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Abstract
The Fourier algebra of the affine group of the real line has a natural identification, as a
Banach space, with the space of trace-class operators on L2(R×, dt/|t |). In this paper
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Eymard and Terp, we provide an intrinsic description of this operation which does
not rely on the identification with the Fourier algebra, and obtain a similar result for
the connected component of this affine group. In both cases we construct explicit
derivations on the corresponding Banach algebras, verifying the derivation identity
directly without requiring the inverse Fourier transform. We also initiate the study of
the analogous Banach algebra structure for trace-class operators on L p(R×, dt/|t |)
for p ∈ (1, 2) ∪ (2,∞).
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1 Introduction

1.1 Background andMotivation

Given a bounded and SOT-continuous representation π of a topological group G on a
Banach space E , one may associate to each ξ ∈ E and φ ∈ E∗ the coefficient function
φ(π( )ξ) ∈ Cb(G). The vector space generated by all coefficient functions of π

admits a natural norm, stronger than the uniform norm of Cb(G), and its completion
in this norm is called the coefficient space of π .

If G is locally compact, we denote by A(G) the coefficient space of the left regular
representationλ : G → U(L2(G)). Eymard [7] showed thatA(G) is actually aBanach
algebra with respect to pointwise product, now called the Fourier algebra of G. When
G is abelian, the Fourier transform gives an isometric isomorphism between A(G)

and the convolution algebra L1(̂G). Even when G is non-abelian, a well-established
theme in abstract harmonic analysis has been to viewA(G) as somekindof convolution
algebra on a “quantum group” that is dual to G. However, in most cases this “dual
convolution” is only defined in a formal or abstract sense.

This article studies a particular case where this notion of dual convolution can be
made precise and described explicitly. Consider the group of affine transformations
of R, given the natural topology, which we denote by R � R

×. This group has an
unusual property that never occurs for non-trivial compact or abelian groups: writing
H = L2(R×, dt/|t |), there is an irreducible unitary representation π : R � R

× →
U(H) such that A(R � R

×) coincides with the coefficient space of π , which we denote
by Aπ (R � R

×). Associated to π is a surjective norm-decreasing map � : H ̂⊗ H →
Aπ (R � R

×), which is isometric since π is irreducible.
Since Aπ (R � R

×) = A(R � R
×), and since A(R � R

×) is a Banach algebra
with respect to pointwise product, we can use the surjective isometry � : H ̂⊗ H →
Aπ (R � R

×) to equipS1(H) = Ĥ⊗Hwith a commutativeBanach algebra structure. In
[6, Problème 2.7], after making this observation, Eymard and Terp pose the following
challenge:

Interpréter cette multiplication en terme des opérateurs!

The present paper answers their challenge by providing an explicit formula for the new
multiplication on S1(H) — this is what we refer to as “dual convolution” for R � R

×.
To our knowledge, such a formula has not been recorded before in the literature.

Having established this explicit formula, the rest of our article investigates some
applications and variations, described in more detail in Sect. 1.2. These applications
and variations are intended to demonstrate that the resulting Banach algebra A can
be studied directly, without any prior knowledge of the isomorphism � : A →
A(R � R

×), and to argue thatA is an object of intrinsic interest. A loose but instructive
parallel iswith certain naturally occuringBanach function algebras, such asAC([0, 1]),
that can be modelled as L1-convolution algebras of certain semigroups.

Informally: by introducing dual convolution on S1(H), we are swapping an object
where the algebra structure is easy to describe but the norm is complicated, for one
where norm estimates are straightforward but the algebra structure is more compli-
cated. This offers an alternative point of view on A(R � R

×), which could shed new
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light on its known properties as a Banach algebra. Moreover, analogous constructions
for higher-dimensional semidirect product groups may yield new results for their
Fourier algebras.

1.2 Outline of Our Paper

In Sect. 2 we set up basic notation and definitions that will be used throughout the
paper. We give an explicit definition/description of the group R � R

× and the key
representation π : R � R

× → U(H), and collect some known facts from the literature
for ease of reference.

In Sect. 3 we give an explicit formula for dual convolution as a bilinear map � :
S1(H)×S1(H) → S1(H). The formula is motivated by showing how one expresses the
product of two coefficient functions of π as a continuous average of other coefficient
functions (a so-called “fusion formula”). We show by explicit calculations, without
invoking the representation π , that � is commutative and associative. We also show
that if trace-class operators on H are given as integral kernel functions, then � can be
described on that level also.

Writing A for the Banach algebra (S1(H),�): in Sect. 4 we construct a derivation
D : A → A∗ which has interesting operator-theoretic properties as a linear map
between Banach spaces (it is cyclic, weakly compact, and “co-completely bounded”
in the terminology of [3]). Usually, in constructing derivations on function algebras,
it is easy to see that the derivation identity holds on a dense subalgebra, but hard to
show that one has a well-defined and bounded map on the whole algebra. By working
with dual convolution on A, the situation is reversed: it is easy to check that D is a
bounded linear map with the extra properties mentioned above, and the hard part is to
verify the derivation identity.

The group R � R
× is not connected, but has an index 2 subgroup isomorphic to

the semidirect product R � R
×
1 , which is a fundamental example of a non-unimodular

connected Lie group. (The notation will be explained in Sect. 2.) Since A(R � R
×
1 )

cannot be identified with the coefficient space of a single irreducible representation, a
direct description of dual convolution forR � R

×
1 is less straightforward. In Sect. 5 we

identify an explicit subalgebra ofA that corresponds to A(R � R
×
1 ), and hence obtain

an analogue of dual convolution for R � R
×. We then show how the construction in

Sect. 4 yields a derivation on the Fourier algebra of A(R � R
×
1 ), which offers a new

perspective on some resuts in [1].
In Sect. 6 we consider Ap

π , the coefficient space of the L p-analogue of π , from
the viewpoint of dual convolution. We sketch how our explicit formula for � may
be extended from S1(H) to S1(L p(R×)) for 1 < p < ∞, making S1(L p(R×)) =
L p(R×) ̂⊗ Lq(R×) into a commutative Banach algebraAp. We then show that Ap

π is
a Banach algebra in its natural norm and is isomorphic toAp (Theorem 6.2). Perhaps
surprisingly, for p �= 2 there is a crucial difference from the p = 2 case: Ap

π is not
the same as the L p-version of the Fourier algebra (Theorem 6.6), and it appears to be
a new Banach function algebra about which we know little at this stage.

Finally, in Sect. 7, wemake some remarks about possible directions for future work,
and pose some explicit questions about the algebra Ap

π . In the appendix we show how
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the tensor product of two induced representations may be expressed as a direct integral
of a family of induced representations, and use it to give an alternative proof of the
fusion formula for coefficient functions of π .

2 Preliminaries

2.1 Notation and Some General Background

If H1 and H2 are Hilbert spaces then H1 ⊗2 H2 denotes their Hilbert-space tensor
product.

Given a complex vector space V , the conjugate vector space V is defined to have the
same underlying additive group as V , equippedwith the newC-action c	ξ = cξ . Note
that ifH is a Hilbert space then the functionH×H → C defined by (ξ, η) 
→ 〈ξ, η〉
is bilinear rather than sesquilinear.

The symbol ̂⊗ denotes the projective tensor product of Banach spaces. If H is a
Hilbert space then there is a standard identification ofĤ⊗H with the space S1(H) of
trace-class operators onH, defined by viewing the elementary tensor ξ ⊗η as the rank-
one operator α 
→ 〈α, η〉ξ ; this correspondence is an isometric,C-linear isomorphism
of Banach spaces.

Coefficient functions associated to continuous bounded group representations were
already defined in the introduction, but we did not give a precise definition of the
corresponding coefficient spaces. Most of this article concerns unitary representations
onHilbert spaces, sowe review some standardmaterial here in order to fix our notation.

If σ : G → U(H) is a continuous unitary representation and ξ, η ∈ H, we denote
the associated coefficient function x 
→ 〈σ(x)ξ, η〉 by ξ ∗σ η ∈ Cb(G). There is a
contractive, linear map �σ : H ̂⊗ H → Cb(G) defined by �σ (ξ ⊗ η) = ξ ∗σ η. We
denote the range of �σ by Aσ (G), or simply Aσ if the group G is clear from context;
this is the coefficient space of σ , andwe equip it with the quotient norm pushed forward
fromH ̂⊗ H/ ker(�σ ).

Two special cases should be singled out:

1. If λ denotes the left regular representation G → U(L2(G)), then Aλ(G) coin-
cides with the Fourier algebra of G, and is usually denoted by A(G). (This is not
Eymard’s original definition of A(G) but the equivalence is proved in [7, Ch. 3];
see also [9, Prop. 2.3.3].) With our definition, the fact that A(G) is closed under
pointwise product follows from Fell’s absorption principle.

2. If σ : G → U(H) is irreducible, then �σ : Ĥ⊗H → Aσ (G) is injective, hence is
an isometric isomorphism of Banach spaces. This result is due to Arsac; the proof
combines a duality argument (see e.g. [9, Lemma 2.8.2]) with Schur’s lemma for
irreducible unitary representations.

Moreover, if σ ′ is a direct sum of countably many copies of σ , then Aσ ′(G) = Aσ (G).
(See e.g. [9, Prop. 2.8.8].)

Remark 2.1 The space Aσ (G) was originally introduced by Arsac but defined in a
different way, as the closed linear span of {ξ ∗σ η : ξ, η ∈ H} inside the Fourier–



Dual Convolution for the Affine... Page 5 of 32 76

Stieltjes algebra B(G). We will not discuss B(G) in this paper; the equivalence of this
original definition with our one can be found in e.g. [9, Theorem 2.8.4].

2.2 The Affine Group ofR

R
× denotes the multiplicative group of R, equipped with the subspace topology; it

has a Haar measure dt/|t | where dt denotes usual Lebesgue measure on R. We write
R

×
1 for the subgroup of R

× consisting of strictly positive real numbers; the notation
is consistent with using Ge to denote the connected component of a locally compact
group G.

When dealing with L p-spaces on R
×, we will usually omit mention of the Haar

measure and merely write L p(R×); this should not be confused with L p(R) which
always means the L p-space for the Lebesgue measure on R.

We defineR � R
× to be the set {(b, a) : b ∈ R, a ∈ R

×} equipped with the product
topology of R × R

× and the following multiplication:

(b, a) · (b′, a′) = (ab′ + b, aa′) (2.1)

With this choice, the map (b, a) 
→
[

a b
0 1

]

is a homomorphism R � R
× → GL2(R).

Inversion in R � R
× is given by

(b, a)−1 = (−b/a, 1/a) (2.2)

Note that R embeds as a normal closed subgroup of R � R
× via b 
→ (b, 1), while

R
× embeds as a closed subgroup via a 
→ (0, a).
In harmonic analysis it is more common to work with the subgroup {(b, a) : b ∈

R, a ∈ R
×
1 }. This is a connected Lie group, often referred to in the literature as “the

real ax + b group”; we shall return to it in Sect. 5.

2.3 The Key Representation and its Coefficient Space

As in the introduction, we let H denote L2(R×). There is a continuous unitary repre-
sentation 
 : R � R

× → U(H), defined by


(b, a)ξ(t) := e2π ibt
−1

ξ(a−1t) (b ∈ R, a ∈ R
×; ξ ∈ H, t ∈ R

×). (2.3)

This is a special case of a more general construction: if we consider the character χ1
on R given by χ1(t) = exp(2π i t), the previous formula may be written as


 = IndR�R
×

R
χ1 , (2.4)

where we use the explicit realization of an induced representation for a semidirect
product group, as described in “Realization III” of [10, Sect. 2.4] (see Appendix A
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for details). Mackey theory tells us that 
 is irreducible, and is the only infinite
dimensional irreducible representation of R � R

×.
In this article we work not with 
 but with a unitarily equivalent form (which

matches the representation defined in [6, Eq. (1.3)]). For a C-valued function on a
group G, define f̌ : G → C by f̌ (x) = f (x−1). Since Haar measure on R

× is
invariant under the change of variables t ↔ t−1, the map ξ 
→ ξ̌ defines an isometric
involution J : H → H. We now define π = J
(·)J : R � R

× → U(H). Explicitly,
given ξ ∈ H and b ∈ R, a ∈ R

×, we have

π(b, a)ξ(t) := e2π ibtξ(ta) (t ∈ R
×). (2.5)

We claimed in the introduction that Aπ (R � R
×) = A(R � R

×). This can be
seen as follows. The left regular representation λ of R � R

× can be obtained by
inducing the left regular representation of R, which we denote by λR. Note that λR

is unitarily equivalent to a direct integral (over R
×) of all nontrivial characters of R.

Moreover, each such character is induced to a representation of R � R
× equivalent to

π . Since induction and direct integration commute, it follows that λ is equivalent to
π ⊗ IH for some separable Hilbert spaceH. Hence π is weakly equivalent with λ, and
Aπ (R � R

×) = Aλ(R � R
×) = A(R � R

×) by the results mentioned in Sect. 2.1.

Remark 2.2 The equality Aπ (R � R
×) = A(R � R

×) implies that Aπ (R � R
×) is

closed under pointwise product. In Sect. 3 we will give an alternative proof of this
fact, using dual convolution on Ĥ⊗H. In Sect. 6 we will see that this alternative proof
carries over to the L p-analogue of Aπ (R � R

×), but that this space is not equal to the
L p-analogue of A(R � R

×).

We shall write � rather than �π for the canonical quotient map H ̂⊗ H →
Aπ (R � R

×), ξ ⊗η 
→ ξ ∗π η. Since π is irreducible,� is injective by the remarks in
Sect. 2.1, although we shall not use this fact when defining dual convolution in Sect. 3.

Remark 2.3 (i) In [6], the map � is denoted by F and called “la co-transformation
deFourier” for the groupR � R

×. Note that becauseR � R
× is non-unimodular,

composing � with the operator-valued Fourier transform F : f 
→ π( f ) =
∫

R�R× f (x)π(x) dx does not yield the map f 
→ f̌ , and so (as observed in [6])
� should not be called an “inverse Fourier transform”. However, the philosophy
of Fourier inversion guides much of what we do in this article.

(ii) For most of our article, the fact that Aπ (R � R
×) = A(R � R

×) does not play a
big role in our calculations, since we are not relying on the modified Plancherel
formula for this group. The exceptions are in Sect. 5, where we use general facts
about Fourier algebras of open subgroups, and in the proof of Theorem 6.6,
where we use results of Herz on Figà-Talamanca–Herz algebras.

2.4 Bochner Integrals and RelatedMeasure Theory

Our explicit formula for dual convolution is expressed as a Bochner integral, which
requires attention to questions of strong measurability (also referred to in the literature
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as Bochner measurability). A very thorough treatment of strong measurability and the
Bochner integral can be found in [8, Sect. 1.2.b].

It is usually impractical to verify directly that a given Banach-space valued func-
tion is strongly measurable. For functions with values in an L p-space an alternative
approach is provided by the following result: given two sigma-finite measure spaces
(�1, μ1) and (�2, μ2), and 1 ≤ p < ∞, there is a natural embedding

L p(�1, μ1) ⊗ L p(�2, μ2) −→ L p(�1, μ1; L p(�2, μ2))

where f ⊗ g is sent to the function ω1 
→ f (ω1)g. This embedding extends
to an isometric isomorphism of Banach spaces L p(�1 × �2, μ1 × μ2) ∼=
L p(�1, μ1; L p(�2, μ2)) (see e.g. [8, Prop. 1.2.24] for the proof of a more gen-
eral statement). In particular, elements of L p(�1 × �2, μ1 × μ2) define strongly
μ1-measurable functions �1 → L p(�2, μ2).

3 Fusion and Dual Convolution

Notation For r ∈ R
×, let λ(r) : H → H denote the usual “left translation” by r

(multiplicative in this context), i.e. λ(r)ξ(t) = ξ(r−1t). Similarly ρ(r) : H → H
denotes “right translation” by r−1, i.e. ρ(r)ξ(t) = ξ(tr).

We use both λ and ρ, even though R
× is abelian, because we have in mind possible

extensions of the following calculations to semidirect products of the form R
n

� D
where D ⊂ GLn(R) need not be abelian.

3.1 An Explicit Formula for Fusion of Coefficients

To avoid any doubt we shall pay close attention to issues of convergence and integra-
bility. Let ξ1, η1, ξ2, η2 ∈ H. For each (b, a) ∈ R � R

×,

〈π(b, a)ξ1, η1〉〈π(b, a)ξ2, η2〉 =
∫

R

e2π ibtξ1(ta)η1(t)
dt

|t |
∫

R

e2π ibsξ2(sa)η2(s)
ds

|s|

(where as usual we treat ameasurable function defined onR
× as ameasurable function

defined on R, by prescribing some arbitrary value at 0).
Let d(t, s) denote the Haar measure on R

2. Observe that the function

(t, s) 
→ e2π ibt

|t ||s| ξ1(ta)η1(t)e
2π ibsξ2(sa)η2(s)
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is integrable on R
2, since by Tonelli’s theorem for R

2 followed by Cauchy–
Schwarz for H,

∫

R2
|ξ1(ta)||η1(t)||ξ2(sa)||η2(s)| d(t, s)

|t ||s| =
∫

R

|ξ1(ta)||η1(t)| dt|t |
∫

R

|ξ2(sa)||η2(s)| ds|s|
≤ ‖ρ(a)ξ1‖H‖η1‖H‖ρ(a)ξ2‖H‖η2‖H < ∞.

Therefore, the following changes of variable and order of integration are valid:

〈π(b, a)ξ1, η1〉〈π(b, a)ξ2, η2〉
[Fubini] =

∫

R2
e2π ibtξ1(ta)η1(t) e

2π ibsξ2(sa)η2(s)
d(t, s)

|t ||s|
[t 
→ t − s] =

∫

R2
e2π ib(t−s)ξ1((t − s)a)η1(t − s) e2π ibsξ2(sa)η2(s)

d(t, s)

|t − s||s|
[s 
→ tu] =

∫

R2
e2π ibtξ1((1 − u)ta)ξ2(uta) η1((1 − u)t)η2(ut)

dt du

|t ||1 − u||u|
[Fubini] =

∫ ∞

−∞

(∫

R×
e2π ibtξ1((1 − u)ta)ξ2(uta) η1((1 − u)t)η2(ut)

dt

|t |
)

du

|1 − u||u|

(3.1)

One can now show that for fixed u ∈ R \ {0, 1}, the inner integral in the last line of
Eq. (3.1) can be written as 〈π(b, a)αu, βu〉 for suitable αu, βu ∈ H, and that

∫

R\{0,1}
‖αu‖H‖βu‖H

du

|1 − u||u| ≤ ‖ξ1‖H‖ξ2‖H‖η1‖H‖η2‖H

so that (ξ1 ∗π η1) · (ξ2 ∗π η2) is a weighted average of explicit coefficient functions
αu ∗π βu as u varies; this is what we mean by a “fusion formula” for coefficient
functions.

For technical reasons,wefirstmake a further change of variables u 
→ 1−(1+h)−1.
Then |1 − u|−1|u|−1du = |h|−1dh, and so the last line of Eq. (3.1) is equal to

∫ ∞

−∞

(∫

R×
e2π ibtξ1

( ta

1 + h

)

ξ2
( ta

1 + h−1

)

η1
( t

1 + h

)

η2
( t

1 + h−1

) dt

|t |
)

dh

|h|
(3.2)

Lemma 3.1 Given X ∈ H ⊗2 H = L2(R× × R
×), define V (X) : R

× × R
× → C by

V (X)(h, t) = X

(

t

1 + h
,

t

1 + h−1

)

.

Then V (X) ∈ L2(R× ×R
×), and V : L2(R× ×R

×) → L2(R× ×R
×) is an isometry.
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Proof Clearly V (X) is measurable. Then

∫

R××R×
|V (X)(h, t)|2 d(h, t)

|h||t |
=

∫

R××R×

∣

∣

∣

∣

X

(

t

1 + h
,

t

1 + h−1

)∣

∣

∣

∣

2 d(t, h)

|t ||h|
=

∫

R×

(∫

R×
|X(t, th)|2 dt

|t |
)

dh

|h| [Tonelli, then t 
→ t(1 + h)]

=
∫

R×

(∫

R×
|X(t, h)|2 dh|h|

)

dt

|t | [Tonelli, then h 
→ t−1h]

=
∫

R××R×
|X(t, h)|2 d(h, t)

|h||t | . [Tonelli]

Thus V (X) ∈ L2(R× × R
×) and V is an isometry, as required. ��

Note that if X ∈ Cc(R
××R

×) then so isV (X). However, if X ∈ Cc(R
×)⊗Cc(R

×),
we see no reason to expect that V (X) ∈ Cc(R

×) ⊗ Cc(R
×).

If f and g are measurable functions R
× → C, let f · g denote their pointwise

product (with the usual identifications of functions that agree a.e.).

Corollary 3.2 Let ξ1, ξ2 ∈ H. For h ∈ R\{0,−1} let F(h) = λ(1+h)ξ1 ·λ(1+h−1)ξ2.
Then F is equal a.e. to a strongly measurable, (Bochner-)square integrable function
R

× → H, and

∫

R×
‖F(h)‖2H

dh

|h| = ‖ξ1‖2H‖ξ2‖2H .

Proof We apply Lemma 3.1 with X = ξ1⊗ξ2. As remarked in Sect. 2.4, we may iden-
tify V (X) with a function ˜F ∈ L2(R×;H), satisfying ‖˜F‖2 = ‖X‖2 = ‖ξ1‖2H‖ξ2‖2H
and ˜F(h)(t) = V (X)(h, t) for a.e. (h, t) ∈ R

× × R
×. The rest follows from the

definition of V . ��
Note that a priori, one only expects the pointwise product of two functions in H to

lie in L1(R×). The corollary shows that in fact, F(h) ∈ H for a.e. h ∈ R
×. In general

one cannot expect F(h) ∈ H for all h ∈ R
×, since

‖F(1)‖2H =
∫

R×
|ξ1(t/2)ξ2(t/2)|2 dt

|t | =
∫

R×
|ξ1(t)ξ2(t)|2 dt|t | = ‖ξ1 · ξ2‖2H

(3.3)

and so taking e.g. ξ1(t) = ξ2(t) = 1t>1(t − 1)−1/3 one sees that the RHS can be
infinite.

Proposition 3.3 (Explicit fusion for coefficient functions of π) Let ξi , ηi ∈ H for
i = 1, 2. Then
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(ξ1 ∗π η1) · (ξ2 ∗π η2) =
∫

R×

[

λ(1 + h)ξ1 · λ(1 + h−1)ξ2

]

∗π

[

λ(1 + h)η1 · λ(1 + h−1)η2

] dh

|h|

defined as the Bochner integral of an Aπ (R � R
×)-valued function.

Proof Let F(h) = λ(1+ h)ξ1 ·λ(1+ h−1)ξ2 and G(h) = λ(1+ h)η1 ·λ(1+ h−1)η2.
By Corollary 3.2, F and G are (after modification on a null subset of R

×) strongly
measurable as functionsR

× → H, and square integrable (with respect toHaarmeasure
on R

×).
Therefore, the function h 
→ F(h) ∗π G(h) is strongly measurable and a.e.

Aπ (R � R
×)-valued; it is Bochner integrable (with respect to Haar measure on R

×),
since

∫

R×
‖F(h) ∗π G(h)‖A

dh

|h| ≤
∫

R×
‖F(h)‖H‖G(h)‖H

dh

|h|
≤

(∫

R×
‖F(h)‖2H

dh

|h|
)1/2 (∫

R×
‖G(h)‖2H

dh

|h|
)1/2

= ‖ξ1‖H‖ξ2‖H‖η1‖H‖η2‖H ,

where thefinal equality followsbyusingCorollary 3.2 again.Unpacking the definitions
of F and G, and comparing them with (3.2), we see that

(ξ1 ∗π η1)(b, a) (ξ2 ∗π η2)(b, a)

=
∫

R×
[F(h) ∗π G(h)](b, a)

dh

|h| for all (b, a) ∈ R � R
×

as claimed. ��

Remark 3.4 Our direct route to the key formula (3.2) relied on ad hoc manipulations
of integrals. There is a more conceptual approach, based on constructing an explicit
intertwining map between π ⊗ π and IH ⊗ π . This intertwining map emerges natu-
rally from considering the representation 
 defined in (2.3) and its description as an
induced representation; details are given in Appendix A. In fact, this approach was
originally how we came up with the formula (3.2), and it motivates the technique used
in Lemma 3.1.

3.2 Defining Dual Convolution

The formula in Proposition 3.3 immediately suggests how to define the dual convolu-
tion of two rank-one tensors in S1(H) = H ̂⊗ H: given ξ, ξ ′ ∈ H and η, η′ ∈ H,



Dual Convolution for the Affine... Page 11 of 32 76

(ξ ⊗ η) � (ξ ′ ⊗ η′)

:=
∫

R×

(

λ(1 + h)ξ · λ(1 + h−1)ξ ′) ⊗
(

λ(1 + h)η · λ(1 + h−1)η′) dh

|h| ,

(3.4)

where the right-hand side is defined as a Bochner integral of a function R
× → H ̂⊗

H. The proof that this function is Bochner integrable is essentially the same as the
argument used in proving Proposition 3.3, so we shall not repeat it here; we record for
reference that the same calculation yields the upper bound

∫

R×
‖λ(1 + h)ξ · λ(1 + h−1)ξ ′‖H ‖λ(1 + h)η · λ(1 + h−1)η′‖H

dh

|h|
≤ ‖ξ‖H‖ξ ′‖H‖η‖H‖η′‖H .

(3.5)

Remark 3.5 (Technical caveats) Strictly speaking, the integrand in (3.4) is only a.e.
H ̂⊗ H-valued (c.f. Eq. 3.3), and the null set of “bad values” of h might depend
on all four of the vectors ξ, ξ ′, η, η′. However, one can ignore such technicalities
if ξ, ξ ′, η, η′ ∈ Cc(R

×). For, under this assumption, λ(a)ξ · ξ ′ vanishes identically
whenever |a| is sufficiently small or sufficiently large. It follows (using continuity of
translation in H and in C0(R

×)) that the integrand in (3.4) is a continuous, compactly
supported functionR

×\{−1} → Ĥ⊗H, with no need to worry about various formulas
holding only a.e.

We can now extend the operation � by linearity and continuity to a contractive
bilinearmapS1(H)×S1(H) → S1(H), by representing elements ofS1(H) as absolutely
convergent sums of rank-one tensors. To see that this extension is well-defined and
independent of how we represent elements of S1(H), note that (ξ, η, ξ ′, η′) 
→ (ξ ⊗
η) � (ξ ′ ⊗ η′) defines a contractive multilinear map from H × H × H × H to H ̂⊗ H,
and so by the universal property of ̂⊗, it extends uniquely to a contractive linear map

S1(H) ̂⊗ S1(H) = H ̂⊗ H ̂⊗ H ̂⊗ H −→ H ̂⊗ H = S1(H) .

An alternative integral formula One can rewrite the defining formula (3.4) as

(ξ ⊗ η) � (ξ ′ ⊗ η′)

=
∫

R

(λ(1 − u)−1ξ · λ(u)−1ξ ′) ⊗ (λ(1 − u)−1η · λ(u)−1η′) du

|1 − u||u|
(3.6)

after a change of variables1 1 − u = (1 + h)−1. Similar comments as in Remark 3.5
also apply here: for instance, if ξ, ξ ′, η, η′ ∈ Cc(R

×), then the integrand in (3.6) is
continuous from R \ {0, 1} to H ̂⊗ H with compact support.

1 Changes of variables for Bochner integrals can be easily justified by verifying first for simple functions,
and then passing to the limit.
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(H ⊗ H) ⊗ (H ⊗ H) shuffle−−−−→ (H ⊗ H) ⊗ (H ⊗ H)
embed−−−−→ (H ⊗2 H) ⊗ (H ⊗2 H)
V ⊗V−−−→ (H ⊗2 H) ⊗ (H ⊗2 H)
identify−−−−→ L2(R×;H) ⊗ L2(R×;H)
diagonal−−−−−→ L1(R×;H ⊗ H)
trace−−−→ H ⊗ H

Fig. 1 Dual convolution as a composition of simpler operations

Equation (3.6) should be compared with the initial calculations in (3.1). In fact,
many of the preceding results could have been formulated without the change of vari-
ables in (3.2). Both formulations of dual convolution seem to be natural and useful: the
formula (3.4) is more closely related to the underlying general principles concerning
tensor products of induced representations; but (3.2) is more enlightening for certain
calculations, such as (3.8) below.

An abstract definition of � An alternative way to think of our construction of �,
viewed as a bounded linear map from S1(H) ̂⊗ S1(H) to S1(H), is by constructing it
as the composition of the maps shown in Fig. 1.

We now explain briefly what each of these maps is.

• The “shuffle” map interchanges the second and third factors in the tensor product,
i.e. it sends ξ ⊗ η ⊗ ξ ′ ⊗ η′ to ξ ⊗ ξ ′ ⊗ η ⊗ η′.

• The “embed” map is self-explanatory, and V is from Lemma 3.1. The map “iden-
tify” is the same identification described in Sect. 2.4 and used in Corollary 3.2.

• The “diagonal” map is given as follows: for Banach spaces E1 and E2 there is a
canonical contraction

L2(R×; E1) ̂⊗ L2(R×; E2) → L1(R×; E1 ̂⊗ E2)

which sends F ⊗ G to h 
→ F(h) ⊗ G(h).
• The “trace” map is given as follows: for a Banach space E there is a canonical
contraction L1(R×; E) → E which sends a function F ∈ L1(R×; E) to

∫

R× F .
(If we identify L1(R×; E) with L1(R×) ̂⊗ E , then the trace map is the same as
slicing in the first variable against the constant function 1 ∈ L∞(R×).)

The advantage of this approach is that all issues concerning strong measurability,
or showing that various maps are well-defined and do not depend on how an element
of H ̂⊗ H is represented as an infinite sum of tensors, are automatically taken care of
by the formal identifications between various Banach spaces. Moreover, this approach
also generalizes easily to the L p-setting, or to settings with additional operator space
structure. The disadvantage is that this definition of � is rather abstract, and is less
suited to concrete calculations.
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3.3 Basic Properties of Dual Convolution

Clearly � is commutative: this follows directly from a change of variable h 
→ h−1

in (3.4). Proving that � is associative requires more work. (Recall that even when
considering the usual convolution of two L1-functions on a locally compact group G,
checking associativity directly by attempting to interchange integrals requires careful
use of Fubini’s theorem to justify treating identities that only hold a.e. as if they hold
everywhere.)

To show that � is associative, it suffices by linearity and continuity to show that
(T1�T2)�T3 = T1�(T2�T3)when Ti = ξi ⊗ηi for ξi , ηi ∈ Cc(R

×) (i = 1, 2, 3). In
the following calculations, we shall adopt the following notational convention to make
our formulas more manageable. Given a function in Cc(R

×) which is obtained from
ξ1, ξ2 and ξ3 by some explicit formula T [ξ1, ξ2, ξ3], we shall write T [ξ1, ξ2, ξ3] ⊗
repeat for η to mean

T [ξ1, ξ2, ξ3] ⊗ T [η1, η2, η3] ∈ Cc(R
×) ⊗ Cc(R

×).

Since (ξ1 ⊗ η1) � ( ) is a bounded linear map H ̂⊗H → H ̂⊗H, it commutes with
the Bochner integral. In particular,

(ξ1 ⊗ η1) �
(

(ξ2 ⊗ η2) � (ξ3 ⊗ η3)
)

=
∫

R

(ξ1 ⊗ η1) �
(

λ(1 − u)−1ξ2 · λ(u)−1ξ3 ⊗ repeat for η
) du

|1 − u||u|
=

∫

R

(∫

R

λ(1 − v)−1ξ1 · λ(v)−1
[

λ(1 − u)−1ξ2 · λ(u)−1ξ3

]

⊗ repeat for η
dv

|1 − v||v|
)

du

|1 − u||u|
=

∫

R

(∫

R

λ(1 − v)−1ξ1 · λ(v − uv)−1ξ2 · λ(uv)−1ξ3 ⊗ repeat for η
dv

|1 − v||v|
)

du

|1 − u||u|
(3.7)

The expression in the inner integral is measurable and Bochner integrable as a
function R

2 → H ̂⊗ H (since it is continuous with compact support and vanishes in
a neighbourhood of {0, 1} × {0, 1}). So by Fubini’s theorem for Bochner integrals
(see e.g. [11, Theorem B.41]), we may rewrite (3.7) as a double integral and perform
succesive changes of variables u 
→ u/v, v 
→ 1 − v to obtain

(ξ1 ⊗ η1) �
(

(ξ2 ⊗ η2) � (ξ3 ⊗ η3)
)

=
∫

R2
λ(1 − v)−1ξ1 · λ(v − u)−1ξ2 · λ(u)−1ξ3 ⊗ repeat for η

d(v, u)

|1 − v||v − u||u|
=

∫

R2
λ(v)−1ξ1 · λ(1 − v − u)−1ξ2 · λ(u)−1ξ3 ⊗ repeat for η

d(v, u)

|v||1 − v − u||u|
(3.8)
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One can use similar arguments to expand
(

(ξ1 ⊗ η1) � (ξ2 ⊗ η2)
)

� (ξ3 ⊗ η3) as a

double integral with values in H ̂⊗ H, and show by appropriate changes of variable
that this is equal to the right-hand side of (3.8). Alternatively, observe that since � is
commutative,

(

(ξ1 ⊗ η1) � (ξ2 ⊗ η2)
)

� (ξ3 ⊗ η3) = (ξ3 ⊗ η3) �
(

(ξ2 ⊗ η2) � (ξ1 ⊗ η1)
)

;

then observe that the value of the last integral in Eq. (3.8) is unchanged if one swaps
ξ1 ⊗ η1 with ξ3 ⊗ η3 (since this corresponds to interchanging the variables u and v in
the integral).

Note that Proposition 3.3 can be rephrased as

�((ξ ⊗ η) � (ξ ′ ⊗ η′)) = �(ξ ⊗ η)�(ξ ′ ⊗ η′), (3.9)

and so by linearity and continuity, it follows that �(T � T ′) = �(T )�(T ′) for all
T , T ′ ∈ S1(H). This gives an independent proof that Aπ (R � R

×) is closed under
pointwise product. It could also have been used to prove associativity of �, by trans-
ferring it from associativity of pointwise product in Aπ (R � R

×). We believe that the
direct proof given above has independent interest, especially in light of the symmetry
displayed by the formula in Eq. (3.8).

We sum up the results of this section in the following theorem.

Theorem 3.6 (Dual convolution on S1(H)) The operation �, defined on pairs of
elementary tensors by the formula (3.4), extends to a contractive bilinear map
S1(H) × S1(H) → S1(H), which makes S1(H) into a commutative Banach algebra.
If we denote this Banach algebra by A, then � : A → Aπ (R � R

×) is an isometric
isomorphism of Banach algebras.

3.4 Dual Convolution at the Level of Functions

Trace-class operators on H = L2(R×) are often given not as explicit sums of rank-one
tensors, but as integral operators defined by certain kernel functions R

× × R
× → C.

In this section we provide a description of dual convolution that may be easier to apply
in such cases.

We may view elements of S1(H) as measurable functions on R
× × R

×, as follows.
First note that complex conjugation of functions defines a C-linear isometric isomor-
phism of vector spaces from L2(R×) onto L2(R×), which extends to an isometric
isomorphism

ι̃ : L2(R×) ̂⊗ L2(R×) → L2(R×) ̂⊗ L2(R×); ξ ⊗ η 
→ ξ ⊗ η. (3.10)

Furthermore, the natural map L2(R×) ̂⊗ L2(R×) → L2(R×) ⊗2 L2(R×) is linear
and norm-decreasing, and it is injective since Hilbert spaces have the approximation
property. Finally, note that we may identify L2(R×) ⊗2 L2(R×) with L2(R× × R

×).
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Thus, up to a.e. equivalence2 we can view any T ∈ S1(H) as a measurable function
onR

××R
× which is square-integrable (with respect to themeasure |s|−1|t |−1 d(s, t)).

For ease of notation, we shall denote this function also by T , suppressing mention of
the embedding ι̃. With this convention,

〈Tα, β〉 =
∫

R××R×
β(s)T (s, t)α(t)

d(s, t)

|s||t | (α, β ∈ H),

which is the usual form in which an integral operator is given. Warning: with this
convention, if T is a rank-one tensor ξ ⊗ η ∈ H ̂⊗ H then T (s, t) = ξ(s)η(t) for
s, t ∈ R

×.

Proposition 3.7 (Pointwise formulas for dual convolution) Let T1, T2 ∈ S1(H) =
H ̂⊗ H. Then for a.e. (s, t) ∈ R

× × R
×

(T1 � T2)(s, t) =
∫ ∞

−∞
T1

(

s

1 + h
,

t

1 + h

)

T2

(

hs

1 + h
,

ht

1 + h

)

dh

|h| (3.11a)

=
∫ ∞

−∞
T1((1 − u)s, (1 − u)t)T2(us, ut)

du

|1 − u||u| (3.11b)

where both of the integrals above are absolutely convergent for a.e. (s, t) ∈ R
× ×R

×.

Proof When T1 and T2 are rank-one tensors, this follows from the definition of �.
Hence it is true when T1 and T2 are finite rank operators. Every trace class operator is
the limit in trace-norm of finite rank operators, and by going down to a subsequence
we can assume that the convergence holds pointwise a.e.

Now observe that if T = ∑∞
n=1 fn ⊗gn where

∑∞
n=1 ‖ fn‖H‖gn‖H < ∞, the trace-

class operator R = ∑∞
n=1 | fn| ⊗ |gn| satisfies R(s, t) ≥ |T (s, t)| a.e. The result now

follows using the Lebesgue dominated convergence theorem, replacing T1 and T2 in
(3.11a) or (3.11b) with “dominating operators” R1 and R2. ��

4 An Explicit Derivation fromA to its Dual

In this section we construct an explicit derivation D : A → A∗ and study some of
its operator-theoretic properties. We will relate D to constructions in [1] in the next
section.

We briefly review some general definitions. For a Banach algebra A, each � ∈
(A ̂⊗ A)∗ corresponds to a bounded linear map A → A∗ defined by a 
→ �(a ⊗ ).
This map A → A∗ is a derivation if the following identity holds:

�(a1a2 ⊗ a0) = �(a2 ⊗ a0a1) + �(a1 ⊗ a2a0) for all a0, a1, a2 ∈ A. (4.1)

2 There is a subtler notion available when viewing elements of S1(L2(�)) as functions on � × �; rather
than quotienting out by the equivalence relation “agree except on a null subset of�×�”, one uses the finer
equivalence relation “agree except on a marginally null subset”. This notion, which orginates in pioneering
work of Arveson on operator synthesis, is not needed for our paper.
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The derivation is said to be cyclic if �(a ⊗ b) = −�(b ⊗ a) for all a, b ∈ A.

Definition 4.1 Given ξ ∈ H, let Sξ(t) = sign(t)ξ(t) and Rξ(t) = ξ(−t), where sign
is the sign function R

× → {±1}, t 
→ t
|t | . Clearly S and R are isometric, linear

involutions on H.

Althoughwe do not consider coefficient functions in this section, note that for every
ξ, η ∈ H we have ξ ∗π η = Rξ ∗π Rη.

Constructing our derivation Define a multilinear map � : H ̂⊗ H ̂⊗ H ̂⊗ H → C by

�(ξ1 ⊗ η1 ⊗ ξ0 ⊗ η0) := 〈Sξ1, Rξ0〉〈Rη0, η1〉. (4.2)

We view � as a bilinear form on A, and define D to be the corresponding operator
A → A∗.

For i = 0, 1, if we write Ti = ξi ⊗ ηi and use the convention Ti (s, t) = ξi (s)ηi (t)
as in Sect. 3.4, then we can rewrite (4.2) as:

�(T1 ⊗ T0) =
∫

R××R×
sign(s)T1(s, t)T0(−s,−t)

d(s, t)

|s||t | . (4.3)

Proposition 4.2 D : A → A∗ is cyclic and weakly compact.

Proof The identity (4.3) shows that �(T1 ⊗ T0) = −�(T0 ⊗ T1) when T0 and T1 are
rank-one tensors; by linearity and continuity it holds for all T0, T1 ∈ A.

It also follows from (4.3), using the Cauchy–Schwarz inequality, that � extends to
a bounded bilinear form on L2(R× × R

×). Hence the operator D : A → A∗ factors
through the embedding of A into L2(R× × R

×); in particular D is weakly compact.
��

Next, we show that D is a derivation by showing that � satisfies the identity (4.1).

Theorem 4.3 (Derivation identity) For every T1, T2, T0 ∈ A, we have

�((T1 � T2) ⊗ T0) = �(T2 ⊗ (T0 � T1)) + �(T1 ⊗ (T2 � T0)). (4.4)

Proof By linearity and continuity, it suffices3 to verify (4.4) in the special case where
T0, T1 and T2 are rank-one tensors in Cc(R

×) ⊗ Cc(R
×).

We now consider the three terms in (4.4), using (4.3) and Fubini’s theorem. In each
case the integral is taken over (R×)3:

�((T1 � T2) ⊗ T0)

=
∫

sign(s) T1
( s

1 + h
,

t

1 + h

)

T2
( hs

1 + h
,

ht

1 + h

)

T0(−s,−t)
d(h, s, t)

|h||s||t | .

3 Strictly speaking, this reduction step is not necessary, but it removes any need to consider technicalities
about interchanging the order of various integrals that now follow.
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Also,

�(T2 ⊗ (T0 � T1))

=
∫

sign(s) T1
( −hs

1 + h
,

−ht

1 + h

)

T2
(

s, t) T0
( −s

1 + h
,

−t

1 + h

)d(h, s, t)

|h||s||t |
=

∫

sign((1 + h)s) T1
(−hs,−ht

)

T2
(

(1 + h)s, (1 + h)t
)

T0(−s,−t)
d(h, s, t)

|h||s||t | ,

where the last equality used the change of variables s 
→ (1 + h)s, t 
→ (1 + h)t . A
similar calculation yields

�(T1 ⊗ (T2 � T0))

=
∫

sign((1 + 1
h )s) T1

(

(1 + 1
h )s, (1 + 1

h )t
)

T2
(− 1

h s,− 1
h t

)

T0(−s,−t)
d(h, s, t)

|h||s||t | .

For every s, t ∈ R
×, define

I(s, t) :=
∫

R×
sign(s) T1

( s

1 + h
,

t

1 + h

)

T2
( hs

1 + h
,

ht

1 + h

) dh

|h|
II(s, t) :=

∫

R×
sign((1 + h)s)T1(−hs,−ht)T2

(

(1 + h)s, (1 + h)t)
dh

|h|
III(s, t) :=

∫

R×
sign((1 + 1

h )s) T1
(

(1 + 1
h )s, (1 + 1

h )t
)

T2
(− 1

h s,− 1
h t

) dh

|h|
To prove that (4.4) holds, it suffices to show that I(s, t) = II(s, t) + III(s, t) for
(almost) every s, t ∈ R

×. For II(s, t): the change of variables h 
→ − 1
1+h sends dh

|h|
to dh

|1+h| and sends 1 + h to 1 − 1
1+h = h

1+h , so that

II(s, t) =
∫

R×
sign

(

hs

1 + h

) |h|
|1 + h| T1

( s

1 + h
,

t

1 + h

)

T2
( hs

1 + h
,

ht

1 + h

) dh

|h|
=

∫

R×
1

|s|
hs

1 + h
T1

( s

1 + h
,

t

1 + h

)

T2
( hs

1 + h
,

ht

1 + h

) dh

|h|
(∗∗)

For III(s, t): the change of variables h 
→ −(1+ 1
h ) sends dh

|h| to
dh

|1+h||h| and sends
1 + 1

h to 1 − 1
1+h−1 = 1

1+h , so that

III(s, t) =
∫

R×
sign

(

s

1 + h

)

1

|1 + h| T1
( s

1 + h
,

t

1 + h

)

T2
( hs

1 + h
,

ht

1 + h

) dh

|h|
=

∫

R×
1

|s|
s

1 + h
T1

( s

1 + h
,

t

1 + h

)

T2
( hs

1 + h
,

ht

1 + h

) dh

|h|
(∗ ∗ ∗)
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Adding (∗∗) and (∗∗∗) and recalling that s
|s| = sign(s), we obtain I(s, t) as required.

��
Finally, we show that D : A → A∗ is completely bounded after composing with

the transpose map on A∗ = B(H).

Definition 4.4 (Transpose operator on B(H)) Define a linear isometry �∗ : Ĥ⊗H →
H ̂⊗ H by �∗(ξ ⊗ η) = η ⊗ ξ , and let � = (�∗)∗ : (H ̂⊗ H)∗ → (H ̂⊗ H)∗. We call
� the transpose operator, since if we identify (H ̂⊗ H)∗ with B(H) we have

�(b)ξ = b∗(ξ) (b ∈ B(H), ξ ∈ H).

To verify complete boundedness of �D : A → A∗ we use the following charac-
terization. Recall that we have natural injective maps

(H ̂⊗ H) ̂⊗ (H ̂⊗ H)
shuffle−−−→ (H ̂⊗ H) ̂⊗ (H ̂⊗ H)

embed−−−→ (H ⊗2 H) ̂⊗ (H ⊗2 H)

where “shuffle” swaps the second and third factors in the tensor product. Now define

s = embed ◦ shuffle : S1(H) ̂⊗ S1(H) → S1(H ⊗2 H).

Then, for a given � ∈ (S1(H) ̂⊗S1(H))∗, the corresponding map S1(H) → S1(H)∗ is
completely bounded (with respect to the natural operator space structure on S1(H)) if
and only if�◦s−1 extends continuously to a bounded linear functional onS1(H⊗2H).
(This may be taken as a working definition of complete boundedness in this special
case; it can also be derived from facts about row and column Hilbert spaces and
operator space tensor products, see e.g. [5, Corollary 7.1.5 and Proposition 7.2.1].)

Proof that �D is completely bounded. By (4.2), �D : A → A∗ corresponds to the
linear functional � : A ̂⊗ A → C defined by

�(ξ ⊗ η ⊗ ξ ′ ⊗ η′) = �(ξ ⊗ η ⊗ η′ ⊗ ξ ′) = 〈Sξ, Rη′〉〈Rξ ′, η〉 . (4.5)

We have

(� ◦ s−1)(ξ ⊗ ξ ′ ⊗ η ⊗ η′) = 〈(S ⊗ R)(ξ ⊗ ξ ′), (R ⊗ id)(η′ ⊗ η)〉 ; (4.6)

since S⊗ R and R⊗ id are unitary operators onH⊗2H, it follows that� ◦s−1 extends
continuously to an element of (S1(H ⊗2 H))∗. ��
Remark 4.5 In the language of [3], D : A → A∗ is co-completely bounded, since �
“reverses the operator space structure” on B(H).

5 Dual Convolution for R � R
×
1

The semidirect product R � R
×
1 may be viewed as an open subgroup of R � R

×, by
identifying it with {(b, a) : b ∈ R, a ∈ R

×
1 }. General results on Fourier algebras of
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open subgroups then allow us to identify A(R � R
×
1 ) with a closed subalgebra of

A(R � R
×). More precisely, let us introduce the non-standard notation:

Ae(R � R
×) := { f ∈ A(R � R

×) : f vanishes outside R � R
×
1 }. (5.1)

Given f ∈ A(R � R
×), define Pe( f )(b, a) = f (b, a) for a > 0 and Pe( f )(b, a) = 0

for a < 0. Then Pe is a (completely) contractive projection from A(R � R
×) onto

Ae(R � R
×), and the composition of the maps

Ae(R � R
×)

inc.−−→ A(R � R
×)

restr.−−→ A(R � R
×
1 )

is a completely isometric bijection. (See e.g. [9, Prop. 2.4.1] for a summary of the
necessary facts about Fourier algebras of open subgroups.)

We now proceed to identify the subalgebra of A that corresponds to Ae(R � R
×)

and hence models A(R � R
×
1 ). Recall the operator S : H → H given by (Sξ)(t) =

sign(t)ξ(t). S is an isometric involution, so it has eigenvalues ±1, and H decomposes
as an orthogonal direct sum of the corresponding eigenspaces, H = H+ ⊕2 H−. The
spaces H± have the following explicit description:

H+ = {ξ ∈ H : ξ(t) = 0 for a.e. t < 0}, H− = {ξ ∈ H : ξ(t) = 0 for a.e. t > 0}.
(5.2)

Let P± be the orthogonal projection ofH ontoH±, and define Pdiag : Ĥ⊗H → Ĥ⊗H
by

Pdiag(ξ ⊗ η) = P+ξ ⊗ P+η + P−ξ ⊗ P−η . (5.3)

Lemma 5.1 Pdiag is a norm-one projection.

Proof Since P+ and P− are complementary projections, a direct calculation yields
(Pdiag)2 = Pdiag. Therefore, it suffices to show that Pdiag is contractive:

‖Pdiag(ξ ⊗ η)‖Ĥ⊗H ≤ ‖P+ξ‖H‖P+η‖H + ‖P−ξ‖H‖P−η‖H
≤

(

‖P+ξ‖2H + ‖P−ξ‖2H
)1/2 (

‖P+η‖2H + ‖P−η‖2H
)1/2

[Cauchy–Schwarz inR
2]

= ‖ξ‖H‖η‖H . [Pythagoras in H]

By the definition of the projective tensor norm, it follows that ‖Pdiag(T )‖ ≤ ‖T ‖ for
all T ∈ H ̂⊗ H. ��
Remark 5.2 The decomposition H = H+ ⊕2 H− gives a decomposition of T ∈ S1(H)

as a 2 × 2 block matrix

T =
(

P+T P+ P+T P−
P−T P+ P−T P−

)
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If we identify H ̂⊗ H with S1(H), then Pdiag corresponds to “compression to the
diagonal”.

Proposition 5.3 Pdiag is a homomorphism.

Proof It suffices to prove that Pdiag(T1) � Pdiag(T2) = Pdiag(T1 � T2) for T1 =
ξ1 ⊗ η1 and T2 = ξ2 ⊗ η2. To simplify our formulas slightly, we write ξ+

1 = P+ξ1,
etc., and for functions f , g defined on the set {+,−} we write

∑

± f (±)g(∓) for
f (+)g(−) + f (−)g(+).
We have

Pdiag(T1) � Pdiag(T2) =
{

(ξ+
1 ⊗ η+

1 ) � (ξ+
2 ⊗ η+

2 ) + (ξ−
1 ⊗ η−

1 ) � (ξ−
2 ⊗ η−

2 )

+(ξ+
1 ⊗ η+

1 ) � (ξ−
2 ⊗ η−

2 ) + (ξ−
1 ⊗ η−

1 ) � (ξ+
2 ⊗ η+

2 )

(5.4)

To analyze each of these four terms,we consider the effect ofλ(1+h) andλ(1+h−1)

on vectors in H+ or H−, as h varies over R
×. Note that if α ∈ H± and β ∈ H∓ (i.e.

α and β have “different parity”) then α · β = 0 as elements of H. Also: if a > 0 then
λ(a)(H±) = H±; and if a < 0 then λ(a)(H±) = H∓. Using these facts,
• if h < 0 and h �= −1, then precisely one of 1 + h or 1 + h−1 is negative, and so

λ(1 + h)ξ±
1 · λ(1 + h−1)ξ±

2 = λ(1 + h)η±
1 · λ(1 + h−1)η±

2 = 0 ;

• if h > 0, then 1 + h and 1 + h−1 are both positive, and so

λ(1 + h)ξ±
1 · λ(1 + h−1)ξ∓

2 = λ(1 + h)η±
1 · λ(1 + h−1)η∓

2 = 0 .

Therefore, considering the four terms in (5.4), we obtain

(ξ+
1 ⊗ η+

1 ) � (ξ+
2 ⊗ η+

2 ) + (ξ−
1 ⊗ η−

1 ) � (ξ−
2 ⊗ η−

2 )

=
∑

±

∫ ∞

0

(

λ(1 + h)ξ±
1 · λ(1 + h−1)ξ±

2

)

⊗ repeat for η
dh

|h|
(5.5a)

and

(ξ+
1 ⊗ η+

1 ) � (ξ−
2 ⊗ η−

2 ) + (ξ−
1 ⊗ η−

1 ) � (ξ+
2 ⊗ η+

2 )

=
∑

±

∫ 0

−∞

(

λ(1 + h)ξ±
1 · λ(1 + h−1)ξ∓

2

)

⊗ repeat for η
dh

|h|
(5.5b)

where we have used the same notational convention as in Sect. 3.3 to simplify the
formulas.

Nowweconsider Pdiag(T1�T2); since theBochner integral commuteswith bounded
linear maps, this equals

∫

R×
Pdiag

[

(λ(1 + h)ξ1 · λ(1 + h−1)ξ2) ⊗ repeat for η
] dh

|h| (5.6)
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For −∞ < h < −1, we have 1 + h < 0 < 1 + h−1; hence

P±[λ(1 + h)ξ1 · λ(1 + h−1)ξ2] = λ(1 + h)ξ∓
1 · λ(1 + h−1)ξ±

2

For −1 < h < 0, we have 1 + h > 0 > 1 + h−1; hence

P±[λ(1 + h)ξ1 · λ(1 + h−1)ξ2] = λ(1 + h)ξ±
1 · λ(1 + h−1)ξ∓

2

For 0 < h < ∞, we have 1 + h > 0 and 1 + h−1 > 0; hence

P±[λ(1 + h)ξ1 · λ(1 + h−1)ξ2] = λ(1 + h)ξ±
1 · λ(1 + h−1)ξ±

2

Therefore, splitting the integral in (5.6) into three pieces, and recalling that Pdiag =
∑

± P± ⊗ P±, we obtain

Pdiag(T1 � T2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫ −1

−∞

∑

±
(

λ(1 + h)ξ∓
1 · λ(1 + h−1)ξ±

2

)

⊗ repeat for η
dh

|h|
+

∫ 0

−1

∑

±
(

λ(1 + h)ξ±
1 · λ(1 + h−1)ξ∓

2

)

⊗ repeat for η
dh

|h|
+

∫ ∞

0

∑

±
(

λ(1 + h)ξ±
1 · λ(1 + h−1)ξ±

2

)

⊗ repeat for η
dh

|h|

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ 0

−∞

∑

±
(

λ(1 + h)ξ∓
1 · λ(1 + h−1)ξ±

2

)

⊗ repeat for η
dh

|h|
+

∫ ∞

0

∑

±
(

λ(1 + h)ξ±
1 · λ(1 + h−1)ξ±

2

)

⊗ repeat for η
dh

|h|
Comparing this with the combination of (5.4), (5.5a) and (5.5b), we have shown that
Pdiag(T1) � Pdiag(T2) = Pdiag(T1 � T2) as required. ��
Definition 5.4 (The diagonal subalgebra) We define Adiag := Pdiag(A). Note that by
Proposition 5.3, Adiag is a subalgebra.

We now examine the image of Adiag under the map � : A → A(R � R
×).

Lemma 5.5 (i) π(0,−1)ξ(t) = ξ(−t). In particular, π(0,−1) interchanges H+
and H−.

(ii) If (b, a) ∈ R � R
×
1 then π(b, a)(H±) ⊆ H±.

(iii) If ξ, η ∈ H± (i.e. both have the same “parity”) then ξ ∗π η vanishes outside
R � R

×
1 .

(iv) If ξ ∈ H± and η ∈ H∓ (i.e. they have different “parity”) then ξ ∗π η vanishes
on R � R

×
1 .

The claims in the lemma follow easily from the definitions of π and H±, so we
leave the details to the reader.

Proposition 5.6 (Intertwining projections) �Pdiag = Pe� as maps H ̂⊗ H →
A(R � R

×).
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Proof By linearity and continuity, it suffices to verify this identity on rank-one tensors
in H ⊗ H. Let ξ, η ∈ H; then

�(ξ ⊗ η) = �
(

P+ξ ⊗ P+η + P+ξ ⊗ P−η + P−ξ ⊗ P+η + P−ξ ⊗ P−η
)

= (P+ξ) ∗π (P+η)

+ (P+ξ) ∗π (P−η) + (P−ξ) ∗π (P+η) + (P−ξ) ∗π (P−η).

Hence by Lemma 5.5(iv), for every (b, a) ∈ R � R
×
1 ,

Pe�(ξ ⊗ η)(b, a) = (P+ξ) ∗π (P+η)(b, a) + (P−ξ) ∗π (P−η)(b, a)

= �Pdiag(ξ ⊗ η)(b, a).

Thus, Pe�(ξ ⊗ η) and �Pdiag(ξ ⊗ η) agree on R � R
×
1 .

By definition, Pe�(ξ ⊗ η) vanishes outside R � R
×
1 ; and by Lemma 5.5(iv), so

does �Pdiag(ξ ⊗ η). We conclude that Pe�(ξ ⊗ η) = �Pdiag(ξ ⊗ η) as required. ��
Since Pe : A(R � R

×) → A(R � R
×) is a homomorphism with range

Ae(R � R
×) and � : A → A(R � R

×) is an algebra isomorphism, this provides
an alternative proof that Pdiag is a homomorphism and Adiag is a subalgebra of A.
Moreover, by the remarks at the start of this section, we may identify Ae(R � R

×)

with A(R � R
×
1 ). Thus (Adiag,�) may be viewed as a realization of dual convolution

for R � R
×
1 .

Remark 5.7 Lemma 5.5(ii) shows that the restriction of π toR � R
×
1 splits as π+⊕π−

where π± : R � R
×
1 → U(H±). Up to unitary equivalence, π+ and π− are the only

two infinite-dimensional unitary representations of R � R
×
1 ; they can also be con-

structed directly as induced representations. Attempting to construct dual convolution
for R � R

×
1 directly requires consideration of π+ ⊗ π+, π+ ⊗ π−, π− ⊗ π+ and

π− ⊗π−, and the fusion rules for the “mixed parity” cases are not so straightforward.
Indeed, π+ ⊗ π− is not quasi-equivalent to an irreducible representation of R � R

×
1 .

Finally, we consider derivations onAdiag and hence on A(R � R
×
1 ). Let D : A →

A∗ be the derivation constructed in Sect. 4. Composing with the inclusion ι : Adiag →
A and the restriction ι∗ : A∗ → (Adiag)

∗, we obtain a derivation D1 = ι∗Dι :
Adiag → (Adiag)

∗. Cyclicity and weak compactness of D are inherited by D1, just
from the definition. Now let � be the transpose operator from Definition 4.4. Since
ι is a complete isometry and �∗ι = ι�∗, complete boundedness of �D : A → A∗
implies complete boundedness of �D1 = ι∗�Dι : Adiag → (Adiag)

∗.
It remains to check that D1 is not identically zero. Recall that by definition

D(ξ1 ⊗ η1)(ξ0 ⊗ η0) = 〈Sξ1, Rξ0〉〈Rη0, η1〉

where (Sξ)(t) = sign(t)ξ(t) and Rξ(t) = ξ(−t). Fix some non-zero vector α ∈ H+
and put β = Rα ∈ H−, so that α ⊗ α and β ⊗ β belong to Adiag. Since Sα = α and
R2 = id we have

D(α ⊗ α)(β ⊗ β) = 〈Sα, Rβ〉〈Rβ, α〉 = 〈α, α〉〈α, α〉 �= 0.
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Intertwining D1 with � yields a non-zero derivation ˜D : Ae(R � R
×) →

Ae(R � R
×)∗. This derivation turns out to coincide, up to a scaling factor, with the

derivation constructed in [1]; the proof requires the orthogonality relations for π± or
the Plancherel theorem for R � R

×
1 . Since � is a completely isometric algebra iso-

morphism, ˜D inherits the properties of D1. In particular ˜D is weakly compact and
“co-completely bounded” (using the terminology of [3]), properties which were less
obvious from the original construction in [1].

6 A New Banach Algebra Structure on Lp(R×) ̂⊗ Lq(R×)

Throughout this section, we assume 1 < p < ∞ and denote by q the conjugate index
to p. We denote the usual pairing between L p(R×) and Lq(R×) by 〈 , 〉p,q ; note
that 〈ξ, η〉2,2 = 〈ξ, η〉.

For sake of precision, recall that there is an isometric, C-linear isomorphism of
Banach spaces

ι̃ : L2(R×) ̂⊗ L2(R×) → L2(R×) ̂⊗ L2(R×); ξ ⊗ η 
→ ξ ⊗ η.

By intertwining with ι̃, we may transfer the Banach algebra structure defined on
L2(R×) ̂⊗ L2(R×) over to L2(R×) ̂⊗ L2(R×). Moreover, one can use the natural
analogue of the formula (3.4) to equip L p(R×) ̂⊗ Lq(R×) with a Banach algebra
structure, in a way that extends the p = q = 2 case.

That is: for ξ, ξ ′ ∈ L p(R×) and η, η′ ∈ Lq(R×), we claim that

(ξ ⊗ η) � (ξ ′ ⊗ η′) :=
∫

R×
(λ(1 + h)ξ · λ(1 + h−1)ξ ′)

⊗(λ(1 + h)η · λ(1 + h−1)η′) dh|h|
is a well-defined Bochner integral taking values in L p(R×) ̂⊗ Lq(R×), and that �
extends to a bounded bilinear map

(

L p(R×) ̂⊗ Lq(R×)
) × (

L p(R×) ̂⊗ Lq(R×)
) → L p(R×) ̂⊗ Lq(R×)

which is commutative and associative. We denote the resulting commutative Banach
algebra (L p(R×) ̂⊗ Lq(R×),�) by Ap.

Most of the steps needed to justify this claim consist of routine modifications of
the arguments in Sect. 3.2, so we shall not give full details here. We highlight some
of the relevant technical points.

(S1) There is an L p-analogue of Lemma3.1,with an isometryVp : L p(R××R
×) →

L p(R× × R
×) defined by the formula

Vp(X)(h, t) = X

(

t

1 + h
,

t

1 + h−1

)

.
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(Lp(R×) ⊗ Lq(R×)) ⊗ (Lp(R×) ⊗ Lq(R×))
shuffle−−−−→ (Lp(R×) ⊗ Lp(R×)) ⊗ (Lq(R×) ⊗ Lq(R×))
embed−−−−→ Lp(R× × R

×) ⊗ Lq(R× × R
×)

Vp⊗Vq−−−−→ Lp(R× × R
×) ⊗ Lq(R× × R

×)
identify−−−−→ Lp(R×;Lp(R×)) ⊗ Lq(R×;Lq(R×))
diagonal−−−−−→ L1(R×;Lp(R×) ⊗ Lq(R×))
trace−−−→ Lp(R×) ⊗ Lq(R×)

Fig. 2 The L p-analogue of Fig. 1

As before, this shows that for ξ, ξ ′ ∈ L p(R×) the function

F : h 
→ λ(1 + h)ξ · λ(1 + h−1)ξ ′

is a.e. equal to a strongly measurable L p(R×)-valued function, with

(∫

R×
‖F(h)‖p

p
dh

|h|
)1/p

= ‖ξ‖p‖ξ ′‖p .

One then performs the same construction with p replaced by q.
(S2) However, one has to be careful taking pointwise products of two functions in

L p(R×) or Lq(R×). The expression defining F(h) a priori only takes values
in L p/2(R×), which for 1 < p < 2 is not a Banach space (it is complete and
quasi-normed, but not locally convex).

(S3) Once one has shown that � is well-defined and contractive as a bilinear map
(L p(R×) ̂⊗ Lq(R×)) × (L p(R×) ̂⊗ Lq(R×)) → (L p(R×) ̂⊗ Lq(R×)), one
can prove it is commutative and associative by repeating the arguments of
Sect. 3.3 almost verbatim; the key point is that Cc(R

×) is still norm-dense in
both L p(R×) and Lq(R×).

(S4) The abstract description of � for H ̂⊗ H, shown in Fig. 1, has a natural and
straightforward generalization to the L p-setting, which is sketched in Fig. 2.

For p = 2, ι̃ : A → A2 is an isometric isomorphism of Banach algebras. Since
� : A → C0(R � R

×) is an injective homomorphism, it follows that A2 ∼= A is
semisimple, and that we can identify A2 with a Banach function algebra on R � R

×.
We now show that the same is true for Ap.
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The formula π(b, a)ξ(t) := e2π ibtξ(ta) still defines an isometric, SOT-continuous
representation of R � R

× on L p(R×). Hence, for each ξ ∈ L p(R×) and η ∈ Lq(R×)

there is an associated coefficient function:

�p(ξ ⊗ η)(b, a) := 〈π(b, a)ξ, η〉p,q =
∫

R×
e2π ibtξ(ta)η(t)

dt

|t |
((b, a) ∈ R � R

×). (6.1)

This formula defines a contractive linear map �p : L p(R×) ̂⊗ Lq(R×) →
Cb(R � R

×). (Note that �2 ◦ ι̃ = �.) We define Ap
π to be the space �p(Ap) ⊂

Cb(R � R
×) equipped with the quotient norm pushed forwards from Ap/ ker�p.

One can show that �p : Ap → Cb(R � R
×) is an algebra homomorphism, by a

direct calculation using the L p-analogue of Proposition 3.3. Hence Ap
π is a Banach

function algebra, which in the case p = 2 is just Aπ (R � R
×).

Proposition 6.1 Ap
π ⊆ C0(R � R

×).

Proof By linearity and continuity it suffices to prove that for each ξ, η ∈ Cc(R
×)

the coefficient function f := �p(ξ ⊗ η) belongs to C0(R � R
×). This now follows

because ξ, η ∈ L2(R×) and A2
π = Aπ (R � R

×) = A(R � R
×) ⊂ C0(R � R

×).
An alternative argument, which does not rely on the equality Aπ (R � R

×) =
A(R � R

×), goes as follows. Since ξ, η ∈ Cc(R
×), there is a compact K ⊂ R

× such
that f is supported inside R × K . Also, for each a ∈ K we have f ( , a) ∈ C0(R),
since t 
→ |t |−1ξ(ta)η(t) is integrable (use the Riemann–Lebesgue lemma for the
Fourier transform on R). By a standard compactness argument, whose details we
omit, we conclude that f ∈ C0(R × K ) ⊂ C0(R � R

×). ��
So far everything has been a straightforward translation of what was done for the

p = 2 case. In contrast, the next result seems to require extra work.

Theorem 6.2 �p : L p(R×) ̂⊗ Lq(R×) → C0(R � R
×) is injective. Consequently,

�p : Ap → Ap
π is an isometric isomorphism of Banach algebras.

For p = 2 this is a special case of general results already mentioned in Sect. 2.
For general p, we make use of results from [6] that are particular to π and R � R

×.
Consider the following space:

V0 := {ξ ∈ A(R) : supp ξ is compact and disjoint from {0}}. (6.2)

V0 is a linear subspace of A(R); standard properties of A(R) imply that V0 is norm-
dense in L p(R×) for every p ∈ (1,∞). The following lemma is a special case4 of a
result from [6], restated in a more direct form to avoid possible clashes of notational
conventions.

4 The lemma implies that for ξ and η in V0, the corresponding rank-one operator belongs to
π(L1(R � R

×)) ⊂ B(L2(R×)), and this is the form in which Eymard and Terp state their result. In fact,
they obtained a sharper result, which characterizes those f ∈ L1(R � R

×) such that π( f ) is a rank-one
operator on L2(R×).
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Lemma 6.3 (Eymard–Terp) Let ξ, η ∈ V0. Then there exists f ∈ L1(R � R
×) such

that, for every α, β ∈ Cc(R
×),

∫

R�R×
f (b, a)

(∫

R×
[π(b, a)α] · β

)

db
da

|a|2 =
∫

R×
αη

∫

R×
ξβ (6.3)

where the integrals over R
× are taken with respect to the Haar measure of this group.

Since we only need a subset of Eymard and Terp’s result, we include a proof of the
lemma for the reader’s convenience.
Proof (following [6, Prop. 1.13])

Let ξ, η ∈ V0. The right-hand side of Eq. (6.3) is equal, after a change of variables
a 
→ ta, to

∫

R×

∫

R×
ξ(t)η(ta) α(ta)β(t)

da

|a|
dt

|t | . (∗)

If we can find f ∈ L1(R � R
×) such that |a|−1

∫

R
f (b, a)e2π ibt db = ξ(t)η(ta) for

a.e. t, a ∈ R
×, then substituting this into (∗) and using Fubini would give the left-hand

side of Eq. (6.3).
Let g(t, a) = ξ(t)η(ta) viewed as a function R × R

× → C. The assumptions on
ξ and η ensure that a 
→ g( , a) is a continuous function R

× → A(R) which has
compact support. (C.f. [6, Exemple 1.17]). Applying the inverse Fourier transform for
R to g in the first variable, we obtain f1 ∈ L1(R × R

×, |a|−1d(t, a)) which satisfies

∫

R

f1(b, a)e−2π ibt db = g(t, a) = ξ(t)η(ta).

Thus the function f (b, a) = |a| f1(−b, a) has the required properties. ��
Proof of Theorem 6.2 It suffices to prove that�p : L p(R×)̂⊗Lq(R×) → C0(R � R

×)

is injective; the rest of the theorem follows from earlier observations.
Let ξ, η ∈ V0 and let f ∈ L1(G) be as provided by Lemma 6.3. Let jp : L p(R×)̂⊗

Lq(R×) → B(L p(R×)) be the map which sends an elementary tensor α ⊗ β to the
rank-one operator γ 
→ 〈γ, β〉p,qα. Then we may rewrite Eq. 6.3 as:

∫

R�R×
f (b, a)�p(α ⊗ β)(b, a) db

da

|a|2 = 〈 jp(α ⊗ β)ξ, η〉p,q
for all α, β ∈ Cc(R

×).

Hence, by linearity and continuity of jp and �p,

∫

R�R×
f (b, a)�p(w)(b, a) db

da

|a|2 = 〈 jp(w)ξ, η〉p,q
for all w ∈ L p(R×) ̂⊗ Lq(R×).
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In particular, suppose w ∈ ker(�p). Then 〈 jp(w)ξ, η〉 = 0. Since this holds for
all ξ, η ∈ V0, and since V0 is norm-dense in L p(R×) and in Lq(R×), it follows that
jp(w) = 0. Since L p(R×) has the approximation property, jp is injective, and we
conclude that w = 0 as required. ��
Remark 6.4 Define �p : M(R � R

×) → B(L p(R×)) defined as follows: for μ ∈
M(R � R

×), ξ ∈ L p(R×), and η ∈ Lq(R×), let

〈�p(μ)ξ, η〉p,q :=
∫

R�R×
〈π(b, a)ξ, η〉p,q dμ(b, a). (6.4)

�p is a contractive, weak∗-weak∗ continuous algebra homomorphism, and it can
be identified with the adjoint of �p. Hence injectivity of �p is equivalent to weak∗-
density of�p(M(R � R

×)) inB(L p(R×)). In effect, our proof of Theorem 6.2 works
by showing that �p(L1(R � R

×)) contains a norm-dense subspace of K(L p(R×))

and hence is weak∗-dense in B(L p(R×)). While this formulation of the proof is more
intuitive, it does not seem to make the argument significantly simpler. Note that for
p = 2 the weak∗-density result would follow from general facts about unitary repre-
sentations of locally compact groups, but the proofs of those facts use C∗-algebraic
tools which are not available for general representations on L p-spaces.

For any locally compact group G, the Figà-Talamanca–Herz algebra Ap(G) is
defined to be the coefficient space of the left regular representation of G on L p(G).
Note that A2(G) = A(G). We have seen above that A2

π = A2(R � R
×); we now

show that this fails for all other p.

Proposition 6.5 Let p ∈ (1, 2) ∪ (2,∞). There exists a sequence ( fn) in Ap
π ∩

Ap(R � R
×) such that each fn has norm 1 in Ap

π but fn → 0 in Ap(R � R
×).

Proof For this proof, we denote the norm in Ap(R � R
×) by ‖ · ‖Ap

.

Since R � R
× is amenable, a result of Herz5 implies that A2(R � R

×) ⊆
Ap(R � R

×), and that the inclusion is norm-decreasing. Therefore, if we take
ξ ∈ (L2 ∩ L p)(R×) and η ∈ (L2 ∩ Lq)(R×) and set f = �p(ξ ⊗ η) = �2(ξ ⊗ η),
we have ‖ f ‖Ap

π
= ‖ξ ⊗ η‖Ap

= ‖ξ‖p‖η‖q and

‖ f ‖Ap
≤ ‖ f ‖A2

= ‖ f ‖A2
π

= ‖ξ ⊗ η‖A2
= ‖ξ‖2‖η‖2 .

It therefore suffices to find functions ξn and ηn that lie in every L p(R×) and satisfy

‖ξn‖2
‖ξn‖p

‖ηn‖2
‖ηn‖q

→ 0 as n → ∞ ,

since we may then take fn = ‖ξn‖−1
p ‖ηn‖−1

q �p(ξn ⊗ηn). Consider γn : R
× → {0, 1}

defined by γn = 1[e−n ,en ]. Then γn ∈ L p(R×) for all p ∈ (1,∞) with ‖γn‖p
p = 2n.

5 For a guide to the relevant parts of Herz’s papers, see the appendix of [2]. For a direct approach, see the
proof of Theorem 8.3.9 in [4] and the historical notes which follow it.
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For 1 < p < 2, taking ξn = γn and ηn = γ1 yields

‖ξn‖2
‖ξn‖p

‖ηn‖2
‖ηn‖q

= (2n)
1
2− 1

p 2
1
2− 1

q = n
1
2− 1

p → 0 ;

while for 2 < p < ∞, taking ξn = γ1 and ηn = γn yields

‖ξn‖2
‖ξn‖p

‖ηn‖2
‖ηn‖q

= 2
1
2− 1

p (2n)
1
2− 1

q = n
1
2− 1

q → 0 .

So in both cases we have the desired sequences. ��
Theorem 6.6 If p ∈ (1, 2) ∪ (2,∞), then Ap(R � R

×) � Aπ
p .

Proof Suppose that Ap(R � R
×) ⊆ Ap

π . Since both Banach spaces embed continu-
ously in C0(R � R

×), the closed graph theorem would then imply that the inclusion
map Ap(R � R

×) → Ap
π is continuous. But this contradicts Proposition 6.5. ��

Remark 6.7 Since Ap
π is the coefficient space of an isometric group representation on

an L p-space, it is contained in the multiplier algebra of Ap(R � R
×). This follows

froman L p-versionofFell’s absorptionprinciple (valid for any locally compact group),
which appears to be folklore and goes back to the 1960s/70s. It would be interesting
to study the relationship between Ap

π and Ap(R � R
×) in greater detail.

7 Concluding Remarks

We finish by suggesting some avenues for further exploration.

Affine groups of other local fields Much of [6] works in the general setting of a field
K which is locally compact, second-countable and non-discrete, together with the
corresponding affine group K �K×. All the calculations of Sect. 3 and Sect. 6 should
remain true for such a K , provided that one replaces the exponential function in the
definition of π with a nontrivial character of (K ,+). However, Sects. 4 and 5 use
certain special features of R

× that are not shared by K×, and we do not expect them
to generalize to Qp, for instance.

Constructing explicit derivations on Fourier algebras The question of which groups
G allow non-zero derivations A(G) → A(G)∗ has been intensively studied in recent
years. The calculations in Sect. 4 may give new ideas or techniques for constructing
derivations on Fourier algebras of other (Lie) groups.

A concrete model for LCQG questions By enhancing the decomposition in Fig. 1
with operator-space structure, using row and column Hilbert spaces in the appropri-
ate places, one can show that � extends to a completely contractive map S1(H) ̂⊗op
S1(H) → S1(H), where ̂⊗op denotes the projective tensor product of operator spaces.
The adjoint of thismap is a∗-homomorphism�� : B(H) → B(H⊗2H), which is coas-
sociative since � is associative. Moreover, the adjoint of � : S1(H) → A(R � R

×)
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coincides with the canonical ∗-homomorphism VN(R � R
×) → B(H) obtained by

sending λ(b, a) to π(b, a). Because � is a homomorphism, �∗ intertwines �� with
the canonical comultiplication � on VN(R � R

×).
Itmight be interesting to study various general constructions forHopf vonNeumann

algebras, using (B(H),��) as our concrete model of (VN(R � R
×),�). In partic-

ular, to our knowledge it remains an open question if the operator systems WAP(̂G)

and LUC(̂G) are subalgebras of VN(G) for non-abelian G; our concrete model may
provide a new angle of attack when G = R � R

×.
One note of warning: the transpose operator � : B(H) → B(H) is not intertwined

with the canonical involution on VN(R � R
×), because �(π(b, a)) �= π(b, a)∗. If

we wish to also introduce Kac algebra structure on (B(H),��), the antipode is given
not by � but by a unitarily similar operator.

Questions regarding Ap and Ap
π . Let p ∈ (1, 2) ∪ (2,∞).

Q1. Does Ap have a bounded approximate identity?
Q2. Is Ap weakly amenable? In Sect. 4 we wrote down an explicit � ∈ (A ̂⊗ A)∗

which defines a non-zero derivation A → A∗. However, � does not extend to
a bounded bilinear functional on Ap ̂⊗ Ap.

Q3. Is Ap
π natural as a Banach function algebra on R � R

×? Equivalently: are all
characters on Ap of the form w 
→ �p(w)(b, a) for some (b, a) ∈ R � R

×?
Q4. Assuming a positive answer to the previous question: which other function-

algebra properties ofA(R � R
×) are shared byAp

π? For example: is this algebra
regular? Tauberian? It is not clear to the authors if Ap

π contains any non-zero
compactly supported functions.
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A Tensor Products of Induced Representations

Consider a semidirect product G = N � H . The left action of H on N is denoted
by h · n; if σ ∈ ̂N then the corresponding left action of H on ̂N is defined by
h · σ : n 
→ σ(h−1 · n).

Given a (continuous, unitary) representation σ : N → U(Hσ ) we define the
induced representation IndGN σ : G → U(L2(H ,Hσ )) by the formula

http://creativecommons.org/licenses/by/4.0/
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IndGN σ(n, h)ξ(k) = (k · σ)(n)[ξ(h−1k)] = σ(k−1 · n)[ξ(h−1k)], (A.1)

for ξ ∈ L2(H ,Hσ ), n ∈ N , h, k ∈ H . Combining Proposition 2.41 and Theorem
2.58 of [10], we get the following theorem:

Theorem A.1 Let G = N �H and let π1 and π2 be representations of N . For i = 1, 2
let 
i = Indπi be the induced representation of G on L2(H ,Hπi ). Then


1 ⊗ 
2 �
∫ ⊕

H
IndGN (h · π1 ⊗ π2) dh

via the unitary map W : L2(H ,Hπ1) ⊗2 L2(H ,Hπ2) → ∫ ⊕
H L2(H ,Hπ1 ⊗2 Hπ2)

defined by

W ( f ⊗ g) =
∫ ⊕

H
φρ(h)( f )⊗g dh,

where ρ is the right regular representation (ρ(h) f (k) = f (kh)), and φ f⊗g ∈
L2(H ,Hπ1 ⊗2 Hπ2) is defined by φ f ⊗g(h) = f (h) ⊗ g(h).

Proof A direct calculation shows that W preserves the inner product:

〈W ( f ⊗ g),W ( f ′ ⊗ g′)〉 =
∫

H
〈φρ(h) f⊗g, φρ(h) f ′⊗g′ 〉L2(H ,Hπ1⊗2Hπ2 ) dh

=
∫

H

∫

H
〈φρ(h) f ⊗g(k), φρ(h) f ′⊗g′ (k)〉Hπ1⊗2Hπ2

dk dh

=
∫

H

∫

H
〈ρ(h) f (k) ⊗ g(k), ρ(h) f ′(k) ⊗ g′(k)〉Hπ1⊗2Hπ2

dk dh

=
∫

H

∫

H
〈ρ(h) f (k), ρ(h) f ′(k)〉〈g(k), g′(k)〉 dk dh

=
∫

H

∫

H
〈 f (kh), f ′(kh)〉dh〈g(k), g′(k)〉 dk

= 〈 f , f ′〉〈g, g′〉.

Using (A.1), it is easy to verify that ρ(h) IndGN π1(x) f = IndGN (h · π1)(x)(ρ(h) f ).
Thus,

W (
1 ⊗ 
2)(x)( f ⊗ g) = W (
1(x) f ⊗ 
2(x)g)

=
∫ ⊕

H
φρ(h)(
1(x) f )⊗
2(x)g dh

=
∫ ⊕

H
φIndGN (h·π1)(x)(ρ(h) f )⊗
2(x)g

dh

=
∫ ⊕

H
IndGN (h · π1 ⊗ π2)(x)φρ(h) f ⊗g dh

=
(∫ ⊕

H
IndGN (h · π1 ⊗ π2) dh

)

(x)(
∫ ⊕

H
φρ(h) f ⊗g dh)
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=
(∫ ⊕

H
IndGN (h · π1 ⊗ π2) dh

)

(x)(W ( f ⊗ g)).

��
As an application, we now derive an alternative proof of Proposition 3.3. We use

the same notation as defined in Sect. 2. For r ∈ R, define χr : R → C by χr (t) =
exp(2π ir t), so that r 
→ χr is a group isomorphism R → ̂R.

Corollary A.2 (Explicit fusion relation for π) Let ξ , ξ ′, η, η′ ∈ H. Then

〈π(b, a)ξ, η〉 〈π(b, a)ξ ′, η′〉
=

∫

R×
〈π(b, a)(λ(1 + r)ξ · λ(1 + r−1)ξ ′) , λ(1 + r)η · λ(1 + r−1)η′〉 dr

|r | ,
(A.2)

where λ is the left regular representation of R
× on H.

Proof As in Eq. (2.3), we denote 
 = IndR�R
×

R
χ1. Recall that π = J
(·)J , where

J f = f̌ . By Theorem A.1,

W (
 ⊗ 
)(b, a)W−1 =
∫ ⊕

R×
IndR�R

×
R

χ 1
r +1(b, a)

dr

|r |
via the unitary map

W : L2(R×) ⊗2 L2(R×) →
∫ ⊕

L2(R×)

L2(R×)
dr

|r | , W ( f ⊗ g) =
∫ ⊕

R×
(ρ(r) f )g

dr

|r | ,

where ρ is the right regular representation of R
×, i.e. ρ(r) f (s) = f (sr). Here, we

have used the fact that r · χ1 ⊗ χ1 � χ 1
r +1. Hence

〈π(b, a)ξ, η〉 〈π(b, a)ξ ′, η′〉 = 〈
(b, a)Jξ, Jη〉 〈
(b, a)Jξ ′, Jη′〉
= 〈(
 ⊗ 
)(b, a)(ξ̌ ⊗ ξ̌ ′), η̌ ⊗ η̌′〉

which expands out to

〈(∫ ⊕

R×
IndR�R

×
R

χ 1
r +1(b, a)

dr

|r |
)

W (ξ̌ ⊗ ξ̌ ′),W (η̌ ⊗ η̌′)
〉

=
∫

R×

〈

IndR�R
×

R
χ 1

r +1(b, a)
(

(ρ(r)ξ̌ )ξ̌ ′
)

, (ρ(r)η̌)η̌′
〉 dr

|r |
=

∫

R×

∫

R×
exp(

2π ib(1 + r)

sr
)ξ̌ (

sr

a
)ξ̌ ′( s

a
)η̌(sr)η̌′(s) ds|s|

dr

|r |
=

∫

R×

∫

R×
exp(

2π ib(1 + r)

sr
)ξ(

a

sr
)ξ ′(a

s
)η(

1

sr
)η′(1

s
)
ds

|s|
dr

|r |
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=
∫

R×

∫

R×
exp(2π ibs)ξ(

sa

1 + r
)ξ ′( sa

1 + r−1 )η(
s

1 + r
)η′( s

1 + r−1 )
ds

|s|
dr

|r |
=

∫

R×
〈π(b, a)(λ(1 + r)ξ · λ(1 + r−1)ξ ′) , λ(1 + r)η · λ(1 + r−1)η′〉 dr

|r |
as required. ��
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