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Abstract
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1 Introduction

Let w : R → R be a suitable weight function such that the space of entire functions
F : C → C of exponential type τ with Fw ∈ L p(R) is a Banach space for any
1 < p < ∞, which we denote by B p(τ, w). This article discusses under which
conditions on f and w convergence of entire interpolants of f in the weighted spaces
B p(τ, w) takes place as τ → ∞. For τ > 0 we seek a discrete set �τ ⊆ R such that:

• (Mean convergence of Lagrange interpolation) There existsLτ f ∈ B p(τ, w)with

Lτ f (λ) = f (λ)

for all λ ∈ �τ , and

lim
τ→∞ ‖( f − Lτ f )w‖p = 0. (1)

• (Mean convergence of Hermite interpolation) There exists Hτ f ∈ B p(2τ,w2)

with

Hτ f (λ) = f (λ),

H′
τ f (λ) = f ′(λ)

for all λ ∈ �τ , and

lim
τ→∞ ‖( f − Hτ f )w2‖p = 0. (2)

The precise definitions of Lτ f and Hτ f are given in (6) and (8) below. We show
in Theorems 1 and 2 that certain entire functions have the property that their zero sets
provide interpolation nodes�τ with the desired properties. The restriction p /∈ {1,∞}
is inherent in the problem; the interpolations constructed below are not necessarily in
L1(w) and may be unbounded for fixed x as a function of τ .

It is clear that the condition f w ∈ L p(R) is not strong enough for statements about
interpolation, and it turns out that continuity of f w is stronger than necessary. We
define the collection Rp(w) of functions f such that f w is Riemann integrable and

in L p(R), and we define R(1)
p (w) to be the collection of f such that f is absolutely

continuous, f w, f ′w ∈ L p(R), and f ′w is Riemann integrable.
It is well known that a main ingredient of the convergence statements (1) and (2)

is a lower Marcinkiewicz-Zygmund inequality

∫
R

|F(x)w(x)|pdx ≤ Cp

τ

∑
λ∈�τ

|F(λ)w(λ)|p (3)

with Cp independent of τ , valid for all functions F ∈ B p(τ, w). We now briefly
describe the general strategy of obtaining (1) from (3) under the assumption that
∪τ>0B p(τ, w) is dense in L p(w). Let Fτ ∈ B p(τ, w) (not necessarily of interpolating
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nature) with ‖( f − Fτ f )w‖p → 0 as τ → ∞. If σ ≥ τ > 0 are given and the
interpolation Lσ satisfies Lσ F = F for all F ∈ B p(σ,w), then Fτ = Lσ Fτ and we
obtain

f − Lσ f = f − Fτ + Lσ (Fτ − f ). (4)

If the difference of consecutive elements in �σ is comparable to σ−1, we can apply
(3) to the second term on the right hand side of (4) to obtain

‖Lσ (Fτ − f )w‖p
p ≤ Cp

∑
λ∈�σ

(λ+ − λ)
∣∣(Fτ (λ) − f (λ)

)
w(λ)

∣∣p ,

where λ+ ∈ �σ is the node rightmost to λ. The right hand side is a Riemann sum for
|(Fτ − f )w|p and taking σ → ∞ we obtain

lim sup
σ→∞

‖( f − Lσ f )w‖p ≤ (1 + C1/p
p )‖( f − Fτ )w‖p.

The right hand side can now be made arbitrarily small by letting τ → ∞. This is the
ideal situation, but in practice (3) only holds for smoothed versions of w where the
smoothing depends on τ .

The above strategy was initially developed for convergence of Lagrange interpo-
lating polynomials in L2[−1, 1], cf. Zygmund [34, vol. II, ch. X.7]. Weighted means
for interpolations at zeros of orthogonal polynomials were investigated by Erdös and
Turan [9]. For a sample of follow upwork we refer to results of Lubinsky, Nevai, Maté,
Xu and others focused on polynomial inequalities for Jacobi measures on [−1, 1] (see
[16,19,23,31,32] and the references therein). Doubling measures were considered by
Mastroianni and Totik [22] and Mastroianni and Russo [21]. Many additional refer-
ences may be found in the surveys by Lubinsky [17] and [18, Section 12]. Section 13
of the latter survey contains an overview of polynomial Hermite interpolation.

There is a substantial literature on sampling and interpolation in a given Hilbert
space of entire functions and its L p versions, cf. Lyubarski and Seip [20] and Seip [29].
This rests on a deep theory of spaces B2(τ, w) with bounded evaluation functionals
developed by de Branges [3]. An important role is played by entire functions Eτ with
the property (cf. [3, Theorem 22])

∫
R

|F(x)w(x)|2dx =
∑
t∈�τ

1

ϕ′
τ (t)

∣∣∣∣ F(t)

Eτ (t)

∣∣∣∣
2

,

where ϕτ is essentially the argument of Eτ on the real line. If ϕ′
τ (t) is comparable to

τ (with implied constants independent of t and τ ), then this identity gives a version
of (3) for p = 2. We show in Sect. 3 that a similar inequality holds if 1 < p < ∞.

In contrast, the question of convergence of (1) for f ∈ Rp(w) with 1 < p < ∞
does not appear to have attracted much attention. Inequality (3) without the weight w
is due to Pólya and Plancherel [4,25,26] and implies mean convergence for Lebesgue
measure (see also Rahman and Vertesi [27]). The first weighted result appears to be
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due toGrozev andRahman [13]who considered convergencewith respect to the power
weights |x |a for a > −1/p. Their approach is tailored to power weights and relies on
special properties of Bessel functions.

1.1 Notation andMain Results

Let 1 < p < ∞. Some of the following statements hold also for p = ∞, others
for p = 1, but since our main theorems do not apply to these exponents, we do not
consider them here. We denote by H p(C+) the Hardy space of analytic functions F
in the upper half plane C+ for which

sup
y>0

∫
R

|F(x + iy)|pdx < ∞,

andby H p(C−) theHardy space of the lower half plane.Anentire function E satisfying

|E(z)| > |E(z̄)| (5)

for all �z > 0 will be called a Hermite-Biehler function. Throughout this paper we
assume that E has no real zeros. The L p de Branges space is defined as follows1

Hp(E) = {F entire : F/E, F∗/E ∈ H p(C+)},

where F∗ is the entire function F∗(z) = F(z̄). If E is of bounded type in C+, that is,
E can be written as a quotient of bounded analytic functions in C+ then by a result of
Krein [28, Theorem 6.17], E is of exponential type

δE = lim sup
|z|→∞

|z|−1 log |E(z)| ≥ 0

and it can be shown that Hp(E) coincides with the space of entire functions F of
exponential type ≤ δE such that F/E ∈ L p(R).

We write E(z) = A(z) − i B(z), where A and B are entire functions that are real-
valued for real z. We denote by ZB the set of real zeros of B (B has only real simple
zeros by (5) and we will use them as our interpolation nodes). The phase ϕ is defined
by the condition eiϕ(x)E(x) ∈ R for all real x . The assumption that E has no real
zeros implies that ϕ can be chosen so that it has an analytic continuation to an open
set containing the real line and is strictly increasing on R (see Sect. 2).

Define the formal Lagrange interpolation series (also known as Shannon interpo-
lation in this context)

LE f (z) =
∑
t∈ZB

f (t)
B(z)

B ′(t)(z − t)
. (6)

1 We follow Baranov [2] for the definition of L p de Branges spaces.
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Throughout the rest of the paper we use the convention L � R to mean L ≤
cR for some constant c > 0 independent of the objects appearing in L or R. We
will sometimes use �λ1,...,λn to stress that c may exceptionally depend on objects
λ1, ..., λn . Finally, we use L ≈λ1,...,λn R to mean simultaneously L �λ1,...,λn R and
R �λ1,...,λn L .

Definition (L-admissible weight) Let w : R → (0,∞) be locally bounded and con-
tinuous almost everywhere. We say that w is L-admissible if there exists a family
{Eτ : τ > 0} of Hermite-Biehler functions with phase ϕτ such that:

(a) Eτ has no real zeros and is of bounded type in C
+, with exponential type τ ;

(b) |Eτ (x)|−1 ≈ w(x) for all x ∈ R;
(c) ϕ′

τ (x) ≈ τ ;
(d) Bτ /∈ Hp(Eτ ) for all 1 < p < ∞ and τ > 0.

These conditions imply that B p(τ, w) = Hp(Eτ ) with equivalent norms, and in
particular Hp(Eτ ) ⊆ Hp(Eσ ) if σ ≥ τ > 0. The last condition Bτ /∈ Hp(Eτ ) is not
a serious restriction, since for every α ∈ R the function eiαEτ (z) may take the role
of Eτ . There can at most be one α for which the entire extension of −�(eiαEτ ) is
in the space, since otherwise Eτ would be an element of the space. By way of a first
example we note that w ≡ 1 is L-admissible with Eτ (z) = e−iτ z .

Throughout this paper we will write Lτ = LEτ , Zτ = ZBτ when convenient.

Theorem 1 Let w be an L-admissible weight with {Eτ : τ > 0} as in Definition 1.1.
If f ∈ Rp(w), then Lτ f defines an entire function in B p(τ, w) with

Lτ f (λ) = f (λ)

for all λ ∈ Zτ . If in addition ∪τ>0B p(τ, w) is dense in L p(w), then

lim
τ→∞ ‖( f − Lτ f )w‖p = 0.

For conditions when che class of functions of exponential type is dense in L p(w)

we refer to Koosis [15, Ch. VI]. (Our examples deal with w of polynomial growth
where an elementary construction gives the necessary density statement.)

In order to establish convergence of Hermite interpolations, fewmodifications need
to be made, the most important is that interpolations now live in B p(2τ,w2). The
reproducing kernel associated with E is

KE (w, z) = E(z)E∗(w̄) − E∗(z)E(w̄)

2π i(w̄ − z)
= B(z)A(w̄) − A(z)B(w̄)

π(z − w̄)
. (7)

Setting for t ∈ ZB and z ∈ C

UE (t, z) = K (t, z)2

K (t, t)2

(
1 − 2

K ′(t, t)(z − t)

K (t, t)

)
= B(z)2

B ′(t)2(z − t)2
− B(z)2B ′′(t)

B ′(t)3(z − t)

VE (t, z) = K (t, z)2(z − t)

K (t, t)2
= B(z)2

B ′(t)2(z − t)
,
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we define the formal Hermite interpolation series by

HE ( f , z) =
∑
t∈ZB

f (t)UE (t, z) +
∑
t∈ZB

f ′(t)VE (t, z). (8)

Definition (H-admissible weight) We say that a weight w is H-admissible if w is
L-admissible and the associated Hermite-Biehler functions Eτ have the following
additional property

‖E ′
τ /Eτ‖H∞ � τ. (9)

These conditions again imply that B p(2τ,w2) = Hp(E2
τ ), and in particular

Hp(E2
τ ) ⊆ Hp(E2

σ ) if σ ≥ τ > 0. We remark that by [12, Theorem 1 & Corol-
lary 7], the space Hp(E2

τ ) is closed under differentiation and Bτ /∈ H2(E2
τ ), so

condition (d) in the definition of L-admissibility is actually implied by (9) and could
be removed. In the following, we write Hτ in place of HEτ .

Theorem 2 Let w be an H-admissible weight. If f ∈ R(1)(w2), then Hτ f defines an
entire function in B p(2τ,w2) with

Hτ ( f , λ) = f (λ) and H′
τ ( f , λ) = f ′(λ)

for all λ ∈ ZB. If in addition ∪τ>0B p(2τ,w2) is dense in L p(w2) then

lim
τ→∞ ‖( f − Hτ f )w2‖p = 0.

We remark that ‖( f ′ − F ′
τ )w

2‖p is not required to converge to zero as τ → ∞ (and
in most cases it will not converge).

1.2 PowerWeights

We show next that the result of Grozev and Rahman [13] is a special case of our
convergence results. For ν > −1 define entire functions

Aν(z) = �(ν + 1)(z/2)−ν Jν(z)

Bν(z) = �(ν + 1)(z/2)−ν Jν+1(z),

where Jν is the Bessel function of order ν of the first kind. Define Eν = Aν − i Bν . For
α ∈ [0, π) we set Eν,τ,α(z) = eiατ ν+ 1

2 Eν(τ z) and define real entire Aν,τ,α , Bν,τ,α

by Eν,τ,α = Aν,τ,α − i Bν,τ,α . Clearly Hp(Eν,τ,α) = Hp(Eν,τ,0), but the nodes of
interpolation will be different. We collect required material about these functions in
the following lemma (see de Branges [3, section 50] and [12, Section 4.1]).

Lemma 3 The following properties hold.

(a) Eν is a Hermite-Biehler function of exponential type 1.
(b) |Eν(x)|−1 ≈ν max(1, |x |)ν+ 1

2
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(c) ϕ′
ν(x) ≈ν 1

(d) The Bessel zeros tν,k of Bν satisfy tν,k+1 − tν,k = πk + Oν(k−1).

(e) Bν /∈ Hp(Eν).
(f) Assume ν ≥ − 1

2 and 1 < p < ∞, or − 1
2 > ν > −1 and 1 < p < |ν + 1

2 |−1. An
entire function F of exponential type ≤ 1 satisfies

∫
R

|F(x)xν+ 1
2 |pdx < ∞

if, and only if, F ∈ Hp(Eν).

(g) For α ∈ R the union ∪τ>0Hp(Eν,τ,α) is dense in Rp(|x |ν+ 1
2 ) under the same

conditions as item (f).

Proof We only sketch the proof and leave details to the reader. Item (a) can be
found in [3, section 50]. Items (b) and (e) are a consequence of the classical
asymptotic expansion of Jν(x) for large x . The same asymptotic can be used in
conjunction with the differential equations defining the Bessel function Jν to show
ϕ′

ν(x) = �[i E ′
ν(x)/Eν(x)] = 1 − (2ν + 1) Aν (x)Bν (x)

|Eν (x)|2 , which proves items (c) and
(d). Item (f) follows from items (a) and (b) (with some work). Item (g) is classical and
can be done using convolutions, approximations of the Dirac delta and further tricks
to deal with the singularity at the origin. ��

We let Lν,τ,α = LEν,τ,α be the Lagrange interpolation operator with nodes

Zν,τ,α = {t ∈ R : Bν,τ,α(t) = 0}
= {t ∈ R \ {0} : Jν(τ t)/Jν+1(τ t) = − tan(α)} (if α �= π/2)

= {t ∈ R : t Jν(τ t) = 0} (if α = π/2)

The choice α = π
2 in the following corollary recovers the results of [13], the proof is

provided in Sect. 4.

Corollary 4 Assume ν ≥ − 1
2 and 1 < p < ∞, or − 1

2 > ν > −1 and 1 < p < |ν +
1
2 |−1. If f ∈ Rp(|x |ν+ 1

2 ) then |x |ν+1/2Lν,τ,α f (x) ∈ L p(R), Lν,τ,α f has exponential
type at most one and

lim
τ→∞

∫
R

∣∣∣( f (x) − LEν,τ,α f (x))|x |ν+ 1
2

∣∣∣p dx = 0.

2 Background

2.1 De Branges Spaces

This section collects known facts about the L p deBranges spaceHp(E) (cf. deBranges
[3, pp. 50 - 59] for p = 2 and Baranov [2] for p �= 2). Recalling (7), it follows that
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x �→ K (w, x)/E(x) ∈ Lq(R) for every 1 < q ≤ ∞, and the representation

F(w) =
∫
R

F(x)K (w, x)

|E(x)|2 dx, (10)

follows from Cauchy’s formula for all F ∈ Hp(E). In particular, the space H2(E) is
a Hilbert space with reproducing kernel K (w, z). A direct calculation shows that

ϕ′(x) = �
{
i
E ′(x)
E(x)

}
= π

K (x, x)

|E(x)|2 > 0 (11)

for all real x . From e2iϕ(x)E(x)2 = |E(x)|2 we obtain

e−2iϕ(x) = A(x)2

|E(x)|2 − B(x)2

|E(x)|2 + 2i
A(x)B(x)

|E(x)|2

for all real x , and as a consequence, if E has no real zeros then ZB = ϕ−1(πZ).
In the usual abuse of notation we identify H p(C+) as the subspace of L p(R)

consisting of non-tangential boundary values of elements in H p(C+). We also denote
by H f the Hilbert transform of f , and recall that for 1 < p < ∞ the Riesz projection
P+, given for f ∈ L p(R) by

P+ f = 1

2
( f + i H f ),

defines a bounded operator from L p(R) onto H p(C+).

2.2 Connection with Model Spaces

The standard source for model spaces is the book of Nikolski [24, Chapter 6], but also
[1,2,5,10]. Recall that an inner function forC+ is bounded by 1 in the upper half plane
and its modulus has boundary value equal to 1 almost everywhere on the real line.
By (5) the function meromorphic function � = E∗/E is inner for C+ and satisfies
�∗ = 1/�. The model space Kp

� is defined as the kernel

Kp
� = ker T�∗

where the Toeplitz operator T�∗ : H p(C+) → H p(C+) is given by

T�∗ f = P+(�∗ f ).

The map F �→ F/E defines an isometry between Hp(E) and Kp
� (this is a conse-

quence of the equivalence F∗/E ∈ H p(C+) if and only if F/E∗ ∈ H p(C−), cf.
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Baranov [1, Theorem 2.1]). The space K2
� is a reproducing kernel space with kernel

k given by

k(w, z) = K (w, z)

E(z)E∗(w̄)
= i

2π

1 − �(z)�∗(w̄)

z − w̄
. (12)

We define the integral operator

SE f (z) =
∫
R

f (u)K (u, z)
du

|E(u)|2

and note that by (12) this is the difference of the Hilbert transform of f /E and of the
multiplication by� of the Hilbert transform of�∗ f /E . For easy reference we collect
the boundedness of f /E �→ SE f /E on L p in the following lemma (cf. Hollenbeck
and Verbitsky [14] for the constant).

Lemma 5 Let 1 < p < ∞. If f /E ∈ L p(R), then SE f ∈ Hp(E), and

∫
R

∣∣∣∣ SE f (x)

E(x)

∣∣∣∣
p

dx ≤ 2
(
csc π

p

)2p ∫
R

∣∣∣∣ f (x)E(x)

∣∣∣∣
p

dx .

We remark that SE f is related to the projection operator P� : L p(R) → Kp
� given

by

P� f = P+( f ) − �P+(�∗P+( f ))

through the identity P�( f /E) = (1/E)SE f , but we do not require this connection.
In order to analyze convergence of interpolation with derivatives we require the

following two operators, whose form is suggested by the interpolation kernelsUE and
VE in the definition of HE f . For t ∈ R and g ∈ L p(R) we define

DEg(t) =
∫
R

g(x)k(t, x)2
(
1 − 2

K ′(t, t)(x − t)

K (t, t)

)
dx,

TEg(t) =
∫
R

g(x)(x − t)k(t, x)2dx

where the prime denotes differentiation in the second variable. As before, we write
Dτ and Tτ if E = Eτ .

Lemma 6 Let 1 < p < ∞. Assume Eτ be a Hermite-Biehler function with ϕ′
τ (x) ≈ τ

and ‖E ′
τ /Eτ‖H∞ � τ , for τ > 0. If g ∈ L p(R), then

‖Dτ g‖p �p τ‖g‖p,

‖Tτ g‖p �p ‖g‖p.

Furthermore, Dτ g, Tτ g ∈ Kp
(E∗

τ )2/E2
τ
.
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Proof We omit the subscript τ for the functions throughout this proof.We observe that
z �→ k(t, z)2 and z �→ (z− t)k(t, z)2 are in Lq(R) where q is the conjugate exponent
of p. Hence the integrals defining Dτ g and Tτ g are absolutely convergent and define
entire functions. A direct calculation gives for t ∈ R

Tτ g(t) =
∫
R

1

x − t

(
1 − E∗(x)

E(x)
E(t)
E∗(t)

2π i

)2

g(x)dx,

and after expanding the square, Tτ g is a sum of three terms, each of which involves
multiplications with functions of constant modulus (not depending on τ ) and a Hilbert
transform. Hence Tτ is a bounded operator on L p(R) with norm depending only on
p.

Since E ′/E is bounded in C
+, it follows from [2] that differentiation defines a

bounded operator on Hp(Eτ ) with norm �p ‖E ′
τ /Eτ‖H∞ . Identity (10) applied to

z �→ ∂
∂z K

′(t, z) gives

∂K (t, z)

∂z
=

∫
R

(
d

dx
K (t, x)

)
K (z, x)

dx

|E(x)|2 .

We apply Cauchy-Schwarz and use the norm of the differentiation operator to get

|K ′(t, z)| � τK (t, t)1/2K (z, z)1/2.

Letting z = t leads to
∣∣∣ K ′(t,t)
K (t,t)

∣∣∣ � τ. To estimate Dτ , we obtain from (10) that

∫
R

|k(t, x)|2dx = |E(t)|−2K (t, t) = πϕ′(t) � τ.

Applying the integral operator version of Young’s inequality (see [30, Theorem 0.3.1])
gives

(∫
R

∣∣∣∣
∫
R

k(t, x)2g(x)dx

∣∣∣∣
p

dt

)1/p

� τ‖g‖p,

which finishes he proof of the claimed inequality.
For the final statement we note first that z �→ K (w, z)2/E(z)4 is an element of

H p(C+), and the same is true for K ∗(w, z)2/E(z)4. Hence K (w, z)2 is an element
ofHp(E2), and it follows that k(t, z)2 is inKp

(E∗)2/E2 . The proof for (x − t)k(t, z)2 is
analogous. It follows that these functions are in the kernel of the Toeplitz operator for
this model space, and integrating in t while observing the norm inequalities proved
above shows that Dτ g and Tτ g are in the same model space. ��
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3 Marcinkiewicz Inequalities

Throughout this section 1 < p < ∞ and {Eτ : τ > 0} is a family of Hermite-Biehler
functions with no real zeros and phase ϕτ such that

ϕ′
τ (x) ≈ τ. (13)

As mentioned in the introduction, in order to obtain a version of (3) we start with an
upper Marcinkiewicz inequality in H(Eτ ), prove a convergence statement for inter-
polations (which we require for (1) as well), and combine those ingredients to obtain
a lower Marcinkiewicz inequality.

Since E∗
τ /Eτ = e2iϕτ on R, a result of Dyakonov [7] and [8, eq. (3.1)] implies that

‖(F/Eτ )
′‖p ≤ Cpτ‖F/Eτ‖p. (14)

Furthermore, (13) gives π = |ϕτ (t+) − ϕτ (t)| ≈ τ |t+ − t |, if t+ > t are consecutive
zeros of Bτ . Hence

|t+ − t | ≈ τ−1.

We review next an upper Marcinkiewicz inequality, due to Baranov.

Lemma 7 (cf. [1, Theorem 5.1]) Let Eτ satisfy (13). Then for all F ∈ Hp(Eτ )

1

τ

∑
λ∈Zτ

∣∣∣∣ F(λ)

Eτ (λ)

∣∣∣∣
p

�p ‖F/Eτ‖p
p.

Proof This may be obtained by considering the sum on the left as integration against
a Carleson measure with masses at the points of Zτ and observing that the proof of
[1, Theorem 5.1] carries over from p = 2.

Alternatively, following [21, Theorem 1], set λ+ = inf{t ∈ R : Bτ (t) = 0 and t >

λ}. Starting point is the inequality

|h(x)|p(y − x) ≤ 2p−1
(∫ y

x
|h(u)|pdu + (y − x)p

∫ y

x
|h′(u)|pdu

)
,

valid for all h ∈ C1 and x < y. We use consecutive zeros of Bτ for the endpoints and
apply this with the C∞(R)-function h = F/Eτ . This leads to

∑
λ∈Zτ

∣∣∣∣ F(λ)

Eτ (λ)

∣∣∣∣
p

τ−1 ≤ Cp

(∫
R

∣∣∣∣ F(x)

Eτ (x)

∣∣∣∣
p

dx + τ−p
∫
R

∣∣∣∣ d

dx

[
F(x)

Eτ (x)

]∣∣∣∣
p

dx

)
,

and (14) implies the claim. ��
The final statement in this section is a pointwise bound for the series defining Lτ f

in order to establish when it defines an entire function.
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Lemma 8 Let f ∈ Rp(w). If (13) and conditions (a) and (b) of Definition 1.1 hold,
then the series defining Lτ f converges uniformly on compact subsets of C, and for
z ∈ C

|Lτ f (z)| ≤ Cp(‖ f w‖p + 1)

⎛
⎝1

τ

∑
t∈Zτ

∣∣∣∣ Bτ (z)

z − t

∣∣∣∣
q
⎞
⎠

1/q

.

Proof We drop subscripts τ . Let z be in a compact subset � of C\ZB . It follows from
(11) that ϕ′(t) = A(t)−1B ′(t) for t ∈ ZB , hence multiplying and dividing by A(t)
gives

|Lτ f (z)| =
∣∣∣∣∣∣
∑
t∈ZB

f (t)B(z)

B ′(t)(z − t)

∣∣∣∣∣∣

≤
⎛
⎝ ∑

t∈ZB

1

ϕ′(t)

∣∣∣∣ f (t)A(t)

∣∣∣∣
p
⎞
⎠

1/p ⎛
⎝|B(z)|q

∑
t∈ZB

1

ϕ′(t)

∣∣∣∣ 1

z − t

∣∣∣∣
q
⎞
⎠

1/q

.

Since E = A on ZB , the first term is comparable to the Riemann sum of ‖ f w‖p. It
follows from (13) and (14) that the second series converges uniformly and absolutely
for z ∈ �. Since the singularities atZB are removable, Lτ f defines an entire function.

��

3.1 Lagrange Interpolation

We prove next a version of (3). We remark that inequalities of this type are known for
considerably more general measures, cf. Volberg [33, Theorem 2], if the constant is
not required to depend explicitly on τ .

Proposition 9 Let Eτ satisfy (13) and Bτ /∈ Hp(Eτ ). Then for F ∈ Hp(Eτ )

F(z) =
∑
t∈Zτ

F(t)
Kτ (t, z)

Kτ (t, t)
(15)

inHp(Eτ ) and uniformly on compact subsets of C. Moreover,

‖F/Eτ‖p
p �p

1

τ

∑
t∈ZB

∣∣∣∣ F(t)

Eτ (t)

∣∣∣∣
p

. (16)

Proof Let 1 < p < ∞.Wedrop the subscript τ throughout this proof. Let F ∈ Hp(E).
Let Fk be the partial sum of the series in (15) using the summands with |t | ≤ k. This
is an element of Hp(E), and we show first that it forms a Cauchy sequence in this
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space. It is known2 that Kq
E∗/E is norm equivalent to the dual space of Kp

E∗/E (here

p−1 + q−1 = 1) and one can show Hp(E)′ = Hq(E). This gives

∥∥∥∥ Fk − Fm
E

∥∥∥∥
p

�p sup

∣∣∣∣∣
∫
R

Fk(x) − Fm(x)

E(x)

G(x)

E(x)
dx

∣∣∣∣∣ (17)

where the supremum is taken over all G ∈ Hq(E) with ‖G/E‖q = 1. It follows from
(10) that

∫
R

Fk(x) − Fm(x)

E(x)

G(x)

E(x)
dx =

∑
t∈ZB

k<|t |≤m

F(t)

K (t, t)

∫
R

K (t, x)G(x)

|E(x)|2 dx

=
∑
t∈ZB

k<|t |≤m

F(t)G(t)

K (t, t)
.

By (11) we have K (t, t) = ϕ′(t)|E(t)|2. Using Hölder’s inequality and dropping the
restriction on t in the last series of the following inequality gives

∣∣∣∣∣∣∣∣
∑
t∈ZB

k<|t |≤m

F(t)G(t)

ϕ′(t)|E(t)|2

∣∣∣∣∣∣∣∣
≤

⎛
⎜⎜⎝

∑
t∈ZB

k<|t |≤m

1

ϕ′(t)

∣∣∣∣ F(t)

E(t)

∣∣∣∣
p

⎞
⎟⎟⎠

1
p ⎛
⎝ ∑

t∈ZB

1

ϕ′(t)

∣∣∣∣G(t)

E(t)

∣∣∣∣
q
⎞
⎠

1
q

.

(18)

The assumption (13) and Lemma 7 lead to

⎛
⎝ ∑

t∈ZB

1

ϕ′(t)

∣∣∣∣G(t)

E(t)

∣∣∣∣
q
⎞
⎠

1/q

�q ‖G/E‖q = 1.

Since the constants do not depend on G, the inequalities hold for the supremum in
(17) as well, and it follows that Fk converges in Hp(E). Alternatively, without using
the dual space representation, the function G in (17) may be replaced by any h with
h/E ∈ Lq(R). This leads to the use of SEh in place of G and an application of
Lemma 5 in the last step.

We show next that the limit of Fk is F . It follows from Lemma 8 that the series
converges uniformly in compact subsets of C and hence defines an entire function. To
show that it represents F fix w /∈ R with F(w) �= 0 and note that Gw defined by

Gw(z) = F(z)B(w) − B(z)F(w)

z − w

2 For model spaces on the unit disk this may be found in [6, Lemma 4.2], and the proof for the upper half
plane is analogous.
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is entire and an element of H2(E). It follows from the theory of de Branges spaces
for p = 2 (cf. the proof of [3, Theorem 22]) that the representation (15) holds for Gw,
and this may be rewritten as

F(z)

B(z)
− F(w)

B(w)
=

∑
t∈ZB

F(t)

B ′(t)

[
1

z − t
+ 1

t − w

]
.

Hence for some constant cF

F(z) =
∑
t∈ZB

F(t)B(z)

B ′(t)(z − t)
+ cF B(z),

and as we had seen, the series converges inHp(E). Since by assumption B /∈ Hp(E),
we must have cF = 0.

Finally, returning to (17), if we replace Fk − Fm by F then the same calculations
lead to (18) without the restriction k < |t | ≤ m. Raising the resulting inequalities to
the pth power and using (13) leads to (16). ��

3.2 Hermite Interpolation

The interpolation with derivatives requires the following version of (3).

Proposition 10 Let Eτ satisfy (13) and B2
τ /∈ Hp(E2

τ ). Then for F ∈ Hp(E2
τ )

F(z) =
∑
t∈Zτ

[
F(t)

Kτ (t, z)2

Kτ (t, t)2

(
1 − 2

K ′
τ (t, t)(z − t)

Kτ (t, t)

)
+ F ′(t)Kτ (t, z)2(z − t)

Kτ (t, t)2

]

inHp(E2
τ ) and uniformly on compact subsets of C, and

‖F/E2
τ ‖p �p

⎛
⎝1

τ

∑
t∈Zτ

∣∣∣∣ F(t)

Eτ (t)2

∣∣∣∣
p
⎞
⎠

1/p

+ 1

τ

⎛
⎝1

τ

∑
t∈Zτ

∣∣∣∣ F ′(t)
Eτ (t)2

∣∣∣∣
p
⎞
⎠

1/p

.

Proof Following the strategy of the previous section, we express ‖F/E2
τ ‖p using

duality, plug in the partial sums of the proposed interpolating series Hτ f , change
summation, and obtain sums of certain integral transforms that are bounded using
Lemma 6. The proof follows the same lines with only few modifications and we leave
the details to reader, but we mention that the necessary local convergence result of the
interpolating series was proved in [11]. ��

4 Proofs of theMain Results

Proof of Theorem 1 Let f ∈ Rp(w). It follows from Lemma 8 that Lτ f defines an
entire function. The partial sums Lk ofLτ f are inHp(Eτ ) = B p(τ, w). Since Lk(t) =
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f (t) for |t | ≤ k and Lk(t) = 0 otherwise for t ∈ Zτ , we have

‖(Lk − Ln)/Eτ‖p
p �p

1

τ

∑
t∈Zτ

k<|t |≤n

| f (t)w(t)|p .

The right hand side is a partial sum of a convergent Riemann sum, so Lτ f defines an
element ofHp(Eτ ), which equalsB p(τ, w).We can then apply Proposition 9 to obtain
the desired lowerMarcinkiewicz-Zygmund inequality (3) forB p(τ, w) and�τ = Zτ ,
and the remaining part of the proof follows from the argument presented thereafter. ��
Proof of Theorem 2 Let f ∈ R1

p(w). The proof that each series in the definition ofHτ f
converges uniformly on compact subsets of C and hence defines an entire function is
a calculation analogous to Lemma 8 (note that K ′

τ (t, t)/Kτ (t, t) ≤ Cτ by the proof
of Lemma 6). The proof can be finished by a very similar argument to the proof of
Theorem 2, but now we need to apply Proposition 10 and the fact that Hp(E2

τ ) is
closed under differentiation, we leave the details to the reader. ��
Proof of Corollary 4 In what follows we will use the results of Lemma 3 and we omit
α. Let wτ (x) = max(τ−1, |x |)ν+1/2 for τ > 0 and w∞(x) = |x |ν+1/2. Consider the
family ofHermite-Biehler functions {Eν,τ }τ>0. Since |E−1

ν,τ | ≈ wτ , this family satisfies
all conditions of Definition 1.1 if we replace w by wτ and the proof of Theorem 1 can
be replicated line by line to show ‖( f − Lν,τ f )wτ‖p → 0 as τ → ∞ and Lν,τ f ∈
H(Eν,τ ). Hence Lν,τ f has exponential type at most one and w∞Lν,τ f ∈ L p(R).
Since wτ ≥ w∞ for ν ≥ −1/2 we obtain

‖( f − Lν,τ f )(wτ − w∞)‖p ≤ ‖( f − Lν,τ f )wτ‖p → 0,

hence ‖( f − Lν,τ f )w∞‖p
p → 0, which finishes the proof in the case ν ≥ −1/2.

For ν < − 1
2 we have instead

‖( f − Lν,τ f )(wτ − w∞)‖p ≤ ‖ f w∞‖L p([−τ−1,τ−1]) + ‖Lν,τ f w∞‖L p([−τ−1,τ−1]).

The integral of | f w∞|p restricted to [−τ−1, τ−1] converges to zero so we need to
analyze the contribution from Lν,τ f w∞. A scaling argument in the inequality of

Lemma 8 may be used to show |Lν,τ f (x)| � τ
1− 1

q −|ν+ 1
2 |

, and hence

|Lν,τ f (x)/Eν,τ (x)|p � τ (19)

for |x | ≤ τ−1. Since the integral of | f w∞|p and hence of | f /Eν,τ |p converges to
zero, we also have the limit relation ‖Lν,τ f /Eν,τ‖L p([−τ−1,τ−1]) → 0 as τ → ∞.
Defining for ε > 0

Xτ,ε = {|x | ≤ τ−1 : ετ ≤ |Lν,τ f (x)/Eν,τ (x)|p},
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we split the integral of |Lν,τ f w∞|p on [−τ−1, τ−1] into the integral over Xτ,ε and
its complement, utilize on the complement the estimate

|Lν,τ f (x)w∞(x)|p < ετ |Eν,τ (x)w∞(x)|p,

combine this with |Eν,τ (x)|p � τ−p|ν+ 1
2 |, use (19) on Xτ,ε, and observe that due to

the shape of w∞ the contribution from Xτ,ε is largest if this set is an interval with
center at the origin (we leave the details to the reader). This finishes the proof. ��
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