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Abstract

In this paper we study the so-called Radon inversion problem in bounded, circular,
strictly convex domains with C> boundary. We show that given p > 0 and a strictly
positive, continuous function ® on 9€2, by use of homogeneous polynomials it is

1
possible to construct a holomorphic function f € O(2) suchthat /' | f (z1)|Pdt = ®(z)
0

for all z € 9. In our approach we make use of so-called lacunary K-summing
polynomials (see definition below) that allow us to construct solutions with in some
sense extremal properties.

Keywords Radon inversion problem - Divergent Taylor series - Boundary behaviour
of holomorphic functions of several complex variables - Inner functions

Mathematics Subject Classification Primary 32A40 - Secondary 32A0

1 Introduction

In general, Radon inversion problem is to reconstruct a function on the basis of the val-
ues of its integrals over some subset of submanifolds of its domain. Here we consider
bounded, circular, strictly convex domains and we are interested in finding a holo-
morphic function such that its radial integrals are equal to the values of some given
strictly positive, continuous function on the boundary. More precisely, let 2 ¢ C"
be a bounded, circular, strictly convex domain with C? boundary. Fix p > 0. For a
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holomorphic function f € O(2) we may consider the integral operator R” defined
as follows

1
RP(f)(2) I=f |f@)|Pdt, zeQ
0

and called Radon operator. Then for a given strictly positive, continuous function
®: 9Q2 —> R we look for a function f € O(£2) such that

RP(f)=® on 9. (1)

Slightly different formulation of the Radon inversion problem in terms of considered
integrals for the operator R¥ was described in [7] and solved at almost all boundary
points with respect to a given probability measure on the boundary of the domain.
Moreover, in the same paper it was observed that Radon inversion problem for holo-
morphic functions is similar to construction of inner functions in several variables. The
radial limits that exist almost everywhere on the boundary are replaced by the Radon
operator. However, the Radon operator R? is well-defined at all boundary points, so
the aim of the present paper is to solve (1) for all z € d€2. For the first two independent
constructions of a non-constant inner function in several variables see [1] and [9].

To achieve our aim we make use of homogeneous polynomials constructed in [6].
Historically they are a generalization of Ryll-Wojtaszczyk polynomials (see [11]).
For our purpose we add some properties to the polynomials from [6] to obtain, as we
call them, lacunary K-summing polynomials (see definition below). They will form
generators that enable us to construct by induction a solution to (1).

Then we intend to study properties of the obtained solution. In our approach, the
solution is clearly unbounded on the boundary of the domain. Nevertheless, more inter-
esting properties might be seen by considering a linear operator S” for holomorphic
functions, p > 0. If {uz}ren is a sequence of homogeneous polynomials of degree
ni € N respectively, then the operator S” is defined as follows

o0 o0
ug
SP: O(Q) > U —> —— c O(Q).
2 S

First of all, we construct a solution f to (1) such that SP(f) is continuous up to
the boundary for any p > 0. Then we show that one may find another solution g
such that all slice functions of S”(g) have divergent series of Taylor coefficients with
every exponent s < min{l, p}. Moreover, if p < 1, then S”(g) € C (€) and for
p € (1, 2], function S”(g) is square-integrable on all circles zdDD, z € 9. This is
a similar result to the ones obtained for functions in the ball algebra in [12] and for
inner functions in [2] and [3]. In some sense these two approaches give us flexibility
and diversity in solving Radon inversion problem and might be useful in view of
constructing holomorphic functions with prescribed boundary behaviour.
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2 Notation and Preliminaries

In this paper we set the following notation. Let o, i and A be normalized Lebesgue
measures on 9€2, 2 and 9D, respectively, i.e. 0(3€2) = 1, u(2) = 1 and A(dD) = L.
Let Cps(€2) stand for the space of continuous functions in 2 and bounded by M. Let
us denote L; norm on circles zdD, z € 92, by ||f|l1zop = S |f(zw)|dr(w)
i)
and supremum norm || f||7 := sup|f(z)]. For z € 9Q2 denote by f,: D > w >
zeT
f(wz) the slice function for f. Recall that a polynomial P is said to be of order k if
||
a—aP(O) = 0 for any multi-index « such that |«¢| < k and we write ord(P) = k.

z
Finally, for p > 0 and ¢ = max{p, 1} we define the space

HRP(Q) = {f € OQ): sup RP()(z) < 00
z€0Q

1
equipped with the metricd(f, g) := sup (Rp(f—g)(z)) ? where f, g € HRP(Q).
z€0Q2
This space is complete as we shall show it in the following proposition.

Proposition 2.1 The space (HR”(Q), d) is complete for any p > 0. Moreover, if
fo <L Fin HRP(Q), then RP () = RP(f) on 9Q as n — oc.
n— o0

Proof Let { f,},en be a Cauchy sequence in HRP(€2). Set ¢ > 0. There exists N € N
such that

1
(RP U = @) <& Vmnzy Veero
which implies that
1
[ 16 = geniPd <t Vo Vecsa @)
0

Now we may integrate (2) over 9€2 to obtain that

1
/ / fin = f)DIPd1do (@) < 69 Ymnon.
I JO

Since f,;, — fu is a holomorphic function, on the basis of [10] (Prop. 1.5.4.), function
| fiw — falP is subharmonic. Let K be a compact subset of 2, w € K and r =
%dist(K , 0€2), so B(w, r) C 2. The sub-mean value theorem applied to the function
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| fm — ful? and B(w, r) gives the following estimate

1
[(fin — S)( )I”S:f [(fn — f)OIPd(2)
S = ) nBw, r)) JBw,r) I = IO di(e

1 ! o4
<L f / o — fu) D) Pdido (2) < 5o
r2u aa Jo r2u

for any m, n > N. In particular,

4
sup |(fin — f)w)|? < o Yin=N-
wek r

This implies that { f;,},en converges locally uniformly on compact subsets of 2. Let
f be the limit function for the sequence { f;, },en. Since f; are holomorphic, so is f.

Now we shall show that f;, 4, fand f € HRP(K2). It follows from (2) that

5
/(; [(fmn — f)@)IPdt < €7 Vse©,1) Ymn=N Yzesq- 3)

Since f;,, —> f locally uniformly we may pass with m to the limit in (3) to obtain
that

5
/ [(f — fa)@D)|Pdt < €T Vsc0,1) Yaxn Vzesq
0

Above inequality holds for any § € (0, 1), so we get that

1
/0 (= F)@IPdt <69 Vusn Vocon.

Moreover, by triangle inequality,

1

swp (RP(N@)" = sup (R = £(@)" + sup (RPG@) <00 Vo,

z€0R2 7€0Q2 €02

Q=

Therefore f, igo fand f € HRP(Q).
n—

If £, LN f.thend(f, f,) —> 0. Triangle inequality implies that
n—od n— 00

sup ((R”(f)(z)); - (Rp(fn)(z))cl'> < sup (RP(f - fn><z>)é o

z€02 z€0R2

1 1
Hence (Rp(fn))q = (Rp(f)) “ondQasn — ooand consequently that R” (f,,) =
RP(f)ondQasn — oo. O
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In the construction of a solution to the Radon inversion problem we will use the
following theorem from [4]. It provides a collection of holomorphic and continuous
up to the boundary functions that in some sense together approximate a given strictly
positive, continuous function on 9€2. It is important to emphasise that the number
of elements in this set of functions does not depend on the function we want to
approximate.

Theorem 2.2 ([4], Theorem 3.2) There exists a natural number N = N (0S2) such that
ife € (0, 1), T is a compact subset of 2, h is a continuous strictly positive function
on 0%, then there exist holomorphic functions f1, ..., fn € O(R) NC(Q) such that

L I fullr <& m=1,....,N
2 h h on 382
. §<1gnaéN|fm|< on 0L2.

As it is observed in [8], functions in Theorem 2.2 may be replaced with polynomials.

3 Lacunary K-Summing Polynomials

As we said before, the main tool in our approach to solve the Radon inversion problem
is lacunary K-summing polynomials. Hereafter, we give a precise definition and then
we study useful properties of lacunary K-summing polynomials, in particular how
they behave composed with operators R” and S” and what relation there is between
these operators.

Definition 3.1 Foragiven K € N, apolynomial Q is called a K -summing polynomial,
K

if it has a homogeneous expansion Z 1uj’ where deg(u;) = n; € N, j =
J=

1,2,..., K, and satisfies the following conditions

i) max |u;(z)] <1 for z €0Q
l=j=K

1
ii) 5 deg(Q) <ord(Q) =n; <ny <--- <ng =deg(Q).
Moreover, Q is said to be a lacunary K-summing polynomial, if it additionally pos-
sesses properties iii) and i v)
1
i) lg}elixK luj(z)| = 2 for z € 02
) <ML o i1 K.

nj

To prove the existence of lacunary K-summing polynomials we need the following
theorem from [6].

Theorem 3.2 ([6], Theorem 2.5) There exists K = K(0R2) € N such that there exists
No € N such that for all integers N > Noandny,...,ng € Nwith N <ny <--- <
ng < 2N there exist homogeneous polynomials uy, ..., uk of degrees ni, ..., ng,

respectively, such that — < max |u;(z)| < 1 forall z € 9Q.
2 1<K



80 Page6of31 P. Pierzchata, P. Kot

Corollary 3.3 There exists K = K(92) € N for which there exists Nx € N such that
forany N > Nk there exists a lacunary K -summing polynomial of degree N.

Proof Take K = K(92) € N and Ny € N from Theorem 3.2. Choose such a big
Nk > 2Ny that for N > Ng there exists a K-tuple of integers %N <n <n <

- < ng = N that satisfy V2 < "il—“ <2for j=1,2,..., K—1.Forsuch N and
J

ni, na, ..., ng by Theorem 3.2, there exist homogeneous polynomials uy, us, ..., ug
of degrees ni, na, ..., ng, respectively, such that 7 < lmaxK luj| < 1 ondS2. Then
<j <
K
observe that Z Ui is a lacunary K-summing polynomial of degree N. O
j:

Lemma34 Letp >0, e >0, M > 0and K € N. There exists Ny e_N such that for
any K-summing polynomial Q of degree N > No and f, g € Cy(S2) the following
inequalities

RP(fQ)+RP(g) —e < RI(fO+g) < RP(fO)+RF(9) +e

hold in .

Proof Let g = max{p,1} and k € N be such that k¥ > p. We may
MPK1 £

choose No € N such that for any N > Ny we have T < 3 and

P

k=1 (k\* k €

Z ( ) MPK™ T—— < 5. Wewill show that such Ny fulfills the require-
m=1 \m sNp+k 2

ments to be chosen for Lemma 3.4. «
Since Q is a K-summing polynomial of degree N > Ny, let Q = Z LU be its
j:

homogeneous expansion of degrees ny, ..., ng, respectively, such that %N <n <
- < ng = N. For simplicity denote by F' := fQ. Leté € (0, 1) be such that

1
I3 _
/ lg(zt)|Pdr < 3 Then observe that for z € 2 we have
B

8 7 8 K Y
(/ |F(zt)lpdt> - (/ ]f(zr)zt"juj(z)) dt)
0 0 st
K 1

P 8 q
My (Iu/(Z)Ip [ imiar)

K N IpN+1 L 1
Msz( ) = (k) < (5)
- pnj+1 1pN+1 8

I /\

IA
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s
e
Hence |F(zt)|Pdt < 3 Since % < 1, we are able to make use of triangle inequal-

0
ity to obtain the following estimates

1 » 1 1
R%(Fugk)(z):fo |(F’f+g’<)(zt)|?dz5[0 |F(zt)|”dt+/0 |g(zt)|"dt

RP(F)(2) + RP(8)(2)

and
P 1 P 8 P
Rf(Fk+g"><z>=/ |<F’<+g’<><zt>|wt=/ I(F* + g5 ()| Fdt
0 0
1 r
+f |(F* + g% (zr)| % dt
S
1 )
z/ |F(zt)|pdt—[ |F(zt)|Pdt
’ S ‘ 1
+/ Ig(zt)l”dr—/ lg(zt)|Pdt
0 )

S 1
= RP(F)(z) + RP(3)(z) — 2] |F(z)|Pdt — 2f 18(z0)|Pdt
0 k)
> RP(F)(2) + R (8)(2) — %

If0 < p <1, then k = 1 does the job. For p > 1 we need a little bit more effort to
make. For shortness, denote by

L
k

dt.

1 k=1 k
I (F, 9)(2) :=/0 ‘ Z (m) (F(zt)" (g(zt))k_m
m=1

Then observe that for z € Q

IA

k—1 2o K mp
k k - (k—m)
I(F.e)2) < Y. (m> / ‘f(Z[)ZMJ‘(Z[) YlgGnl F o dt
m=1 0 j=1
k—1 2 K 1 ) m
kNKE  mp  pl=m) P pnj
< MT* M % ; I3 t7 & dt
< 2() (St [ ar)
m=1 j=l1
k—1 2 K m k—1 2 m
k\ & k k\* k
— 1pn/+k o n QPN'F/C
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This implies that for z € Q

1 p 1, k X »
RUF+8)@) :/0 (l(F + g)(zt)lk) kdt:/O ‘ > (m) (Fzn)" (gz0) " " di
m=0

1 1
S/ IF(ZI)II’dt-i-/ lg(z0)|Pdt + I} (F, )(2)
0 0

&
< RP(F)(@) + RP(&)() + 3

and

: L& (k P
RP(F+g)(Z)=/o I(F+plnidr = /0 ‘Z<m>(F(Zf))m(g(zt))km‘kdt
m=0
1
[Smm] > / |(Fk +gk)(Zl)|let —I;f(F,g)(z)
0

1 1

>/ |F(Zt)|1’dt+/ lgzt)|Pdr — ¢
0 0

=RP(F)(2) + RP(g)(2) —e.

Above estimates complete the proof. O

Lemma3.5 Let p > 0, ¢ > 0, M > 0 and K € N. There exists NQ € N such that
for any K -summing polynomial Q of degree N > Ng and f € Cp(S2) the following
inequalities

IfIPRP(Q) —e < RP(fQ) < IfIPRP(Q) +e

are satisfied in Q.

Proof There exists Ny € N such that for any N > N the following inequalities hold
MPKPHL ¢
true ———— < < and %Np +1 > KPP+l We will show that such Ny fulfills the
in + 1
requirements to be chosen for Lemma 3.5.
K
Let Z U be the homogeneous expansion of the polynomial Q, where
]:
ui, ..., ug are homogeneous polynomials of degrees ny, . S MK, respectively, such
that %N <n; <---<ng = N.Since f is continuous in €2, there exists § € (0, 1)
such that for ¢ € [8, 1], if z € Q, then

If(Z)I”—g < If@l” = If(Z)I”Jr%- “
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Let ¢ = max{p, 1}. Then observe that by triangle inequality,
| FE
(/ IQ(zt)Ipdt) =(/ > ujen| dt)
B s e
J=1

K 1 1 1 1
q q
Z(/ f”""f”) SK(1 ) <1 ®

=1

IA

~

and

1 1

8 » K 5 1
(ir@r [Crecorar) < ut ¥ ( [werimar)’
K

=1

pnj+l :
(o)
, pnj+1

J=1

8pN+1 ll 1
(M”qu )1 < <5>q. 6)

~

IA
<

IA

Above inequalities yield the conclusion

1 1
R”(fQ)(Z)=/0 }f(zt)Q(zt)|pdtz/6 | f(z)Q(zt)|"dt
“ 1
> (|f<z)|1’—§)/ |0(z)|Pdt
S
S) 1 » 8 ) c
> If(z)l”/0 |0 (z1)] dt—lf(z)l”f0 |0(z1)| d;-i
©)
> [f@QIPRP(Q)(z) — ¢

and

1 1 k)
RP(fQ)(2) = /0 | @) Q)| dt = fs |f) Q)| dt + /0 | fz)O(zt)|"dt
4),6 1
L (If(z)l” + %)/5 0G| dt

5 1
+ % (S) If(Z)Ip/ 0@ |Pdt + ¢
0
= |f@I"RP(Q)(z) + ¢

for z € Q. This finishes the proof. O
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Lemma3.6 Let p > 0, m € N, n € (1,2), § € (0, 1). There exist ¢, € (0,6)
m
and I, € N such that for any polynomial of the form P, (t) = Z 1 a;t"i, where
]=
§ < max laj| <1, n; >, andn < ’11’1—“ <2forj=1,...,m—1, the following
1<j<m j

inequality holds true

1
/ Phim| P (D)|Pdt > cp,.
0

Proof Let ¢ = max{p, 1}. We proceed inductively. Case m = 1 is trivial. Consider
the polynomial P;(t) = at™', where |a;| > 8. There exists /| € N such that pn; > 1
for any n; > [;. Hence

i
1 :
/ pnilPL(0)|Pdt = S0 lar [P > 367 =: ¢y
0

For the case m = 2 firstly we choose a suitable natural number /5. To do this
_ pa(n=D

let us observe that there exists @ > 0 such that e q < 1‘3—0. Select I, € N
pny+l pa
pni 9 _ o 5,79
such that -2 > 5 and (1 nl) ¢~ > 3¢ ¢ forany n; > lp. Then we may
consider the polynomial P>(t) = ait’™! + axt"?, where n < Z—T < 2,n1 > Ilr and

q
§ < max {lai, |az|} < 1. Assume first that |a;| < (8)7 and so |ap| > 8. We may

5
estimate

1 i N
( / pnz|Pz<r)|Pdr> <L> laz]
0 pna +1

>
1 9 1
ny q r ni q j
() et = Zs—2 (2L jay |7
pny +1 10 pny +1
9 4 )
> 5—-8=—.
10 5 10

q
If |ai| > (%8) 7, then we obtain what follows

L

1 i - ;
(/ pnzle(t)If’dt) > (/ pnzle(t)lf’dt)
0 0
-« 1
ny n q
> (/ pnalai|t? 'df)
0
1
1—% q
- (/ pn2|a2|ptp"2dt>
0

pnl+1

1
z(—p’” >q<1—3) " lal
pni +1 n
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pna q o q r
(= (1 =2 " e
pna + 1 ni
pny+l pnp+1
1 n o q r o q
znqL(l——> |a1|5—<1——>
pni +1 n nj
- 5 _pre _pne _pra (§ _ pa(=1) § _pe
—e 4 —e 9 =e 19 — — e q > —e 9 .
-5 5 — 10

po

Now it is enough to define ¢ := I‘S—Oe q.
Proceeding inductively assume that the statement of the lemma holds true for m — 1

. . _pBG=D
with constants ¢;;,—1 € (0, 8) and [,,—; € N. There exists 8 > 0 such that e <
pn+1
9 Cm—1 . pny B pnyt
T0 (n—1y22=T Then select an integer [,, > [,,—1 such that e ( - E) >

o b8 , , m .

Toe ¢ for any n; > [,. Consider the polynomial P, () = Z la,t 7, where
j=1

§ < max |aj| < landn < "2

I<j<m /

the statement of the lemma holds true for m — 1 with the constant c,,_1, this means

in particular thatif max |a;| > §, then
2<j<m

<2forj=1,...,m—1withn; > [,. Since

p
dt > cpy_1.

1 m
/ pnm‘ Zajt”-/
0 =

9
If lai| < (%7)? <, then jmax laj| > & and from the induction hypothesis we
<j<m

may estimate

1

1 7 1
(/0 pnm|Pm(t)|pdt> = /an‘zajl‘nj

L

1
q
- (/ pnm|al|ptpnldt)
0

1
| 1
7 Pl q yd
> cf — | — ap|4
= "m—1 <pn1+1) lai]

1

_ pni q P
>, — oM f_7r aild
Z Cm—1 <pn1+l> | 1|

1

> Ecm—l
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. 9 X
If |a;| = (“%+*)7, then we obtain

: 7 =37 “ p i
(/(; pnm|Pm(t)|pdt> = (/0 lpnm’Zajt"./ dt)
=1
B

B % m -4 %
ni n .
> (/ pnmlall”tp"'dt> - ( > / P”m|aj|pfpn"df>
0 ; 0
Jj=2

1-£ é m -4 é
> (/ 1 pnmlallpt”"'dt) - (f 1 P”m|aj|pfpnjdf)
0 o \Jo
1 8 prtl m 1 prj+l
Plim K i L Pl K B K . £
> <—pn1+1> (I_E) lai| _Z<pn.,~+1) (1_E> lajl4
j=2
1 IB pny+l m 1 ]mj+l
pni _F q E_ om /pnj q _ﬁ q
(o) (-0) i -2 () (-4
]:
pny+l m
n q P i1
pni+1 nj ,
Jj=2
9 _pBcpm o DB
—e —(m—=12""%e 4
Z 10 o ( )
J: _ pB(n—1) pB _
> e"q(ic’” L m—1)2m2e " ) > 0.9¢ 7 L
10 2m 2m+1

Now from the above inequalities, we may define suitably the constant ¢, and this
completes the proof. O

Corollary 3.7 Let p > 0, K € N. There exist constants cx € (0, %), Ck > 1 and
Ik € N such that for any lacunary K -summing polynomial Q of degree N > lk the
following inequalities hold

1
ck < / pN|Q@n|’dt < Ck, zedq.
0

Proof Let Cx :=2K™{P-I} and cx € (0, %), lx € N be constants from Lemma 3.6
K

withm := K, n := V2 and § = %.Letz. | Uk be the homogeneous expansion of
j:

O, where each u j is a homogeneous polynomial of degree n; € N. Observe that since
Q is a lacunary K-summing polynomial of degree N > Ik, for z € 92 polynomial
QO satisfies Lemma 3.6 with a; := u;(z), i.e.

p
dt > ck.

1 1 K
/ pN\Q(zt)|pdt=/ pN’Zuj(z)t”f
0 0 i
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To prove the second inequality let ¢ = max{p, 1}. Then we may estimate

1 7 1 K 7
(/ pN|Q(zt)|pdt) </ pN‘ > ujo pd:)
0 0 =

K

1
> ([0 pN|u/(Z)|ptp"/dt)
j=1

K i
Z pn,—&-l = ( L )q =

pN+1
=1

IA

IA
4:\_

K2,

~.

1
Hence/ pN|0@n)|"dt < Ck.
0

Lemma3.8 Let p > 0, ¢ > 0 and m € N. There exists N € N such that for n € N if
n > N, then

(zpn); (pn + pm + 1)” —(pn+ 1)”

(pn + pm + I)F(pn+ 1)5

Proof Select k € N such that k > -, so pk < 1. Then by triangle inequality we may
estimate

=~

(om+ pn+ %) < ((om) + (o + 1)77)’ Z )(pm) T (pn 4+ 1) 7

=~

1

= (pn+1)7 Z )(pm) 7 (pn + 1) 7

Therefore

k .
1 Y Y(pm) P (p + 1) 7
(Pn+pm+1)1’ —(pn+1)E j=1
(2pn)»

1
< @2pn)»
(pn+ pm + 1)" (pn + 1)”

1 1
(pn+pm+ 1P (pn+1)r
1
(2pn)» k g
3 Bem T n+ it
(pn+pm+1yr =

— 0.
n— 00
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Hence there exists N € N such that for any n > N we have

1
7(P”+Pm+1)" (pn+1)»
(2pn)» <e.

1
(pn + pm + I)F(pn+ Hr

Lemma3.9 Letp > 0, K € Nand e > 0. For every polynomial f there exists N € N
such that if Q is a K-summing polynomial of degree N > N, then

|S?(YPNfQ) — FSP(UPNQ)| < ¢ in Q.

Proof Let Z v; be the homogeneous expansion of f withdeg(v;) =m; € N, i =
1,2,...,L. By Cauchy estimates in the expansion of f, there exists a constant C such
that ||Ul||Q <Cllflla,i =1,2,..., L. Lemma 3.8 implies that there exists N| € N
such that if N > Ny, then for each m; and all n € [%N N] we have

1 1
(pN)% (pn+ pm; + 1)? — (pn+ 1)

L 1
(pn+pmi+1)r(pn+1)r

1 1
+ 17 — nr
<(2pn)p(17n+pmz ) (pn+1) - g ‘ o
b b CKLIfl
(pn+ pm; + 1) (pn+1)» @

K
Let Z Ui be the homogeneous expansion of Q with deg(u;) = n; € N,
]:
j=12,...,K. If Qis a K-summing polyrEmial of degree N > Ny, then n;
e [IN,N], j=1,2,..., K. Hence by (7), in Q@ we obtain what follows

SP(WXL:XK: v,-uj)

i=1 j=I

SP (PN 1Q) — £S"(Y/pN Q)| =

—ZL:U,SP<”pN2K:uJ)

j=1
S — |
i=1 j=1 o \/p(m,—i—n])—i—l Ypnj+1

YpN
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_ XL:iW'H“W YpN(Ypnj+1— Ypmi +nj)+1)
= i J )
izl =1 Yp(mi+nj)+1ypnj+1
L K .
<2 2 R T <
i=1j=1
This completes the proof. O

Remark 3.10 Let p > Oand K € N.If Q is a K-summing polynomial, then forz € 92

‘S”(V’ pdeg(0)0)@)| < K V2.

K
Proof Let Zj:1 u; be the homogeneous expansion of Q with deg(u;) = n; €

N, j=1,2,...,K.If Q is a K-summing polynomial, then %deg(Q) <n; <
deg(Q), j=1,2,..., K.Byproperties of K-summing polynomials, we obtain the
required estimate on 92

K K
3”(”pdeg(Q)Q)‘ = ‘8”<”pdeg(Q)Zuj) - p/l;iigin)uj
j=1 j=1 ’

| pdeg(Q) X
< p—lpdeg(Q)+1 Z|u]| <K£/§.
2 j=1

4 Radon Inversion Problem

As we saw in the previous section, lacunary K-summing polynomials possess some
interesting properties. Herein, we shall show how we can use them to solve by induction
the Radon inversion problem with given a strictly positive, continuous function ®. First
of all, in Theorem 4.1 we construct generators which at each induction step allow us to
come closer to ® by a constant fraction of what is still missing. Moreover, the operator
RP is “almost additive” in the space of generators with respect to a given ¢ > 0. From
this, one concludes that the sum of constructed generators converges in HR?” (2) and
solves the Radon inversion problem with ® as we will see it in Theorem 4.2.

Theorem 4.1 Let p > 0. There exist 0 € (0, 1) and k > 0 such that if V is a strictly
positive continuous function on 32 and &, No € N, My > 0, then there exists a
polynomial F of order greater than Ng with the following properties

(cl) OV < RP(F) < W onof2
(c2) RP(¢) + RP(F) —e < RP(¢ + F) < RP(¢) + RV (F) + ¢ on 3% for any
¢ € Cuy(2)
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(©3) |SP(F)| < k()7 on dQ.

Proof Take N = N(92), K = K(0R2) and Nx € N from Theorem 2.2 and Corol-
lary 3.3, respectively. For such K we may choose cx € (O, %), Ckg >landlg € N

from Corollary 3.7. We shall show that 6 := 81\3—’81{ and k := % satisfy the
statement of Theorem 4.1.
First of all, by Theorem 2.2, there exist polynomials fi, ..., fx such that
v po ¥ 02 8
o = max [nl” < g on 02 ®)
1
Let fo = 0, # := mi [,e'f\p } da = - inf (W(z))7. Then b
et fo G min ¢, 6 inf ()} and & - o zleI})sz( (2)) en by
Lemma 3.5 and Lemma 3.9, there exists an integer N > max {2N0, Ik, NK} such
that for each m = 0,1, ..., N any K-summing polynomial Q of degree n > N
satisfies the following inequalities for z € 92
o
8P (pN Q)@ = fuS” (VPN Q) )| < 1. ©)

-~

| fn@IPRP(Q)(2) — % <R (fn0) @) < | fn(@IPRP(Q)(2) + % (10)

1
Ck = / pdeg(Q)|0@zn|dt < Ck. (11)

0
Inductively we shall choose integers ng, ny,...,ny and construct lacunary K-
summing polynomials Qg, Q1, ..., Qy oforders atleastng, ni, ..., ny,respectively,

such that form =0, 1, ..., N and for any ¢ € CMO(ﬁ) we have on 0Q2

RI@ + R (Y fi05) - B
j=0

=R (¢ + > £10;) = R (@) + Rp(i £i0))+ 5 a2)

N
=0 j=0

Let no := 0 and Qo = 1 in Q. For m = 1, we begin by selecting an integer n; > N
from Lemma 3.4 applied with ¢ := &, M := My, f := fi. Then by Corollary 3.3,
there exists a lacunary K-summing polynomial Q1 of order greater than n such that

o~

RP(¢) + RP(f101) — % <RP(¢p+ f101) < RP(¢) + RP(f101) + — on .

0
N
Proceeding inductively, assume that we have already chosen ng, ny, ..., n, and con-
structed lacunary K-summing polynomials Qg, Q1, ..., Q, of orders greater than
ni, na, ..., n,, respectively, with desired properties, 0 < m < N. Then again apply
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Lemma 3.4 with

€
£ =5 M= Zselzp <I¢(z)| +‘Zf,(Z)QJ(Z)D = fms

to obtain an integer n,,4; > N. Then Corollary 3.3 produces a lacunary K -summing
polynomial O, of order greater than n,,,4 1 such that on 02 the following inequalities
are satisfied

wler 5 50) 2R (5 10) + R Unien) 5
= j
> RP(¢) +Rp(i)ijj> + RP(fint10m+1) — mﬁg - %
=
> RP(9) +7zf’(r§:1 £19;) - w
j=0
wlos £10) 2o+ 2 50) U -
< RP($) +R”(i;ijj> + R (fnt10m+1) + n]er %
=
s7a1’(¢)+7€”(r§:1 ij1.>+@.
=0

ZN | P deg(Qp)

Define the polynomial F(z) = Jm(2) Om(z). Observe that by

KCg
(12), the polynomial F satisfies condition (c2). For each z € 92 one may choose
anindex m; € {1, ..., N} for which | f,,, (2)|” =  max | fm (P > % Then for
' sm<

z € 052 we obtain

1. N
_ o P deg(Qm) p
RY (F)(2) = /O \2 JESe " I Qnten)| di

pd g(Qm)
Z|fm<>|P /|Qm m) dr — NCK;ean )
p deg(Om,) .
> | fm ()|P—f | Q. (z0)|"dt — NCK inf ¥(2)
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an cK CK &)

> P inf W

= (O = gNey L Y@ > 4NC 8NC
8NCK (z) = (2).

Moreover,

1, N
_ p deg(Om) P
RP(F)(2) = /0 \E_ JFSe " I On(en)| di

Z|fm(>|Pp deg(Q’”) f |Onan)|Pdr + it V)
8 v
@ %CK+ Sw() = W),

Since any Q,, satisfies (9), for z € 92 we have the following estimate

3p< ZN: /pdeg(Qm)mem>(Z)

N
<~ 2CK ; 5" (/pdeg(@m) fn On )

|SP(F)(2)| =

S ({/pdeg(Qm) Q) ()| +

N 1
p o Z | fon (2] inf (¥()?

NK«/_ N
< e Mm@+ =

\/_

'v\'—

(\Il(z))% K(V(2)7.

This completes the proof. O

Once we proved Theorem 4.1, we are ready to give the first construction of a solution
G to the Radon inversion problem such that S”(G) is continuous up to the boundary
of the domain.

Theorem 4.2 Let p > 0and ® be a strictly positive, continuous function on 9S2. There
exists a function G € O(2) such that

RP(G)(z) = ®(z) for z € 0R2.

Moreover, SP(G) € C(Q).
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Proof Take 6 € (0, 1) and x > O from Theorem 4.1. We will show that it is possible
to construct inductively a sequence of polynomials {F i }jio such that

j—1

J J
(1 —€><d>(z)—72”< Fi)(Z)) > ®(Z)—R”(2Fi>(z) >0 (13)
2 i=0 i—0

1

and
N
[S7(Fp@)| <« (1 ——)’||d>||39, 2edQ, j=1,2,... (14)

Set Fy = 0 and observe that (14) holds. For j = 1 we construct a polynomial Fj
by applying Theorem 4.1 with ¥ := ®. Notice that F satisfies (13) and (14). Then
assume that we have constructed polynomials Fo, F1, ..., F; for j > 1. Again from
Theorem 4.1 applied to

3 d o d
W:ﬂ(¢‘R%§£5»’8:Z£%<“@‘W<Z?ﬂ&0’

z€0Q2

there exists a polynomial F 1 such that on 92
3 / 3 /
1. ZQ(CD —’R”(ZF,)) < RP(Fjq1) < Z<<I> —RP<ZF,->>
i=0 i=0

J J+1 J
2. RP<ZE)+R"(F,-+1)—8 < R”(ZE) < Rp(ZFi>+Rp(Fj+l)+8

i=0 i=0 i=0

ot (3o (£0)

Hence on 92 we have the following estimates

j+1 J
RP(ZF,') > RP(ZF,> +RP(Fj+1)_8

i=0 i=0

>R%2E) QbRﬁéﬂ»_

1 1
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J

3 3 /
e+ ZG)RP<,§ i) - ing, (00 R (L))
J

i=0
0 0
> -0+ [1—-=)R? F;
2 2 =

v

and

J+l J
RI’(ZE-) < (ZF,>+RP(F,+1>+8
=0

i=0 i

w(5n) e (5n)

0 . J
+ o dnf. (cb(z) — RP(Z Fi)(Z))

i=0

() ie-w(Zr)) - i(e-m(2)

i=0
o.

A

IA

IA

0 / s L
Therefore <1—§)(QD—R”<Z F,>> > & — RP<ZF,~) > 0, which implies

i=0
that

N j+1
<1—§) o > ®-RP(ZF,> > 0 on d.

i=0

From this it follows that

nler;oRp(Zj >(Z) D(z), z€ 0.

/+1

j
In addition, )| < K(cp—RP(ZFi)ﬁ < K(l—g) ||c1>|| on 9.
i=0
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Let ¢ = max{p, 1} and observe that if n > m, then

m n

wp ((Er-Er)e)
m 1 m 1
= sup <RP( Z F/)(Z))q < sup ( Z RP(F/)(Z))q
Z€0Q j=n+1 2€IR N G
<on( 2 ,

J 1 1
(e -r—r (L r)a))
i=0
)

m 0 i
q
= (1—5 ||oI>||aQ =0
j=n+1

n
) { Z F j} is a Cauchy sequence in HR”(2) and by Proposition 2.1, it is conver-
Jj=0
gent in HR? (2). Hence we may define the function G := ZOO 0 F; and again by
]:

Proposition 2.1, G is holomorphic in €. Moreover, R” ( E n 0 F j) = RP(G) as
j:
P - P N\ —
n — oo on 92, so R (G) = hngoR(E ,OF])_(D'

Since for z € © we have the following estimate

\SP(F)(z)\ sup [S7(F)(@)| < 3 > k(1 - 9) 19117, < oo,
=07 =0

then S”(G) is a continuous function in . This completes the proof. O

5 Divergent Taylor Series

In what follows we will show that it is possible to construct a solution f to the Radon
inversion problem such that the function S” (f) in contrast to the solution obtained in
Theorem 4.2 has in some sense extremal properties, i.e. every slice function of S?(f)
has a divergent series of Taylor coefficients with every exponent s < min{l, p}.
Moreover, for p < 1 function S”(f) is continuous up to the boundary and for p €
(1, 2] is square-integrable on all unit circles zdID, z € 92. To prove this we need the
following technical lemma.

Lemma 5.1 There exist 6 € (0, 1) and C > 0 such that if h € C(92) is a strictly
positive function on 3K, g is a bounded, continuous functionin Q, M > 0, a, y, T €
(0, 1), then there exist N € N and a sequence of orthogonal polynomials {Pk};:io
such that

(wl) ord(Py) > M
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(w2) RP(Py) < ah on o2
(w3) ord(Py) > deg(Pr—1)
k

k—1 k—1
w4) RP(Y_P;)) < RP(D_P)+a(h—RP(D Pj)) <h ondQ
j=0 j=0 j=0
k k—1 1 k—1
(wS) RP(ZPj) > R”(ZPj)+§0a(h—R”(ZPj)) on 3Q
Jj=0 Jj=0 j=0
k k
(w6) ‘RP(ZPj)—ZRP(R/) < 1 ondQ
j=0 j=0
k k
W7) |RP(g+ > Pj) =Y RP(P)—RF()2)| < T ondQ
j=0 j=0
(w8) [SP(PY)| < c(RP(Pk))zl? on IQ
N
(w9) RP(ZPj) > yh ondQ
j=0
. al 2C 1 1
w10) if p € (0, 1], then ‘S”(ZPj)‘ < =hrar! ondQ.

Jj=0

|~

Proof Take constants & € (0,1) and x > O from Theorem 4.1. Let C := 5

We proceed inductively. For k = 0 apply Theorem 4.1 with ¥ := %ah, My :
lIgllQ, No := M, & := t to obtain a polynomial Py such that ord(Pp) > M and on
a<2 the following statements hold
1 1
a) Eeah < RP(Py) < Eah
b) RP(Py) + RP(g) — t < Rp(g+Po) < RP(Py) +RP(g) — 7
1 1
) [SP(Py)| < k(3ah)? < C(RP(Py))?.
Hence Py satisfies conditions (w1) — (w2) and (w6) — (w8). Assuming that b) holds,

there exists 7o € (0, 1) such that |R” (g + Py) — R”(Py) — R”(g)| < 1 < ton
d%2. For k = 1 we apply Theorem 4.1 to

3
Vo= Za(h —RP(Py)), Mo :=IPollg+lIglle, No:=deg(Py) +1,
0
£ := min {Z Zié})fgﬁt(h(z) — R”(Po)(z)>, T — ‘L’o}.
This produces a polynomial P; such that ord(P;) > deg(Py) and on 92 the following

conditions are satisfied

. ZQa(h—R”(P@) < RP(P) < %a(h—R”(Po)) < ah

o RP(P)) +RP(P)—e < RP(Po+ P1) < RF(Py) +RP(P) +¢
o RP(g+P)+RF(P)—e < RP(g+Po+P1) < RP(g+ Po) +RF(P))+e
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3 1 1
o [SP(P)| < K(Za(h—Rp(Po))>p < C(R”(Pl));-

Then simple calculations give the following estimates on 92
RP(Py+ P1) < RP(Py) + RP(P)) +¢& < RP(Py) +a(h — RP(P0)>
and
RP(Po+ P1) > RP(Po) + RP(P1) — & > RP(Py) + %Ga(h - R”(Po)>.

Alsosince ¢ < t,itisclearthat RP (Py)+RP(P)—1 < RP(P0+P1) < RP(Py)+
RP(Py) + T on 982. Moreover,

RP(Po+P1+g) < RF(Po+g) +RP(P) +e
< RP(g) +RP(Po) + RP(P1) + 10 + ¢
= RP(g) + RP(Py) + RP(P)) + T

and similarly R” (Po + P+ g) > RP(g) + RP(Py) + RP(P;) — t on 0. It follows
from the above that Pj is orthogonal to Py and has properties (w1) — (w8).

We then proceed inductively as follows: Suppose that orthogonal polynomials
Py, Py, ..., Py have been found such that conditions (wl) — (w8) hold. Observe
that by statements (w6) and (w7) there exist t1, T2 € (0, T) such that

k

RP(Xk:Pj) ZRP(P )‘ <717 <7T0NnIN

RP(P}) —R”(g)‘ <1 <7ondQ.

31
M
M’*

]: :

Theorem 4.1 applied to

V= §a<h—7zp(2kjpj)>, Mo :=HiP,~HQ+||g||Q, No := deg(Po) + 1.
=0 =0
£ := min {%Ziegga<h(z) (Xi: )(Z)) -1, T — rz}

gives a polynomial P4 such that ord(Pyxy1) > deg(Px) and on 92 the following
inequalities hold

3 3
o J0a(h-RI(Y_ P) < RI(Pe) < Za(h =R (Y
R ) - R”(Zf:) Pj) = RP(Ps)| < &

j=0""

k

j=0 Pj)) < ah
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k+1 k+1
RP(g+Y P —RP(g+ Y P)—RP(Pn)| < ¢
Jj=0 Jj=0

3 1
o [SP(Pey)| < K(Za(h—’R”(ZI;ZO P))? < C(RP(Pean)?.

<=

Above inequalities imply that on 92

k+1 k
R”(Z;O Py) < RI(Y. . Pi)+ RO (Peg)

ts< R”(Zizo Pj) +a(h - RP(ZI;ZO Pj))

and

RP(ZHI Pj) > R”(Zizo Pj) +RP(Pry1) — €

Sl = RP(Y_, 7))+ 0a(h =R (Y, 7))
- gl =R" (1)

By induction,

k+1 k
R”(Z;O P) < RP(Y o Pi) +RP (Pt

k+1 k+1
p . — P .
+e< E j=0R (P))+1+e= E j=0R (Pj)+ 1t ondQ
and

k+1 k
R”(Z;O Pi+g) < RI(Y, _ Pj+g)+ R (Prsn)

k+1
te< RI@+) (RIP)+n+e
k+1

< RP@Q+RA(D

=0 Pj) + 7 ondQ.
k+1 k+1 k+1
imi P . PPy — p .
Similarly we get R (ijo P]) > Zj:OR (Pj) —tand R (ijo P; +
k+1
g) > Rp(g)+7?,p(z_ 0 Pj> — 7 on d£2. All the above implies that the polynomial
]:

Py is orthogonal to Py, Py, ..., Pr and it satisfies conditions (w1) — (w8).
Combining properties (w4) and (w5) with Dini’s theorem one may conclude that

RP (Zn 0 Pj) converges uniformly to 4. Hence there exists N € N such that
]:
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N
RP ( Z o Pj) > yh on 92. Moreover, statement (w5) implies that
j:

h—RP(jZ:(:)Pj) < (1—%9a)<h_7zp(§pj)> < (1—%9a)kh on 9.

Therefore, if p € (0, 1], we have the following estimate on 92

S ()| =X st € ey (Reeen)?

1

<C Z;v:o (Z“(k - RP(Z.];:O Pj))> P
<C Zj]:o (%a(l - %ea)kh)p

1 1
» 1 )
< C(iah)l — < C(iah)l =
4 1_(1_%9a); 4 Oa

2C 1 14

< —hrar
0

and this finishes the proof. O

Theorem 5.2 Let ® be a strictly positive continuous function on d2. There exists a
o

holomorphic function f = Z o P where p,, are homogeneous polynomials, such
n=»

that

1. RP(f) =@ on 3R
2. every slice function of SP ( f) has a divergent series of Taylor coefficients with every
exponent s < min{l, p}, i.e. Zoo ( | pu(2)]
T S0 N pn T
3. ifp <1, then SP(f) € C(Q)
4. if p € (1,2), then SP(f) € L*(zdD), z € 9.

) — 00, 5 <min{l, p}, 7 € 9

Proof Without loss of generality assume that sup |®(z)| < 1. Take constants 6 €
z€0Q2

(0,1) and C > O from Lemma 5.1. Inductively we will construct a sequence of

orthogonal polynomials {Qk }zio with the following properties

N,
(pl) QO = Z ) ko Py j, where Py o, Py 1, ..., Py n, are orthogonal polynomials
j:
k
p
(p2) R (Zm:o Qm) <® ondQ

(p3) RP(kazo Q,,,) > %(CD - R”( ki Qm>) n R”( ki Qm) on 99
m=0 m=0

k—1

k
(p4) RP(Pyj) < (cb—RP(Zm:OQm)> ondQ, j=0,1,.... N
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(p5) |SP (P )| <C(R1’(Pk,j))% ondQ, j=0,1,...,Ng
k=1 k N
O - RN 0n)|| < D RIPL) < RPQO +
"= a9 J=
k
k—1
qu - Rp<zm=0 Qm)

1
2

(p6) R7(Qr) —

on 92
Rle)

‘(D a RP(Z::IO Q’”)

k
. 2C k—1 p okt
(p8) if p < 1, then |SP(Q))| < 7(@ _ Rp<zm:o Q,,,)) ! on 99

(7 [|R7 QO] Lo >

1,z0D

We begin by selecting Qo =0, No :=0, Py o = 0. For k = 1 we apply Lemma 5.1
with

1
= inf ®(z), h:= ], = inf P(2), = —.
. zleI}m @ ¢ zle%sz @. v 2
to obtain Ny € N and orthogonal polynomials Pj o, Pi 1, ..., Pi,n, such that the
N
polynomial Q1 := Z ) 10 Py, has the following properties
j:
o 10 <RP(Q)) < ® ondQ
e RP(P1j) <® ond, j=0,1,...,N;
Ny
o RP(Q1) — lI®llag < Y RP(P1j) < RP(Q1) + ||®llag, ondQ
j=0

o |SP(Py )| < C(RI’(Pl,j))% ondQ, j=0,1,...,N;
o if p < 1,then [SP(Q))| < %(cp)“l

2
P

2C 1
< 7@17 on 02

1
o ||RP(Q1)||1,231D> > §||q>||1,za]n>-

Observe that Q1 satisfies conditions (p1) — (p8). Then assume that the orthogonal
polynomials Qoq, Q1, ..., Qk with desired properties (p1) — (p8) have been found.
Lemma 5.1 applied to

k
M= deg(00 41, ai= int (00”7 (T 00)0)
3 k
b= Z(d) -rR (Y Qm)),

k1
y = %, 7= %zle%fsz <©(Z) — RP(Z;zo Qm)(Z)>

produces Ni41 € N and orthogonal polynomials Pry1,0, Pk+1,15 -+ Prt1,N;,, that
are also orthogonal to the polynomials Qq, Q1, ..., Q. If we define Q41 =
Nit1

Z Piy1,, then on 0€2 it satisfies the following conditions
Jj=0
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a) ord(Qk+1) > deg(Qx) + 1 ot
b) Rp(Pk+1 j) < <<D _RP(ZI;Z() Qm)) , j=0,..., Ni41

) |SP(Pey1,j)| < C(RP(Prg, /)) J=0,..., N1

k+1  Nit1
d) R”(Qu+1) —‘ o-RI(Y 0n)| < Y RIPr)) < RP(Quen)+
- aQ =0
i k+1
H@ B Rp<Zm:0 Qm) 90

e) RP(Qu+1) <h = §<q> - RP(Zf”:O Qm)>
) RP(Qrs1) > %(cb R (X, Qm>)
@) if p <1, then [S”(Qx11)| < %(cp “re(Y Qm)) v
b RI(30 0n) < RP(ka_:O Q) +RP(Qus1) +2t
<RP(ZI;:OQ Jro-r (Y 0.)=0
(% 0n) = RY( Z On) +RP(Qur1) = 2

> R”(Z 0n) + (@ R”(Z Qm))

m=0

k+1

k)

Hence Q41 has properties (p1) — —(p8).
' P " ) -
Next observe that by (p2) and (p3), nlLH;OR (Zk:O Or) = @ on 90Q2.In
addition, property (p3) on 9€2 implies the following estimate

013 0,) < o= f(o-w(X o)) -7 (L 02)

~i(e-m(T o)< (e

Therefore it is clear that

3\ k
R (Qu) < (3) l1@llig on 2. (1)
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Let ¢ = max{1, p}. Observe that if n > k, then

| 1
sup (RP<Z:1_0 Om — Xk: Qm)(Z)>q = sup (RP(Z;_k+1 Qm)(z)>q
m=0

z€0Q2 z€0Q

< sup <Z;_k+l (RP(Qm)(Z));)

z€02

(5) 3\ 7 :
< m=k+1 (Z) ”@Hdg n,k_—:oo O,

n
o0
SO { E Qm} 0 is a Cauchy sequence in HR?”(2) which, by Proposition 2.1,
n=|
m=0

is convergent in HR?(2). Hence we may define the function f := Z:io Or =
\ =
Zoo Z : ‘ Py j. Proposition 2.1 implies that f is holomorphic in 2. Moreover,
k=0 &= j=0 """
n
RP(Zk:() Qk) = RP(f)ondQasn — 00, s0

R ()@ = lim R? (Y 0k)@) = (@), ze€dQ.

It follows from the property (p4) that for z € 92

k—1 —k
HQ_RP(Zmzo Qm)Hl,za]]])HRp(kaj)Hl,zaD <L j=0,.... N

Thus for z € 92 and s < min{1, p} we get that

-

k—1

‘q} a RP(Zm:O Q"’) )

k
HRP(PM)HSLZ&D > HRP(PI‘J)HSI,za]D)( ‘1 BDHRP(P"J)HI,ZBD>

k-1 —k(p—s)
- 1,z0D

P .
1z0p° J =

(16)

Let Py j(z) = Zne[k " Pk.j.n(2) be the homogeneous expansion of the polynomial
J

Py, j, where I} ; is the set of monomials’ degrees of Py ;. By construction, I, ;NI ; =
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@ for (m, j) # (k,i). Moreover,

1
[|[R? (P} op = </8D/ ’ Z pkjn(zwt)‘ dtd,\(w))

nely,,

1
Z </ / |pk,j,n(Z)|ptpndtd)»((l))>q
aD JO

nely

p
: q
-y —|pf*J’"(Z)|l . (17)
nelk’j pn+

IA

Observe that if s < min{1, p}, then < 1. Hence for z € 92 and s < min{1, p} we
have the following estimate

=S

Z (ka,,,n(z)l) _ Z (ka,J,n(z)I )Fq
k.j.n Vpn+1 k.j.n Vpn+1

p
|Pk,j,n(z)|3 % v
= 3 (X B ) = YR o
k.j nel; Vpn+1 k. j ;
16) k-1 —He=9) N
> (I)—RP(ZQm> ZHR (PkJ)led]D
P 0 120D 5o
~ -1 k) Nk
= Y lle-rr(Y 0n) / RP(Py ) (@2)d (o)
=1 m=0 1,z0D j=
) k—1 (P s)
23 lle-rr(Y o) ( f R (Qi)(@2)dA(w)
=1 m=0 1,z0D
k-1 k
Jo-w(Eenl,)
0 a0
00 k—1 _k(P;S) 00 3 (k=Dks
= Sfe-m(Ze)], @2 ()
Pt hr 1,z0D k=1
00 k—1 _Kp=s) 4 o0 (k—1)ks
@D Zl“@_RP(ZQm) TN (3
i m=0 129D i
1 oo 3 (k—Dks
= Y3 2(3) 7 =
k># k=1

ka,j,n(z)|>s
Ypn+1/°

Since the last series diverges, so does the series Zk ) (
JJjn
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If p < 1, then property (p8) gives the estimate in

00 00 k—1 k_p4q
Z|8P(Qk)}s%c2 o-R'( Y o)
k=1 k=1 m=0 9%
o -
<23 (3) elan < o0

k

1

which implies that S”(f) € C(SQ).
Since polynomials Py, Pk 1,..., Px,n, are orthogonal, so are S”(Pyo),
SP(Px,1), ..., SP(Pk,n,)- Then for p € (1, 2] consider the integral

oo Ni

2
[ lsrp@alaie = [ 1353 87 en| diw)

k=0 j=0
oo Ni

=>> f |87 (P j)(w2)| d(w)
oD

k=0 j=0
oo Ni

(15) 5
< CZZZ/BD (RP(Pk,j)(wZ))idX(a))

k=0 j=0

oo Ng

=y /m R (P, j)(w2)dA(w)

k=0 j=0

ey ( | ®r@o@ire
k=1 oD
k—1 k
fowEel)
m=0 aQ
85 (s ()
k=1

Hence S?(f) € L,2(zdD) for p € (1, 2], z € 9. The proof is now complete. O

Observe that for p = 2 due to orthogonality of py ; , in (17) each slice function of
S?(f) additionally has divergent series of Taylor coefficients with every exponent
s < 2.

Data Availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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