately guarantee us the possibility to express
the projection P in terms of a global Szegö kernel. However, the consideration of the
real-valued inner products 〈·, ·〉i allow us link the Szegö projection with the notion of
orthogonality and self-adjointness in the context of 〈·, ·〉i .

A simple but rather important consequence of the preceding corollary is the fol-
lowing

Corollary 3.6 The Szegö operator S possesses an R-linear adjoint operator operator
S∗ such that 〈S f , g〉0 = 〈 f ,S∗g〉0 for all f , g ∈ L2(∂�). (Similarly, for the other i =
1, . . . , 7 there areR-linear adjoint operatorsS[i∗]) satisfying 〈S f , g〉i = 〈 f ,S[∗i]g〉i
for all f , g ∈ L2(∂�).
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In the setting of the real-valued inner product 〈 f , g〉0 we can talk about self-adjointness
of anR-linear octonionic integral operator T when 〈T f , g〉0 = 〈 f , T g〉0. Let us now
assume that T f is representablewith a global kernel function k(x, y). Self-adjointness
w.r.t. 〈·, ·〉0 happens when the associated kernel function of T ∗ is the conjugate of the
kernel function of T in view of the compatibility relation 〈uv,w〉 = 〈v, uw〉. Here,
the usual results from the theory of Hilbert spaces can be applied, and we may talk
about an orthogonal projector.

Let us next assume that the Szegö projection S is representable with a kernel
function S(x, y)—we know that this is at least true for the three cases of the unit ball,
the half-space and the strip domain. Then the associated adjoint S∗ (w.r.t. 〈·, ·〉0) is
represented in terms of the conjugate of the kernel, i.e. S(y, x). We have S∗ = S if and
only if S(y, x) = S(x, y). This is true at least in the cases of � = B8(0, 1), � = H+
or � = {z ∈ O | 0 < �(z) < d}. There, we know for sure that S is self-adjoint w.r.t.
〈·, ·〉0.

However, one has to be extremely careful concerning the introduction of a notion
of self-adjointness when looking at the full octonionic inner product (·, ·).

Suppose now that we also would have the relation (S f , g) = ( f ,Sg) for all
octonionic valued functions f , g belonging to L2(∂�). Assume further that we could
represent S in a global form of the way (4) which a global octonionic monogenic
Szegö kernel S(x, y).

That would mean that despite of the non-associativity we always would have the
property that

∫

∂�

(n(x)g(x)) (n(x)S f (x))dS(x) =
∫

∂�

(n(x)Sg(x)) (n(x) f (x))dS(x). (5)

In turn, this would imply that for any f , g ∈ L2(∂�) one would get the identity

∫

∂�

(n(x)g(x))

(

n(x)

[ ∫

∂�

(n(y)S(x, y))(n(y) f (y))dS(y)

])

dS(x)

(5)=
∫

∂�

(Sg(x) n(x)) (n(x) f (x))dS(x)

=
∫

∂�

([∫

∂�

(n(y)S(x, y)) (n(y)g(y))dS(y)

]

n(x)

)

(n(x) f (x))dS(x).

So, in particular for the half-space case where n(x) = −1 and where we know that S
is self-adjoint w.r.t. 〈·, ·〉0 one would get that

∫

R7

g(x) [S f ](x)dx1 · · · dx7 =
∫

R7

[Sg](x) f (x)dx1 · · · dx7.
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This means in detail that one would get for any f and g the relation

∫

R7

g(x)

(∫

R7

S(x, y) f (y)dy1 · · · dy7
)

dx1 · · · dx7

=
∫

R7

(∫

R7

S(x, y)g(y)dy1 · · · dy7
)

f (x)dx1 · · · dx7

=
∫

R7

(∫

R7

g(y)S(x, y)dy1 · · · dy7
)

f (x)dx1 · · · dx7

=
∫

R7

(∫

R7

g(y) S(y, x)dy1 · · · dy7
)

f (x)dx1 · · · dx7.

However, note that we do not have in general a termwise associativity. Therefore, such
a relation could not be expected in such generality.

3.2 The Octonionic Cauchy Projection Revisited in the Context of These Inner
Products

Closely related to the Szegö projection there is also the Cauchy projection induced
by the octonionic Cauchy integral formula. Suppose that f ∈ L2(∂�). Then the
octonionic Cauchy projection

[C f ](x) := 3

π4

∫

∂�

q0(y − x) (dσ(y) f (y))

= 3

π4

∫

∂�

q0(y − x) (n(y) f (y))dS(y)

sends an L2(∂�)-function to a function belonging to H2(∂�,O) for any x ∈ �, cf.
[22], Theorem 2.2.

The octonionic Cauchy projection can easily be re-written in terms of the octonionic
inner product defined at the beginning of the previous subsection in the following form

[C f ](x) = ( f , gx ) = 3

π4

∫

∂�

(n(y)gx (y)) (n(y) f (y))dS(y)

where we identify n(y)gx (y) = q0(y − x) = y−x
|y−x |8 .

Thus, n(y)gx (y) = y−x
|y−x |8 from which we may read off that

gx (y) = n(y)
y − x

|y − x |8 .
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In this notation and using the special octonion-valued inner product the well-known
octonionic Cauchy integral formula can be re-expressed in the form

( f , gx ) = f

if f is left octonionic monogenic.
Let us fix some notation. Suppose thatμ is a real number satisfying 0 < μ < 1. Let

us denote the set of octonion-valued functions that are μ-höldercontinuous over ∂�

byCμ(∂�), similarly as in complex analysis. Next, following the paper [22] Theorem
2.2, also in line with the results from classical complex and Clifford analysis, for any
f ∈ Cμ(∂�) the octonionic Cauchy transform can be extended to the boundary by
defining

[C f ](x) = 1

2
f (x) + 3

π4 p.v.

∫

∂�

q0(y − x) (dσ(y) f (y))

where

p.v.

∫

∂�

q0(y − x) (dσ(y) f (y)) := lim
ε→0+

∫

∂�, |x−y|≥ε

q0(y − x) (dσ(y) f (y))

is the Cauchy principal value.
The second term represents the octonionicmonogenic generalizedHilbert transform

which will be denoted by

[H f ](x) := 2p.v.
3

π4

∫

∂�

q0(y − x) (dσ(y) f (y)).

Equivalently, writing

[P± f ](x) = ± lim
δ→0+

3

π4

∫

∂�

q0(y − x ± δ) (dσ(y) f (y)),

one deals with the Plemelj projectors

P+ = 1

2
(H + I), P− = 1

2
(−H + I)

where I is the identity operator acting in the way I f = f . One obtains the Plemelj
projection formulas P+ + P− = I and P+ − P− = H.

The extended octonionic monogenic Cauchy transform C : Cμ(∂�) →
H2(∂�,O) satisfies like in the complex case C2 = C. Let f ∈ Cμ(∂�). Then
g := C[ f ] ∈ H2(∂�,O). Now, also the octonionic calculation rules allow us to
conclude that [C2] f = C[C[ f ]] = C[g] = g = C[ f ].
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Furthermore, one has ‖H f ‖L2 ≤ c‖ f ‖L2 with a real positive constant c, since
Cμ(∂�) is dense in L2(∂�). Consequently, ‖C f ‖L2 ≤ ( 12 + c)‖ f ‖L2 . Therefore H
and C are both L2-bounded operators.

Remark 3.7 In contrast toClifford analysis, the octonionicCauchy transform is onlyR-
linear andnotO-linear in general.Due to the lack of associativity, in general [C( f α)] 
=
[C f ]α if α /∈ R, because

q0(y − x)

(

dσ(y) ( f (y) α)

)


=
(

q0(y − x) (dσ(y) f (y))

)

α.

We only have C[ f α + gβ] = [C f ]α + [Cg]β for real α, β. However, this property
is sufficient to guarantee the existence of a unique adjoint C∗ satisfying 〈C f , g〉0 =
〈 f , C∗g〉0 for all f , g ∈ Cμ(∂�). This is a consequence of the Fischer–Riesz repre-
sentation theorem which can be applied in the context of a real-valued inner product,
for instance for 〈·, ·, 〉0.

In the notation of our previously defined octonion-valued inner product on L2(∂�),
the extended octonionic Cauchy transform can be re-expressed in the form

[C f ](x) = 1

2
f (x) + p.v.

3

π4

∫

∂�

(n(y)gx (y)) (n(y) f (y))dS(y)

where gx (y) = n(y) y−x
|y−x |8 .

This representation gives us a hint how a meaningfully defined generalized dual
octonionic monogenic Cauchy transform C∗ on a dual-like function space could look
like.

Let us recall once more that in the case where� = B8(0, 1), the octonionic Cauchy
transform C even coincides exactly with the global Szegö projection S induced by the
octonion-valued inner product ( f , Sx ) where Sx (y) = 1−x y

|1−x y|8 is the uniquely defined
octonionic monogenic Szegö kernel of the unit ball. Remind also that whenever we
wish to talk about self-adjointness and orthogonality we again have to switch to the
real-valued inner products.

In the case of the unit ball (and only in this case) the octonionic Cauchy transform
is self-adjoint in the sense of the real-valued inner product 〈·, ·〉0 in view of C∗ =
S∗ = S = C. In all the other cases, however, the octonionic Cauchy-transform is not
self-adjoint, because it is not an orthogonal projector.

Since C f = ( f , gx ) it is suggestive to introduce an octonionic generalization of
the dual Cauchy transform on the dual space in terms of the conjugated integral kernel
gy(x). Since gx (y) = n(y) y−x

|y−x |8 we have gy(x) = n(x) x−y
|x−y|8 and hence

gy(x) = x − y

|x − y|8 n(x).

Thus, it is natural to define



104 Page 18 of 23 D. Constales, R. S. Kraußhar

Definition 3.8 (Generalized dual octonionic Cauchy transform) The generalized dual
octonionic monogenic Cauchy transform is defined by

C∗ : Cμ(∂�) → L2(∂�) : [C∗ f ](x) = 1

2
f (x)

+p.v.
3

π4

∫

∂�

(n(y)gy(x)) (n(y) f (y))dS(y) = ( f , gy).

Remark 3.9 Due to the lack of a termwise associativity it is not clear on the basis of
standard arguments whether one could expect a general relation of the form (C f , g) =
( f , C∗g) for all höldercontinuous octonion-valued functions f , g defined over ∂�).
The direct standard proof presented in [2,6,25] for the complex setting (resp. for
the Clifford analysis setting) cannot be carried over since we cannot interchange the
parenthesis due to the absence of associativity. However, it is rather easy to see that
this relation at least holds for some particular cases where we have f = g. In the case
where � is bounded one can simply take f = g = 1. However, if we work with the
real part of the inner product, then the existence and the uniqueness of the octonionic
adjoint operator C∗ is guaranteed by the Fischer–Riesz representation theorem and we
can conclude that this integral kernel actually induces the adjoint Cauchy transform
in all cases. In fact from (C1, 1) = (1, C∗1) = (1, C1) it compulsively follows that
the integral kernel of C∗ must be the conjugate of the kernel of C in view of the
compatibility formula 〈uv,w〉 = 〈v, uw〉.

Remark 3.10 Since C is R-linear, continuous and bounded, the same is true for the
previously introduced dual transform. Since Cμ(∂�) is dense in L2(∂�)we have that
‖C f ‖L2 = ‖C∗ f ‖L2 .

3.3 An Octonionic Kerzman–Stein Operator

Now we are in position to define meaningfully

Definition 3.11 (Octonionic Kerzman–Stein kernel)
Let� ⊂ O a domain with the above mentioned conditions. For all x, y ∈ ∂�×∂�

with (x 
= y) the octonionic Kerzman–Stein kernel is given by

A(x, y) := gx (y) − gy(x) = n(y)
y − x

|y − x |8 − x − y

|y − x |8 n(x).

In the special case where one has gx (y) = gy(x) one gets exactly that A(x, y) ≡ 0.
We will see that this will exactly happen if and only if � = B8(0, 1), providing us
with a complete analogy to the complex case, [2]. Only in this situation the octonionic
monogenic Cauchy transform turns out to satisfy C∗ = C.

The Kerzman–Stein kernel measures in a certain sense how much the domain �

differs from the octonionic unit ball.
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We define the associated octonionic Kerzman–Stein operator A : L2(∂�) →
L2(∂�) by

[A f ](x) := ( f , Ax )∂�

= 3

π4

∫

∂�

(n(y)A(x, y)) (n(y) f (y))dS(y)

= 3

π4

∫

∂�

(A(x, y) n(y)) (n(y) f (y))dS(y)

Note that this is not a singular integral operator anymore and that it can be defined for
all f ∈ L2(∂�). However, the two additive components are singular. That means that
wheneverwewant to split these terms, thenweagain have to apply theCauchyprincipal
value and to work for instance in the subspace of μ-höldercontinuous functions:

[A f ](x) = 3

π4 p.v.

∫

∂�

(n(y)gx (y)) (n(y) f (y))dS(y)

− 3

π4 p.v.

∫

∂�

(n(y)gy(x)) (n(y) f (y))dS(y)

= 3

π4 p.v.

∫

∂�

(n(y)gx (y)) (n(y) f (y))dS(y) + 1

2
f (y)

− 3

π4 p.v.

∫

∂�

(n(y)gy(x)) (n(y) f (y))dS(y) − 1

2
f (x).

Since the octonions still offer the particular calculation rule n(nq) = (nn)q = q, as
we did explain in the preliminary section, the previous equation can be rewritten as

[A f ](x) = 1

2
f (x) + p.v.

3

π4

∫

∂�

q0(y − x) (n(y) f (y))dS(y)

−1

2
f (x) − p.v.

3

π4

∫

∂�

[(

n(x)
x − y

|x − y|8
)

n(y)

]

(n(y) f (y))dS(y)

= [C f ](x) − [C∗ f ](x).

Remark 3.12 Our octonionic Kerzman–Stein kernel satisfies

A(y, x) = x − y

|x − y|8 n(x) − n(y)
y − x

|x − y|8 = −A(x, y).

for all (x, y) ∈ ∂�× ∂� with x 
= y. Also the octonionic Kerzman–Stein operatorA
is skew symmetric, i.e. A∗ = −A. It is bounded since ‖A‖L2 ≤ ‖C‖L2 + ‖C∗‖L2 =
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2‖C‖L2 ≤ L‖ f ‖L2 with a real L > 0. Since C and also C∗ areR-linear and continuous,
A is a compact operator since it is L2(∂�)-bounded.

Remark 3.13 Also in the octonionic setting one can write the octonionic Kerzman–
Stein operator in terms of the Hilbert transform as

A = 1

2
H − 1

2
H∗

where we identity

[H∗ f ](x) := 2
3

π4 p.v.

∫

∂�

(n(y)gy(x)) (n(y) f (y))dS(y), f ∈ Cμ(∂�)

with the formal analogue of the adjoint Hilbert transform, establishing an analogy
to the Clifford analysis setting. Compare with [5,9]. In fact, using the real-valued
inner product one has 〈H f , g〉0 = 〈 f ,H∗g〉0 when working in the spaces of μ-
höldercontinuous functions.

Also in the octonionic case we have

Corollary 3.14 The octonionic Kerzman–Stein kernel vanishes identically if and only
if the domain � is the octonionic unit ball.

Proof If � = B8(0, 1), then n(x) = x , n(y) = y and |x |2 = |y|2 = 1. Then A(x, y)
simplifies to

A(x, y) = y(y − x) − (x − y)x

|y − x |8 = |y|2 − yx − |x |2 + yx

|y − x |8 = 0.

Conversely, if A(x, y) ≡ 0, then

n(y)(y − x) = (x − y)n(x).

This relation however can only be true if � is the octonionic unit ball, cf. Lemma 12
of [25]. The argument of [25] can be used because the above mentioned expressions
only consist of products of two octonions. Consequently, in view of Artin’s theorem
the lack of associativity does not affect the argumentation. ��
So, also in the octonionic case we have C f = C∗ f if and only if � is the unit ball.
Another very special case represents again the setting where � is the octonionic half-
space x0 > 0. Here, we have

Theorem 3.15 If � = H+(O), then the octonionic Kerzman–Stein operator repre-
sents the classical Hilbert–Riesz transform in the x0-direction, i.e.

[A f ](x) = 2p.v.

∫

R7

y0 − x0
|y − x |8 f (y)dy1 · · · dy7.
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Proof If � = H+(O) then ∂� = R
7 and n(x) ≡ −1. So, the octonionic Kerzman–

Stein transformation simplifies to

[A f ](x) =
∫

R7

A(x, y) f (y)dy1 · · · dy7

= p.v.

∫

R7

y − x

|y − x |8 f (y)dy1 · · · dy7 − p.v.

∫

R7

x − y

|y − x |8 f (y)dy1 · · · dy7

= p.v.

∫

R7

y − x

|y − x |8 f (y)dy1 · · · dy7 + p.v.

∫

R7

y − x

|y − x |8 f (y)dy1 · · · dy7

= 2p.v.

∫

R7

�(y − x)

|y − x |8 f (y)dy1 · · · dy7.

��
This provides us again with another nice analogy to the Clifford analysis setting,
compare again with [5,9].

4 Open Problems and Perspectives

In the preceding section we have seen that an explicit description of the Szegö projec-
tion for arbitrary Lipschitz domains with strongly Lipschitz boundaries is a very hard
task on the one-hand. However on the other-hand, the Cauchy projection is very simple
to describe namely in the global form ( f , gx ) = f for all f ∈ L2(∂�). Furthermore,
note that the Cauchy kernel q0(y − x) has always the same representation; it is fully
independent of the geometry of the domain and it is a global entity. The geometry of
the domain is fully encoded in terms of the normal field n(y).

So, in the octonionic setting it is a lot easier to workwith the Cauchy projection than
with the Szegö projection. A big goal would consist in establishing an approximation
for the Szegö projection in terms of the much simpler Cauchy projection.

We conclude this paper by formulating the following open problem:
Let us suppose that we have a domain with ‖A‖L2 < 1. Is it possible under this

condition to establish (alike in complex and Clifford analysis) an asymptotic relation
of the form

S ≈ C
N∑

j=0

(−A) j ?

Of course, in this context we need to consider the real-valued inner product 〈·, ·〉0.
Note that it is immediate to see that (SC)[ f ](x) := S[C f ](x) = C[ f ](x) for

all f ∈ L2(∂�) and all x ∈ � because for any f ∈ L2(∂�) the Cauchy projection
C[ f ](x) turns always out to be an element of H2(∂�). Then the total Szegö projection
reproduces every element of H2(∂�), so the property SC = C holds.
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However, does there also always hold that S f ∈ H2(∂�) for any f ∈ L2(∂�)?
Maybe one needs to put some restrictions or additional requirements to guarantee this
property.

Note that the proof of the classical result also uses the relation C∗S = C∗. When
talking about the adjoint we of course need again to consider the framework of the
real-valued inner product 〈·, ·〉0. However, we were not able to clarify in a satisfactory
way yet, under which circumstances we do exactly have that S∗ = S—at least in the
context of 〈·, ·〉0.

As soon as we manage to give satisfactory answers to these questions then we will
have all tools in hand to transfer the classical proof that is applied in [2,25] for the
complex and Clifford analysis setting to express asymptotically the complicated total
Szegö projection in terms of the Cauchy projector and our compact Kerzman–Stein
operator. This would allow us to deviate the complicated evaluation of the total Szegö
projection by using the simpler and globally valid Cauchy projection instead. This
also would be a very nice application of the octonionic Kerzman–Stein operator in the
resolution of octonionic boundary value problems in these function spaces. Results in
this direction would open the door to tackle many interesting computational problems
in R8.
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