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Abstract
We establish an embedding theorem for the weighted Bergman spaces induced by a
positive Borel measure dω(y)dx with the doubling property ω(0, 2t) ≤ Cω(0, t).
The characterization is given in terms of Carleson squares on the upper half-plane. As
special cases, our result covers the standard weights and logarithmic weights. As an
application, we also establish the boundedness of the area operator.
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1 Introduction

Let X be a space of functions on a domain � ⊂ C. A positive Borel measure μ on �

is said to be a p-Carleson measure for X if the embedding X ⊂ L p(μ), 0 < p < ∞,
is continuous. The problem of characterizing such measures for various choices of
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X is known as the Carleson embedding problem. These ideas originate from the
pioneering work of Carleson [2,3], where they are motivated by interpolation and the
corona problem. Since then, there has been a great amount of research on this topic,
and this kind of measures have found many applications in other related areas [28].

It is natural to study the Carleson embedding problem in the context of various
different spaces of functions. The problem onHardy spaces over the half-plane�+ :=
{z ∈ C : �z > 0}, on the M-harmonic Hardy spaces over the unit ball, and on the
Bergman spaces over the unit disk equipped with a radial doubling weight have been
resolved in [1,15,19,20]. The proofs employ techniques from harmonic analysis, such
as the theory of tent spaces introduced by Coifman, Meyer and Stein [6] as well as
Cohn and Verbitsky [5]. Carleson embedding theorems on Zen spaces satisfying a
doubling condition have been characterized in [13], see also [14]. Following this line
of reasoning, we obtain a description of the Carleson measures for a very general class
of weighted Bergman spaces (or Zen spaces) on the upper half-plane �+.

To give the precise statement of ourmain result, we need to introduce some notation.
Denote by �2 the class of positive Borel measures on (0,∞) satisfying

0 < ω(0, 2t) ≤ Cω(0, t) < ∞ (1.1)

for all t ∈ (0,∞), whereC > 0 is a constant. Let H(�+) denote the space of analytic
functions on �+. For 0 < p < ∞, ω ∈ �2, the weighted Bergman space Ap

ω(�+)

consists of functions f ∈ H(�+) such that

‖ f ‖p
Ap

ω
:=

∫
�+

| f (z)|pd(ω ⊗ m)(z) < ∞,

where d(ω ⊗m)(z) = dω(y)dx and z = x + iy ∈ �+. For simplicity, we also write
( f ω)[E] = ∫

E f d(ω ⊗ m) for each non-negative f . The �2 class and other classes
of doubling weights have been studied extensively in the context of harmonic analysis
and partial differential equations; see for instance [13,14,16,18,20–22,27].

We will frequently use the Poisson integral technique. Due to the unboundedness
of �+, to recover f from its boundary values on �+

a := {z ∈ C : �z > a} for some
a > 0 via the Poisson integral, we always assume that f ∈ H(�+) is bounded on the
closure of �+

a . Denote by 12 the subclass of ω ∈ �2 for which is this true. For other
measures in �2, we consider the spaces

Ap
ω(�+) :=

{
f ∈ H(�+) : ‖ f ‖p

Ap
ω

:= sup
ε>0

∫
�+

| f (z + iε)|pd(ω ⊗ m)(z) < ∞
}

.

Such spaces are also called Zen spaces [10,13,23]. It is known that Ap
ω(�+) ⊂

Ap
ω(�+), each f ∈ Ap

ω(�+) is bounded on the closure of �+
a for any a > 0 and

satisfies ‖ f ‖p
Ap

ω
= ‖ f ‖p

Ap
ω
. See [13] or Corollary 4.2 of [23].

Obviously, Ap
ω(�+) is a Banach space for ω ∈ 12 when 1 ≤ p < ∞, and a

complete metric space, when 0 < p < 1. If d(ω ⊗ m)(z) = (�z)αd A(z), where
α > −1 and d A is the area measure on �+, then we recover the standard weighted
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Bergman spaces Ap
α(�+). However, the class 12 is much larger than the class of the

standard weights. For instance, let 1′
2 be the class of continuous functions ω on (0,∞)

satisfying

lim
t→0+ ω(t) < ∞, inf

t∈(0,∞)
ω(t) > 0,

and

lim
t→∞

1

tω(t)

∫ t

0
ω(y)dy > 0.

Then ω(y)dy ∈ 12 for every ω ∈ 1′
2 (see Remark 2.2 for more details). A typical

example of ω ∈ 1′
2 is

ω(t) =
{
ln t, if t > e,
1, if 0 < t ≤ e.

The class 1′
2 can be compared with the class of regular weights, defined on the unit

disk in terms of a distortion function by Siskakis, see for instance [19,26].
It is easily seen that each point evaluation Lz induced by z ∈ �+ is a bounded

linear functional on A2
ω(�+), ω ∈ 12 (see Sect. 3). Therefore, according to the Riesz

representation theorem, there exist reproducing kernels Bω
z ∈ A2

ω(�+) with ‖Lz‖ =
‖Bω

z ‖A2
ω
having the reproducing property

f (z) =
∫

�+
f (ζ )Bω

z (ζ )d(ω ⊗ m)(ζ ), f ∈ A2
ω(�+).

Nevertheless, many other basic properties of the Bergman spaces Ap
ω(�+), ω ∈ 12,

are not yet well understood and have indeed attracted more attention in the recent
years. The theory for such spaces is both interesting and involving, partly because the
usual techniques for the standard Bergman spaces fail to work. For example, we do
not know whether the natural Bergman projection

Pω( f )(z) =
∫

�+
f (ζ )Bω

z (ζ )d(ω ⊗ m)(ζ ), z ∈ �+,

is bounded on L p
ω(�+), p �= 2. This, in part, explains why the dual spaces of Ap

ω(�+)

have not been identified. It is worth noting that the corresponding result for the unit
disk is now settled in the affirmative in the recent remarkable paper [21]. However, it
is not obvious whether their method carries over to the setting of the present paper.

The purpose of this work is to give the embedding theorem for weighted Bergman
spaces Ap

ω(�+). Ourmain tools are the admissiblemaximal function and an adaptation
of the stopping time argument in [6], which was obtained for this type of spaces on
the disk by Peláez and Rättyä [20]. To this end, we need to introduce some further
notation. For an interval I ⊂ R (R is the real axis on C), let

QI = {
z = x + iy ∈ �+ : x ∈ I , 0 < y ≤ |I |}
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denote the Carleson square, where |I | stands for the length of the interval I . It is also
convenient to define the intervals

Iz =
{
x ∈ R : |�z − x | ≤ 1

2
�z

}

for each z ∈ �+ and to denote Q(z) = QIz . For ξ ∈ �+, we define the truncated
cone


T (ξ) =
{
z ∈ �+ : |�z − �ξ | <

1

2
(�z − �ξ)

}
.

The tent related to 
T (ξ) is given by

T (z) = {
ξ ∈ �+ : z ∈ 
T (ξ)

}
.

Finally, we define the admissible maximal function over the truncated cone 
T (z) by

NT f (z) = sup
w∈
T (z)

| f (w)|, z ∈ �+.

Throughout the paper we use the same letter C to denote various positive constants
which may change at each occurrence. Variables indicating the dependency of con-
stants C will be often specified in parenthesis. We use the notation X � Y or Y � X
for non-negative quantities X and Y to mean X ≤ CY for some inessential constant
C > 0. Similarly, we use the notation X ≈ Y if both X � Y and Y � X hold. Given
p ∈ [1,∞], we will denote by p′ = p/(p − 1) its Hölder conjugate. In this context
we agree that 1′ = ∞ and ∞′ = 1.

Our first result characterizes the p-Carleson measures for Ap
ω(�+).

Theorem 1.1 Let 0 < p < ∞, ω ∈ 12, and let μ be a positive Borel measure on �+.
Then the following statements are equivalent:

(1) μ is a p-Carleson measure for Ap
ω(�+).

(2)

sup
z∈�+

μ[Q(z)]
ω[Q(z)] < ∞.

(3) There exists a constant η0 = η0(ω) > 1 such that for all η > η0,

sup
z∈�+

1

ω[Q(z)]
∫

�+

( �z
|w − z|

)η

dμ(w) < ∞.

Moreover, if μ is a p-Carleson measure for Ap
ω(�+), then the norm of the identity

mapping Id : Ap
ω(�+) → L p(μ) satisfies

‖Id‖p
≈ sup

z∈�+

μ[Q(z)]
ω[Q(z)] ≈ sup

z∈�+

1

ω[Q(z)]
∫

�+

( �z
|w − z|

)η

dμ(w).
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Theorem 1.1 for p ≥ 1 is essentially covered in [13]. Here we present an alternative
proof, which covers 0 < p < 1, using ideas from [19,20].

Put, �̂+ = �+ ∪ {∞}. We say limz→∂�̂+ g(z) = 0, if g(z) → 0 as �z → 0+ or
|z| → ∞. This is equivalent to saying that for every ε > 0, there is a compact set
K ⊂ �+ such that supz∈�+\K |g(z)| < ε.

Assume that { fn} is a bounded sequence of functions in Ap
ω(�+) and fn → 0

uniformly on compact subsets of �+ as n → ∞. A positive measure μ is called
a compact p-Carleson measure (or a vanishing Carleson measure, see [28]), if the
L p(μ) norms of fn tend to 0 as n → ∞. The following theorem characterizes the
compact p-Carleson measures for Ap

ω(�+).

Theorem 1.2 Let 0 < p < ∞, ω ∈ 12, and let μ be a positive Borel measure on
�+, which is finite on any compact subset of �+. Then the following statements are
equivalent:

(1) μ is a compact p-Carleson measure for Ap
ω(�+).

(2)

lim
z→∂̂�+

μ[Q(z)]
ω[Q(z)] = 0.

(3) There exists a constant η0 = η0(ω) > 1 such that for all η > η0,

lim
z→∂̂�+

1

ω[Q(z)]
∫

�+

( �z
|w − z|

)η

dμ(w) = 0.

We note that in both Theorems 1.1 and 1.2 the condition of being a (resp. compact)
p-Carleson measure for Ap

ω(�+) is invariant on p; and we could very well just call
these measures (resp. compact) Carleson measures. See [19,20] for a detailed study
of p-Carleson measures for q-integrable Bergman spaces on the disk. Embedding
theorems for derivatives of Hardy spaces were obtained in [15], and for doubling
Bergman spaces of the unit disk, we refer to [20]. As for compact Carleson measures,
similar results and methodology can be found in [17] for Bergman spaces induced
by rapidly decreasing weights, and in [19] for Bergman spaces induced by rapidly
increasing weights; see also [22] for doubling weights.

As an application of the Carleson embedding theorems, the boundedness of certain
area operators can be obtained. We recall that for 0 < s < ∞, the generalized area
operator induced by a positive Borel measure μ on �+ is defined by

Aμ
s f (z) =

(∫

T (z)

| f (w)|sdμ(w)

) 1
s

, z ∈ �+.

It is worth mentioning that the area operator is tremendously useful in harmonic anal-
ysis. It is, for example, related to the Littlewood–Paley operator, multipliers and tent
spaces. The boundedness of area operators on Hardy spaces, Hardy–Sobolev spaces
and Bergman spaces on the unit disk has been considered in [4,9]. Similar problems
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and ideas for weighted Bergman spaces on the disk, where the weight satisfies a dou-
bling property, have been previously studied in [22] (where the problem is solved
for more general parameters). We employ admissible (non-tangential) maximal func-
tions and analysis of maximal operators on a dyadic grid (see [12,22,24]) to study the
boundedness of area operator Aμ

s on Ap
ω(�+).

The following result characterizes the boundedness of the area operator Aμ
s .

Theorem 1.3 Let 0 < s, p < ∞ and ω ∈ 12. Let μ be a positive Borel measure on
�+ which is finite on compact subsets of �+. Assume that the area operator Aμ

s is
well-defined on Ap

ω(�+). Then Aμ
s : Ap

ω(�+) → L p(d(ω ⊗ m)) is bounded if and
only if

dμω(z) := ω[T (z)]dμ(z)

is a p-Carleson measure for Ap
ω(�+). Moreover, in this case,

‖Aμ
s ‖s(

Ap
ω,L p(d(ω⊗m))

) ≈ sup
z∈�+

μω[Q(z)]
ω[Q(z)] .

Asmentioned before, the results in Theorems 1.1, 1.2, and 1.3 hold true forAp
ω(�+)

when ω ∈ �2 with the same proofs.
After collecting some preliminaries in Sect. 2, we prove our main Theorems 1.1

and 1.2 in Sect. 3 and Theorem 1.3 in Sect. 4.

2 Preliminaries

In this section we present some preliminary results about the weights ω ∈ �2. These
will be frequently used in the sequel. In the setting of the unit disk, there exists a
great number of results and characterizations for doubling weights, see [18–20]. The
following result is analogous to Lemma 1 in [20] (see also Lemma 2.1 of [18]).

Lemma 2.1 The following statements hold.

(1) ω ∈ �2 if and only if there exist C = C(ω) ≥ 1 and β = β(ω) > 0 such that∫ s

0
dω(y) ≤ C

( s
t

)β
∫ t

0
dω(y), 0 < t ≤ s < ∞. (2.1)

(2) Let 0 < p < ∞ and ω ∈ �2. There exists a constant λ0 = λ0(ω) > 0 such that
for all λ > λ0 and each a ∈ �+, the function

Fa,p(z) =
( �a
z − a

) λ+1
p

is analytic in �+ and satisfies

|Fa,p(z)| ≈ 1, z ∈ Q(a), (2.2)
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and

‖Fa,p‖p
Ap

ω
≈ ω[Q(a)]. (2.3)

Proof For (1), let ω ∈ �2 and 0 < t ≤ s < ∞. Let sn = 2n for all n ∈ Z. Then there
exist k ∈ Z and m ∈ Z with m ≤ k such that sk ≤ s < sk+1 and sm ≤ t < sm+1. By
the doubling property (1.1), there exists C = C(ω) > 0 such that

∫ s

0
dω(y) ≤

∫ sk+1

0
dω(y) ≤ C

∫ sk

0
dω(y)

≤ · · · ≤ Ck−m+1
∫ sm

0
dω(y)

≤Ck−m+1
∫ t

0
dω(y)

=C22(k−m−1) log2 C
∫ t

0
dω(y)

≤C2
( s
t

)log2 C ∫ t

0
dω(y).

Conversely, the choice t = s/2 in (2.1) gives ω ∈ �2.
For (2), let ω ∈ �2 and λ > β + 1, where β = β(ω) is the constant in (1). For

k ∈ N ∪ {0} and z ∈ �+, denote

Qk(z) =
{
w ∈ �+ : |�z − �w| < 2k−1�z,�w ≤ 2k�z

}
.

Then

2k

2
�z ≤ |�w − �z| ≤

√
|�w − �z|2 + (�w + �z)2 = |w − z|,

if w ∈ (Qk+1(z)\Qk(z)) ∩ {
w ∈ �+ : �w ≤ 2k�z} , k ∈ N ∪ {0}. Also,

2k

2
�z < �w ≤ |w − z|,

if w ∈ (Qk+1(z)\Qk(z)) ∩ {
w ∈ �+ : �w > 2k�z} , k ∈ N ∪ {0}. Moreover,

0 < �z ≤ |w − z| ,
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if w ∈ Q0(z). Thus,
∫

�+
1

|w − z|λ+1 d(ω ⊗ m)(w) =
∫
Q0(z)

1

|w − z|λ+1 d(ω ⊗ m)(w)

+
∞∑
k=0

∫
Qk+1(z)\Qk (z)

1

|w − z|λ+1 d(ω ⊗ m)(w)

�
∞∑
k=0

1

2k(λ+1)(�z)λ+1

∫
Qk (z)

d(ω ⊗ m)(w)

=
∞∑
k=0

2k�z
2k(λ+1)(�z)λ+1

∫ 2k�z

0
dω(y).

Due to (2.1), there exists a constant C = C(ω) > 0 such that

∫ 2k�z

0
dω(y) ≤ C2kβ

∫ �z

0
dω(y).

Thus,

∫
�+

1

|w − z|λ+1 d(ω ⊗ m)(w) �
∞∑
k=0

1

2k(λ−β)(�z)λ
∫ �z

0
dω(y)

� 1

(�z)λ
∫ �z

0
dω(y). (2.4)

On the other hand,
∫

�+
1

|w − z|λ+1 d(ω ⊗ m)(w) �
∫
Q(z)

1

|w − z|λ+1 d(ω ⊗ m)(w)

� 1

(�z)λ+1ω[Q(z)]

= 1

(�z)λ
∫ �z

0
dω(y). (2.5)

This completes the proof of (2.3). A straightforward calculation gives (2.2). ��
Remark 2.2 As promised in the introduction, we show thatω(y)dy ∈ 12 for allω ∈ 1′

2.
In fact, assume that

lim
t→∞

1

tω(t)

∫ t

0
ω(y)dy = C > 0.

A direct calculation shows that there exists t0 ∈ (0,∞) such that

1

2
Ctω(t) <

∫ t

0
ω(y)dy
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for all t ∈ [t0,∞). Then, a differentiation yields that the function

h(t) := 1

t
2
C

∫ t

0
ω(y)dy

is decreasing on [t0,∞). Therefore,

∫ t

0
ω(y)dy ≤ 2

2
C

∫ t
2

0
ω(y)dy, (2.6)

for t ∈ [2t0,∞). For t ∈ (0, 2t0],
∫ t

0
ω(y)dy ≤ 2 supt∈[0,t0] ω(t)

inf t∈(0,2t0] ω(t)

∫ t
2

0
ω(y)dy. (2.7)

By (2.6) and (2.7),ω(y)dy ∈ 12. The standard estimate obtained from the mean-value
property for analytic functions shows that if f ∈ Ap

ω(�+), then

| f (z)|p � 1

(�z)2
∫

�+
| f (w)|pd A(w) � 1

�z2
∫ ∞

0

∫ ∞

−∞
| f (x + iy)|pdxω(y)dy.

Therefore, f is bounded on �+
a for any a > 0 if f ∈ H(�+) and

∫ ∞

0

∫ ∞

−∞
| f (x + iy)|pdxω(y)dy < ∞.

3 Carleson Embedding Theorem

This section is devoted to the proofs of Theorems 1.1 and 1.2. To this end, we recall
some facts about the Hardy spaces H p over the half-plane. For 0 < p < ∞, we say
f ∈ H p if f ∈ H(�+) and

‖ f ‖p
H p := sup

y>0

∫ ∞

−∞
| f (x + iy)|pdx < ∞.

For f ∈ H p, it is well-known ([7, P. 189, P.191]) that the boundary function f (x) :=
limy→0 f (x + iy) exists almost everywhere and

sup
y>0

∫ ∞

−∞
| f (x + iy)|pdx =

∫ ∞

−∞
| f (x)|pdx . (3.1)

Wewill need the L p boundedness of the non-tangential maximal function. The idea
is to reduce to the Hardy space case as in [19]. The following fact is immediate from
the definition of our spaces.
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Lemma 3.1 Let 0 < p < ∞, and ω ∈ 12. Put ft (z) = f (z + i t) where t ∈ (0,∞)

and z ∈ �+. If f ∈ Ap
ω(�+), then ft ∈ H p for each t > 0.

We proceed to the proof regarding the non-tangential maximal function.

Lemma 3.2 Let 0 < p < ∞ and ω ∈ 12. Then there exists a constant C > 0 such
that

‖NT f ‖p
L p(d(ω⊗m)) ≤ C‖ f ‖p

Ap
ω

(3.2)

for all f ∈ Ap
ω(�+).

Proof Put fy(z) = f (z + iy) where y ∈ (0,∞), z ∈ �+ and f ∈ Ap
ω(�+). For

x ∈ R, we denote by �(x) the standard cone whose vertex is x ∈ R, i.e.,

�(x) = {
z ∈ �+ : |�z − x | < �z} .

Define the non-tangential maximal function over the standard cone by

f ∗
y (x) = sup

w∈�(x)

∣∣ fy(w)
∣∣ .

Then

f ∗
y (x) = sup

w∈�(x)

∣∣ fy(w)
∣∣ ≥ NT f (z), z = x + iy.

For f ∈ Ap
ω(�+), by (3.1), Lemma 3.1 and [8, Theorem 3.1], we deduce that there

exists a constant C > 0 such that
∫

�+
(NT f (z))p d(ω ⊗ m)(z) ≤

∫ ∞

0
ω(y)

∫ ∞

−∞

(
f ∗
y (x)

)p
dxdy

≤C
∫ ∞

0
ω(y)

∫ ∞

−∞
∣∣ fy(x)∣∣p dxdy

� ‖ f ‖p
Ap

ω
,

which gives the desired result. ��
For z ∈ �+ and h ∈ (0,∞], we define 
h

T (z) as follows:


h
T (z) =

{
w = x + iy : |x − �z| <

1

2
(y − �z), y < h + �z

}

and set

Ap
p,μ(g|h)(ξ) =

∫

h

T (ξ)

|g(z)|pdμ(z)
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for aμ-measurable function g. Note that Ap
p,μ(g|h)(ξ) is non-decreasing as a function

of h.
For 0 < p < ∞ and a measurable function f on �+, we define

C p
p,μ( f )(z) = sup

a∈
T (z)

1

ω[T (a)]
∫
T (a)

| f (w)|pω[T (w)]dμ(w).

The following lemma is an essential part for establishing the duality of various tent
spaces, see [6,20]. Since we forgo further discussion on tent spaces, we only present
this result as an estimate.

Lemma 3.3 Letω ∈ �2 andμ be a positive Borelmeasure on�+. For anymeasurable
function g on �+, if supz∈�+ Cp,μ(g)(z) < ∞, then there exist constants M =
M(ω) > 0 and C = C(ω) > 0 such that the function

h(ξ) := sup
{
h : Ap,μ(g|h)(ξ) ≤ MCp,μ(g)(ξ)

}

satisfies

∫
�+

k(z)ω[T (z)]dμ(z) ≤ C
∫

�+

(∫



h(ξ)
T (ξ)

k(z)dμ(z)

)
d(ω ⊗ m)(ξ)

for all μ-measurable non-negative functions k.

Proof It follows from Fubini’s theorem that

∫
�+

(∫



h(ξ)
T (ξ)

k(z)dμ(z)

)
d(ω ⊗ m)(ξ)

=
∫

�+

(∫
T (z)∩H(z)

d(ω ⊗ m)(ξ)

)
k(z)dμ(z),

where H(z) = {ξ ∈ �+ : �z − h(ξ) < �ξ < �z}. It suffices to show that

1

ω[T (z)]
∫
T (z)∩H(z)

d(ω ⊗ m)(ξ) ≥ C

for all z ∈ �+. For z ∈ �+ and u ∈ �+, we require �u < 3�z to ensure that

G(z, u) := T (z) ∩ T (u) ∩ {ξ ∈ �+ : �u − 2�z < �ξ} �= ∅.
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Let z′ = �z + i8�z. We deduce from Fubini’s theorem and (2.1) that

1

ω[T (z)]
∫
T (z)

Ap
p,μ(g|2�z)(ξ)d Aω(ξ)

= 1

ω[T (z)]
∫
T (z)

(∫

2�z

T (ξ)

|g(u)|pdμ(u)

)
d(ω ⊗ m)(ξ)

= 1

ω[T (z)]
∫

�+

(∫
G(z,u)

ω(ξ)d A(ξ)

)
|g(u)|pdμ(u)

≤ 1

ω[T (z)]
∫
T (z′)

(∫
T (u)

ω(ξ)d A(ξ)

)
|g(u)|pdμ(u)

≤ C1
1

ω[T (z′)]
∫
T (z′)

|g(u)|pω[T (u)]dμ(u)

≤ C1 inf
v∈T (z)

C p
p,μ(g)(v), (3.3)

where the last inequality is valid due to

1

ω[T (z′)]
∫
T (z′)

|g(u)|pω[T (u)]dμ(u)

≤ sup
a∈
T (v)

1

ω[T (a)]
∫
T (a)

|g(u)|pω[T (u)]dμ(u)

for all v ∈ T (z). Denote

E(z) = {
ξ ∈ �+ : �ξ ≤ �z − h(ξ)

}
.

Choosing M so that Mp > 2C1, by the definition of h(ξ) and (3.3), we deduce that

ω[T (z) ∩ H(z)]
ω[T (z)] = 1 − ω[T (z) ∩ E(z)]

ω[T (z)]
≥ 1 − 1

Mpω[T (z)] infv∈T (z) C
p
p,μ(g)(v)

∫
T (z)∩E(z)

Ap
p,μ(g|2�z)(ξ)d(ω ⊗ m)(ξ)

≥ 1 − C1

Mp
≥ 1

2
,

which completes the proof. ��
We are now ready to prove the Carleson embedding theorem.

Proof of Theorem 1.1 For the implication (1) ⇒ (3), assume that μ is a p-Carleson
measure for Ap

ω(�+). Considering the test functions

Fz,p(w) =
( �z

w − z

) η
p

, η > λ0 + 1,
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defined in Lemma 2.1, we have

∫
�+

|Fz,p(w)|pdμ(w) � ‖Fz,p‖p
Ap

ω
� ω[Q(z)]

for all z ∈ �+, which implies (3) and

‖Id‖p � sup
z∈�+

1

ω[Q(z)]
∫

�+

( �z
|w − z|

)η

dμ(w).

The implication (3) ⇒ (2) is immediate. We now prove (2) ⇒ (1) by adapting the
estimate from [5, p. 313] or [20, p. 215]. Suppose

sup
z∈�+

μ[Q(z)]
ω[Q(z)] < ∞.

Let g(w) =
(

1
ω[T (w)]

) 1
p
, then

sup
z∈�+

Cp,μ(g)(z) � sup
z∈�+

μ[Q(z)]
ω[Q(z)] < ∞.

For f ∈ Ap
ω(�+), usingLemma3.3with k(z) = | f (z)g(z)|p, we deduce fromLemma

3.2 that
∫

�+
| f (z)|pdμ(z) ≤

∫
�+

∫



h(ξ)
T (ξ)

| f (z)g(z)|pdμ(z)d(ω ⊗ m)(ξ)

≤
∫

�+
(NT f (ξ))p

∫



h(ξ)
T (ξ)

(g(z))pdμ(z)d(ω ⊗ m)(ξ)

�
∫

�+
(NT f (ξ))pCp,μ(g)(ξ)d(ω ⊗ m)(ξ)

≤ ‖ f ‖p
Ap

ω
sup

ξ∈�+

μ[Q(ξ)]
ω[Q(ξ)] ,

where

h(ξ) = sup
{
h : Ap,μ(g|h)(ξ) ≤ MCp,μ(g)(ξ)

}
.

This calculation implies that μ is a p-Carleson measure for Ap
ω(�+) and the norm of

Id : Ap
ω(�+) → L p(μ) satisfies

‖Id‖p � sup
z∈�+

μ[Q(z)]
ω[Q(z)] .

��
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We define the weighted Hörmander type maximal function [11] as follows

Mω(ϕ)(z) = sup
I :z∈QI

1

ω[QI ]
∫
QI

|ϕ(w)|d(ω ⊗ m)(w), z ∈ �+.

The role on Ap
ω(�+) played by this maximal function is similar to that on H p played

by the Hardy–Littlewood maximal function. A variant of the following lemma can
be found in [11], and it can found for doubling weights on the disk in [18] (see also
[19]). The lemma is of independent interest, and will be used in the proof of compact
Carleson embedding theorem. Therefore, we present here a proof in the setting of the
present paper.

Lemma 3.4 Let 0 < p, q < ∞ and ω ∈ 12. Then there exists a constant C =
C(p, ω) > 0 such that

| f (z)|p ≤ CMω( f p)(z), z ∈ �+,

for all f ∈ Aq
ω(�+).

Proof Let ω ∈ 12 and β = β(ω) > 0 be the constant in Lemma 2.1. Write p = αγ ,
where γ > β + 1. Let γ ′ = γ

γ−1 and 0 < t < �z
2 for z ∈ �+. For f ∈ Aq

ω(�+),
using the subharmonicity of | f |α and Hölder’s inequality, we have

| f (z)|α ≤ 1

π

∫ ∞

−∞
�z − t

|z − i t − s|2 | f (s + i t)|αds

≤
(
1

π

∫ ∞

−∞
(�z − t)γ−1

|z − i t − s|γ | f (s + i t)|αγ ds

) 1
γ

×
(
1

π

∫ ∞

−∞
(�z − t)γ

′−1

|z − i t − s|γ ′ ds

) 1
γ ′

.

That is,

| f (z)|p ≤C(ω, p)

(
1

π

∫ ∞

−∞
(�z − t)γ−1

|z − i t − s|γ | f (s + i t)|αγ ds

)

=C(ω, p)
∫ ∞

−∞
Pγ (z − t, s) | f (s + i t)|pds,

where

Pγ (z − t, s) = 1

π

(�z − t)γ−1

|z − i t − s|γ .
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Set sn = 2n−1�z for all n ∈ N ∪ {0}. Let Jn = [�z − sn,�z + sn] and G0 = J0,
Gn = Jn\Jn−1. We get

| f (z)|p ≤
∞∑
n=0

∫
Gn

Pγ (z − t, s) | f (s + i t)|pds

≤
∞∑
n=1

[Pγ (z − t,�z + sn−1) + Pγ (z − t,�z − sn−1)]
∫
Gn

| f (s + i t)|pds

+ Pγ (z − t,�z)
∫
G0

| f (s + i t)|pds

�
∞∑
n=0

1

�z
1

2nγ

∫
Gn

| f (s + i t)|pds.

Thus,

| f (z)|p(�z)
∫ �z

2

0
dω(t) �

∞∑
n=0

1

2nγ

∫ �z
2

0

∫
Gn

| f (s + i t)|pdsdω(t).

It follows from (2.1) that

| f (z)|p �
∞∑
n=0

1

2n(γ−β−1)

∫ sn+1
0

∫
Gn

| f (s + i t)|pdsdω(t)

2n�z ∫ sn+1
0 dω(t)

≤ Mω( f p)(z)

( ∞∑
n=0

1

2n(γ−β−1)

)

� Mω( f p)(z).

The proof is completed. ��
We are now ready to prove the compact Carleson embedding theorem.

Proof of Theorem 1.2 For the implication (1) ⇒ (3), assume that μ is a compact p-
Carleson measure for Ap

ω(�+). Consider the test functions

fz,p(w) =
( �z

w − z

) η
p 1

(ω[Q(z)]) 1
p

,

where η > λ0 + 1 is sufficiently large. Then { fz,p} is a bounded sequence in Ap
ω(�+)

by Lemma 2.1. For ε > 0, put

Kε =
{
w ∈ �+ : |w − εi | ≤ 1

ε
and �w ≥ ε

}
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and

Gε = �+\Kε.

Since μ is a compact p-Carleson measure for Ap
ω(�+), the closure { fz,p : z ∈ �+}

is compact in L p(μ). Thus

lim
ε→0+

∫
�+

|χGε (w) fz,p(w)|pdμ(w) = 0 (3.4)

uniformly in z. Noting that { fz,p} is a bounded sequence in Ap
ω(�+) and converges

uniformly on compact sets of �+ to 0 as z → ∂�̂+, we have from (3.4) that

lim
z→∂�̂+

‖ fz,p‖L p(μ) = 0.

Thus,

lim
z→∂�̂+

1

ω[Q(z)]
∫

�+

( �z
|w − z|

)η

dμ(w) = 0.

The implication (3) ⇒ (2) is immediate. For the implication (2) ⇒ (1), suppose that

lim
z→∂�̂+

μ[Q(z)]
ω[Q(z)] = 0.

That is, for any ε > 0, there is a compact set K ⊂ �+ such that

sup
z∈�+\K

μ[Q(z)]
ω[Q(z)] < ε.

Let r1 = supz∈K |�z|, r2 = supz∈K �z, and s = inf z∈K �z. Denote KQ = {z ∈ �+ :
−r1 ≤ �z ≤ r1,

s
3 ≤ �z ≤ r2}. Then,

sup
z∈�+\KQ

μ[Q(z)]
ω[Q(z)] ≤ sup

z∈�+\K
μ[Q(z)]
ω[Q(z)] < ε. (3.5)

Any bounded sequence { fn} in Ap
ω(�+) is uniformly bounded on compact subsets

of �+ by Lemma 3.4. A well-known application of Montel’s theorem together with
Fatou’s lemma gives us a subsequence { fnk } that converges uniformly on compact sets
of �+ to a function f ∈ Ap

ω(�+). Set

dμG(z) = χ�+\KQ (z)dμ(z).

Denote IKQ = {x ∈ R : −r1 ≤ x ≤ r1}. If z ∈ {KQ : Iz ∩ (R\IKQ ) = ∅}, we
choose n = n(z) ∈ N such that n s

4 < �z ≤ (n + 1) s4 , and denote by Ik ⊂ R intervals
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satisfying |Ik | = s
2 for all k = 1, . . . , n and Iz ⊂ ∪n+1

k=1 Ik . By (3.5) and the doubling
property of ω,

μG [Q(z)] ≤
n+1∑
k=1

μ[QIk ] ≤ ε

n+1∑
k=1

ω[QIk ]

= ε(n + 1)
s

2

∫ s
2

0
dω(y) ≤ 4Cεn

s

4

∫ s
4

0
dω(y)

≤ 4Cεω[Q(z)].

If z ∈ {z ∈ KQ : Iz ∩ (R\IKQ ) �= ∅}, then there exists w ∈ {�z − �z + i3�z,�z +
�z + i3�z}\KQ . By (3.5) and Lemma 2.1, there exists a constant C ′ = C ′(ω) > 0
such that

μG [Q(z)]
ω[Q(z)] ≤ C ′ μG [Q(w)]

ω[Q(w)] ≤ C ′ε.

Due to (3.5),

μG[Q(z)]
ω[Q(z)] < ε, z ∈ �+\KQ .

Consequently,

sup
z∈�+

μG[Q(z)]
ω[Q(z)] < 2(4C + C ′ + 1)ε.

Theorem 1.1 implies

∫
�+

| fnk (z) − f (z)|pdμ(z)

=
∫
KQ

| fnk (z) − f (z)|pdμ(z) +
∫

�+
| fnk (z) − f (z)|pdμG(z)

�
∫
KQ

| fnk (z) − f (z)|pdμ(z) + sup
z∈�+

μG[Q(z)]
ω[Q(z)] .

Since { fnk } converges uniformly on compact sets of �+ and μ is finite on K ,

lim sup
k→∞

∫
�+

| fnk (z) − f (z)|pdμ(z) � sup
z∈�+

μG [Q(z)]
ω[Q(z)] < 2(4C + C ′ + 1)ε.

Since ε is arbitrary, we see fnk → f in L p(μ), that is, μ is a compact p-Carleson
measure for Ap

ω(�+). ��
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4 Area Operators

In this section we prove Theorem 1.3 by adapting the unit disk case [22]. To this end,
a couple of lemmas are needed. We first define the following dyadic grids and the
corresponding maximal operators that have recently been used in harmonic analysis,
see [22,24] and the references therein.

Dθ := {[2 j (m + (−1) jθ), 2 j (1 + m + (−1) jθ)), m, j ∈ Z}, θ ∈
{
0,

1

3

}
.

Lemma 4.1 [24, Lemma 3.1] If I is an interval in R, then there exists an interval
K ∈ Dθ for some θ ∈ {

0, 1
3

}
such that I ⊂ K and |K | ≤ 8|I |.

For a positive Borel measure μ and a dyadic grid Dθ , we define

Mμ,Dθ ( f )(z) = sup
I∈Dθ :z∈QI

1

μ[QI ]
∫
QI

| f (w)|dμ(w).

These dyadic maximal operators are “essentially insensitive to the underlying mea-
sure” [12]—we have the following variant of this fundamental fact:

Lemma 4.2 Let 1 < p < ∞. Let μ, ν be positive Borel measures. For a dyadic grid
Dθ with θ ∈ {

0, 1
3

}
, if

sup
I∈Dθ

ν[QI ]
μ[QI ] < ∞,

then Mμ,Dθ : L p(μ) → L p(ν) is bounded. Moreover,

‖Mμ,Dθ ‖p
(L p(μ),L p(ν)) � sup

I∈Dθ

ν[QI ]
μ[QI ] .

Proof Wewill use theMarcinkiewicz interpolation theorem, and therefore it suffices to
proveweak type-(1, 1) inequality (L∞ estimate being obvious). Let s > 0, f ∈ L1(μ),
and

d f (s) = {z ∈ �+ : Mμ,Dθ ( f )(z) > s}.

If d f f (s) = ∅, then there is nothing to prove. We now suppose that d f (s) �= ∅. For
T > 0, define the sets

AT
s =

{
QI : I ∈ Dθ , |I | < T ,

∫
QI

| f |dμ ≥ sμ[QI ]
}

.
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Let AT ,max
s be the subfamily of AT

s consisting of the maximal QI under inclusion.
Since |I | < T , finding such a family of maximal elements is possible. It follows that
AT ,max
s is a covering of

d f (T , s) =
{
z ∈ �+ : sup

I∈Dθ :z∈QI ,|I |<T

1

μ[QI ]
∫
QI

| f |dμ > s

}

and the squares QI from AT ,max
s are mutually disjoint. Then clearly each z ∈ d f (T , s)

is contained at most one square in AT ,max
s . Therefore,

ν[d f (T , s)] ≤
∑

QI∈AT ,max
s

ν[QI ] ≤
(
sup
I∈Dθ

ν[QI ]
μ[QI ]

) ∑
QI∈AT ,max

s

μ[QI ]

≤
(
sup
I∈Dθ

ν[QI ]
μ[QI ]

)
1

s

∑
QI∈AT ,max

s

∫
QI

| f |dμ

≤
(
sup
I∈Dθ

ν[QI ]
μ[QI ]

)
1

s
‖ f ‖L1(μ).

When T → ∞, the sets d f (T , s) expand and d f (s) = ∪T>0d f (T , s). So

ν[d f (s)] = lim
T→∞ ν[d f (T , s)] ≤

(
sup
I∈Dθ

ν[QI ]
μ[QI ]

)
1

s
‖ f ‖L1(μ)

which completes the proof. ��

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 We divide the proof into three cases: (i) p = s, (ii) p > s, and
(iii) p < s.

Case (i): It follows directly from Fubini’s theorem that

‖Aμ
s f ‖p

L p(d(ω⊗m)) =
∫

�+

∫

T (z)

| f (w)|pdμ(w)d(ω ⊗ m)(z)

=
∫

�+
| f (w)|pdμω(w).

Hence Aμ
s is bounded if and only if μω is a p-Carleson measure for Ap

ω(�+).
Case (ii): Assume that Aμ

s : Ap
ω(�+) → L p(d(ω ⊗ m)) is bounded. Considering

the test functions Fz,p defined in Lemma 2.1, we have
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μω[Q(z)] ≈

∫
Q(z)

|Fz,p(w)|sdμω(w)

≈

∫
Q(z)

|Fz,p(w)|s
∫
T (w)

|Fz,(p/s)′(u)|d(ω ⊗ m)(u)dμ(w).

Using Fubini’s theorem, we obtain that

μω[Q(z)] �
∫

�+
|Fz,(p/s)′(u)|

∫

T (u)

|Fz,p(w)|sdμ(w)d(ω ⊗ m)(u).

Using Hölder’s inequality and Lemma 2.1 yields that

μω[Q(z)] � ‖Aμ
s ‖sω[Q(z)],

which implies that dμω(z) = ω[T (z)]dμ(z) is a p-Carleson measure for Ap
ω(�+) by

Theorem 1.1.
Conversely, assume that dμω(z) = ω[T (z)]dμ(z) is a p-Carleson measure for

Ap
ω(�+). For brevity, we denote M(ω⊗m),Dθ by Mω,Dθ , where θ ∈ {0, 1/3}. We also

write B((p/s)′) for the unit ball of L(p/s)′(d(ω ⊗ m)).
Due to

‖Aμ
s f ‖sL p(d(ω⊗m))

= sup
h∈B((p/s)′)

∫
�+

|h(z)|
∫


T (z)
| f (w)|s dμω(w)

ω[T (w)]d(ω ⊗ m)(z),

it follows from Lemma 4.1, and Lemma 2.1 that

‖Aμ
s f ‖sL p(d(ω⊗m))

= sup
h∈B((p/s)′)

∫
�+

| f (w)|s 1

ω[T (w)]
∫
T (w)

|h(z)|d(ω ⊗ m)(z)dμω(w)

� sup
h∈B((p/s)′)

∫
�+

| f (w)|s(Mω,D0(h)(w) + Mω,D1/3(h)(w))dμω(w).

Then, by Hölder’s inequality, Lemma 4.2, and Theorem 1.1, we have

‖Aμ
s f ‖sL p(d(ω⊗m)) �

(
sup
z∈�+

μω[Q(z)]
ω[Q(z)]

)
‖ f ‖s

Ap
ω
,

that is, Aμ
s : Ap

ω(�+) → L p(d(ω ⊗ m)) is bounded.
Case (iii): Assume that Aμ

s : Ap
ω(�+) → L p(d(ω ⊗ m)) is bounded. For ε > 0,

put

Kε =
{
w ∈ �+ : |w − εi | ≤ 1

ε
and �w ≥ ε

}
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and define dμε(z) = χKε (z)dμ(z). Obviously, it holds that

‖Aμε
s ‖(

Ap
ω,L p(d(ω⊗m))

) ≤ ‖Aμ
s ‖(

Ap
ω,L p(d(ω⊗m))

).

Take α > β > 1 satisfying β
α

= p
s . It follows from Fubini’s theorem that

(με)ω[Q(z)] =
∫

�+
χQ(z)(w)d(με)ω(w)

≈

∫
�+

χQ(z)(w)|Fz,p(w)|s
∫
T (w)

d(ω ⊗ m)(u)dμε(w)

=
∫

�+

(∫

T (u)

χQ(z)(w)|Fz,p(w)|sdμε(w)

) 1
α
+ 1

α′
d(ω ⊗ m)(u).

By Hölder’s inequality we have

(με)ω[Q(z)] �
( ∫

�+

(∫

T (u)

|Fz,p(w)|sdμε(w)

) β
α

d(ω ⊗ m)(u)

) 1
β

×
⎛
⎝

∫
�+

(∫

T (u)

χQ(z)(w)dμε(w)

) β′
α′
d(ω ⊗ m)(u)

⎞
⎠

1
β′

= ‖Aμε
s Fz,p‖

p
β

L p(d(ω⊗m))‖Aμε

1 χQ(z)‖
1
α′

L
β′
α′ (d(ω⊗m))

. (4.1)

Observe that
(

β ′
α′

)′ = β(α−1)
α−β

, and write again B(
β(α−1)
α−β

) for the unit ball of

L
β(α−1)
α−β (d(ω ⊗ m)). Applying Fubini’s theorem, Lemma 4.1, and Lemma 2.1, we

have by duality

‖Aμε

1 χQ(z)‖
L

β′
α′ (d(ω⊗m))

= sup
h∈B(

β(α−1)
α−β

)

∫
�+

|h(u)|Aμε

1 χQ(z)(u)d(ω ⊗ m)(u)

= sup
h∈B(

β(α−1)
α−β

)

∫
�+

|h(u)|
(∫


T (u)

χQ(z)(w)dμε(w)

)
d(ω ⊗ m)(u)

= sup
h∈B(

β(α−1)
α−β

)

∫
�+

χQ(z)(w)
1

ω[T (w)]
∫
T (w)

|h(u)|d(ω ⊗ m)(u)d(με)ω(w)

� sup
h∈B(

β(α−1)
α−β

)

∫
�+

χQ(z)(w)(Mω,D0(h)(w) + Mω,D1/3(h)(w))d(με)ω(w).
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Using Hölder’s inequality and Lemma 4.2, we have

‖Aμε

1 χQ(z)‖
L

β′
α′ (d(ω⊗m))

� ((με)ω[Q(z)]) α′
β′

(
sup

w∈�+

(με)ω[Q(w) ∩ Q(z)]
ω[Q(w)]

)1− α′
β′

.

This estimate together with (4.1) and Lemma 2.1 gives us

((με)ω[Q(z)]) 1
β (ω[Q(z)])− 1

β

� ‖Aμε
s ‖

p
β(
Ap

ω,L p(d(ω⊗m))
)
(

sup
w∈�+

(με)ω[Q(w) ∩ Q(z)]
ω[Q(w)]

) 1
α′ − 1

β′
.

Therefore,

sup
z∈�+,ε>0

(με)ω[Q(z)]
ω[Q(z)] � ‖Aμ

s ‖s(
Ap

ω,L p(d(ω⊗m))
).

It follows from Fatou’s lemma and Theorem 1.1 that μω is a p-Carleson measure for
Ap

ω(�+) and

sup
z∈�+

μω[Q(z)]
ω[Q(z)] � ‖Aμ

s ‖s(
Ap

ω,L p(d(ω⊗m))
).

Conversely, assume that dμω(z) = ω[T (z)]dμ(z) is a p-Carleson measure for
Ap

ω(�+). Applying Hölder’s inequality we have

‖Aμ
s f ‖p

L p(d(ω⊗m))

=
∫

�+

(∫

T (z)

| f (w)|s dμω(w)

ω[T (w)]
) p

s

d(ω ⊗ m)(z)

≤
∫

�+
(NT f (z))

p(s−p)
s

(∫

T (z)

| f (w)|p dμω(w)

ω[T (w)]
) p

s

d(ω ⊗ m)(z)

≤
(∫

�+
(NT f (z))p d(ω ⊗ m)(z)

)1− p
s

×
(∫

�+

∫

T (z)

| f (w)|p dμω(w)

ω[T (w)]d(ω ⊗ m)(z)

) p
s

.

Finally, Fubini’s theorem, Theorem 1.1, and Lemma 3.2 yield

‖Aμ
s f ‖p

L p(d(ω⊗m)) � ‖NT f ‖
p(s−p)

s
L p(d(ω⊗m))‖ f ‖

p2

s
L p(μω)

�
(
sup
z∈�+

μω[Q(z)]
ω[Q(z)]

) p
s

‖ f ‖p
Ap

ω
,

which completes the desired proof. ��
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