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Abstract
In this note the three dimensional Dirac operator Am with boundary conditions, which
are the analogue of the two dimensional zigzag boundary conditions, is investigated.
It is shown that Am is self-adjoint in L2(�;C4) for any open set � ⊂ R

3 and its
spectrum is described explicitly in terms of the spectrum of the Dirichlet Laplacian in
�. In particular, whenever the spectrum of the Dirichlet Laplacian is purely discrete,
then also the spectrum of Am consists of discrete eigenvalues that accumulate at ±∞
and one additional eigenvalue of infinite multiplicity.

Keywords Dirac operator · Boundary conditions · Spectral theory · Eigenvalue of
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1 Introduction

In the recent years Dirac operators with boundary conditions, which make them self-
adjoint, gained a lot of attention. From the physical point of view, they appear in various
applications such as in the description of relativistic particles that are confined in a box
� ⊂ R

3; in this context theMITbagmodel is a particularly interesting example, cf. [2].
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Moreover, in space dimension two the spectral properties of self-adjoint massless
Dirac operators play an important role in the mathematical description of graphene,
see, e.g., [7] and the references therein. On the other hand, from the mathematical
point of view, self-adjoint Dirac operators with boundary conditions are viewed as the
relativistic counterpart of Laplacians with Robin type and other boundary conditions.

To set the stage, let � ⊂ R
3 be an open set, let

σ1 :=
(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, (1.1)

be the Pauli spin matrices, and let

α j :=
(
0 σ j

σ j 0

)
and β :=

(
I2 0
0 −I2

)
(1.2)

be theC4×4-valued Dirac matrices, where Id denotes the identity matrix inCd×d . For
m ∈ R we introduce the differential operator τm acting on distributions by

τm := −i
3∑
j=1

α j∂ j + mβ =: −iα · ∇ + mβ. (1.3)

The main goal in this short note is to study the self-adjointness and the spectral prop-
erties of the Dirac operator Am in L2(�;C4) := L2(�) ⊗ C

4 which acts as τm on
functions f = ( f1, f2, f3, f4) ∈ L2(�;C4) which satisfy τm f ∈ L2(�;C4) and the
boundary conditions

f3|∂� = f4|∂� = 0; (1.4)

for irregular or unbounded domains (1.4) is understood as f3, f4 ∈ H1
0 (�). Note that

no boundary conditions are imposed for the components f1 and f2. Ifm > 0, then the
solution of the evolution equation with Hamiltonian Am describes the propagation of
a quantum particle with massm and spin 1

2 in� taking these boundary conditions and
relativistic effects into account.

The motivation to study the operator Am is twofold. Firstly, in the recent paper [5]
Dirac operators in L2(�;C4) acting as τm on functions satisfying the boundary con-
ditions

ϑ
(
I4 + iβ(α · ν)

)
f |∂� = (

I4 + iβ(α · ν)
)
β f |∂� (1.5)

were studied in the case thatm > 0 and that� is aC2-domain with compact boundary
and unit normal vector field ν; in (1.5) the convention α · x = α1x1 + α2x2 + α3x3
is used for x = (x1, x2, x3) ∈ R

3. The authors were able to prove the self-adjointness
and to derive the basic spectral properties of these operators, whenever the parameter
ϑ appearing in (1.5) is a real-valued Hölder continuous function of order a > 1

2
satisfying ϑ(x) �= ±1 for all x ∈ ∂�, and it is shown that the domain of definition of
these self-adjoint operators is contained in the Sobolev space H1(�;C4). For bounded
domains � this implies, in particular, that the spectrum is purely discrete. The case
when ϑ(x) = ±1 for some x ∈ ∂� remained open and it is conjectured that different
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spectral properties should appear. We note that ϑ ≡ 1 corresponds to the boundary
conditions (1.4). Let us mention that the self-adjointness and spectral properties of
Dirac operators with boundary conditions of the form (1.5) for special realizations
ϑ �= 1 were studied in 3D in [1,2,13] and in 2D in [6,7,10,11].

The second main motivation for this study is the paper [16], where the two dimen-
sional counterpart of Am was investigated in the massless case (m = 0). The two
dimensional Dirac operator is a differential operator in L2(�;C2) and for a spinor
f = ( f1, f2) the zigzag boundary conditions are f2 = 0 on ∂�, while there are no
boundary conditions for f1, cf. [6,16]. The two dimensional zigzag boundary condi-
tions have a physical relevance, as they appear in the description of graphene quantum
dots, when a lattice in this quantum dot is terminated and the direction of the boundary
is perpendicular to the bonds [9]. It was shown in [16] that the two dimensional Dirac
operator with these zigzag boundary conditions is self-adjoint on a domain which is
in general not contained in H1(�) and that for any bounded domain � zero is an
eigenvalue with infinite multiplicity. In particular, the spectrum of the operator is not
purely discrete.

The goal in the present note is to prove similar and even more explicit results as
those in [16] also in the three dimensional setting, which complement then the results
from [5] in the critical case ϑ ≡ 1 at least for constant boundary parameters. In
Lemma 3.2 we will see that the operator corresponding to ϑ ≡ −1 in (1.5) is unitarily
equivalent to −Am and hence this case is also contained in the analysis in this note. In
the formulation of the following main result of the present paper we denote by −
D

the self-adjoint realization of the Dirichlet Laplacian in L2(�).

Theorem 1.1 The operator Am is self-adjoint in L2(�;C4) and its spectrum is

σ(Am) = {m} ∪
{
±

√
λ + m2 : λ ∈ σ(−
D)

}
.

The value m always belongs to the essential spectrum of Am, while for m �= 0 the
number −m is not an eigenvalue of Am. Moreover, for λ > 0 the numbers ±√

λ + m2

are both eigenvalues of Am with multiplicity 2k if and only if λ is an eigenvalue of
−
D with multiplicity k.

The proof of Theorem 1.1 is done in several steps in Sect. 3. It is used that Am has
a supersymmetric structure. Some properties of supersymmetric operators which are
needed in this paper are collected in Appendix A.

Theorem 1.1 gives a full description of the spectrum of Am in terms of the spectrum
of the Dirichlet Laplacian in �, which is well-studied in many cases. For bounded
domains � it follows from the Rellich embedding theorem that the spectrum of −
D

is purely discrete and therefore, the spectrum of Am consists of an infinite sequence
of discrete eigenvalues accumulating at ±∞ and the eigenvalue m, which has infinite
multiplicity. In particular, the essential spectrum of Am is not empty, which is in
contrast to the case of non-critical boundary values in [5]. Moreover, if� is a bounded
Lipschitz domain, then the non-emptiness of the essential spectrum implies that the
domain of Am is not contained in the Sobolev space Hs(�;C4) for any s > 0. The
above results are discussed in a more detailed way at the end of Sect. 3.
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If � is unbounded, then there are different ways how the spectrum of the Dirichlet
Laplacian and hence also the spectrum of Am may look like. On the one hand it is
known that for some special horn shaped domains �, which have infinite measure,
the spectrum of −
D is purely discrete, cf. [15,18]. Therefore, by Theorem 1.1 also
in this case the spectrum of Am consists only of eigenvalues and it follows from
the spectral theorem that m is an eigenvalue with infinite multiplicity. On the other
hand, for many unbounded domains it is known that σ(−
D) = [0,∞) and thus,
σ(Am) = (−∞,−|m|] ∪ [|m|,∞) for such �. The simplest example for this case is
when � is the complement of a bounded domain.

Let us finally collect some basic notations that are frequently used in this note.
If not stated differently � is an arbitrary open subset of R3. For n ∈ N we write
L2(�;Cn) := L2(�)⊗C

n . The inner product and the norm in L2(�;Cn) are denoted
by (·, ·) and ‖ · ‖, respectively. We use for k ∈ N the symbol Hk(�) for the L2-based
Sobolev spaces of k times weakly differentiable functions and H1

0 (�) for the closure
of the test functions C∞

0 (�) in H1(�). For a linear operator A its domain is dom A
and its Hilbert space adjoint is denoted by A∗. If A is a closed operator, then σ(A)

and σp(A) are the spectrum and the point spectrum of A, respectively, and if A is
self-adjoint, then its essential spectrum is σess(A).

2 Some Auxiliary Operators

In this section we introduce and discuss two auxiliary operators Tmin and Tmax in
L2(�;C2) which will be useful to study the Dirac operator Am with zigzag type
boundary conditions. Let � ⊂ R

3 be an arbitrary open set and let σ = (σ1, σ2, σ3) be
the Pauli spin matrices defined by (1.1). In the following we will often use the notation
σ · ∇ = σ1∂1 + σ2∂2 + σ3∂3. We define the set Dmax ⊂ L2(�;C2) by

Dmax := {
f ∈ L2(�;C2) : (σ · ∇) f ∈ L2(�;C2)

}
,

where the derivatives are understood in the distributional sense, and the operators Tmax
and Tmin acting in L2(�;C2) by

Tmax f := −i(σ · ∇) f , dom Tmax = Dmax, (2.1)

and Tmin := Tmax � H1
0 (�;C2), which has the more explicit representation

Tmin f := −i(σ · ∇) f , dom Tmin = H1
0 (�;C2). (2.2)

In the following lemma we summarize the basic properties of Tmin and Tmax.

Lemma 2.1 The operators Tmin and Tmax are both closed and adjoint to each other,
i.e. T ∗

min = Tmax. Moreover, the inclusion Dmax ⊂ H1
loc(�;C2) holds.

Proof The facts that Tmin and Tmax are closed and adjoint to each other are sim-
ple to obtain by replacing α · ∇ by σ · ∇ in the proof of [4, Proposition 3.1]
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or [13, Proposition 2.10], see also [6, Lemma 2.1] for similar arguments. Further-
more, Dmax ⊂ H1

loc(�;C2) can be proved similarly as [16, Proposition 1]. �
Eventually, we show that 0 always belongs to the essential spectrum of TminTmax.

This result will be of importance to prove that m is in the essential spectrum of Am .

Proposition 2.2 There exists a sequence ( fn) ⊂ dom Tmax with ‖ fn‖ = 1 converging
weakly to zero such that Tmax fn → 0, as n → ∞. In particular, 0 ∈ σess(TminTmax).

Proof We distinguish two cases for �. First, assume that gn(x) := (x1 + i x2)n ,
x = (x1, x2, x3) ∈ �, belongs to L2(�;C) for all n ∈ N. Then, we follow ideas
from [16, Proposition 2] and see that the functions

fn := 1

‖gn‖
(
gn
0

)
∈ L2(�;C2)

fulfil (σ · ∇) fn = 0, i.e. fn ∈ ker Tmax. Hence, zero is an eigenvalue of infinite
multiplicity, which implies immediately the claim.

In the other case, when gn(x) = (x1+ i x2)n , x = (x1, x2, x3) ∈ �, does not belong
to L2(�;C) for some n ∈ N, we follow ideas from the appendix of [8], where it is
shown that zero always belongs to the essential spectrum of the Neumann Laplacian
in L2(G;C), when the domain G has infinite measure, to construct the sequence ( fn).
Let k ∈ N be the smallest number such that gk /∈ L2(�;C). Define the Borel measure
μ acting on Borel sets B ⊂ R

3 as

μ(B) :=
∫
B

|gk(x)|2dx =
∫
B
(x21 + x22 )

kdx

and the sets �n := {x ∈ � : |x | ≤ n}. Then by assumption μ(�) = ∞ and
μ(�n) ≤ cn2k+3. Next, define for n ∈ N the functions

hn(x) :=

⎧⎪⎨
⎪⎩
gk(x), x ∈ �n−1,

(n − |x |)gk(x), x ∈ �n\�n−1,

0, x ∈ �\�n,

and

fn := 1

‖hn‖
(
hn
0

)
∈ H1(�;C2).

Since (σ · ∇)
(gk
0

) = 0 one has

‖Tmax fn‖2 =
∥∥Tmax

(hn
0

)∥∥2
‖hn‖2 ≤ μ(�n\�n−1)

μ(�n−1)
=: αn .

We claim that lim infn→∞ αn = 0, which implies that there exists a subsequence of
( fn), that is still denoted by ( fn), converging weakly to zero (as ‖hn‖ → μ(�) = ∞
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for n → ∞) such that ‖Tmax fn‖ → 0, as n → ∞, and hence the claim of this
proposition also in the second case.

If lim infn→∞ αn �= 0, then there exists α > 0 such that αn ≥ α for almost all
n ∈ N. In particular, this implies

μ(�n) = μ(�n\�n−1) + μ(�n−1)

μ(�n−1)
μ(�n−1) ≥ (1 + α)μ(�n−1)

and, by repeating this argument,μ(�n) ≥ c̃(1+α)n−1 for a constant c̃ > 0. However,
this violates the condition μ(�n) ≤ cn2k+3. Thus, lim infn→∞ αn = 0.

Finally, in all cases we have shown that there exists a sequence ( fn) ⊂ dom Tmax
with ‖ fn‖ = 1 converging weakly to zero such that b[ fn] → 0 for n → ∞, where b
is the closed quadratic form

b[g] := ‖Tmaxg‖2, dom b = dom Tmax.

Since the form b is associated to the non-negative self-adjoint operator TminTmax via
the first representation theorem, the properties of ( fn) and themin-max principle imply
that 0 ∈ σess(TminTmax). This finishes the proof of this proposition. �

3 Definition of Am and Its Spectral Properties

This section is devoted to the study of the operator Am and the proof of the main
result of this note, Theorem 1.1. First, we introduce Am rigorously and show its self-
adjointness, then we investigate its spectral properties.

Let � ⊂ R
3 be an arbitrary open set and let Tmax and Tmin be the operators defined

in (2.1) and (2.2), respectively. We define for m ∈ R the Dirac operator Am with
zigzag type boundary conditions, which acts in L2(�;C4), by

Am =
(
mI2 Tmin
Tmax −mI2

)
. (3.1)

The operator in (3.1) is the rigorous mathematical object associated to the expression
in (1.3) with the boundary conditions (1.4). We note that Lemma 2.1 implies that
dom Am ⊂ H1

loc(�;C4). Moreover, since Tmin is closed and T ∗
min = Tmax, we see that

Am is supersymmetric in the sense of (A.1).

Remark 3.1 If � is a C2-domain with compact boundary, then there exists a Dirichlet
trace operator on Dmax and one can show with the help of [13, Propositions 2.1
and 2.16] that the expressions in (1.3)–(1.4) and (3.1) indeed coincide.

Before we start analyzing Am we remark that this operator is unitarily equivalent
with the operator −Bm , where Bm is defined by

Bm =
(
mI2 Tmax
Tmin −mI2

)
.



A Note on the Three Dimensional Dirac Operator with Zigzag… Page 7 of 15 47

Note that Bm is theDirac operator acting on spinors f = ( f1, f2, f3, f4) ∈ L2(�;C4)

satisfying the boundary conditions f1|∂� = f2|∂� = 0. In particular, the following
Lemma 3.2 shows that all results which are proved in this paper for Am can simply be
translated to corresponding results for Bm . In order to formulate the lemma we recall
the definition of the Dirac matrix β from (1.2), define the matrix

γ5 =
(
0 I2
I2 0

)
,

and note that βγ5 is a unitary matrix.

Lemma 3.2 Set M := βγ5. Then Bm = −MAmM∗ holds. In particular, Bm is
unitarily equivalent to −Am.

Now we start analyzing Am . First, we discuss its self-adjointness. This property
follows from the supersymmetry of Am and the abstract result in Proposition A.1.

Theorem 3.3 The operator Am is self-adjoint in L2(�;C4).

Proof Since Tmax = T ∗
min and Tmin is closed by Lemma 2.1, the operator Am has

a supersymmetric structure as in (A.1). Hence, the self-adjointness of Am follows
immediately from Proposition A.1. �

In the following theorem we state the spectral properties of Am . We will see that
they are closely related to the spectral properties of the Dirichlet Laplacian −
D ,
which is the self-adjoint operator in L2(�;C) that is associated to the closed and
non-negative sesquilinear form

aD[ f , g] :=
∫

�

∇ f · ∇g dx, dom aD = H1
0 (�;C). (3.2)

In order to prove this result, we employ again the supersymmetric structure of Am and
the abstract results formulated in Appendix A.

Theorem 3.4 For any m ∈ R the following is true:

(i) All eigenvalues of Am have even multiplicity.
(ii) m ∈ σess(Am).
(iii) If m �= 0, then −m /∈ σp(Am).
(iv) Let −
D be the Dirichlet Laplacian on �. Then

σ(Am) = {m} ∪
{
±

√
λ + m2 : λ ∈ σ(−
D)

}

and for λ > 0 one has ±√
λ + m2 ∈ σp(Am) with multiplicity 2k if and only if

λ ∈ σp(−
D) with multiplicity k. In particular, σ(Am) ∩ (−|m|, |m|) = ∅.
We note that Theorem 3.4 applied for m = 0 shows that the spectrum of A0 is

symmetric w.r.t. λ = 0. This observation would also follow from the stronger fact that
A0 = −βA0β, i.e. A0 is unitarily equivalent to −A0.
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Proof of Theorem 3.4 (i) Consider the nonlinear time reversal operator

T f := −iγ5α2 f , f ∈ L2(R3;C4), γ5 :=
(
0 I2
I2 0

)
.

One has f ∈ dom Am if and only if T f ∈ dom Am and T 2 f = − f . Let λ ∈ σp(Am)

and let fλ be a corresponding eigenfunction. Then, one can show in the same way as
in [3, Proposition 4.2 (ii)] that also T fλ is a linearly independent eigenfunction of Am

for the eigenvalue λ. This shows the claim of statement (i).
In order to prove statements (ii)–(iv), we use that Am has a supersymmetric structure

and employ Proposition A.2. Indeed, we have Tmax = T ∗
min and Tmin is closed by

Lemma 2.1 and hence the operator Am has a supersymmetric structure as in (A.1).
Thus, we are allowed to use Proposition A.2 for S = Tmin to characterize the spectrum
of Am . For this purpose, we show first that TmaxTmin = −
D I2. To see this, we note
that TmaxTmin is the unique self-adjoint operator corresponding to the closed quadratic
form

a[ f ] := ‖Tmin f ‖2, f ∈ dom a = dom Tmin = H1
0 (�;C2).

Since σ jσk + σkσ j = 2δ jk I2 holds by the definition of the Pauli matrices in (1.1), we
have for f ∈ C∞

0 (�;C2)

a[ f ] = ( − i(σ · ∇) f ,−i(σ · ∇) f
) = (

f ,−(σ · ∇)2 f
) = (

f ,−
 f
) = ‖∇ f ‖2,

which extends by density to all f ∈ dom a = H1
0 (�;C2). Therefore, a is the quadratic

form associated to−
D I2 and hence, by the first representation theorem we conclude
TmaxTmin = −
D I2.

Now we are prepared to prove items (ii)–(iv). Since Tmax = T ∗
min by Lemma 2.1

we get σ(TminTmax)\{0} = σ(TmaxTmin)\{0}, cf. [19, Corollary 5.6], and thus Propo-
sition A.2 implies that

{
±

√
λ + m2 : λ ∈ σ(−
D)

}
⊂ σ(Am) ⊂ {±m} ∪

{
±

√
λ + m2 : λ ∈ σ(−
D)

}
.

(3.3)
As 0 /∈ σp(−
D), we conclude fromPropositionA.2 (ii) that−m /∈ σp(Am) form �= 0
and thus assertion (iii) of this theorem. Moreover, the results from Propositions 2.2
and A.2 imply that m ∈ σess(Am), i.e. point (ii). For the final observation we use
again [19, Corollary 5.6], which implies that σp(TminTmax)\{0} = σp(TmaxTmin)\{0}
and that the multiplicities of the eigenvalues coincide. Thus, Proposition A.2 implies
for λ > 0 that ±√

λ + m2 ∈ σp(Am) with multiplicity 2k (recall that all eigenvalues
of Am have even multiplicities by (i)) if and only if λ ∈ σp(TmaxTmin) = σp(−
D I2)
with multiplicity 2k, i.e. if and only if λ ∈ σp(−
D) with multiplicity k. The last
observations together with (3.3) finish the proof of assertion (iv). �

Let us end this note with a short discussion of the spectral properties of Am for some
special domains � and some consequences of that. In many situations it is known that
the Dirichlet Laplacian has purely discrete spectrum. Then, by Theorem 3.4 (iv) also
the spectrum of Am consists only of eigenvalues and, as a consequence of the spectral
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theorem, m is an eigenvalue with infinite multiplicity. Moreover, in a similar way as
sketched in the proof of Proposition A.2 (ii) one can construct eigenfunctions of Am .
The spectrum of the Dirichlet Laplacian is purely discrete, e.g., when � is a bounded
subset of R3, as then the space H1

0 (�;C) is compactly embedded in L2(�;C) by the
Rellich embedding theorem, and hence the Dirichlet Laplacian−
D associated to the
sesquilinear form aD in (3.2) has a compact resolvent. In this situation let us denote
by 0 < μD

1 ≤ μD
2 ≤ μD

3 ≤ · · · the discrete eigenvalues of−
D , where multiplicities
are taken into account. Then one immediately has the following result.

Corollary 3.5 Let � ⊂ R
3 be such that σ(−
D) is purely discrete. Then

σ(Am) = {m} ∪
{

±
√
m2 + μD

k : k ∈ N

}

and m is an eigenvalue with infinite multiplicity.

If the Sobolev space Hs(�;C) is compactly embedded in L2(�;C) for s > 0,
then the above result implies that dom Am can not be contained in Hs(�;C4). This
is, e.g., the case, when � is a bounded Lipschitz domain.

Corollary 3.6 Assume that� is a bounded subset ofR3 with a Lipschitz-smooth bound-
ary. Then dom Am �⊂ Hs(�;C4) for all s > 0.
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Appendix A. Spectrum of Supersymmetric Operators

Let
(
H1, (·, ·)H1

)
and

(
H2, , (·, ·)H2

)
be complex Hilbert spaces, let S be a closed and

densely defined operator fromH2 toH1, and let m ∈ R. In this appendix we consider
the block operator Dm acting in H1 ⊕ H2 given by

Dm :=
(
m S
S∗ −m

)
, dom Dm = dom S∗ ⊕ dom S ⊂ H1 ⊕ H2. (A.1)

Note that Am defined in (3.1) is exactly of the above form with S = Tmin. The goal in
this appendix is to prove the self-adjointness of Dm and to provide a useful formula for

http://creativecommons.org/licenses/by/4.0/
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its spectrum. For this, we use that Dm has a supersymmetric structure. Supersymmetric
operators are well-studied, see, e.g., [12,14,17,19], and the results presented here seem
to be well-known. For the sake of completeness, we present full proofs of the results
in this appendix.

First, we show that Dm is self-adjoint. In the proof, we use similar ideas as in [16,
Proposition 1].

Proposition A.1 The operator Dm defined by (A.1) is self-adjoint.

Proof We use for � ∈ H1 ⊕ H2 the splitting � = (ψ1, ψ2) with ψ1 ∈ H1 and
ψ2 ∈ H2. It suffices to consider m = 0, as Dm − D0 is a bounded self-adjoint
perturbation.

First we show that D0 is symmetric. Indeed for � = (ψ1, ψ2) ∈ dom D0 a simple
calculation shows

(D0�,�)H1⊕H2 = (Sψ2, ψ1)H1 + (S∗ψ1, ψ2)H2 = 2Re (Sψ2, ψ1)H1 ∈ R.

Next, one has for � = (ψ1, ψ2) ∈ dom D∗
0 and � = (φ1, φ2) ∈ dom D0

(D∗
0�,�)H1⊕H2 = (�, D0�)H1⊕H2 = (ψ1, Sφ2)H1 + (ψ2, S

∗φ1)H2 . (A.2)

Choosing φ1 = 0 we get from (A.2)

(
(D∗

0�)2, φ2
)
H2

= (ψ1, Sφ2)H1

for all φ2 ∈ dom S and hence ψ1 ∈ dom S∗ and S∗ψ1 = (D∗
0�)2. In a similar way,

choosing φ2 = 0 we obtain from (A.2) and the closeness of S that ψ2 ∈ dom S and
Sψ2 = (D∗

0�)1. Therefore, we conclude � ∈ dom D0 and D∗
0� = D0�, that means

D∗
0 ⊂ D0. This finishes the proof of this proposition. �
In the following proposition we describe the spectrum of Dm in terms of the spectra

of S∗S and SS∗. A variant of the result is contained in [14] for bounded S and stated
in [12] without proof and in [17] for a special choice of S. Here, we give the proof
in the general situation, where similar ideas as in the above references are used. In
the formulation of the result we use for a set A ⊂ [0,∞) and b ∈ R the notation
b
√
A := {b√a : a ∈ A}.

Proposition A.2 For the operator Dm defined in (A.1) the following is true:

(i) The spectrum of Dm is

σ(Dm) = sign (m)
(
−

√
σ(S∗S + m2) ∪

√
σ(SS∗ + m2)

)
. (A.3)

(ii) The point spectrum of Dm is

σp(Dm) = sign (m)

(
−

√
σp(S∗S + m2) ∪

√
σp(SS∗ + m2)

)
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and the multiplicities of the eigenvalues coincide in the following sense:

if
√

λ + m2 > 0 : dim ker(S∗S − λ) = dim ker
(
Dm + sign (m)

√
λ + m2

);
if

√
λ + m2 > 0 : dim ker(SS∗ − λ) = dim ker

(
Dm − sign (m)

√
λ + m2

);
dim ker S∗S + dim ker SS∗ = dim ker D0.

(iii) The essential spectrum of Dm is

σess(Dm) = sign (m)
(
−

√
σess(S∗S + m2) ∪

√
σess(SS∗ + m2)

)
.

Proof In order to prove (i), we verify first that

σ(Dm)\{±m} = −
√

σ(S∗S + m2)\{m2} ∪
√

σ(SS∗ + m2)\{m2}; (A.4)

note that σ(SS∗)\{0} = σ(S∗S)\{0} holds, cf., e.g., [19, Corollary 5.6], and thus
the set on the right hand side of the last equation is symmetric around the origin and
independent of sign (m). For the first inclusion

σ(Dm)\{±m} ⊂ −
√

σ(S∗S + m2)\{m2} ∪
√

σ(SS∗ + m2)\{m2}, (A.5)

we note that

D2
m =

(
SS∗ + m2 0

0 S∗S + m2

)
. (A.6)

Since σ(SS∗)\{0} = σ(S∗S)\{0}, cf. [19, Corollary 5.6], this implies (A.5).
Next, we show that

√
σ(SS∗ + m2)\{m2} ⊂ σ(Dm)\{±m}. (A.7)

For this purpose let λ ∈ σ(SS∗)\{0}. Then, there exists a sequence (ψn) ⊂ dom SS∗
such that ‖ψn‖H1 = 1 and (SS∗ − λ)ψn → 0, as n → ∞. Define

�n := (
Dm +

√
λ + m2

) (
ψn

0

)
=

(
(m + √

λ + m2)ψn

S∗ψn

)
.

Then �n ∈ dom Dm , ‖�n‖H1⊕H2 ≥ (m + √
λ + m2)‖ψn‖H1 = m + √

λ + m2 > 0
independently of n, as λ > 0 by assumption. Moreover, we have

(
Dm −

√
λ + m2

)
�n =

(
m − √

λ + m2 S
S∗ −m − √

λ + m2

) (
(m + √

λ + m2)ψn

S∗ψn

)

=
(

(SS∗ − λ)ψn

0

)
.

(A.8)
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Since the last expression converges to zero due to the properties of ψn , as n → ∞,
we conclude that

√
λ + m2 ∈ σ(Dm) and therefore, (A.7) is true.

In a similar way as above one verifies that

−
√

σ(S∗S + m2)\{m2} ⊂ σ(Dm)\{±m} (A.9)

holds. Indeed, choose for λ ∈ σ(S∗S)\{0} a sequence (φn) ⊂ dom S∗S such that
‖φn‖H2 = 1 and (S∗S − λ)φn → 0, as n → ∞. Then

�n := (
Dm −

√
λ + m2

) (
0
φn

)
=

(
Sφn

(−m − √
λ + m2)φn

)

satisfies ‖�n‖H1⊕H2 ≥ m + √
λ + m2 > 0 independently of n and

(
Dm +

√
λ + m2

)
�n =

(
0

(S∗S − λ)φn0

)
.

Since the last expression tends to zero due to the properties of φn , as n → ∞, we
conclude that −√

λ + m2 ∈ σ(Dm) and therefore, (A.9) is true. Together with (A.5)
and (A.7) this implies that (A.4) holds.

Next, we show for m �= 0 that m ∈ σ(Dm) if and only if 0 ∈ σ(SS∗). For this
we note first that for m ∈ σ(Dm) there exists a sequence (φn, ψn) ∈ dom Dm with
‖φn‖H1 + ‖ψn‖H2 = 1 such that

(Dm − m)

(
φn

ψn

)
=

(
0 S
S∗ −2m

) (
φn

ψn

)
=

(
Sψn

S∗φn − 2mψn

)
→ 0, as n → ∞.

This is equivalent to ‖φn‖H1 + ‖ψn‖H2 = 1, Sψn → 0 for n → ∞, and

0 = lim
n→∞

∥∥S∗φn − 2mψn
∥∥2H2

= lim
n→∞

(‖S∗φn‖2H2
− 4m Re (S∗φn, ψn)H2 + 4m2‖ψn‖2H2

)
= lim

n→∞
(‖S∗φn‖2H2

− 4m Re (φn, Sψn)H1 + 4m2‖ψn‖2H2

)
= lim

n→∞
(‖S∗φn‖2H2

+ 4m2‖ψn‖2H2

)
, (A.10)

where Sψn → 0 and ‖φn‖H1 ≤ 1 for n → ∞ were used in the last step. Hence,
‖φn‖H1 → 1 and ‖S∗φn‖2H2

→ 0 for n → ∞, which shows 0 ∈ σ(SS∗).
Conversely, if 0 ∈ σ(SS∗), then there exists a sequence (φn) ⊂ dom (SS∗) with

‖φn‖H1 = 1 for all n ∈ N and limn→∞ ‖S∗φn‖H2 = 0. Then (φn, 0) ∈ dom Dm and

(Dm − m)

(
φn

0

)
=

(
0 S
S∗ −2m

) (
φn

0

)
=

(
0

S∗φn

)
→ 0, as n → ∞,
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which shows m ∈ σ(Dm). Hence, we have proved that m ∈ σ(Dm) if and only if
0 ∈ σ(SS∗).

For m �= 0 the statement that −m ∈ σ(Dm) if and only if 0 ∈ σ(S∗S) can be done
in the same way as above. This finishes the proof of (A.3) for m �= 0.

Ifm = 0, then 0 ∈ σ(D0) if and only if there exists a sequence (φn, ψn) ∈ dom D0
such that ‖φn‖H1 + ‖ψn‖H2 = 1 and

D0

(
φn

ψn

)
=

(
Sψn

S∗φn

)
→ 0, as n → ∞.

This is true if and only if (a) ‖φn‖H1 ≥ c for some c > 0 and infinitely many n
and ‖S∗φn‖H2 → 0, as n → ∞, or (b) ‖ψn‖H2 ≥ c for some c > 0 and infinitely
many n and ‖Sψn‖H1 → 0, as n → ∞. This is equivalent to (a) 0 ∈ σ(SS∗) or (b)
0 ∈ σ(S∗S). Together with (A.4) this finishes the proof of (i) also in the case m = 0.

To prove item (ii), assume first that λ > 0 and let φ ∈ ker(SS∗−λ). Then, similarly
as in (A.8) one sees that

� := (
Dm +

√
λ + m2

) (
φ

0

)
=

(
(m + √

λ + m2)φ

S∗φ

)
∈ ker

(
Dm −

√
λ + m2

)

and due to the explicit form of � we see that

dim ker(SS∗ − λ) ≤ dim ker
(
Dm −

√
λ + m2

)
(A.11)

holds. Similarly, if ψ ∈ ker(S∗S − λ), then

� := (
Dm −

√
λ + m2

) (
0
ψ

)
=

(
Sψ

−(m + √
λ + m2)ψ

)
∈ ker

(
Dm +

√
λ + m2

)

and due to the explicit form of � we see that

dim ker(S∗S − λ) ≤ dim ker
(
Dm +

√
λ + m2

)
. (A.12)

Next, in view of (A.6) we have

(
Dm −

√
λ + m2

) (
Dm +

√
λ + m2

)
=

(
SS∗ − λ 0

0 S∗S − λ

)

and hence,

dim ker
(
Dm −

√
λ + m2

)
+ dim ker

(
Dm +

√
λ + m2

)
≤ dim ker(SS∗ − λ) + dim ker(S∗S − λ).
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Since one has for λ > 0 the relation dim ker(SS∗ − λ) = dim ker(S∗S − λ) by [19,
Corollary 5.6], we conclude that this together with (A.11) and (A.12) implies

dim ker
(
Dm −

√
λ + m2

)
= dim ker

(
Dm +

√
λ + m2

)
= dim ker(SS∗ − λ),

which is the statement of assertion (ii) for λ > 0.
Next, we show for m �= 0 that (φ,ψ) ∈ ker(Dm − m) if and only if ψ = 0 and

φ ∈ ker SS∗. Indeed, (φ,ψ) ∈ ker(Dm − m) is equivalent to

(Dm − m)

(
φ

ψ

)
=

(
Sψ

S∗φ − 2mψ

)
=

(
0
0

)
,

i.e. Sψ = 0 and S∗φ − 2mψ = 0. As in (A.10) one finds that this is equivalent to
ψ = 0 and S∗φ = 0. Thus, dim ker(Dm − m) = dim ker SS∗.

For m �= 0 the statement that dim ker(Dm + m) = dim ker S∗S can be shown in
the same way as dim ker(Dm − m) = dim ker SS∗.

Eventually, if m = 0, then (φ,ψ) ∈ ker D0 if and only if

D0

(
φ

ψ

)
=

(
Sψ

S∗φ

)
=

(
0
0

)
.

This implies immediately dim ker S∗S+dim ker SS∗ = dim ker D0. Hence, statement
(ii) has been shown in all cases.

Finally, assertion (iii) is an immediate consequence of the results from (i) and (ii).
�
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