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Abstract
General properties of eigenvalues of A + τuv∗ as functions of τ ∈ C or τ ∈ R or
τ = ei θ on the unit circle are considered. In particular, the problem of existence
of global analytic formulas for eigenvalues is addressed. Furthermore, the limits of
eigenvalues with τ → ∞ are discussed in detail. The following classes of matrices are
considered: complex (without additional structure), real (without additional structure),
complex H -selfadjoint and real J -Hamiltonian.

Keyword Eigenvalue perturbation theory

Mathematics Subject Classification Primary 15A18 · 47A55

Dedicated to Henk de Snoo on the occasion of his 75th birthday. With admiration and respect.

Communicated by Seppo Hassi.

This article is part of the topical collection “Recent Developments in Operator Theory - Contributions in
Honor of H.S.V. de Snoo” edited by Jussi Behrndt and Seppo Hassi.

B André C. M. Ran
a.c.m.ran@vu.nl

Michał Wojtylak
michal.wojtylak@gmail.com

1 Afdeling Wiskunde, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam,
De Boelelaan 1111, 1081 HV Amsterdam, The Netherlands

2 Research Focus: Pure and Applied Analytics, North West University, Potchefstroom,
South Africa

3 Instytut Matematyki, Wydział Matematyki i Informatyki, Uniwersytet Jagielloński,
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1 Introduction

The eigenvalues of matrices of the form A + τuv∗, viewed as a rank one parametric
perturbation of the matrix A, have been discussed in a vast literature. We mention
the classical works of Lidskii [23], Vishik and Lyusternik [43], as well as the more
general treatment of eigenvalues of perturbations of the matrix in the books by Kato
[18] and Baumgärtel [4]. Recently, Moro, Burke and Overton returned to the results of
Lidskii in a more detailed analysis [32], while Karow obtained a detailed analysis of
the situation for small values of the parameter [17] in terms of structured pseudospec-
tra. Obviously, parametric perturbations appear in many different contexts. The works
most closely related to the current one concern rank two perturbations by Kula,Wojty-
lak andWysoczański [21], matrix pencils byDeTerán, Dopico andMoro [6] andMehl,
Mehrmann andWojtylak [29,30] andmatrix polynomials by De Terán and Dopico [7].

While the behaviour of eigenvalues for τ → 0 (i.e. local behaviour), is fully under-
stood, the behaviour for τ converging to infinity needs a separate analysis, as we will
show in the course of the paper. Furthermore, the problemof global properties of eigen-
values as functions of the parameter (loosely speaking, the behaviour for intermediate
values of τ ) still has open ends, cf. e.g. the recent paper by C.K. Li and F. Zhang
[22]. The main difficulty lies in the fact that the eigenvalues cannot be defined neither
analytically nor uniquely, even if we restrict the parameter τ to real numbers. As is
well-known the problem does not occur in the case of Hermitian matrices where an
analytic function of τ with Hermitian values has eigenvalues and eigenvectors which
can be arranged such that they are analytic as functions of τ (Rellich’s theorem) [35].
Other cases where the difficulty is detoured appear, e.g., in a paper by Gingold and
Hsieh [12], where it is assumed that all eigenvalues are real, or in the series of papers
of de Snoo (with different coauthors) [8,9,38,39] where only one distinguished eigen-
value (the so called eigenvalue of nonpositive type) is studied for all real values of τ .

Let us review now our current contribution. To understand the global properties
with respect to the complex parameter τ we will consider parametric perturbations of
two kinds: A + tuv∗, where t ∈ R, or A + ei θ uv∗, where θ ∈ [0, 2π). The former
case was investigated already in our earlier paper [34], we review the basic notions
in Sect. 2. However, we have not found the latter perturbations in the literature. We
study them in Sect. 3, providing elementary results for further analysis.

Joining these two pictures together leads to new results on global behaviour of the
eigenvalues in Sect. 4. Our main interest lies in generic behaviour of the eigenvalues,
i.e., we address a question what happens when a matrix A (possibly very untypical
and strange) is fixed and two vectors u, v are chosen numerically (we intentionally
do not use the word ‘randomly’ here). One of our main results (Theorem 11) shows
that the eigenvalues of A + τuv� can be defined globally as analytic functions in this
situation for real τ . On the contrary, if one restricts only to real vectors u, v this is no
longer possible (Theorem 13).

In Sect. 5 we study the second main problem of the paper: the limits of eigenvalues
for large values of the parameter. Although similar results can be found in the literature
we have decided to provide a full description, for all possible (not only generic) vectors
u, v. This is motivated by our research in the following Sect. 6, where we apply these
results to various classes of structured matrices. We also note there the classes for
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which a global analytic definition of eigenvalues is not possible (see Theorem 24). In
Sect. 7 we apply the general results to the class of matrices with nonnegative entries.

Although we focus on parametric rank one perturbations, we mention here that the
influence of a possibly non-parametric rank one perturbation on the invariant factors
of a matrix has a rich history as well, see, e.g., the papers by Thompson [41] and M.
Krupnik [20]. Together with the the works by Hörmander and Melin [16], Dopico
and Moro [33], Savchenko [36,37] and Mehl, Mehrmann, Ran and Rodman [24–26]
they constitute a linear algebra basis for our research, developed in our previous paper
[34]. What we add to these methods is some portion of complex analysis, by using the
function Q(λ) = v�(λIn − A)−1u and its holomorphic properties. This idea came to
us through multiple contacts and collaborations with Henk de Snoo (cf. in particular
the line of papers on rank one perturbations [1,13–15,38,39]), for which we express
our gratitude here.

2 Preliminaries

If X is a complex matrix (in particular, a vector) then by X̄ we define the entrywise
complex conjugate of X , further we set X∗ = X̄�. We will deal with rank one
perturbations

B(τ ) = A + τuv∗,

with A ∈ C
n×n , u, v ∈ C

n . The parameter τ is a complex variable, we will often write
it as t ei θ and fix either one of t and θ . We review now some necessary background
and fix the notation.

Let a matrix A be given.We say that a property (of a triple A, u, v) holds for generic
vectors u, v ∈ C

n if there exists a finite set of nonzero complex polynomials of 2n
variables, which are zero on all u, v not enjoying the property. Note that the polyno-
mials might depend on the matrix A. In some places below a certain property will hold
for generic u, v̄. This happens as in the current paper we consider the perturbations
uv∗, while in [34] uv� was used (even for complex vector u, v) . In any case, i.e.,
either u, v generic or u, v̄ generic, the closure of the set of ‘wrong’ vectors has an
empty interior.

By m A(λ) we denote the minimal polynomial of A. Define

puv(λ) = v∗m A(λ)(λIn − A)−1u (1)

and observe that it is a polynomial, due to the formula for the inverse of a Jordan
block (cf. [34]). Let λ1, . . . , λr be the (mutually different) eigenvalues of A, and
corresponding to the eigenvalue λ j , let n j,1 ≥ n j,2 ≥ · · · ≥ n j,κ j be the sizes of the
Jordan blocks of A. We shall denote the degree of the polynomial m A(λ) by l, so

l =
r∑

j=1

n j,1.
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Then

deg puv(λ) ≤ l − 1 (2)

and equality holds for generic vectors u, v ∈ C
n , see [34].

It can be also easily checked (see [36] or [34]) that the characteristic polynomial
of B(τ ) satisfies

det(λIn − B(τ )) = det(λIn − A) ·
(
1 − τv∗(λIn − A)−1u

)

= det(λIn − A)

m A(λ)
(m A(λ) − τ puv(λ)) . (3)

Therefore, the eigenvalues of A + τuv∗ which are not eigenvalues of A, are roots of
the polynomial

pB(τ )(λ) = m A(λ) − τ puv(λ). (4)

Note that some eigenvalues of A may be roots of this polynomial as well. Saying this
differently, we have the following inclusion of spectra of matrices

σ(B(τ )) \ σ(A) ⊆ p−1
B(τ )(0) ⊆ σ(B(τ )), τ ∈ C, (5)

but each of these inclusions may be strict. Further, let us call an eigenvalue of A
frozen (by u, v) if it is an eigenvalue of B(τ ) for every complex τ . Directly from (3)
we see that each frozen eigenvalue is either a root of det(λIn − A)/m A(λ), then we
call it structurally frozen, or a root of both m A(λ) and puv(λ), and then we call it
accidentally frozen. Note that, due to a rank argument, λ j is structurally frozen if and
only if it has more than one Jordan block in the Jordan canonical form. Obviously,
both types of freezing can occur simultaneously: a structurally frozen eigenvalue can
be, additionally, accidentally frozen by a specific choice of vectors u, v, cf. Example
1 below.

Recall that the Jordan form of B(τ ) at structurally frozen eigenvalues may vary for
different u, v, which was a topic of many papers, see, e.g., [16,34,36]. Nonetheless,
being structurally frozen obviously does not depend on u, v. In contrast, generically
m A(λ) and puv(λ) do not have a common zero [34], i.e., a slight change of u, v leads
to defrosting of λ j (which explains the name accidentally). In spite of this, we still
need to tackle such eigenvalues in the course of the paper. The main technical problem
is shown by the following, almost trivial, example.

Example 1 Let A = 0 ⊕ A1, where A1 ∈ C
(n−1)×(n−1) has a single eigenvalue at

λ1 �= 0with a possibly nontrivial Jordan structure and let u = v = e1. The eigenvalues
of B(τ ) are clearly τ and λ1 and the eigenvalue λ1 is accidentally frozen. (n.b., if the
Jordan structure of A1 at λ1 consists of at least two blocks, then λ1 is also a structurally
frozen eigenvalue of A). Observe that if we define λ0(τ ) = τ then for τ = λ1 there is
a sudden change in the Jordan structure of B(τ ) at λ0(τ ).
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To handle the evolution of eigenvalues of B(τ ) without getting into the trouble
indicated above we introduce the rational function

Q(λ) := v∗(λIn − A)−1u = puv(λ)

m A(λ)
. (6)

It will play a central role in the analysis. Note that Q(λ) is a rational function with
poles in the set of eigenvalues of A, but not each eigenvalue is necessarily a pole of
Q(λ). More precisely, if λ j ( j ∈ {1, . . . r}) is an accidentally frozen eigenvalue of A
then Q(λ) does not have a pole of the same order as the multiplicity of λi as a root of
m A(λ), i.e, in the quotient Q(λ) = puv(λ)

m A(λ)
there is pole-zero cancellation.

Proposition 2 Let A ∈ C
n×n, let τ0 ∈ C, let u, v ∈ C

n and assume that λ0 ∈ C is not
an eigenvalue of A. Then λ0 is an eigenvalue of A + τ0uv∗ of algebraic multiplicity
κ ∈ {1, 2, . . . } if and only if

Q(λ0) = 1

τ0
, Q′(λ0) = 0, . . . , Q(κ−1)(λ0) = 0, Q(κ)(λ0) �= 0. (7)

If this happens, then λ0 has geometric multiplicity one, i.e., A + τ0uv∗ has a Jordan
chain of size κ at λ0. Finally, λ0 is not an eigenvalue of A +τ1uv∗ for all τ1 ∈ C\{τ0}.
Remark 3 If κ = 1 condition (7) should be read as Q(λ0) = 1/τ0, Q′(λ0) �= 0. In
this case the implicit function theorem tells us that the eigenvalues can be defined
analytically in the neigbourhood of τ0, λ0. If κ > 1 then the analytic definition is not
possible and the eigenvalues expand as Puiseux series, that is, they behave locally as
the solutions of (λ − λ0)

κ = τ − τ0, see, e.g., [4,18,19].

Remark 4 One may be also tempted to define the eigenvalues via solving the equation
Q(λ) = 1/τ at λ0 being an accidentally frozen eigenvalue of A for which Q(λ) does
not have a pole at λ0. This would be, however, a dangerous procedure, as λ0 might get
involved in a larger Jordan chain. For example let

B(τ ) =
[
1 1
0 τ

]

with an accidentally frozen eigenvalue 1 and Q(λ) = 1/λ. Here for τ = 1 we get a
Jordan block of size 2, but clearly the eigenvalues in a neighbourhood of λ0 = 1 and
τ0 = 1 do not behave as 1 plus the square roots of τ − 1. For this reason we will avoid
the accidentally frozen eigenvalues.

Remark 5 Note that in case m A and puv have no common zeroes, i.e., there are no
accidentally frozen eigenvalues, Q′(λ) can be expressed in terms of m A and puv as
follows

Q′(λ) = p′
uv(λ)m A(λ) − puv(λ)m′

A(λ)

m A(λ)2
, (8)
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where cancellation of roots between numerator and denominator occurs in an eigen-
value of A when corresponding to that eigenvalue there is a Jordan block of size bigger
than one.

Proof of Proposition 2 For the proof of the first statement we start from the definition of
Q(λ). Note that m A(λ0) is necessarily non zero, and so puv(λ0) is non-zero as well. If
λ0 is an eigenvalue of B(τ0)which is not an eigenvalue of A, then, since pB(τ0)(λ0) =
0, we have from (6) that Q(λ0) = 1

τ0
, which proves the first equation in (7).

Furthermore, from the definition of Q(λ) we have puv(λ) − Q(λ)m A(λ) is identi-
cally zero. So, for any ν also the ν-th derivative is zero. By the Leibniz rule this gives

p(ν)
uv (λ) −

ν∑

j=0

(
ν

j

)
Q( j)(λ)m(ν− j)

A (λ) = 0.

We rewrite this slightly as follows:

p(ν)
uv (λ) − Q(λ)m(ν)

A (λ) =
ν∑

j=1

(
ν

j

)
Q( j)(λ)m(ν− j)

A (λ). (9)

Now, if λ0 is an eigenvalue of algebraic multiplicity κ of B(τ0) and not an eigen-
value of A, then for j = 0, 1, . . . , κ − 1 we have m( j)

A (λ0) − τ0 p( j)
uv (λ0) = 0. Take

ν = 1 in (9), and set λ = λ0:

p′
uv(λ0) − 1

τ0
m′

A(λ0) = Q′(λ0)m A(λ0).

Since m A(λ0) �= 0 it now follows that Q′(λ0) �= 0 when κ = 1, while Q′(λ0) = 0
when κ > 1. Now proceed by induction. Suppose we have already shown that
Q(i)(λ0) = 0 for i = 1, . . . , k < κ − 1. Then set ν = k + 1 in (9) to obtain,
using the induction hypothesis, that

0 = p(k+1)
uv (λ0) − Q(λ0)m

(k+1)
A (λ0) = Q(k+1)(λ0)m A(λ0).

Once again using the fact that m A(λ0) �= 0, we have that Q(k+1)(λ0) = 0. Finally, for
ν = κ in (9), and using what we have shown so far in this paragraph, we have

0 �= p(κ)
uv (λ0) − Q(λ0)m

(κ)
A (λ0) = Q(κ)(λ0)m A(λ0),

and so (7) holds.
Conversely, suppose (7) holds. Then by the definition (6) of Q we have m A(λ0) −

τ0 puv(λ0) = 0, so by (4) λ0 is an eigenvalue of B(τ0). Moreover, by (9) we have
m( j)

A (λ0) − τ0 p( j)
uv (λ0) = 0 for j = 1, . . . , κ1, while m(κ)

A (λ0) − τ0 p(κ)
uv (λ0) =

τ0Q(κ)(λ0)ma(λ0) �= 0. Hence, λ0 is an eigenvalue of B(τ0) of algebraic multiplicity
κ , completing the proof of the first statement.

For the proof of the second statement, note that as λ0 In − A is invertible, any rank
one perturbation of λ0 In − A can have only a one dimensional kernel. Therefore, the
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Jordan structure of the perturbation at λ0 is fixed. The last statement for τ1 = 0 follows
from the assumption that λ0 /∈ σ(A) and for τ1 /∈ {0, τ0} directly from (7). �

The statements in Proposition 2 can also be seen by viewing 1− τv∗(λIn − A)−1u
as a realization of the (scalar) rational function 1−τ Q(λ). From that point of view the
connection between poles of the function and eigenvalues of A, respectively, zeroes
of the function and eigenvalues of B(τ ) = A + τuv∗ is well-known. For an in-depth
analysis of this connection, even for matrix-valued rational matrix functions, see [2],
Chapter 8. We provided above an elementary proof of the scalar case for the reader’s
convenience.

Note the following example, now more involved than the one in Remark 4.

Example 6 In this example we return to the consideration of accidentally frozen eigen-

values. Let A =
⎡

⎣
1 1 0
0 1 0
0 0 2

⎤

⎦ , u = v = e1. Then we have:

m A(λ) = (λ − 1)2(λ − 2) = λ3 − 4λ2 + 5λ − 2,

Q(λ) = 1

λ − 1
, Q′(λ) = − 1

(λ − 1)2
,

puv(λ) = (λ − 1)(λ − 2) = λ2 − 3λ + 2.

Also B(τ ) = A + τuv∗ =
⎡

⎣
τ + 1 1 0
0 1 0
0 0 2

⎤

⎦, which has eigenvalues 1, 2 and τ + 1.

Note that both 1 and 2 are, by definition, accidentally frozen eigenvalues, although
their character is rather different.

Let us consider Proposition 2 for this example. Note that Q′(λ) has no zeroes,
which tells us that there are no double eigenvalues of B(τ ) which are not eigenvalues
of A. However, note that the zeros of m A(λ) and puv(λ) are not disjoint. In particular,

p′
uv(λ)m A(λ) − puv(λ)m′

A(λ) = (λ − 1)2(λ − 2)2,

which detects the double eigenvalue of B(0) at λ1 = 1 and a double semisimple
eigenvalue of B(1) at λ2 = 2, however, as can be seen from (8) the roots of this
polynomial are cancelled by the roots of m2

A(λ).

3 Angular Parameter

In this section we will study the perturbations of the form

A + t ei θ uv∗, θ ∈ [0, 2π),
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where t > 0 is a parameter. More precisely, we will be interested in the evolution of
the sets

σ(A, u, v; t) =
⋃

0≤θ<2π

σ(A + t ei θ uv∗)\σ(A),

with the parameter t > 0.
It should be noted that the sets σ(A, u, v; t) are strongly related to the pseudospec-

tral sets as introduced in e.g., [17], Definition 2.1. In fact they can be viewed as the
boundaries of pseudospectral sets for the special case of rank one perturbations. The
interest in [17], see in particular the beautiful result in Theorem 4.1 there, is in the
small t asymptotics of these sets. Our interest below is hence more in the intermediate
values of t and in the large t asymptotics of these sets.

By z1, . . . , zd we denote the (mutually different) zeroes of Q′(λ), note that some
of them might happen to be accidentally frozen eigenvalues, a slight modification of
Example 6 is left to the reader, see also Remark 9 below. We define t j as

t j = 1

|Q(z j )| , j = 1, . . . , d.

We group some properties of the sets σ(A, u, v; t) in one theorem. Below by a
smooth closed curve we mean a C∞–diffeomorphic image of a circle.

Theorem 7 Let A ∈ C
n×n and let u, v ∈ C

n be two nonzero vectors, then the following
holds.

(i) For t > 0, t �= t j ( j = 1, . . . , d) the set σ(A, u, v; t) consists of a union of
smooth closed algebraic curves that do not intersect mutually.

(ii) For t = t j ( j = 1, . . . , d) the set σ(A, u, v; t) is locally diffeomorphic with
the interval, except the intersection points at those zi for which t j = 1/|Q(zi )|
(possibly there are several such zi ’s).

(iii) For generic u, v ∈ C
n and for all j = 1, . . . d the point z j is a double eigenvalue

of A + τuv∗, for τ = 1/Q(z j ). Two of the curves σ(A, u, v, t) meet for t = t j

at the point z j . These curves are at the point z j not differentiable, they make a
right angle corner, and meet at right angles as well.

(iv)

σ(A) ∪
⋃

t>0

σ(A, u, v; t) ∪ Q−1(0) = C. (10)

(v) The function t → σ(A, u, v; t) is continuous in the Hausdorff metric for t > 0.
(vi) σ(A, u, v; t) converges to Q−1(0) ∪ {∞} with t → ∞.

Proof First observe that

σ(A, u, v; t) =
{

z ∈ C : 1

|Q(z)| = t

}
, t > 0.
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Indeed, the inclusion ‘⊆’ follows from the definition of σ(A, u, v; t) and Proposition
2. To see the converse inclusion let 1/Q(z) = τ , with some complex nonzero τ , then
again by Proposition 2 z is an eigenvalue of A + τuv∗, i.e. z ∈ σ(A, u, v; |τ |).

Onemay rephrase the above by saying that σ(A, u, v; t) is a level set of themodulus
of a rational function 1/Q(z). Since these level sets can also be written as the set of
all points z ∈ C for which |m A(z)|2 = t2|puv(z)|2 it is clear that for each t they are
algebraic curves. For t �= t j ( j = 1, . . . , d) the curves have no self-intersection and
hence are smooth. This shows statements (i) and (ii).

Let us now prove (iii). First note that for generic u, v ∈ C
n there are no accidentally

frozen eigenvalues, as remarked in the end of Sect. 2. Hence, every eigenvalue of
A + τuv∗ of multiplicity κ , which is not an eigenvalue of A, is necessarily a zero of
Q(λ) − 1/τ of multiplicity κ , see Proposition 2. However, by Theorem 5.1 of [34]
for generic u, v ∈ C

n all eigenvalues of A + τuv∗ which are not eigenvalues of A are
of multiplicity at most two, and by Proposition 2 the geometric multiplicity is one.
Therefore the meeting points are at z j with Q′(z j ) = 0, Q′′(z j ) �= 0. The behaviour
of the eigenvalue curves concerning right angle corners follows from the local theory
on the pertubation of an eigenvalue of geometric and algebraic multiplicity two for
small values of t − t j (see e.g., the results of [23], but in particular, because of the
connection with pseudospectra, see [17]).

To see (iv) let λ0 ∈ C be neither an eigenvalue of A nor a zero of Q(λ). Then
Q(λ0) = 1/τ0 for some τ0 ∈ C, hence λ0 ∈ σ(A, u, v; |τ0|). Statement (v) follows
from Proposition 2.3 part (c) in [17]. To see (vi) note that 1/|Q(λ)|, as an absolute
value of a holomorphic function, does not have any local extreme points onC\p−1

uv (0)
and it converges to infinity with |λ| → ∞. �

In Sect. 5 we will study in detail the rate of convergence in point (v) above.

Example 8 Consider the matrix

A =

⎡

⎢⎢⎣

−2 0 0 0
0 0 0 0
0 0 4 1
0 0 0 4

⎤

⎥⎥⎦

and the vectors

u =

⎡

⎢⎢⎣

−0.2 + 0.7 i
1.5 − 1.2 i
1.5 + 0.5 i
1.5 + 1.5 i

⎤

⎥⎥⎦ and v =

⎡

⎢⎢⎣

0.5 + 0.3 i
1 − 0.8 i
0.8 + 0.9 i

−0.3 − 1.2 i

⎤

⎥⎥⎦ .

In Fig. 1 one may find the graph of the corresponding function |1/Q(λ)|, and a couple
of curves σ(A, u, v, t) at values of t where double eigenvalues occur. Observe that
these curves are often called level curves or contour plots of the function |1/Q(λ)|.
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Fig. 1 The plot of |1/Q(λ)| and the curves σ(A, u, v, t) for the values of t for which there is a double
eigenvalue

Remark 9 Observe that one may easily construct examples with z1, . . . , zd given. Let

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
a1 a2 · · · · · · an

⎤

⎥⎥⎥⎥⎥⎥⎦
, u =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
...
...

0
1

⎤

⎥⎥⎥⎥⎥⎥⎦
, v =

⎡

⎢⎢⎢⎢⎢⎢⎣

a1
a2
...
...

an

⎤

⎥⎥⎥⎥⎥⎥⎦

with a1, . . . an ∈ C\{0}. Then for τ = 1 the matrix B(τ ) = A + τuv∗ is equal to the
n×n Jordan block with eigenvalue zero, and hence has an eigenvalue of multiplicity n.
By a construction similar to Example 6 wemay also make this eigenvalue accidentally
frozen.

Example 10 In a concrete example, let

A =
⎡

⎣
0 1 0
0 0 1
1 −1 1

⎤

⎦ , u =
⎡

⎣
0
0
1

⎤

⎦ , v =
⎡

⎣
1

−1
1

⎤

⎦ .

Then m A(λ) = (λ − 1)(λ2 + 1) so the eigenvalues of A are 1,± i. Further

puv(λ) = λ2 − λ + 1 with roots at 1
2 ±

√
3
2 i, and the zeroes of Q′(λ) are the zeroes of

p′
uv(λ)m A(λ)− puv(λ)m′

A(λ) = −λ2(λ2−2λ+3)which has roots at 0 and at 1±√
2 i.

The corresponding values of t are, respectively, 1
|Q(0)| = 1 and 1

|Q(1±√
2 i)| = 4√

3
. The

eigenvalues of A + τuv∗ are plotted for the values τ = tei θ with t = 1 and t = 4√
3

in the graph below (Fig. 2).
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Fig. 2 Eigenvalue curves (right) showing a triple eigenvalue at zero for τ = 1 and double eigenvalues at
1 ± √

2i for τ = 4√
3
. On the left the graph of 1/|Q(λ)| with the same eigenvalue curves plotted in the

ground plane. Green stars indicate the eigenvalues of A, blue stars the roots of puv(λ) and triangles the
zeroes of Q′(λ)

4 Eigenvalues as Global Functions of the Parameter

We return now to the problem of defining the eigenvalues as functions of the parameter.
Recall that l stands for the degree of the minimal polynomial of A. We start with the
case where we consider the parameter τ to be real.

Theorem 11 Let A ∈ C
n×n and u ∈ C

n\{0} be fixed. Then for all v ∈ C
n except some

closed set with empty interior the following holds.

(i) The eigenvalues of

B(τ ) = A + τuv∗, τ ∈ (0,+∞),

which are not eigenvalues of A, can be defined uniquely (up to ordering) as
functions λ1(τ ), . . . , λl(τ ) of the parameter τ ∈ (0,+∞).

(ii) The remaining part of the spectrum of B(τ ) consists of structurally frozen eigen-
values of A, i.e., there are no accidentally frozen eigenvalues (see formula (5)
and the paragraphs following it for definitions).

(iii) For i, j = 1, . . . d, i �= j one has λi (τ ) �= λ j (τ̃ ) for all τ, τ̃ ∈ (0,+∞).
(iv) The functions λ j (t) can be extended to analytic functions in some open complex

neighbourhood of (0,+∞).

Proof First let us write explicitly for which u, v all the statements will hold. Due
to Proposition 2 and Remark 3 the necessary and sufficient condition for this is the
following: there are no accidentally frozen eigenvalues and Q(z j ) /∈ R for all zeros
z j of Q′(λ). We will now show that given arbitrary u0, v0 which do not satisfy the
above condition one may construct u, v, lying arbitrarily close to u0, v0 such that the
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condition holds on some open neighbourhood of u, v.Wewill do this in two steps. First
let us choose ũ, ṽ such that there are no accidentally frozen eigenvalues, i.e., there are
no common eigenvalues ofm A(λ) and pũṽ(λ). By [34] onemay pick ũ and ṽ arbitrarily
close to u0, v0 and the desired property will hold in some small neighbourhood of ũ, ṽ.
Furthermore, ũ, ei θ ṽ will also obey this property for all θ ∈ (−π, π). Note that one
may find θ �= 0 arbitrarily small enough, so that with v = ei θ̃ v (|θ − θ̃ | small enough)
and u = ũ one has Q(zi ) /∈ R for i = 1, . . . d. �

Observe that the statement is essentially stronger and the proof is much easier than
in Theorem 6.2 of [34].

Proposition 12 The statements of Theorem 11 are also true for the angular parameter,
i.e., if one replaces τ ∈ (0,+∞) by τ = ei θ , θ ∈ (0, 2π) in all statements.

Proof The equivalent condition for all the statements is in this case: there are no
accidentally frozen eigenvalues and |Q(z j )| �= 1 for all zeros z j of Q′(λ). Hence, in
the last step of the proof we need to replace ṽ by t ṽ with t > 0 small enough. �

However, note that if we replace the complex numbers by the real numbers the
statement is false, as the following theorem shows.

Theorem 13 Let A ∈ R
n×n and u, v ∈ R

n be such that for some τ0 > 0 an analytic
definition of eigenvalues of A + τuv� is not possible due to

Q(x) = 1/τ0, Q′(x) = 0, Q′′(x) �= 0

for some x ∈ R which is not an eigenvalue of A, cf. Remark 3. Then for all Ã ∈ R
n×n,

ũ ∈ R
n, ṽ ∈ R

n with ‖ṽ − v‖, ‖ũ − u‖ and
∥∥∥ Ã − A

∥∥∥ sufficiently small the analytic

definition of eigenvalues of Ã+τ ũṽ∗ is not possible due to existence of x̃ ∈ R, τ̃0 > 0,
depending continuously on Ã, ũ, ṽ with

Q̃(x̃) = 1/τ̃0, Q̃′(x̃) = 0, Q̃′′(x̃) �= 0,

where Q̃(z) corresponds to the perturbation Ã + τ ũṽ∗ as in (6).

Proof Recall the formulas (6) and (8) and set

q0(λ) = p′
uv(λ)m A(λ) − puv(λ)m′

A(λ), (11)

so that

Q′(λ) = q0(λ)

m A(λ)2
. (12)

By assumption we have that m A(x) �= 0 and q0(x) = 0. We also get that q ′
0(x) �= 0,

as otherwise Q′′(x) = 0. We define q̃0(λ) analogously as q0(λ), i.e.,

Q̃′(λ) = q̃0(λ)

m Ã(λ)
.
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Both polynomials q̃0(λ) and m Ã(λ) have coefficients depending continuously on the
entries of Ã, ũ, ṽ. As x is a simple zero of the polynomial q0(λ), which is additionally
real on the real line, we have that there is a real x̃ near x such that q̃0(x̃) = 0 and
m Ã(x̃) �= 0 for ũ, ṽ, Ã, as in the statement. Defining t̃ := 1/Q̃(x̃) finishes the proof.

�
Remark 14 To give a punch line to Theorem 13 we make the obvious remark that
A, u, v satisfying the assumptions do exist. For each such A the set of vectors u, v ∈ R

n

for which a double eigenvalue appears has a nonempty interior in Rn , contrary to the
complex case discussed in Theorem 11.

Note another reason for which the eigenvalues cannot be defined globally analyti-
cally for real matrices.

Proposition 15 Assume that the matrix A ∈ R
n×n has no real eigenvalues and let u, v

be two arbitrary nonzero real vectors. Then for some τ0 ∈ R\{0} an analytic definition
of eigenvalues of A + τuv� is not possible due to

Q(x) = 1/τ0, Q′(x) = 0

for some x ∈ R, cf. Remark 3.

Proof Note that Q(λ) is real and differentiable on the real line, due to the assumptions
on A. As Q(τ ) → 0 with |τ | → ∞, one has a local real extreme point of Q(λ). �

5 The Eigenvalues of A + �uv∗ for Large |�|
We shall also be concerned with the asymptotic shape of the curves σ(A, u, v; t). The
proof of the following result was given in [42]: let A be an n × n complex matrix,
let u, v be generic complex n-vectors. Asymptotically, as t → ∞, these curves are
circles, one with radius going to infinity centered at the origin, and the others with
radius going to zero, and centers at the roots of puv(λ). The result will be restated in a
more precise form below, in Theorem 17, part (v). For this we first prove the following
lemma.

Lemma 16 Let m A(λ) = ∑l
k=0 mkλ

k . Then

puv(λ) =
l−1∑

i=0

⎛

⎜⎜⎝
∑

k− j=i+1
k, j≥0

mkv
∗ A j u

⎞

⎟⎟⎠λi . (13)

Proof Recall that puv(λ) = m A(λ)v∗(λIn−A)−1u. Expanding (λIn−A)−1 inLaurent
series for |λ| ≥ ‖A‖ we obtain

puv(λ) = m A(λ)v∗(λIn − A)−1u =
l∑

k=0

∞∑

j=0

mkv
∗ A j uλk− j−1.
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Put k − j − 1 = i and interchange the order of summation to see that

puv(λ) =
l−1∑

i=−∞

⎛

⎜⎜⎝
∑

k− j−1=i
k, j≥0

mkv
∗ A j u

⎞

⎟⎟⎠ λi .

However, puv(λ) is a polynomial in λ, hence the sum from i = −∞ to −1 vanishes,
and we arrive at formula (13). �

Next, we analyze the roots of the polynomial pB(τ ) = m A(λ)−τ puv(λ) as τ → ∞.
Wehave already shown in [34] that ifu∗v �= 0, then l−1of these rootswill approximate
the roots of puv(λ), while one goes to infinity. The condition u∗v �= 0 obviously holds
for generic u, v, however the next theorem presents the full picture in view of later
applications to structured matrices.

Theorem 17 Let A ∈ C
n×n, u, v ∈ C

n and let l ∈ N denote the degree of the minimal
polynomial m A(λ). Assume also that

v∗u = · · · = v∗ Aκ−1u = 0, v∗ Aκu �= 0, (14)

for some κ ∈ {0, . . . , l − 1} and put

v∗ Aκu = rκei θκ .

Then

(i) puv(λ) is of degree l − κ − 1;
(ii) l − κ − 1 eigenvalues of B(τ ) converge to the roots of puv(λ) as τ → ∞;
(iii) there are κ +1 eigenvalues λ1(τ ), . . . , λκ+1(τ ) of A + τuv∗ which go to infinity

with r = |τ | → ∞ as

λ j (rei θ ) = κ+1
√

rrκei(
1

κ+1 (θ+θκ )+ 2 j
κ+1π) + O(1), j = 1, 2, . . . , κ + 1,

where θ ∈ [0, 2π) is fixed, and for all of them we have

dλ j

dτ
= v∗ Aκu

lλκ
j

+ O
(
λ−(κ+1)

)
.

so these eigenvalues can be parametrized by a curve

	(θ) = (rrκ)
1

κ+1 exp(i θ) + O(1), (r → ∞);

(iv) as θ → 2π one has, after possibly reordering the eigenvalues
λ1(τ ), . . . , λκ+1(τ ), that

λ j (rei θ ) → λ j+1(r), j = 1, . . . , κ, λκ+1(rei θ ) → λ1(r);
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(v) additionally, let ζ1, . . . , ζν denote the roots of the polynomial puv(λ) with mul-
tiplicities respectively k1, . . . kν . Denote

v∗(ζ j In − A)−(k j +1)u = ρ j e
i θ j , j = 1, . . . , ν.

Then σ(A, u, v; t) for sufficiently large τ can be parametrized by disjoint curves
	1(θ), . . . , 	ν+1(θ), where the κ + 1 eigenvalues which go to infinity trace out
a curve

	ν+1(θ) = (rrκ)
1

κ+1 exp(i θ) + O(1)

while the k j eigenvalues near ζ j trace out a curve 	 j (θ) which is of the form

	 j (θ) = ζ j + |τ |−
1

k j ρ
− 1

k j
j ei θ + O

(
|τ |−

2
k j

)
, 0 ≤ θ ≤ 2π,

with r = |τ | → ∞.

Proof Statement (i) results directly from Lemma 16.
Statement (ii) is a consequence of formulas (3) and (4) expressing the characteristic

polynomial of A + τuv∗ in terms of pB(τ ) = m A(λ) − τ puv(λ) (formula (4)). Then,
by [18, Sect. II.1.7] statement (ii) follows.

For statement (iii) and following, by (13)

pB(τ )(λ) =
l∑

i=0

miλ
1 − τ

l−1∑

i=0

⎛

⎜⎜⎝
∑

k− j=i+1
k, j≥0

mkv
∗ A j u

⎞

⎟⎟⎠ λi

= λl +
l−1∑

i=0

⎛

⎜⎜⎝mi − τ

⎛

⎜⎜⎝
∑

k− j=i+1
k, j≥0

mkv
∗ A j u

⎞

⎟⎟⎠ λi

⎞

⎟⎟⎠ .

In case v∗u = 0, v∗ Au = 0, . . . , v∗ Aκ−1u = 0 and v∗ Aκu �= 0, this becomes

pB(τ )(λ) = λl + λl−1ml−1 + · · · + λl−κml−κ

+ λl−κ−1(ml−κ−1 − τv∗ Aκu) + lower order terms.

For large values of λ and τ the dominant terms are λl−κ−1(λκ+1 − τv∗ Aκu), showing
that indeed, the largest roots behave asymptotically as the (κ +1)-th roots of τv∗ Aκu.

Moreover, for the derivative of λ with respect to τ we have by the implicit function
theorem

dλ

dτ
= −∂ pB(τ )

∂τ
/
∂ pB(τ )

∂λ
= puv(λ)

m′
A(λ) − τ p′

uv(λ)
.
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Now puv(λ) = λl−κ−1v∗ Aκu + lower order terms, and

m′
A(λ) − τ p′

uv(λ) = lλl−1 + lower order terms.

So

dλ

dτ
= λl−κ−1v∗ Aκu + lower order terms

lλl−1 + lower order terms
.

Dividing by λl−κ−1 in numerator and denominator we arrive at

dλ

dτ
= v∗ Aκu

l

1

λκ
+ O

(
λ−(k+1)

)
.

which concludes the proof of part (iii).
Note that also part (iv) follows directly from part (iii) combined with the continuity

of the eigenvalues as a function of θ (even when taking θ ∈ R, rather than restricting
to θ ∈ [0, 2π)).

For part (v) and the remaining parts of part (iii) in the general case, recall that
the eigenvalues of A + τuv∗ which are not eigenvalues of A are (among the) roots of
m A(λ)−τ puv(λ), which are the same as the roots of the polynomial 1

τ
m A(λ)− puv(λ).

First we take θ = 0, so τ = t .
Put s = 1/t , and consider the polynomial sm A(λ)− puv(λ) as a small perturbation

of the polynomial −puv(λ). By general theory concerning the behavior of the roots
of a polynomial under such a perturbation (see, e.g., [4] Appendix, [19] or Puiseux’s
original 1850 paper) for small s the roots of sm A(λ)− puv(λ) near the roots of puv(λ)

are locally described by a Puiseux series of the form

ζ j + c1 j s
1

k j + c2 j s
2

k j + · · · , j = 1, . . . , ν

with c1 j �= 0. Here k j is the multiplicity of ζ j as a root of puv(λ), and there are k j

roots of sm A(λ) − puv(λ) near ζ j .
Nextwedonot consider t ∈ Rbut τ = tei θ ∈ C. Replacingu by ei θu wesee that the

roots ofm A(λ)−τ puv(λ) for large τ near ζ j behave as ζ j +c1 jτ
−1/k j . For fixed |τ | = r

these k j roots near ζ j trace out a curve 	 j (θ) = ζ j + c1, j r−1/k j exp(i θ) + o(r−1/k j )

with r → ∞.
We shall make these arguments much more precise as follows. Remember that

an eigenvalue λ0 of A + τuv∗ which is not also an eigenvalue of A is a solution to
Q(λ) = 1/τ . Consider large values of |τ | and consider also the large eigenvalues
of A + τuv∗, for instance for τ large enough there is at least one eigenvalue with
|λ| > ‖A‖. Then λ satisfies

1 = τv∗
∞∑

j=0

A j

λ j+1 u = τ

∞∑

j=κ

v∗ A j u

λ j+1
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by the definition of κ . Hence

λκ+1 = τv∗ Aκu + τ

λ
v∗ Aκ+1u + τ

λ2
v∗ Aκ+2u + · · · , (15)

and so

(
λκ+1

τ
− v∗ Aκu

)
= O

(
1

λ

)

Thus

λ ≈ (τ )
1

κ+1 (v∗ Aκu)
1

κ+1 .

Again, we can be much more precise than this: we know that λ as a function of τ has
a Puiseux series expansion, and if we set

λ = c−1τ
1

κ+1 + c0 + c1τ
− 1

κ+1 + · · ·

one checks from the equation (15) that the following hold:

c−1 = (v∗ Aku)
1

κ+1 ,

c0 = 1

k + 1
· v∗ Ak+1u

v∗ Aku
,

c1 = 1

k + 1
· 1

(v∗ Aku)
k+2
k−1

· (v∗ Ak+2u − (k + 2)v∗ Ak+1u).

Hence

λ = (τ )
1

κ+1 (v∗ Aκu)
1

κ+1 + 1

k + 1
· v∗ Ak+1u

v∗ Aku
+ O

(
τ− 1

k+1

)

This completes the proof of part (iii), and gives the precise form of	ν+1(θ) for r = |τ |
large enough.

Next we consider the eigenvalues of A + τuv∗ which are close to ζ j for large τ .
Recall that ζ j is a root of puv(λ), so m A(ζ j )v

∗(ζ j In − A)−1u = 0. If ζ j would be a
zero of m A(λ), then ζ j is an accidentally frozen eigenvalue for A, u, v and so is an
eigenvalue of B(τ ) for all τ . Otherwise, ζ j is not an eigenvalue of A, and we have
v∗(ζ j In − A)−1u = 0. For λ near ζ j write

v∗(λIn − A)−1u = v∗((λ − ζ j ) + (ζ j In − A))−1u

= v∗((λ − ζ j )(ζ j In − A)−1 + I )−1(ζ j In − A)−1u

= v∗
∞∑

k=0

(λ − ζ j )
k(ζ j In − A)−(k+1)u
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= v∗(ζ j In − A)−1u + v∗
∞∑

k=1

(λ − ζ j )
k(ζ j In − A)−(k+1)u.

Since the first term is zero, we have

v∗(λIn − A)−1u = (λ − ζ j )v
∗(ζ j In − A)−2)u + (λ − ζ j )

2v∗(ζ j In − A)−3)u + · · ·

Again use the fact that any eigenvalue of A + τuv∗ which is not an eigenvalue of A
satisfies

1

τ
= v∗(λIn − A)−1u.

So, if the root ζ j of puv(λ) has multiplicity k j , then

1

τ
= (λ − ζ j )

k j v∗(ζ j In − A)−(k j +1)u + (λ − ζ j )
k j +1v∗(ζ j In − A)−(k j +2)u + · · · .

For the moment, let us denote v∗(ζ j In − A)−ku by a j,k . We know from the consider-
ations in an earlier paragraph of the proof that λ can be expressed as a Puiseux series
in τ−1, let us say

λ = ζ j + c1, jτ
− 1

k j + c2, jτ
− 2

k j + · · · .

Then λ − ζ j = c1, jτ
− 1

k j + c2, jτ
− 1

k j + · · · , and inserting that in the above equation
we obtain

1

τ
= 1

τ
c

k j
1, j a j,k j +1 + k j c

k j −1
1, j τ

− k j −1
k j · c2, jτ

− 2
k j a j,k j +1

+ c
k j +1
1, j τ

− k j +1
k j a j,k j +2 + smaller order terms

= 1

τ
c

k j
1, j a j,k j +1 + τ

− k j +1
k j

(
k j c

k j −1
1, j c2, j a j,k j +1 + c

k j +1
1, j a j,k j +2

)
+ · · · .

Equating terms of equal powers in τ gives

c1, j = a
−k j
j,k j +1 =

(
1

v∗(ζ j In − A)−(k j +1)u

) 1
k j

and using thiswe can derive a formula for c2, j , which after some computation becomes

c2, j = − 1

k j
· v∗(ζ j In − A)−(k j +2)u

v∗(ζ j In − A)−(k j +1)u
.
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Let us denote

v∗(ζ j In − A)−(k j +1)u = ρ j e
i θ j , j = 1, . . . , ν.

Then c1, j = ρ
− 1

k j
j e

i
θ j
k j and the k j eigenvalues near ζ j trace out a curve 	 j (θ) which

is of the form

	 j (θ) = ζ j + |τ |−
1

k j ρ
− 1

k j
j ei θ + O

(
|τ |−

2
k j

)
, 0 ≤ θ ≤ 2π.

This completes the proof of part (v). �
Remark 18 As an alternative argument tomuch of the results of the previous theorem in
the generic case, consider B̃(s) = uv∗+s A, where s = 1

τ
= 1

t e− i θ . For t → ±∞ and

thus s ≈ 0 we will denote the eigenvalues of B̃(s) by ν j (s) for j = 1, . . . , n. Note that
there is a close relationship between ν j (τ

−1) and λ j (τ ), namely, λ j (τ ) = τν j (τ
−1).

Consider B̃(s) as a perturbation of uv∗. Note that uv∗ has eigenvalues v∗u and
0, the latter with multiplicity n − 1, and that generically, when v∗u �= 0, uv∗ is
diagonalizable. In the non-generic case, when v∗u = 0, uv∗ has only eigenvalue 0,
with one Jordan block of size two, and n − 2 Jordan blocks of size one.

In the generic case where v∗u �= 0, according to [18], Sect. II.1.2, in particular
formula (1.7) there, also Sect. II.1.7 and Theorem 5.11 in Sect. II.5.6, and Lidskii’s
Theorem [23], see also [4], and for a nice exposition [32], we have that B(s) has n
separate eigenvalues given by

σ(B̃(s)) = {ν j (s)} =
{

v∗u + sk1,1 + s2k2,1 + · · · j = 1
0 + sk1, j + s2k2, j + · · · j = 2, . . . , n.

First we take θ = 0, so τ = t . In that case s = 1
τ

= 1
t . For j = 2, . . . , n we have

ν j (
1
t ) = 1

t k1, j + 1
t2

k2, j + · · · and therefore

λ j (t) = tν j (
1

t
) = k1, j + 1

t
k2, j + · · · .

This works the same for j = 1, then λ1(t) = tv∗u + k1,1 + 1
t k2,1 + · · · .

Now consider the limit of λ j (t) as t → ±∞ for j = 2, . . . , n. By (ii) this is
one of the roots of puv(λ) or an eigenvalue of A. Generically, the roots of puv(λ)

will be simple. After possibly rearranging the eigenvalues we may assume that for
j = 2, . . . , l the eigenvalue λ j (t) converges to one of the roots of puv(λ), while for
j = l + 1, . . . , n the eigenvalue λ j (t) is constantly equal to an eigenvalue of A. Then

lim
t→∞ λ j (t) = lim

t→∞ tν j (
1

t
) = k1, j for j = 2, . . . , l

where k1, j is either one of the roots of puv(λ) or an eigenvalue of A. Thus λ j (t) =
k1, j + 1

t k2, j + O
(

1
t2

)
for j = 2, . . . , l.
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Next we do not consider t ∈ R but τ = tei θ ∈ C. Make the following transforma-
tion:

σ(A + τuv∗) = σ(A + tei θuv∗) = σ(A + t ũv∗)

where ũ = ei θu. Note that puv(λ) and pũv(λ) only differ by the constant ei θ and so
they have the same roots. Applying the arguments from the previous paragraphs we
obtain

λ1(τ ) = λ1(te
i θ ) = tei θ v∗u + O(1)

and

λ j (τ ) = λ j (te
i θ ) = k1, j + 1

t
e− i θ k2, j + O

(
1

t2

)
, j = 2, . . . , l.

Consider for fixed t the curve

ζ2,t = {λ j (te
i θ ) | j = 2, . . . , n, 0 ≤ θ < 2π}.

The arguments above show that asymptotically ζ2,t is a circle with radius 1
t k2, j cen-

tered at k1, j , which is a root of puv(λ).

Remark 19 Note that if (14) holds for κ = l − 1 then puv(λ) ≡ 0 and by (4) the
characteristic polynomial of the perturbed matrix coincides with the characteristic
polynomial of A.

Remark 20 Consider the case κ = 2. Then the eigenvalues that go to infinity will trace
out a circle, but each of them only traces out half a circle. In addition the speed with
which the eigenvalues go to zero is considerably slower than when κ = 1.

Example 21 As an extreme example, consider A = Jn(0), the n ×n Jordan block with
zero eigenvalue, and let u = en and v = e1, where e j is the j’th unit vector. Then

puv(λ) = 1, and the eigenvalues of A+τuv∗ are the n’th roots of τ , λk(τ ) = n
√

rei 2k
n π

for k = 1, . . . , n, and dλ
dτ

= 1
n τ

1
n −1 = e∗

1 An−1en
n · 1

λn−1 , as predicted by the theorem.

Example 22 Consider A = I2, and the same u and v as in the previous example. In
this case v∗ Aku = 0 for all k. Consequently, as is also immediate by looking at the
matrix, none of the eigenvalues moves. More generally, this happens as soon as A is
upper triangular and uv∗ is strictly upper triangular.

Example 23 As an example consider A =
[
0 1

−1 −1

]
, take u =

[
0
1

]
and v =

[
1
1

]
.

Then m A(λ) = λ2 + λ + 1, puv(λ) = λ + 1, and one computes p′
uv(λ)m A(λ) −

puv(λ)m′
A(λ) = −λ(λ + 2). So Q′(0) = 0, Q′(−2) = 0, and so z1 = 0, z2 = −2.

Finally the corresponding t1 = 1
|Q(0)| = 1, and t2 = 1

|Q(−2)| = 3. The eigenvalue
curves are shown below (Fig. 3). Note the difference in scales between the individual
graphs.
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Fig. 3 Eigenvalue curves of A + tei θ uv∗ as functions of θ for several values of t . Green stars indicate the
eigenvalues of A, the blue star indicates the root of puv(λ) and the triangles the zeroes of Q′(λ). The final
graph also illustrates the asymptotic circular behaviour for large values of t

6 StructuredMatrices

Generic rank one perturbations for several classes of structured matrices were studied
intensively over the last decade.We refer the reader to: [24] for complex J -Hamiltonian
complex H -symmetric matrices, [25] for complex H -selfadjoint matrices including
the effects on the sign characteristic, [27] for complex H -orthogonal and complex
J -symplectic as well as complex H -unitary matrices, [28] for the real cases including
the effects on the sign characteristic, [11] for the case of H -positive real matrices and
[40] for symplectic matrices. In [3] higher rank perturbations of structured matrices
were considered. Another type of structure was treated in [5], where nonnegative rank
one perturbations of M-matrices are discussed. Finally, the quaternionic case was
discussed in [31].

In the present section we will treat the classes of complex H -selfadjoint and real
J -Hamiltonian matrices, analysing the global definition of eigenvalues and the con-
vergence for large values of the parameter. First let us recall the definitions.

We say that an n × n matrix A is

(H) H -selfadjoint if A ∈ C
n×n , H A = A∗ H , where H ∈ C

n×n is some Hermitian
nonsingular matrix.

(J) J -Hamiltonian if A ∈ R
n×n , J A = −A� J , where J ∈ R

n×n is a nonsingular
real matrix satisfying J = −J�.
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Note that rank one matrices in these classses are, respectively, of the form

(H) uu∗ H , for some u ∈ C
n\{0},

(J) uu� J for some u ∈ R
n\{0}.

Consequently, the function Q(λ) takes, respectively, the form

(H) Q(λ) = u∗ H(λIn − A)−1u,
(J) Q(λ) = u� J (λIn − A)−1u.

It appears that in both these classes global analytic definition of eigenvalues is not a
generic property, similarly to Theorem 13 in the real unstructured case. By inspection
one sees that the proof remains almost the same, the key issue is that all polynomials
involved are real on the real line and x is a simple real zero of q0(λ).

Theorem 24 Assume one of the following

(H) A ∈ C
n×n is H-selfadjoint with respect to some nonsingular Hermitian H, and

u ∈ C
n\{0},

(J) A ∈ R
n×n is J -Hamiltonian with respect to some nonsingular skew-symmetric J ,

and u ∈ R
n\{0}.

If for some τ0 > 0 an analytic definition of the eigenvalues of A+τuv∗ is not possible
due to

Q(x) = 1/τ0, Q′(x) = 0, Q′′(x) �= 0

for some x ∈ R, cf. Remark 3, then for all

(H) Ã ∈ C
n×n being H-selfadjoint, ũ ∈ C

n

(J) Ã ∈ R
n×n being J -symmetric, ũ ∈ R

n (respectively)

with ‖ũ − u‖ and
∥∥∥ Ã − A

∥∥∥ sufficiently small the analytic definition of the eigenvalues

is not possible due to existence of x̃ ∈ R, τ̃0 > 0, depending continuously on Ã, ũ, ṽ

with

Q̃(x̃) = 1/τ̃0, Q̃′(x̃) = 0, Q̃′′(x̃) �= 0,

where Q̃(z) corresponds to the perturbation of Ã as described above the theorem.

Remark 25 We remark here, that Proposition 15 holds for J -Hamiltonian matrices as
well, and also for complex H -selfadjoint matrices.

We continue the section with corollaries from Theorem 17. While statement (ii)
below is not surprising if one takes into account the symmetry of the spectrum of a
J -Hamiltonian matrix with respect to both axes, statement (i) cannot be derived using
symmetry principles only.

Corollary 26 (i) Let A ∈ R
n×n, consider the perturbation A + τuu� J , where J is

real, nonsingular and skew symmetric, and u ∈ R
n\{0} and τ ∈ R. Then there

are (at least) two eigenvalues of A + tuu� J going to infinity as described by part
(ii) of Theorem 17.
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(ii) If, additionally to (i), A is also J -Hamiltonian the number of such eigenvalues is
even, and

(iii) In case A is J -Hamiltonian and u� J Au > 0 then there are two real eigenvalues
converging to infinity as τ goes to +∞, and two purely imaginary eigenvalues
going to infinity as τ goes to −∞. In case u� J Au < 0 the situation is reversed.

(iv) In case A is J -Hamiltonian and u� J Au = 0 there are at least four eigenvalues
going to infinity as τ goes to +∞ and as τ goes to −∞. More precisely, let κ be
the first (necessarily odd) integer for which u� J Aκu �= 0. If u� J Aκu > 0 then
for τ → +∞ there are at least two real eigenvalues going to infinity, and two
purely imaginary eigenvalues going to infinity. If u� J Aκu < 0 then for τ → −∞
there are at least two real eigenvalues going to infinity, and two purely imaginary
eigenvalues going to infinity.

Proof Part (i) follows from Theorem 17 and the fact that for any vector u we have
u� Ju = 0 by the skew-symmetry of J .

Part (ii) follows from the same reasoning taking into account that for any even k
the matrix J Ak is skew-symmetric, from which one has u� J Aku = 0 for even k.

Parts (iii) and (iv) follow from Theorem 17, part (iii), using the fact that Q(λ) is
real on both real and imaginary axis. �
Example 27 Consider the following matrices J and A and vector u:

J =

⎡

⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤

⎥⎥⎦ , A =

⎡

⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 −1 1
0 0 0 −1

⎤

⎥⎥⎦ , u =

⎡

⎢⎢⎣

0
1
1
1

⎤

⎥⎥⎦ .

Then, one checks easily that A is J -Hamiltonian, and that u� J Au = 0, while
u� J A3u = −4 �= 0. The polynomial puv(λ) for v = −Ju is constant, equal to
−4. Hence all four eigenvalues of A + tuu� J are going to infinity, as is shown in Fig.
4. Note also that the rate of convergence to infinity in this example should be as the
fourth root of t , which is confirmed by the graph (the fourth root of 125000 is about
19).

7 Nonnegative Matrices

We will apply Theorem 17 to the setting of nonnegative matrices. Recall that a non-
negative matrix A is called irreducible if there is no permutation matrix P such that
P� AP is of a block form

P� AP =
[

X Y
0 Z

]

with X and Z being nontrivial square matrices. By the graph associated with the
matrix A = [ai j ]n

i j=1 we understand the directed graph with vertices 1, . . . , n and
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Fig. 4 Four eigenvalues going to
infinity. The plot shows the
eigenvalues of A + tuu� J for
0 ≤ t ≤ 125000 in red, and the
eigenvalues of A − tuu� J for
the same range of t in cyan, cf.
Example 27

with the set of edges consisting of only those pairs (i, j) for which ai j > 0. By a cycle
we understand a directed path from the vertex i to itself.

Theorem 28 Let A = [ai j ]n
i j=1 ∈ R

n×n be a nonnegative, irreducible matrix. Let also

l denote the length of the shortest cycle in the graph of the matrix A+ei0e�
j0

containing
the (i0, j0) edge. Then the matrix

A + τei0e�
j0 , τ > 0

has precisely l eigenvalues converging to infinity with τ → +∞
Proof Note that

e�
j0 Akei0 = (Ak) j0i0 = 0

if and only if k < l, as l is the length of the smallest cycle going through the (i0, j0)
edge. By Theorem 17 the matrix A + τuv� has precisely l eigenvalues converging to
infinity. �

Note that the number l of eigenvalues converging to infinity may be greater than
the number of eigenvalues of A on the spectral circle, i.e, the imprimitivity index.
However, by the theory of nonnegative matrices l, as the length of the (shortest) cycle,
is always a multiple of the imprimitivity index, see, e.g., Theorem 1.6. of [10].

Example 29 Consider the matrix A =
[
1 1
1 1

]
and the vectors u =

[
1
0

]
and v =

[
0
1

]
.

Then B(τ ) =
[
1 1 + τ

1 1

]
. Then v�u = 0, while v� Au �= 0. So both eigenvalues of

B(τ ) will go to infinity. For τ ≥ 0 the matrix B(τ ) is an entrywise positive matrix, so
one of the eigenvalues will be the spectral radius. By Theorem 17, both eigenvalues
go to zero at the same rate, but as the eigenvalues are

√
1 + τ ± 1 their moduli are not

equal.
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