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Abstract
On finite dimensional spaces, it is apparent that an operator is the product of two
positive operators if and only if it is similar to a positive operator. Here, the class L+ 2

of bounded operators on separable infinite dimensional Hilbert spaces which can be
written as the product of two bounded positive operators is studied. The structure is
much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity
to a positive operator. The spectral properties of operators in L+ 2 are developed, and
membership inL+ 2 among special classes, including algebraic and compact operators,
is examined.

Keywords Products of positive operators · Schur complements · Quasi-similarity ·
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Mathematics Subject Classification 47A05 · 47A65

1 Introduction

This work aims to shed light on two questions, “Which bounded Hilbert space opera-
tors are products of two bounded positive operators?”, and “What properties do such
operators share?” Here, positive means selfadjoint with non-negative spectrum. This
class is denoted throughout by L+ 2. The answer is easily given on finite dimensional
spaces: an operator will be in L+ 2 if and only if it is similar to a positive operator
[22], and this in turn is equivalent to the operator being diagonalizable with positive
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spectrum. Answering the questions on infinite dimensional Hilbert spaces is a much
more delicate matter. Similarity no longer suffices.

Apostol [1] studied the question as to which operators are quasi-similar to normal
operators, and his work readily adapts to this setting, making it possible to construct
operators which are quasi-similar to positive operators. Another difficulty then arises,
since not every operatorwhich is quasi-similar to a positive operatorwill be the product
of two bounded positive operators. For this, something extra is needed.

This is not the end of the story though, since the quasi-similar operators which are in
L+ 2 only form a part of the whole class. One can relax the quasi-similarity condition
to quasi-affinity. Here again, the class of operators which are in L+ 2 and which are
quasi-affine to a positive operator can be characterized. However, even this falls short
of giving the entire class. Nevertheless, it comes close, and in general T ∈ L+ 2 has
the property that it has both a restriction and extension in L+ 2 which are quasi-affine
to a positive operator.

Despite the fact that similarity to a positive operator fails to capture the whole of
L+ 2, a surprising number of the spectral properties of operators similar to positive
operators do carry over. It is an elementary observation that the spectrum of an operator
in L+ 2 is contained in R

+, the non-negative reals. Also, it was observed by Wu [22]
that the only quasi-nilpotent operator in the class is 0. It happens that operators which
are similar to positive operators are spectral operators, and so decompose as the sum
of a scalar operator (having a spectral decomposition) and a quasi-nilpotent operator.
Moreover, in this case the quasi-nilpotent part is 0. Using local spectral theory, it is
possible to define an invariant linear manifold (so not necessarily closed) on which an
operator is quasi-nilpotent [14]. In case the operator has the single valued extension
property, which enables the definition of a unique local resolvent, this manifold is
closed. Since the operators inL+ 2 have thin spectrum, they also have the single valued
extension property. It then follows that for any operator in L+ 2, the quasi-nilpotent
part is the restriction to the kernel. In addition, for non-zero point spectra, there is no
non-trivial (generalized) Jordan structure. These ideas enable the study operators in
L+ 2 which are either algebraic or compact.While the only operators inL+ 2 which are
similar to positive operators are scalar, all are generalized scalar operators (having a
C∞ functional calculus). Furthermore, the algebraic spectral subspaces for operators
in L+ 2 have the same form as that exhibited by normal operators.

Elements of L+ 2 with closed range are the ones which behave most similarly to
the finite dimensional case, since they are similar to positive operators. In this case
it is possible to explicitly describe the Moore-Penrose inverse of the operator, and to
find a generalized inverse which is also in L+ 2.

A good deal of the paper hinges on a theorem due to Sebestyén [18]. Sebestyén’s
theorem states that for fixed operators A and T , the equation T = AX has a positive
solution if and only if T T ∗ ≤ λAT ∗ for some λ > 0. A proof of a refined version is
given in Sect. 2 using Schur complement techniques (see also [2]), enabling T ∈ L+ 2

to be written as AB, A, B ≥ 0, where ran A = ran T and ran B = ran T ∗. Such a pair
(A, B) is called optimal for T . Optimal pairs happen to be extremely useful.

Section 3 looks at those operators (not necessarily in L+ 2) which are either quasi-
affine or quasi-similar to positive operators. Rigged Hilbert spaces are used to show
that for an operator T quasi-affine to a positive operator, ran T ∩ ker T = {0} and
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ran T � ker T = H. In the quasi-similar case, since this will hold for both T and T ∗,
one has instead that ran T � ker T = H. Work of Hassi, Sebestyén, and de Snoo [10]
plays a key role in describing those operators quasi-affine to a positive operator.

The paper then turns to describing general properties of the class L+ 2 in Sect. 4.
Central here are optimal pairs, the properties of which are explored in detail. Examples
are given which show that operators in L+ 2 which are similar to a positive operator,
quasi-similar to a positive operator, and quasi-affine to a positive operator form strictly
increasingly larger subclasses when dimH = ∞, and that there are operators in L+ 2

which do not fall into any of these, further hinting at the complexities of the class.
Similarity to a positive operator completely characterizesL+ 2 on finite dimensional

spaces, and this is examined in Sect. 6. The closed range operators are considered as
a special sub-category. In Sect. 7, attention turns to those operators in L+ 2 which
are either quasi-affine or quasi-similar to a positive operator, where there are char-
acterizations given which are analogous to those found for operators similar to a
positive operator. Generally, there is only a weak connection between the spectra of
quasi-similar operators. However, for an operator in L+ 2, quasi-affinity to a positive
operator preserves the spectrum. It is also proved that not every operator which is
quasi-similar to a positive operator is in L+ 2, by proving that any operator in L+ 2

which is quasi-similar to a positive operator has a square root which is quasi-similar to
a positive operator, but not all have square roots in L+ 2. In Sect. 8, general operators
in L+ 2 are considered, and the main point is that for any T ∈ L+ 2, there exist both
restrictions and extensions (on the same Hilbert space) which are also in L+ 2 and
which are quasi-affine to a positive operator.

A constant refrain throughout is that operators inL+ 2 havemany of the properties of
positive operators. Section 5 examines this resemblance with regards to local spectral
properties. This is applied in the final section to algebraic operators and compact
operators in L+ 2.

2 Preliminaries

Throughout, all spaces are complex and separable Hilbert spaces. The domain, range,
closure of the range, null space or kernel, spectrum and resolvent of any given operator
A are denoted by dom (A), ran A, ran A, ker A, σ(A), and ρ(A), respectively, and
σ(A) ⊆ [0,∞) is indicated as σ(A) ≥ 0.

The space of everywhere defined bounded linear operators fromH toK is written as
L(H,K), or L(H) whenH = K, while C R(H) denotes the subset in L(H) of closed
range operators. The identity operator onH is written as 1, or 1H if it is necessary to
disambiguate.

As usual, the direct sum of two subspacesM andN withM∩N = {0} is indicated
by M � N , and the orthogonal direct sum by M ⊕ N . The orthogonal complement
of a space M is written M⊥. The symbol P denotes the class of all Hilbert space
orthogonal projections, while PM is the orthogonal projection with rangeM.

Write GL(H) for the group of invertible operators in L(H), L+ = L(H)+, the
class of positive semidefinite operators, GL(H)+ := GL(H) ∩ L+ and C R(H)+ :=
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C R(H) ∩ L+. The paper focuses on the operators in

L+ 2 := {T ∈ L(H) : T = AB where A, B ∈ L+}.

Occasionally, this will be written as L+ 2(H) if it is necessary to clarify on which
space the operators are acting.

Given two operators S, T ∈ L(H), the notation T ≤ S signifies that S − T ∈ L+
(the Löwner order). Given any T ∈ L(H), |T | := (T ∗T )1/2 is the modulus of T and
T = U |T | is the polar decomposition of T , with U the partial isometry such that
kerU = ker T and ranU = ran T .

For B ∈ L+, the Schur complement B/S of B to a closed subspace S ⊆ H is the
maximal element of {X ∈ L(H) : 0 ≤ X ≤ B and ran X ⊆ S⊥}. It always exists.
The S-compression of B is defined as BS := B − B/S .

Let B ∈ L(H) be selfadjoint, S ⊆ H a closed subspace, relative to S ⊕ S⊥,

B =
(

B11 B12
B∗
12 B22

)
.

Suppose that B ≥ 0. Write B1/2 =
(

R∗
1

R∗
2

)
, where R∗

1 , R∗
2 are the rows of B1/2.

Then for j = 1, 2, R∗
j R j = B j j , and so by Douglas’ lemma, there are isometries

Vj : ran B1/2
j j → ran R j such that R j = Vj B1/2

j j . Then B12 = R∗
1 R2 = B1/2

11 F B1/2
22 ,

where F = V ∗
1 V2 : ran B1/2

22 → ran B1/2
11 is a contraction.

On the other hand, if B11, B22 ≥ 0 and B12 has this form, then

B =
(

B1/2
11 0

B1/2
22 F∗ B1/2

22 DF

)(
B1/2
11 F B1/2

22

0 DF B1/2
22

)

=
(

B1/2
11

B1/2
22 F∗

) (
B1/2
11 F B1/2

22

)
+

(
0 0
0 B1/2

22 (1 − F∗F)B1/2
22

)
,

(2.1)

where DF = (1ran B22 −F∗F)1/2 on ran B22. Therefore, positivity of B is equivalent to
B11, B22 ≥ 0 and the existence of such a contraction F . The second term in the sum in
(2.1) is the Schur complement B/S , while the first term is the S-compression of B. In
general, it is not difficult to verify that whenever B = C∗C , where C : S ⊕S⊥ → S,
then B/S = 0.

The next theorem is a slightly strengthened form of one due to Sebestyén ([18], see
also [2, Corollary 2.4]). It plays a central role in what follows.

Theorem 2.1 (Sebestyén) Let A, T ∈ L(H). The equation AX = T has a positive
solution if and only if

T T ∗ ≤ λAT ∗
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for some λ ≥ 0, in which case X can be chosen so that ker X = ker T , X/ran T = 0.
Furthermore, if A ≥ 0 with ran A = ran T , then Pran (T ) X |ran (T ) will be injective with
dense range.

Proof If AX = T has a positive solution, then λ = ‖X‖ suffices. On the other hand,
if for some λ ≥ 0, 0 ≤ T T ∗ ≤ λAT ∗, then AT ∗ ≥ 0 and by Douglas’ lemma, there
exists G with ‖G‖ ≤ λ1/2 and ran G ⊆ ran (T A∗)1/2 satisfying T = (T A∗)1/2G.
Clearly then, ker T = ker G and ran T ⊆ ran (T A∗)1/2. Also ran (T A∗)1/2 =
ran (T A∗) ⊆ ran T , so equality holds. The equality T A∗ = (T A∗)1/2G A∗ then
implies (T A∗)1/2 = G A∗ = AG∗. Thus T = AG∗G, and so X = G∗G ≥ 0 with
ker X = ker T (equivalently, ran X = ran T ∗). Also, ran G = ran (T A∗)1/2 = ran T .

DecomposingH = ran T ⊕ ker T ∗, the operator G has the form G =
(

G1 G2
0 0

)
, and

by (2.1), X/ran T = 0.
Finally, if A ≥ 0 with ran A = ran T , then (T A)1/2 = G A = G1A = AG∗

1. Hence
ker(G∗

1G1) = {0}, and so Pran (T ) X |ran (T ) is injective with dense range. 
�

3 Similarity and Quasi-Similarity to a Positive Operator

Recall that two operators S, T ∈ L(H) are similar if there exists G ∈ GL(H) such
that T G = GS.

Mimicking the spectral theory for normal operators, an operator T is spectral if
for all ω ⊆ C Borel, there are (not necessarily orthogonal), uniformly bounded,
countably additive projections E(ω) commuting with T such that σ(T |ran E(ω)) = ω.
If in addition, T = ∫

σ(T )
λd E(λ), T is termed a scalar operator, in which case it

is similar to a normal operator A and σ(T ) = σ(A). More generally, any spectral
operator T has a unique decomposition T = S + N , where S is scalar, N is quasi-
nilpotent, and SN = N S. See, for example, [7].

Various papers, including [17, Theorem 2], have considered operators similar to
selfadjoint operators. See also [20] for the connection with scalar operators. The fol-
lowing collects conditions for an operator to be similar to a positive operator.

Theorem 3.1 Let T ∈ L(H). The following statements are equivalent:

(i) T G = GS for some G ∈ GL(H) and S ∈ L+;
(ii) T X = XT ∗ with X ∈ GL(H)+ and σ(T ) ≥ 0;
(iii) T = AB, with A, B ∈ L+, where B, respectively A, is invertible;
(iv) There exist W , Z ∈ GL(H)+ such that T W ∈ L+, respectively Z T ∈ L+;
(v) T is a scalar operator and σ(T ) ≥ 0.

If any of these hold, then

ran T � ker T = H.

Proof (i) ⇒ (ii): If 0 ≤ S = G−1T G, G ∈ GL(H), then σ(T ) = σ(S) ≥ 0. Also,
sinceG−1T G = G∗T ∗G∗−1, it follows that (GG∗)−1T (GG∗) = T ∗, or equivalently,
T (GG∗) = (GG∗)T ∗.
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(ii) ⇒ (iii): Let T = XT ∗ X−1, X ∈ GL(H)+, and assume that σ(T ) ≥ 0. Then

X1/2T ∗ X−1/2 = X−1/2T X1/2 = (X−1/2T X1/2)∗ ∈ L+,

and so A := X1/2(X−1/2T X1/2)X1/2 = T X ≥ 0. Consequently, T = AB, where
B = X−1 > 0. Work instead with T ∗ = X−1 T X to obtain T ∗ = B A, B ≥ 0 and
A > 0.

(iii) ⇒ (iv): Suppose that T = AB, with A, B ∈ L+ and B invertible. Let
W := B−1 ∈ GL(H)+. Then T W = A ∈ L+. If on the other hand A is invertible,
Z = A−1 yields Z T ≥ 0.

(iv) ⇒ (i): Suppose W ∈ GL(H)+ and T W ∈ L+. Then

W −1/2(T W )W −1/2 = W −1/2T W 1/2 ≥ 0.

Similarly if Z T ∈ L+.
(v) ⇔ (i): If G ∈ GL(H) is such that S = G−1T G ∈ L+, then σ(T ) ≥ 0. Let E S

be the spectral measure of S, so that S = ∫
σ(S)

λ d E S(λ). Then ET (·) := G−1E S(·)G
is a resolution of the identity for T and T = ∫

σ(S)
λ d ET (λ). Thus T is scalar.

Conversely, if T is scalar and σ(T ) ≥ 0, then T is similar to S normal with
σ(S) = σ(T ) ≥ 0, and thus S ∈ L+.

To prove the last statement, assume (i). Since S ≥ 0, ran S ⊕ ker S = H. Also,
ran T = Gran S and ker T = G ker S. Since G is injective, ran T ∩ ker T = {0}, and
since G is surjective ran T + ker T = H. Hence ran T � ker T = H. 
�

If T ∈ L+ 2 is similar to S ≥ 0, with T G = GS (where without loss of generality
in (i) in the last theorem, G can be taken to be positive), then as previously noted,
� = σ(T ) = σ(S) ⊂ R

+. Moreover, since it is possible to define a Borel functional
calculus for S on �, the same then holds for T (see Theorem 3.1, where this is
essentially what is implied by T being a scalar operator). In particular, if f is a Borel
function, then f (T ) = G f (S)G−1 is well-defined.

If f (�) ⊂ R
+, then f (S) ≥ 0 and

f (T ) = (G f (S)G)(G−2) ∈ L+ 2.

Acase of particular interest is f (x) = x1/2. Since T = AB, A = (GSG), B = (G−2),
it follows that T 1/2 = A′B when

A′ B A′ = A, A′ ≥ 0.

This is an example of a Ricatti equation, and more generally, an operator T ∈ L+ 2

will have a square root if for some factorization T = AB, A, B ≥ 0, there exists
A′ ≥ 0 satisfying this equality. This is examined more closely later in the section.

There is also a close connection with the geometric mean, defined for two positive
operators E and F with E invertible as

E # F = E1/2(E−1/2F E−1/2)1/2E1/2,
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and so satisfies (E # F)E−1(E # F) = F .

Lemma 3.2 If T is similar to a positive operator and T = AB with B ∈ GL(H)+,
respectively, A ∈ GL(H)+, then

T 1/2 = (B−1 # A)B,

respectively, T 1/2 = A(A−1 # B).

Proof By Theorem 3.1, B can be chosen invertible in T = AB, and then with
G = B−1/2 and S = B1/2AB1/2, T G = GS. Setting E = B−1 = G2 and
F = A = GSG, it follows that E # F = GS1/2G, and hence T 1/2 = (B−1 # A)B
since (B−1 # A)B(B−1 # A) = A. If instead A is chosen to be invertible, then working
with G−1T = SG−1, one obtains T 1/2 = A(A−1 # B). 
�

An operator which is injective with dense range is termed a quasi-affinity. An
operator T is quasi-affine to C if there is a quasi-affinity X such that

T X = XC .

The operators T and C are said to be quasi-similar if there exist quasi-affinities
X , Y ∈ L(H) such that

T X = XC and Y T = CY .

A finite or countable system {Sn}1≤n<m of subspaces of H is called basic if Sn �∨
k �=nSk = H for every n (

∨
indicating the closed span), and

⋂
n≥1(

∨
k≥nSk) = {0}

if m = ∞. In [1], Apostol uses basic systems to characterize those operators which
are quasi-similar to normal operators. With only minor modification, his proof works
to characterize quasi-similarity to positive operators.

Theorem 3.3 (Apostol) The operator T ∈ L(H) is quasi-similar to a positive operator
if and only if there exists a basic system {Sn}n≥1 of invariant subspaces of T such that
T |Sn is similar to a positive operator.

It is sometimes useful to relax the conditions in the definition of quasi-similarity
so that instead, T X = XC and Y T = DY . The next lemma shows that if C and D
are positive, this is no more general.

Lemma 3.4 Let T ∈ L(H) such that T X = XC and Y T = DY , with X , Y quasi-
affinities and C, D ∈ L+. Then

(i) C is quasi-similar to D, and
(ii) T is quasi-similar to C.

Proof (i): Since (Y X)C = Y T X = D(Y X), C(Y X)∗ = (Y X)∗ D, and the claim
follows since Y X and (Y X)∗ are quasi-affinities.
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(ii): Set Y ′ := (Y X)∗Y . Then Y ′ is a quasi-affinity and

Y ′T = (Y X)∗Y T = (Y X)∗ DY = X∗Y ∗ DY

= X∗T ∗Y ∗Y = (T X)∗Y ∗Y = C X∗Y ∗Y = CY ′.

By assumption T X = XC , so it follows that T is quasi-similar to C . 
�
Definition A rigged Hilbert space is a triple (S,H,S∗) with H a Hilbert space and
S ⊆ H a dense subspace such that the inclusion ι : S → H is continuous. The space
S∗ is the dual of S, andH∗ = H is mapped into S∗ via the adjoint map ι∗. The spaces
S and S∗ are identified as Hilbert spaces, with ι∗ι(H) = H∗.

Let X ∈ L(H). Define an inner product on ran X by

〈 x, y 〉X :=
〈

X−1x, X−1y
〉
, x, y ∈ ran X .

Then HX := (ran X , 〈 ·, · 〉X ) is a Hilbert space.

The primary case of interest is when X is a quasi-affinity, in which caseHX can be
viewed as a rigged Hilbert space.

Proposition 3.5 Let T ∈ L(H) such that T X = XC with X a quasi-affinity and
C ∈ L+. Then HX can be identified with a rigged Hilbert space and T̂ := T |ran X ∈
L(HX )+. Furthermore, ran T ∩ ker T = {0} and

ran T � ker T = H.

Proof Let y = X X−1y ∈ ran X . Then ‖y‖ ≤ ‖X‖‖X−1y‖ = ‖X‖‖y‖X . Therefore
the inclusion map ι : HX ↪→ H is continuous. Thus HX (or more properly, the triple
(HX ,H,H∗

X )) is a rigged Hilbert space. This space is simply denoted as HX . Note

that for any set S ⊆ ran X , SHX ⊆ S.
Since T X = XC , T (ran X) ⊆ ran X and T̂ is well defined. Also, if y = X x ,

v = Xw for some x, w ∈ H,

〈
T̂ y, v

〉
X

=
〈

X−1T y, X−1v
〉
=

〈
X−1T X x, w

〉
=

〈
X−1XCx, w

〉
= 〈 Cx, w 〉 .

Since ‖y‖X = ‖x‖ and ‖v‖X = ‖w‖, taking the supremum over y and v with
norm 1 gives that ‖T̂ ‖X = ‖C‖ and so T̂ is bounded in HX . Taking v = y then
yields T̂ ∈ L(HX )+. By positivity H = ranC ⊕ ker C , and ran T = X ranC ,
ker T = X ker C , so ranHX (T̂ ) ⊕HX ker T̂ = HX = ran X ⊆ ran T + ker T , and
thus ran T + ker T = H.

Now suppose that 0 �= z = T x ∈ ker T . There is a sequence {hn} in H such that
X X∗hn → x , and so T 2X X∗hn = XC2X∗hn → 0. Let gn = X∗hn for all n. Then
Xgn → x and for all y ∈ H,

〈
Cgn, C X∗y

〉 =
〈

XC2X∗hn, y
〉
→ 0.
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Since ran (C X) = ranC , it follows that Cgn → 0. Hence T X X∗hn = XC X∗hn =
XCgn → 0, which implies that T x = 0, a contradiction. 
�
Corollary 3.6 Let T ∈ L(H) be quasi-similar to a positive operator. Then ran T ∩
ker T = {0} and ran T � ker T is dense in H.

Proof If T ∈ L(H) is quasi-similar to a positive operator C , by Proposition 3.5,
ran T � ker T = H and ran T ∗ � ker T ∗ = H. Hence ran T ∩ ker T = {0}, and so
ran T � ker T is dense inH. 
�

The following is a special case of more general results found in [8, Corollary 2.12]
and [19, Theorem 2].

Lemma 3.7 If T ∈ L(H) is quasi-affine to C ∈ L+, then σ(T ) ⊇ σ(C).

If T ∈ L+ 2, then it will be shown that these spectra are equal (Proposition 7.2).

Proposition 3.8 Let T ∈ L(H). The following statements are equivalent:

(i) T is quasi-affine to a positive operator;
(ii) T ∗ = B A, with B a closed surjective positive operator and A ∈ L+;
(iii) There exists a quasi-affinity X ∈ L+ such that T X ∈ L+.

Proof (i) ⇒ (ii): Assume T G = GS, G a quasi-affinity, S ≥ 0. Then GG∗T ∗ =
GSG∗ and

T ∗ = (GG∗)−1(GSG∗).

The operator GG∗ is a quasi-affinity, hence (GG∗)−1 maps ran(GG∗) ontoH, and it is
thus surjective, closed, and so selfadjoint. Since for all x ,

〈
(GG∗)−1GG∗x, GG∗x

〉 =
〈 x, GG∗x 〉 ≥ 0, (GG∗)−1 is positive.

(ii) ⇒ (iii): Assume (ii). Since B is surjective, by the closed graph theorem,
B−1 : H → dom (B) is bounded, and since B is positive, B−1 is a quasi-affinity, and
is also positive. Then B−1T ∗ = A ≥ 0, and the claim follows with X = B−1.

(iii) ⇒ (i): Suppose there exists a quasi-affinity X ∈ L+ such that T X = XT ∗ ≥
0. According to [10, Theorem 5.1], if A, B, and C are bounded operators with A ≥ 0
and AB = C∗ A, there exists a unique bounded S with ker A ⊆ ker S such that
A1/2B = S A1/2 and C∗ A1/2 = A1/2S. Translating to the present context, take A =
X and B = C = T ∗. Then there exists a bounded S so that X1/2T ∗ = SX1/2,
equivalently, T X1/2 = X1/2S∗. Thus S∗ = X−1/2T X1/2.

For all x ∈ H and y = X1/2x ,

〈
S∗y, y

〉 =
〈

X−1/2T X x, X1/2x
〉
= 〈 T X x, x 〉 ≥ 0.

It follows by polarization that S is selfadjoint, and so S ≥ 0. 
�
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Corollary 3.9 Let T ∈ L(H). The following statements are equivalent:

(i) T is quasi-similar to a positive operator;
(ii) T = AB, with A a closed surjective positive operator and B ∈ L+, and T ∗ =

B ′ A′, with B ′ a closed surjective positive operator and A′ ∈ L+;
(iii) There exist quasi-affinities W , Z ∈ L+ such that T W and Z T ∈ L+;
(iv) There exists a basic system {Sn}n≥1 of invariant subspaces of T such that for all

n, T |Sn is scalar and σ(T |Sn ) ≥ 0.

Proof The equivalence of (i)—(iii) is a direct consequence of Proposition 3.8. The
last item is equivalent to (i) by Theorem 3.3. 
�

The last result resembles Theorem 3.1, though under the weaker condition of quasi-
similarity it appears not to be possible to say much about the spectrum of T without
some extra conditions. See Sect. 7.

Coming back to square roots, suppose that T G = GS, where G ≥ 0 is a quasi-
affinity and S ≥ 0. Then there exists a densely defined linear operator R mapping
ran X to itself such that R X = XC1/2. However it may not be the case that R is
bounded. Circumstances when it is will be addressed further on.

4 The SetL+ 2

The remainder of the paper is devoted to the study of the set of products of two positive
bounded operators,

L+ 2 := {T ∈ L(H) : T = AB with A, B ∈ L+}.

The subclasses P ·P and P ·L+ were considered in [2] and [4].
If T ∈ L+ 2, it is straightforward to check that T ∗ ∈ L+ 2 andGT G−1 ∈ L+ 2 for all

G ∈ GL(H). Then the similarity orbit of T ,OT := {GT G−1 : G ∈ GL(H)} ⊆ L+ 2.
Also, it can easily be verified that {T n : n ∈ N} ⊆ L+ 2.

From the basic fact that for two operators C and D, σ(C D) ∪ {0} = σ(DC) ∪ {0},
the following is immediate.

Lemma 4.1 Let T = AB ∈ L+ 2, A, B ∈ L+. Then σ(T ) = σ(A1/2B A1/2) ≥ 0.

Proof As already observed, σ(T )∪{0} = σ(A1/2B A1/2)∪{0} ≥ 0. If 0 /∈ σ(T ), then
A and B are invertible, so 0 /∈ σ(A1/2B A1/2). Likewise, 0 /∈ σ(A1/2B A1/2) implies
0 /∈ σ(T ), and so the stated equality holds. 
�
Example 1 Lemma, 4.1 implies that a normal operator in L+ 2 is positive. Suppose
now that T ∈ L+ 2 is subnormal. Let N be the minimal normal extension of T . Then
σ(N ) = σ(T ) ≥ 0, and so N is positive. Since T is the restriction of N to an invariant
subspace, it too is then positive.

It will be proved in Proposition 6.3 that an operator in L+ 2 with closed range is
similar to a positive operator. This will imply then that any partial isometry V in
L+ 2 is similar to an orthogonal projection, and so is itself a projection. Since V is a
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contraction, thismeans that ran V is orthogonal to ker V , and so V ≥ 0 is an orthogonal
projection.

Proposition 4.2 Let T ∈ L+ 2. Then there exist A, B ∈ L+ such that T = AB,
ran A = ran T and ker B = ker T . For this pair, ran B ∩ker A = ran A∩ker B = {0},
and it follows then that

ran T ∩ ker T = {0}.

Proof Let T = A0B0 ∈ L+ 2. Then, by Theorem 2.1, there exists B ∈ L+ such that
T = A0B and ker B = ker T . On the other hand, T ∗ = B A0 ∈ L+ 2 and again
by Theorem 2.1, there exists A ∈ L+ such that T ∗ = B A and ker A = ker T ∗. If
x ∈ ran B ∩ ker A then x = By for some y ∈ H and 0 = Ax = ABy = T y. Hence
y ∈ ker T = ker B, and so x = 0. The other equality follows in a similar way. It is
then immediate from this that ran T ∩ ker T = {0}. 
�
Corollary 4.3 If T ∈ L+ 2, then ran (T |ran T ) = ran T .

Proof If T ∈ L+ 2, then T = AB with ran T = ran A by Proposition 4.2. Therefore,
ran (T |ran T ) = ran (T Pran T ) = (ker(Pran T T ∗))⊥. But ker(Pran T T ∗) = (ran T ∗ ∩
ker T ∗) + ker T ∗ = ker T ∗, again by Proposition 4.2. 
�
Definition For A, B ∈ L+, the pair (A, B) is called optimal for T = AB if ran T =
ran A and ker B = ker T .

According to Proposition 4.2, whenever T ∈ L+ 2, it can be written as a product
involving an optimal pair. Clearly, the pair (A, B) is optimal for T if and only if the
pair (B, A) is optimal for T ∗.

Example 2 Any oblique projection Q is in L+ 2. For suppose that M = ran Q. Then
Q PM = PM = PMQ∗ and PMQ = Q. Therefore Q = PM(Q∗Q). Obviously,
(PM, Q∗Q) is an optimal pair for Q.

If T ∈ P2 then ran T ∩ ker T = {0} (see [4, Theorem 3.2]). This no longer need
be the case if T ∈ L+ 2, as the following example shows.

Example 3 [2, Lemma 3.1] Let A ∈ L+ with non-closed dense range and x ∈ ran A \
ran A. Define S = span{x}⊥ and T = APS ∈ L+ 2. Then ker T = span{x}, ran T ∗ =
S, ker T ∗ = {y : Ay ∈ ker PS} = {0}, and ran T = H. Hence ran T ∩ ker T =
span{x}, ran T ∗ ∩ ker T ∗ = {0}, and ran T ∗ � ker T ∗ = S. By Proposition 3.4, T ∗ is
not quasi-affine to any positive operator, though T is.

If instead T = (A ⊕ B)(B ⊕ A) onH⊕H, then for neither T nor T ∗ is the closure
of the range intersected with the kernel nontrivial, nor the sum of the range with the
kernel dense in H ⊕ H. As a consequence of Proposition 3.4, neither is quasi-affine
to a positive operator. Clearly, in these examples T is not quasi-similar to a positive
operator.

Operators T ∈ L+ 2 with a factorization T = AB where one of A or B has closed
range have special properties (see, for example, Theorem 5.4 and Corollary 7.4).
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Proposition 4.4 Let T ∈ L+ 2. If T is similar to a positive operator, then there exists
an optimal pair with ran A, respectively ran B, closed.

Proof Suppose that T ∈ L+ 2 is similar to a positive operator, so T = GCG−1,
C ≥ 0. Let P be the projection onto the closure of the range of C . Then
G PG∗ and G∗−1PG−1 have closed range, and T = (G PG∗)(G∗−1CG−1) =
(GCG∗)(G∗−1PG−1). It is readily seen that (G PG∗, G∗−1CG−1) and (GCG∗, G∗−1

PG−1) are optimal pairs. 
�

It is natural to wonder at this point if the class of operators in L+ 2 which are quasi-
similar to a positive operator is strictly larger than the class of those which are similar
to a positive operator.

Example 4 As noted, if T ∈ P2 then ran T ∩ ker T = {0}. Furthermore, ran T �
ker T = H if and only if ran T is closed. An operator T ∈ P2 without closed range is
constructed as follows. Assuming dimH = ∞, there exist two closed subspaces M
and N such that M ∩ N = {0} and M � N is dense in, but not equal to H. Take
T = AB, A and B be orthogonal projections onto M and N⊥, respectively. Then
ran T = M and ker T = N , so ran T � ker T is dense in, but not equal toH.

Let W = A + PN and Z = B + PM⊥ . Clearly, both are positive. Also, ker W =
M⊥ ∩ N⊥ = {0}, and similarly, ker Z = {0}, so both are quasi-affinities. Since
T W = AB A and Z T = B AB are both positive, it follows from Corollary 3.9 that
T is quasi-similar to a positive operator. By Theorem 3.1, T cannot be similar to a
positive operator, since ran T � ker T �= H.

The above example can also be used to construct T ∈ L+ 2 which again is quasi-
similar, but not similar to a positive operator, but now with ker T = ker T ∗ = {0}. Let
H = K ⊕ K, where dimK = ∞. Define M := K ⊕ {0}, and choose N as above.
Notice that dimN = dimM, so there is a unitary V onHmappingN toM andN⊥
toM⊥.

Let A1 = PM, B1 = PN⊥ , A2 = PN , B2 = PM⊥ . So A2 = V ∗ A1V and
B2 = V ∗ B1V . Set A = 1√

2
(A1 + A2), B = 1√

2
(B1 + B2). These are both positive

and injective, but since neitherM�N norN⊥ �M⊥ equalsH, the ranges of A and
B are not closed.

Let W = 1√
2

(
1
V

)
, and set

T = AB = A1B1 + A2B2 = W ∗(A1B1 ⊗ 12)W ,

where A1B1 ⊗ 12 is the 2 × 2 diagonal operator matrix with diagonal entries A1B1.
The operator W is an isometry, and T is injective with dense range.

Suppose that T is similar to a positive operator, T = GCG−1. The operators

W ′ := 1√
2

(−V ∗
1

)
, W ′′ := 1√

2

(
V ∗
1

)



Products of Positive Operators Page 13 of 36 38

are also isometric and U = (
W W ′) is unitary. Furthermore,

W ′∗(A1B1 ⊗ 12)W ′ = W ′′∗
(−1 0

0 1

)
(A1B1 ⊗ 12)

(−1 0
0 1

)
W ′′

= W ′′∗(A1B1 ⊗ 12)W ′′ = V W ∗(A1B1 ⊗ 12)W V ∗ = (V G)C(V G)−1.

Hence

A1B1 ⊗ 12 = U

(
G 0
0 V G

)
(C ⊗ 12)

(
G 0
0 V G

)−1

U−1;

that is, A1B1⊗12 is similar to a positive operator. But by the same reasoning employed
in showing that A1B1 is quasi-similar, but not similar to a positive operator, the same
holds for A1B1 ⊗ 12, giving a contradiction. Hence, T is also quasi-similar, but not
similar to a positive operator.

It is noteworthy that if the operator T just constructed were to have a factorization
T = AB, where one of A or B has closed range, then by Theorem 3.1, T would be
similar to a positive operator. Hence there can be no such factorization for this T .

The following characterization of the elements of L+ 2 is immediate from Theo-
rem 2.1.

Theorem 4.5 Let T ∈ L(H). Then T ∈ L+ 2 if and only if the inequality T T ∗ ≤ XT ∗
admits a positive solution.

Proof If T ∈ L+ 2 then there exist A, B ∈ L+ such that T = AB. Since B2 ≤ ‖B‖B
then T T ∗ = AB2A ≤ ‖B‖AB A = ‖B‖AT ∗. Therefore, ‖B‖A is a positive solution
of T T ∗ ≤ XT ∗. Conversely, if A ∈ L+ satisfies T T ∗ ≤ AT ∗ then, by Theorem 2.1,
the equation T = AX admits a positive solution. Therefore T ∈ L+ 2. 
�
Corollary 4.6 Let T ∈ L+ 2 and A ∈ L+. Then T can be factored as T = AB, with
B ∈ L+ if and only if λA is a solution of T T ∗ ≤ XT ∗, for some λ ≥ 0.

Corollary 4.7 The operator T ∈ L+·P if and only if T T ∗ = XT ∗ admits a positive
solution. Moreover, T ∈ P2 if and only if T T ∗ = XT ∗ admits a solution in P .

Proof If T = AP , A ≥ 0 and P an orthogonal projection, then T T ∗ = AP2A =
AP A = AT ∗. Conversely, if T T ∗ = XT ∗ admits a positive solution X = A ≥ 0,
then |T ∗|2 = AU |T ∗|, where U is a partial isometry from ran T onto ran T ∗. Thus
|T ∗| = AU = U∗ A, and so T ∗ = UU∗ A, where UU∗ is an orthogonal projection. 
�

The next result will be particularly useful for describing spectral properties of ele-
ments ofL+ 2 in Sect. 5. It was proved for invariant subspaces in the finite dimensional
case in [22]. Recall that a subspace M is invariant for an operator T if TM ⊆ M.

Proposition 4.8 Let T ∈ L+ 2 and suppose M is invariant for T . Then T PM ∈ L+ 2.
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Proof Write T = AB, A, B ∈ L+. Then T ∗T ≤ λBT for λ = ‖A‖. Assume thatM
is invariant. Then

PMT ∗T PM ≤ λPMBT PM = λPMB PMT PM.

Since λPMB PM ≥ 0, by Theorem 4.5, T PM ∈ L+ 2. 
�
From the proof of Theorem 4.5, T PM above has the form C(PMB PM) for some

C ∈ L+.
In fact, it is not difficult to see that since T ∗ ∈ L+ 2, the above proposition is true

more generally for semi-invariant subspaces; that is, subspaces of the form M =
M1 � M2, where M1 and M2 are invariant for T .

Definition Given T ∈ L+ 2 and A ≥ 0 with ran A = ran T , define

BA
T = {X ≥ 0 : T = AX}.

Note that even if ran A = ran T and ran A ⊇ ran T , the set BA
T may be empty. As

just seen in Corollary 4.6, A must also satisfy T T ∗ ≤ λAT ∗ for some λ > 0.

Theorem 4.9 Let T ∈ L+ 2 and A ≥ 0 be such that BA
T �= ∅. Then BA

T has a minimum
B0. The pair (A, B0) is optimal and the set BA

T is the cone

BA
T = {B0 + Z : Z ∈ L+ and ran Z ⊆ ker T ∗}.

Moreover, for every B ∈ BA
T , Bran T = B0, and the pair (A, B) is optimal if and only

if ran Z ⊆ ran T ∗ ∩ ker T ∗.

Proof Let B ∈ BA
T and B0 = G∗G the solution of T = AX constructed in the proof

of Theorem 2.1. With respect to the decomposition H = ran T ⊕ ker T ∗, B has an
LU-decomposition,

B = F∗F =
(

F∗
1 0

F∗
2 F∗

3

) (
F1 F2
0 F3

)
.

Also by Theorem 2.1,

B0 =
(

G∗
1 0

G∗
2 0

)(
G1 G2
0 0

)
.

Since the theorem also gives in this circumstance that G∗
1G1 is a quasi-affinity, there

is no loss in generality in taking G1 ≥ 0 with dense range.
Now

T A = AB A = AF∗
1 F1A = AB0A = AG2

1A,
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and since ran A = ran T , F∗
1 F1 = G2

1. Without loss of generality, take F1 = G1
(adjusting F2 and F3 as necessary). So

T = AG∗G = A
(
G2

1 G1G2
) = AF∗F = A

(
G2

1 G1F2
)
.

Therefore,

G∗
2G1A = F∗

2 G1A.

Since both G1 and A are positive with dense ranges in ran T , ran (G1A) = ran T .

Hence by continuity, F2 = G2. Therefore F =
(

G1 G2
0 F3

)
and

Z := B/ran T =
(
0 0
0 F∗

3 F3

)
≥ 0,

giving B = B0 + Z , Z ≥ 0, ran Z ⊆ ker T ∗, and Bran T = B0.
Finally, suppose that the pair (A, B) is optimal. So ran B = ran T ∗, where B =

B0 + Z , and since ran B0 = ran T ∗, it must be that ran Z ⊆ ran T ∗. Hence, ran Z ⊆
ran T ∗∩ker T ∗. On the other hand, if B = B0+Z , Z ≥ 0, and ran Z ⊆ ran T ∗∩ker T ∗,
then ran B = ran T ∗, and so (A, B) is optimal. 
�

Theorem 4.9 states that if T ∈ L+ 2 admits an optimal pair (A, B), then there
is an optimal pair (A, B0) where B0 has minimal norm among the operators in the
set BA

T . Furthermore, B0 is the minimal positive completion of the operator matrix(
B11 B12
B∗
12 ∗

)
. However, (A, B0) need not be the unique optimal pair for T with A as

the first factor.

Example 5 Consider T = PS A, where A ≥ 0 and S are defined as in Example 3.
Then by Theorem 4.9, for any λ > 0, (PS , A + λ(1 − PS)) is an optimal pair for T .

The next result gives a condition for the optimal pair (A, B) to be unique when one
of the terms is fixed.

Corollary 4.10 Let T ∈ L+ 2 and A such that BA
T �= ∅ with minimal element B0.

Then (A, B0) is the unique optimal pair for T with A as the first factor if and only if
ran T � ker T = H. Additionally, for fixed A, (A, B0) and (B0, A) are unique optimal
pairs for T and T ∗, respectively, if and only if ran T � ker T = H.

Proof This follows directly from Theorem 4.9, since there can be more than one
optimal pair (A, B) for fixed A if and only if ran T ∗ ∩ ker T ∗ �= {0}. The condition
ran T � ker T = H implies that ran T ∗ ∩ ker T ∗ = {0}, and by a similar argument as
at the end of the proof of Theorem 4.9, this condition is necessary and sufficient for
there to be a unique optimal pair (B, A) for T ∗ with A fixed. 
�

There is a dilation theory for elements of L+ 2 which mimics that of contractions
on Hilbert spaces.
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Proposition 4.11 Let T ∈ L+ 2. Then there is a Hilbert spaceH′ ⊇ H, and an operator
T ′ ∈ L+ · P on H′ such that T is the restriction of T ′ to an invariant subspace,
ran T ′ = ran T , and ker T ′ ⊇ ker T . There is also a Hilbert space H′′ ⊇ H′ and
T ′′ ∈ P2 on H′′, such that H′ is invariant for T ′′∗, H is semi-invariant for T ′′, and T
is the compression of cT ′′ for some c > 0.

Proof Suppose that T = AB, where (A, B) is optimal and by scaling if necessary,
that ‖B‖ ≤ 1. On H′ = H ⊕ H, the operator

B̃ :=
(

B B1/2(1 − B)1/2

(1 − B)1/2B1/2 1 − B

)
=

(
B1/2

(1 − B)1/2

) (
B1/2 (1 − B)1/2

)

is seen to be a projection since the column operator is an isometry. Extend A to Ã by
padding with 0s. Then T ′ := Ã B̃ ∈ L+ · P and

T ′ =
(

AB AB1/2(1 − B)1/2

0 0

)
.

Clearly, H is invariant for T ′ and T = PHT ′|H. Also, ran T ⊆ ran T ′ ⊆ ran A =
ran T , so equality holds throughout. It is obvious that if f ∈ H is in ker T , it is in
ker T ′.

The operator T ′′ is constructed by applying the same method to cT ′∗, where c is
chosen so that ‖cT ′∗‖ ≤ 1. 
�

Let T ∈ L+ 2. Using the Löwner order, define a partial order on the set of optimal
pairs for T by

(Aα, Bα) ≺ (Aβ, Bβ)

if Aα ≤ Aβ and Bα ≤ Bβ .

Definition Let T ∈ L+ 2. An optimal pair for T , (Amin, Bmin), is said to be min-
imal if for an optimal pair (A, B), (A, B) ≺ (Amin, Bmin) implies that (A, B) =
(Amin, Bmin).

Proposition 4.12 Let T ∈ L+ 2. For every optimal pair (A, B) for T , there exists a
minimal optimal pair (Amin, Bmin) ≺ (A, B).

Proof Suppose that with respect to the partial order ≺, (Aλ, Bλ)λ∈� is a chain in
the collection of optimal pairs for T . Then the decreasing nets of positive operators
(Aλ)λ, (Bλ)λ converge strongly to some A, B ∈ L+, respectively, and T = AB.
Since ker Bλ = ker T , ker T ⊆ ker B, and since T = AB, equality holds. Likewise,
ker T ∗ = ker A. Hence (A, B) is optimal. Thus every chain has a lower bound, and
so minimal optimal pairs exist by Zorn’s lemma. 
�



Products of Positive Operators Page 17 of 36 38

Remark For any minimal optimal pair (A, B), A = Aran T ∗ and B = Bran T . So
A = F∗F , B = G∗G, where

F =
(

F1 F2
0 0

)
and G =

(
G1 G2
0 0

)

on ran T ∗ ⊕ ker T and ran T ⊕ ker T ∗, respectively.
Minimal optimal pairs need not be unique. As a simple example, let R > 1 on H,

and T = R ⊕ R−1 on H ⊕ H. Then for A = R ⊕ 1, B = 1 ⊕ R−1, both (A, B) and
(B, A) are minimal optimal pairs for T .

Lemma 4.1 already hints that operators inL+ 2 share certain propertieswith positive
operators, many more of which will be explored in the next section. It is reasonable to
wonder if an operator in L+ 2 has a square root in L+ 2. Partial results in this direction
are given next. First, recall the following result of Pedersen and Takesaki [15] (slightly
rephrased).

Proposition 4.13 (Pedersen-Takesaki) Let H , K ∈ L+, and write K for ran H. A
necessary and sufficient condition for the existence of X ∈ L+ such that PKK PK =
X H X is that (H1/2K H1/2)1/2 ≤ aH for some a ≥ 0.

Though they do not show it, under the conditions of the proposition, with respect
to the decomposition H = S1 ⊕ S2, S1 = S2 = K, X can be chosen as the (2, 2)
entry of the S1-compression of

(
aH (H1/2K H1/2)1/4

(H1/2K H1/2)1/4 1

)
≥ 0.

Proposition 4.14 Let T ∈ L+ 2 and suppose that T is quasi-affine to a positive oper-
ator, T X = XC. If C1/2 ≤ aX∗ X for some a ≥ 0, then T has a square root in L+ 2.
Otherwise, if ran T = ran T ∗ and T has a factorization satisfying the conditions of
Proposition 4.13, then T admits a square root in L+ 2.

Proof If C1/2 ≤ aX∗ X , by Douglas’ lemma, C1/4 = X∗F . Hence C1/2 = X∗G X ,
where G ≥ 0, and so T X = (X X∗)G(X X∗)G X . Since ran X is dense, T =
((X X∗)G)2.

Now suppose instead that ran T = ran T ∗ and T has a factorization satisfying the
conditions of Proposition 4.13. Choose H = B and K = A in Proposition 4.13. Then
A = X B X for some X ∈ L+, and so T = (X B)2. 
�

It was already noted in Theorem 3.1 that if T is similar to a positive operator, it
has a square root in L+ 2. The next example shows that this fails more generally. The
explanation requires a lemma showing that an injective positive operator has a unique
square root in L+ 2—namely the positive square root.

Lemma 4.15 If A ∈ L+ is injective, R2 = A2, and R X = X A for some quasi-affinity
X, then R = A. Consequently, if R ∈ L+ 2 satisfies R2 = A2, then R = A.
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Proof Suppose that A ∈ L+ is injective, R2 = A2, and R X = X A, where X is
a quasi-affinity. Then A2X = R2X = X A2, and so AX = X A since A is in the
commutative C∗-algebra generated by A2. Thus R X = AX , and therefore R = A.

Write R = XY , X , Y ∈ L+ and injective. Then (XY )2 = R2 = A2 = R∗ 2 =
(Y X)2. Hence A2X1/2 = X1/2(X1/2Y X1/2)2, and by [6, Lemma 4.1], there is a
unitary U such that A2 = U (X1/2Y X1/2)2U∗, and so A = U (X1/2Y X1/2)U∗. Thus

R(X1/2U∗) = (XY )(X1/2U∗) = (X1/2U∗)A.

Since X1/2U∗ is a quasi-affinity, R = A. 
�
Example 6 Following ideas from [4], let T ∈ P2 be the product of A and B, non-
trivial projections, given as follows. With respect to the decompositionH = ran B ⊕
(ran B)⊥,

T = AB =
(

S S1/2(1 − S)1/2

(1 − S)1/2S1/2 1 − S

) (
1 0
0 0

)
=

(
S 0

(1 − S)1/2S1/2 0

)
,

where S ≥ 0 is injective but not invertible on ran B with ‖S‖ < 1, so that (1 − S)1/2

is invertible. Then ker T = ker B, and ran T = ran G, G =
(

S1/2 0
(1 − S)1/2 0

)
, and so

equals ran A since A = GG∗. This has zero intersectionwith ker T and ran T �ker T =
ran S ⊕ ker B, which is dense inH. As an aside, in Corollary 7.3 it will be shown that
this condition implies that T is quasi-similar to a positive operator.

Suppose that T = (XY )2 for some X , Y ∈ L+; that is, T has a square root in L+ 2.
Without loss of generality, (X , Y ) can be chosen to be an optimal pair for R := XY .
Clearly, ker R ⊆ ker T , and since ran R ∩ ker R = {0}, the reverse containment also
holds. Hence ran Y = ran B. A similar calculation gives ran T = ran A.

Now

R2 =
((

X11 X12
X∗
12 X22

) (
Y11 0
0 0

))2

=
(

(X11Y11)
2 0

(X∗
12Y11)(X11Y11) 0

)
.

Thus (X11Y11)
2 = S, and so by Lemma 4.15, X11Y11 = S1/2. Since (1 − S)1/2 =

X∗
12Y11 = Y11X12 is invertible and Y11 is injective, Y11 is invertible by the open

mapping theorem, and hence the same is true for X12. The operator S is not invertible,
so X11 is not invertible. However, since X ≥ 0, X12 = X1/2

11 G, and so ran X1/2
11 is

closed. This implies that X1/2
11 is invertible, giving a contradiction.

5 Spectral Properties ofL+ 2

Recall by Theorem 3.1, any operator which is similar to a positive operator (and so in
L+ 2) is necessarily scalar (that is, it is spectral and has no quasi-nilpotent part). It will
be shown further that finite rank operators in L+ 2 are completely characterized by the
property that the spectrum is positive and the operator is diagonalizable (Corollary 6.6).
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It has already been noted that operators in L+ 2 need not be quasi-affine to a positive
operator, much less similar to one, and as a result they are in general not spectral.
Despite this, the spectral properties of operators in L+ 2 are found to reflect what is
observed in these special cases.

The spectrumσ(T )of an operator T canbe divided into two, potentially overlapping
parts; the compression spectrum σc(T ), points λ of which have the property that
T − λ1 is not surjective, and the approximate point spectrum σa(T ), in which T − λ1
is not bounded below. The subset of σa(T ) of points λ for which T − λ1 is not
injective constitute the point spectrum σp(T ). Standard results in operator theory are
that λ ∈ σp(T ) is equivalent to λ ∈ σc(T ∗), and that the topological boundary of the
spectrum is contained in σa(T ). In the case of T ∈ L+ 2, where the spectrum lacks
interior, this means that σ(T ) = σa(T ).

The parts of the spectrum already mentioned are for the most part enough when
studying normal operators on Hilbert spaces. Outside of this class, it helps to
refine these by looking at local spectral properties. This is ordinarily developed for
(potentially unbounded) Banach space operators, though here bounded Hilbert space
operators are solely considered.

Let T ∈ L(H). If a point μ is in ρ(T ), the resolvent of T , T − μ1 is invertible.
Equivalently, for all x ∈ H and λ ∈ U , an open neighborhood of μ, f (λ) = (T −
λ1)−1x is an analytic function from U into H and satisfies (T − λ1) f (λ) = x . Even
if μ /∈ ρ(T ), it may happen that for some x ∈ H and neighborhood U of μ, there is
an analytic f : U → H such that (T − λ1) f (λ) = x . In this case, μ ∈ ρT (x), the
local resolvent of T at x . For fixed x , the complement in C of ρT (x) is called the local
spectrum of T at x , and is denoted by σT (x).

An operator T is said to have the single valued extension property (abbreviated
SVEP) if whenever U ⊆ C is open and f : U → H is an analytic function satisfying
(T − λ1) f (λ) = 0 for all λ ∈ U , then f = 0. The point of SVEP is that if T has
this property, any solution f to (T − λ1) f (λ) = x in a neighborhood of a point μ is
unique. Operators like those in L+ 2 with thin spectrum have SVEP.

For F ⊆ C closed, an (analytic) local spectral subspace for T ∈ L(H) is defined
as

HT (F) := {x ∈ H : σT (x) ⊆ F}.

This is a (not necessarily closed) linear manifold. Properties include that HT (F) =
HT (σ (T )∩ F), and if T has SVEP,HT (∅) = {0}. Hence for operators in L+ 2, it will
suffice to considerHT (F) for closed subsets of σ(T ). It is also the case that for λ /∈ F ,
(T − λ1)HT (F) = HT (F), HT (F) is invariant for all operators commuting with T
(in other words, it is hyperinvariant). Also, for all n ∈ N and λ ∈ C, ker(T − λ1)n ⊆
HT ({λ}), and more generally, if for x ∈ H and λ ∈ F , (T − λ1)x ∈ HT (F), then
x ∈ HT (F). See [12, Proposition 1.2.16]. By [14, Proposition 1.3], when T has SVEP,
HT ({λ}) = {x : limn ‖(T − λ1)n x‖1/n = 0}.

The following is a special case of a result due to Putnam, and Pták and Vrbová
(see [12, Theorem 1.5.7]). The proof in this case is elementary and is included for
completeness. The more general result is discussed below.
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Lemma 5.1 Let T ∈ L(H) be normal and λ ∈ C. Then HT ({λ}) = ker(T − λ1).

Proof Recall that for a normal operator T , the norm equals the spectral radius:

‖T ‖ = lim
n→∞ ‖T n‖1/n .

Also, T is spectral so has SVEP. LetHT ({λ}) = {x : limn→∞ ‖(T −λ1)n x‖1/n → 0},
and E = HT ({λ}). Then (T −λ1)E ⊆ E , so TE ⊆ E . Since for all y, ‖(T −λ1)y)‖ =
‖(T ∗ − λ1)y)‖, T ∗E ⊆ E . Thus E reduces T , and T0 := PET |E is normal.

Let x ∈ HT ({λ}), ‖x‖ = 1. Then for all ε > 0, for sufficiently large n, ‖(T0 −
λ1E )n x‖ < εn . So if y ∈ E with ‖y‖ = 1,

εn >
〈
(T0 − λ1E )n x, y

〉 = 〈
x, (T0 − λ1E )∗ n y

〉
.

SinceHT ({λ}) is dense in E and ε is arbitrary, ‖(T0−λ1E )∗ n y‖1/n → 0 for all y ∈ E .
Thus σ(T0 − λ1E ) = σ((T0 − λ1E )∗) = {0}. Hence by normality, T0 − λ1E = 0, and
soHT ({λ}) = ker(T − λ1). 
�
Proposition 5.2 For T ∈ L+ 2 and λ ∈ C, HT ({λ}) = ker(T − λ1).

Proof By definition, HT ({λ}) = {x : σT (x) = {λ}} = {x : σT −λ1(x) = {0}} ⊇
ker(T −λ1). Ifλ ∈ ρ(T ), then T −λ1 is invertible, and so for all x �= 0,ρT (x) ⊇ ρ(T ),
or equivalently, σT (x) ⊆ σ(T ). In particular then, if λ ∈ ρ(T ), HT ({λ}) = {0} =
ker(T − λ1).

So suppose that λ ≥ 0 is in σ(T ). Write T = AB for some optimal pair (A, B),
and set C = B1/2AB1/2. Then B1/2(T − λ1) = (C − λ1)B1/2, and by induction,
B1/2(T − λ1)n = (C − λ1)n B1/2 for n ∈ N. Let x ∈ HT ({λ}) = {y : limn ‖(T −
λ1)n y‖1/n = 0}. Then

‖B1/2(T − λ1)n x‖1/n ≤ ‖B1/2‖1/n‖(T − λ1)n x‖1/n → 1 · 0 = 0,

and so

‖(C − λ1)n B1/2x‖1/n → 0.

Thus B1/2x ∈ HC ({λ}). By the previous lemma HC ({λ}) = ker(C − λ1), hence

B1/2(T − λ1)x = (C − λ1)B1/2x = 0.

If λ = 0, then either x ∈ ker T or T x ∈ ker B = ker T . But by Proposition 4.2,
ran T ∩ ker T = {0}, and so this also implies that x ∈ ker T . If λ > 0, then similar
reasoninggives either (T −λ1)x = 0or (T −λ1)x ∈ ker B = ker T . Suppose the latter.
Since (T − λ1)T x = T (T − λ1)x = 0, it follows that (T − λ1)2x = −λ(T − λ1)x ,
and in general, by induction for all n,

(T − λ1)n x = (−1)n−1λn−1(T − λ1)x .
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Hence

λ(n−1)/n‖(T − λ1)x‖1/n = ‖λn−1(T − λ1)x‖1/n = ‖(T − λ1)n x‖1/n .

Since as n → ∞, the right hand term goes to 0, λ(n−1)/n → λ > 0, and ‖(T −
λ1)x‖1/n → 1 if ‖(T − λ1)x‖ > 0, the conclusion is that x ∈ ker(T − λ1). 
�

A simplified version of the above argument can be used to show the following.

Proposition 5.3 If T ∈ L(H) is quasi-affine to a normal operator, then

HT ({λ}) = ker(T − λ1).

There are further ways in which operators in L+ 2 resemble positive operators.
To explain this requires the introduction of some additional ideas from local spectral
theory, details for which can be found in [12] and [3].

Recall that a scalar operator is one which is similar to a normal operator, and so has
a Borel functional calculus. By Theorem 3.1, if T ∈ L+ 2 and is similar to a positive
operator, then it is scalar, and so also has a Borel functional calculus. An operator
T is termed a generalized scalar operator if it has a C∞ functional calculus; that
is, there is a continuous homomorphism 
 : C∞(C) → L(H) with 
(1) = 1 and

(z) = T . An operator which is the restriction of a generalized scalar operator to an
invariant subspace is said to be subscalar. Obviously, the classes of generalized scalar
and subscalar operators include that of scalar operators.

Theorem 5.4 Let T ∈ L+ 2. Then T is a generalized scalar operator and T has a
C2([0, ‖T ‖]) functional calculus.

Proof To begin with, claim that if either A or B has closed range, then T is generalized
scalar. So suppose T = AB, A, B ∈ L+, where ran A is closed (the case where
ran B is closed can be handled identically by working with T ∗). Decompose H =
ran A ⊕ (ran A)⊥, and write

T =
(

T1 T2
0 0

)

with respect to this decomposition. By the assumption that ran A is closed, T1 is similar
to a positive operator, and so is scalar by Theorem 3.1. Hence there is a constant κ ≥ 1
such that for λ ∈ C\R,

‖(T1 − λ1)−1‖ ≤ κ(1 + |Im λ|−1).

Since

(T − λ1)−1 =
(

(T1 − λ1)−1 1
λ
(T1 − λ1)−1T2

0 − 1
λ

)
,



38 Page 22 of 36 M. Contino et al.

it follows that for sufficiently large κ ′,

‖(T − λ1)−1‖ ≤ κ(1 + |Im λ|−1)

(
1 + |Im λ|−1

∥∥∥∥
(
0 T2
0 0

)∥∥∥∥
)

≤ κ ′|1 + |Im λ|−2|.
From [12, Theorem 1.5.19], T is a generalized scalar operator.

For the general case, let T ∈ L+ 2 and let T ′ ∈ L+ · P on H′ be the dilation of T
from Proposition 4.11. SoH is an invariant subspace for T ′ and T is the restriction of
T ′ toH. Hence T is subscalar.

Subscalar operators need not be generalized scalar. However, in this case any λ ∈
C\R is in the resolvents of both T and T ′. So writing T ′ =

(
T T2
0 0

)
with respect to

the decomposition H′ = H ⊕ H⊥, for λ ∈ C\R,

(T ′ − λ1H′)−1 =
(

(T − λ1H)−1 1
λ
(T − λ1H)−1T2

0 − 1
λ

)
.

Consequently, for all λ ∈ C\R, there is a κ ′ > 0 such that

‖(T − λ1H)−1‖ ≤ ‖(T ′ − λ1H′)−1‖ ≤ κ ′(1 + |Im λ|−2)

by the first part of the proof. Thus [12, Theorem 1.5.19] gives that T is a generalized
scalar operator. The fact that T has a C2([0, ‖T ‖]) functional calculus follows from
the proof of that theorem. 
�

Let F ⊂ C. For an operator T , the algebraic spectral subspace ET (F) is the largest
linear manifold such that (T −λ1)ET (F) = ET (F) for all λ /∈ F . Moreover, for every
positive integer p,

HT (F) ⊆ ET (F) ⊆
⋂
λ/∈F

ran(T − λ1)p.

When T is normal and ET (F) is the spectral projection for the set F , it turns out that
HT (F) = ET (F) = ⋂

λ/∈F ran(T − λ1) = ran ET (F) [12, Theorem 1.5.7]. The next
result states that the operators in L+ 2 behave in this respect like normal operators.

Proposition 5.5 Let T ∈ L+ 2. Then for closed F ⊂ C,

HT (F) = ET (F) =
⋂
λ/∈F

ran(T − λ1).

Proof By Theorem 5.4, T ∈ L+ 2 is a generalized operator, so by [12, Theo-
rem 1.5.4], there exists an integer p such that for any closed set F , HT (F) =
ET (F) = ⋂

λ/∈F ran(T − λ1)p. Fix λ /∈ F . Since T ∗ ∈ L+ 2, by Proposition 5.2,
ker(T ∗ − λ1)p = ker(T − λ1)∗ p = ker(T ∗ − λ1) for all p ∈ N, and so
ran(T − λ1)p = ran(T − λ1) for all p. 
�
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6 L+ 2 and Similarity; the SetL+ 2
cr

In Proposition 4.2, it was proved that if T ∈ L+ 2 then ran T ∩ ker T = {0}. It is
always the case then that

H = ran T � ker T ⊕ (ker T ∗ ∩ ran T ∗).

This section considers the case where ran T � ker T is dense in H. In Sect. 8, the
general case will be taken up.

Recall from Proposition 3.1, T ∈ L+ 2 and T admits a factorization T = AB where
A, B ∈ L+ and either A or B is invertible is equivalent to T being similar to a positive
operator.

Proposition 6.1 Let T ∈ L+ 2 and A ∈ L+ such that ran A = ran T . Then the
following are equivalent:

(i) There exists B ∈ GL(H)+ such that T = AB;
(ii) There exists B ∈ L+ such that (A, B) is optimal for T and ran B � ker A = H;
(iii) BA

T �= ∅ and ran T = ran A.

As a result, for this choice of A, there is a unique optimal pair (A, B0) and B0 has
closed range.

Proof (i) ⇒ (ii): Suppose that T = AB with B ∈ GL(H)+ then ran T = ran A =
ran(AB ′) for any optimal pair (A, B ′). Then H = A−1 ran(AB ′) = ran B ′ � ker A,
where the sum is direct by Proposition 4.2.

(ii) ⇒ (iii): Suppose that there exists B ∈ L+ such that (A, B) is optimal for T
and H = ran B � ker A. Applying A to both sides gives ran A = ran(AB) = ran T .

(iii) ⇒ (i): Let (A, B ′) be an optimal pair for T . Such a pair exists by Proposi-
tion 4.2. Since ran T = ran A, by the same calculation as above,H = ran B ′ � ker A.
Then by [9, Theorem 2.3], which states that if an operator range is complemented,
then it is closed, ran B ′ is closed.

Now define the positive operator B = B ′ + Pker A. By [9, Theorem 2.2], ran B1/2 =
ran B ′ + ran Pker A = H, and so B is invertible.

The last statement follows from Corollary 4.10. 
�
Theorem 3.1 indicates a number of ways of finding operators which are similar to

positive operators. In addition, it combines with the last result to give yet another.

Corollary 6.2 Let T ∈ L(H). Then T is similar to a positive operator if and only if
T ∈ L+ 2, ran T � ker T = H and there exists and optimal pair (A, B) such that
either A or B has closed range.

It is not true in general that if T is similar to a positive operator, then every optimal
pair for T is such that one of its factors has closed range.

Example 7 Let A ∈ L+ be such that ran A is not closed. Then clearly A is similar
to a positive operator and (A1/2, A1/2) is an optimal pair for A. But, since ran A �

ran A1/2, then none of the factors of this optimal pair has closed range. However, since
A = APran A, the optimal pair (A, Pran A) is as in Corollary 6.2.



38 Page 24 of 36 M. Contino et al.

The situation when the range of T ∈ L+ 2 is closed happens to be special as well.
Write

L+ 2
cr := {T ∈ L+ 2 : T has closed range}.

Proposition 6.3 Let T ∈ L+ 2. Then the following are equivalent:

(i) T ∈ C R(H);
(ii) ran T � ker T = H;
(iii) For any optimal pair (A, B), A, B ∈ C R(H) and ran A � ker B is closed.

In this case, T is similar to a positive operator.

Proof Let T ∈ L+ 2 and suppose that T ∈ C R(H). Then T ∗ ∈ C R(H). Let (A, B) be
an optimal pair. Then ran A ⊇ ran T = ran T = ran A, and similarly, ran B = ran B.
Thus A, B ∈ C R(H) and H = B−1 ran T ∗ = ran A � ker B = ran T � ker T .
Conversely, if ran T � ker T = H, by [9, Theorem 2.3], ran T is closed.

Finally, suppose that for an optimal pair (A, B), A, B ∈ C R(H) and ran A �ker B
is closed. By [11, Corollary 2.5], ran T = ran(AB) is closed. On the other hand, if
ran T � ker T = H, then arguing as above, ran A � ker B = H, and so is closed.
Hence all of the items are equivalent.

The statement that T is similar to a positive operator follows from Corollary 6.2. 
�
Proposition 6.3 and Theorem 3.1 together imply the following.

Corollary 6.4 Let T ∈ L(H). The following are equivalent:

(i) T ∈ L+ 2
cr ;

(ii) T = ST ∗S−1 with S ∈ GL(H)+ and σ(T ) ⊆ {0} ∪ [c,∞) for c > 0;
(iii) There exists G ∈ GL(H) such that GT G−1 ∈ C R(H)+;
(iv) T is a scalar operator and σ(T ) ⊆ {0} ∪ [c,∞) for c > 0.

If T ∈ L+ 2
cr , then by Proposition 6.3, T is similar to a positive operatorC . From this

it is not difficult to check that σ(T ) = σ(C),C also has closed range, and consequently
the spectrum of both operators have the form indicated in the corollary.

Corollary 6.5

L+ 2
cr =

⋃
W∈C R(H)+

OW .

Corollary 6.6 Suppose that T ∈ L(H) is finite rank. Then T ∈ L+ 2 if and only if T is
diagonalizable and σ(T ) ≥ 0.

Remark If T on H with dim(H) < ∞ is diagonalizable with positive spectrum, it is
in principle straightforward to write T as a product of two positive operators. Let C
be the diagonal matrix of eigenvalues of T , V the matrix with columns consisting of
the eigenvectors of T , arranged in the same order as the diagonal entries of C . The
matrix V is invertible, and T V = V C . Therefore, T = (V V ∗)(V ∗−1CV −1).
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Example 8 The situation for the product of three or more positive operators is more
complicated. In particular, such products need not be diagonalizable. As a simple
example,

(
1 0
0 0

)(
1 1
1 1

) (
0 0
0 1

)
=

(
0 1
0 0

)
.

Hence the class L+3 of products of three positive operators strictly contains L+ 2.
Maganja showed in [13] that every bounded operator on aHilbert space is the sumof

at most three operators which are similar to positive operators (and so by Theorem 3.1,
three operators in L+ 2). On finite dimensional spaces, Wu proved that if det T ≥ 0
(which includes those T with non-negative spectrum), T is the product of at most 5
positive matrices [22], and in [5], an algorithm is given for determining the number of
matrices between 1 and 5 needed. In the setting of separable Hilbert spaces, Wu also
showed that any operator which is the norm limit of a sequence of invertible operators
is the product of at most 18 positive operators [21]. For invertible operators, this was
improved by Phillips to at most 7 [16].

It is also possible to give an explicit formula for theMoore-Penrose inverse T † of an
operator T ∈ L+ 2

cr . In this case, if Q := Pran T ∗// ker T ∗ is the oblique projection onto
ran T ∗ along ker T ∗, Q is bounded. Recall that an operator T ′ is called a (1, 2)-inverse
of T if T T ′T = T and T ′T T ′ = T ′. Generally, there will be infinitely many (1, 2)-
inverses for an operator T . The Moore-Penrose inverse is the (1, 2)-inverse for which
T T † is the orthogonal projection onto ran T and T †T is the orthogonal projection
onto ran T ∗.

Proposition 6.7 Let T ∈ L+ 2
cr with optimal pair (A, B). Then

T † = B†Q A†.

Furthermore, T ′ := Q∗T †Q∗ is a (1, 2)-inverse of T in L+ 2
cr .

Proof Let T ∈ L+ 2
cr . The fact that A and B have closed range follows from Proposi-

tion 6.3. Hence A† and B† are bounded positive operators. Also, ran T ∗ is closed. For
Q = Pran T ∗// ker T ∗ , Pran T ∗ Q Pran T = Q Pran T = Q. For W = B†Q A†,

T W T = AB(B†Q A†)AB = APran T ∗ Q Pran T B = AQ B = T .

Therefore T W is a projection. Furthermore,

T W = AB B†Q A† = APran T ∗ Q A† = AQ A†.

Also, ran(T W ) = ran T and ker(T W ) = ker T ∗ since

ran T = ran(T W T ) ⊆ ran(T W ) ⊆ ran T , and

ker W ⊆ ker(T W ) ⊆ ker(W T W ) = ker W = ker T ∗.
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The last equality holds since if x ∈ ker W , Q A†x ∈ ker T ∩ran Q = ker T ∩ran T ∗ =
{0}, so A†x ∈ ker Q ∩ ran A† = ker T ∗ ∩ ran T = {0}. Thus x ∈ ker A† = ker T ∗.
Hence ran(T W ) and ker(T W ) are orthogonal, and so T W ∈ P .

Similar calculations show that W T W = W , hence W T is a projection, and by
identical reasoning, it is an orthogonal projection. Thus, T † = B†Q A†, as claimed.

Since Q∗T = T Q∗ = T , it is easy to see that for T ′ = Q∗T †Q∗, T T ′T = T and
T ′T T ′ = T ′. Also,

ran T ′ = Q∗T † ran T = Q∗T †H = Q∗ ran T ∗ = Q∗H = ran T .

Finally,

T ′ = (Q∗ B†Q)(Q A†Q∗) ∈ L+ 2
cr . 
�

Remark If T ∈ P2 with closed range, the formula T † = Pran T ∗// ker T ∗ from [4] is
recovered.

7 L+ 2, Quasi-Affinity and Quasi-Similarity

In Proposition 3.8 it was seen that the statement that T being quasi-affine to a positive
operator is equivalent to, among other things, being able to write T ∗ = B A where B
and A are positive, but where B may be unbounded. The situation for quasi-similarity
is no better (Corollary 3.9). Conditions equivalent to T = AB where A and B are
bounded and positive require something extra, and this will then imply σ(T ) ≥ 0 by
Lemma 4.1.

Theorem 7.1 For T ∈ L(H), the following are equivalent:

(i) T ∈ L+ 2 and is quasi-affine to a positive operator;
(ii) T ∈ L+ 2 and ran T � ker T = H;
(iii) There exists a quasi-affinity X ∈ L+ such that ran T ⊆ ran X and T X ≥ 0;
(iv) T = AB, A, B ∈ L+ and A injective;
(v) σ(T ) ∩ (−∞, 0) = ∅, and there exists a quasi-affinity X ∈ L+ such that T X =

XT ∗ and ran T ⊆ ran X;
(vi) There exists C ∈ L+ and a quasi-affinity G ∈ L(H) such that T G = GC and

ran T ⊆ ran(GG∗).

Proof (i) ⇒ (ii): This follows from Proposition 3.5.
(ii) ⇒ (iii): Let T = AB, where (A, B) is optimal. Define X := A+ Pker B ∈ L+.

Then ker X = ker T ∗∩ran T ∗ = (ran T � ker T )⊥ = {0}, and so X is a quasi-affinity.
Consequently, T X = AB A ≥ 0 and X B = AB = T . Hence ran T = ran(X B) ⊆
ran X .

(iii) ⇒ (iv): Since T X ≥ 0, X is a quasi-affinity, and ran T ⊆ ran X , it follows
from Douglas’ lemma that T = X P and T X = XT ∗ = X P X ≥ 0, where P ≥ 0. So
T = X P ∈ L+ 2, and by Lemma 4.1, σ(T ) ≥ 0.

(iv) ⇒ (v): If T = AB, A, B ∈ L+ and A injective, then X = A is a quasi-affinity
and T X ≥ 0. By Lemma 4.1, σ(T ) ≥ 0.
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(v) ⇒ (vi): By Douglas’ lemma, T = X P , and since T X = X P X is selfadjoint
and X is a quasi-affinity, P is selfadjoint. By the assumption σ(T ) ∩ (−∞, 0) = ∅, it
follows from [10, Corollary 4.2] that T X ≥ 0, and hence that P ≥ 0. Thus T ∈ L+ 2.
Set G = X1/2, which is also a quasi-affinity, and define C = G PG ≥ 0. Then
T G = GC . The last condition in (vi) then follows since T = X P .

(vi) ⇒ (i): Since T GG∗ = GCG∗ ≥ 0, and since ran T ⊆ ran(GG∗), by
Douglas’ lemma T = GG∗ P . Moreover, T G = G(G∗ PG), and since G is a quasi-
affinity, G∗ PG = C . Hence P ≥ 0 and so T ∈ L+ 2. 
�
Remark A simple example shows that even if T ∈ L+ 2 and there is a quasi-affinity
X ∈ L+ such that T X = XT ∗ ≥ 0, it need not be true that ran T ⊆ ran X . For
example, take T = 1 on an infinite dimensional Hilbert space, and X ∈ L+, but
without closed range. Also, T = C = 1 and G any quasi-affinity without closed range
together satisfy T G = GC , but obviously, ran T is not contained in ran(GG∗).

In [19, Corollary 3], Stampfli showed that quasi-similar operators with Dunford’s
property C have equal spectra. Since by Theorem 5.4, any T ∈ L+ 2 has property C ,
and positive operators, being scalar, also have this property, it follows that if T ∈ L+ 2

is quasi-similar to a positive operator C , then σ(T ) = σ(C). As the next result shows,
this continues to be true with the weaker assumption of quasi-affinity, and as a bonus,
the proof does not use any of the material from Sect. 5.

Proposition 7.2 If T ∈ L+ 2 is quasi-affine to C ∈ L+, then σ(T ) = σ(C).

Proof Suppose to begin with that T is quasi-similar to C . Write, using Theorem 7.1,
T = AB, A, B ∈ L+ and A injective. Then T is quasi-affine to CA := A1/2B A1/2

(with quasi-affinity A1/2). Applying Lemma 3.7, C is quasi-affine to CA. From [6,
Lemma 4.1], C and CA are unitarily equivalent, and so have equal spectra. As noted
in Lemma 4.1, T and CA also have equal spectra, so the result follows in this case.

Now suppose that T is just quasi-affine to C . IfN = ran T ∗,N is invariant for T ∗,
and T ∗ PN ∈ L+ 2 by Proposition 4.8. As observed in Lemma 4.1, σ(T ) ⊆ R

+, so
σ(T ∗) = σ(T ), and consequently

σ(T ) = σ(T ∗) = σ(T ∗ PN ) = σ(PN T ).

The middle equality follows by the same argument as in the proof of Lemma 4.1.
Define T̃ : N → N as the compression of T to N . If 0 /∈ σ(T̃ ), so that T̃ is

invertible, then ran T ∗ = N . By Proposition 6.3, T is similar to a positive operator,
and by Lemma 3.4, T is quasi-similar to C , and this has already been dealt with.

If 0 ∈ σ(T̃ ), then σ(PN T ) = σ(T̃ ). Suppose that T X = XC , X a quasi-affinity.
Then R := X∗N = ranC . Since X∗ PN = PRX∗ PN , for C̃ = PRC |R and X̃ =
PN X |R, X̃ is a quasi-affinity and T̃ X̃ = X̃ C̃ . Note that σ(C̃) ∪ {0} = σ(C) ∪ {0},
and if 0 ∈ σ(C), then 0 ∈ σ(C̃). By Theorem 7.1, ran T̃ � ker T̃ = N . By definition,

ran T̃ ∗ � ker T̃ ∗ = ran T̃ ∗ � {0} = N . Applying Theorem 7.1 to T̃ and T̃ ∗, T̃ is
quasi-similar to some positive operator, C ′. It then follows from Lemma 3.4 that T̃ is
quasi-similar to C̃ . Hence σ(T̃ ) = σ(C̃). Finally,

σ(T̃ ) = σ(T ) ⊇ σ(C) = σ(C̃),
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where the containment is by Lemma 3.7, and the second equality follows since 0 ∈
σ(C̃). Consequently, equality holds throughout. 
�

The next is a corollary of Theorem 7.1.

Corollary 7.3 For T ∈ L(H), the following are equivalent:

(i) T ∈ L+ 2 and T is quasi-similar to a positive operator;
(ii) T ∈ L+ 2 and ran T � ker T = H;
(iii) There exist quasi-affinities X , Y ∈ L+ such that ran T ⊆ ran X, ran T ∗ ⊆ ran Y ,

T X ≥ 0, and T Y ≥ 0;
(iv) σ(T ) ∩ (−∞, 0) = ∅, and there exists quasi-affinities X , Y ∈ L+ such that

T X = XT ∗, Y T = T ∗Y , and either ran T ⊆ ran X or ran T ∗ ⊆ ran Y ;
(v) There exists C ∈ L+ and quasi-affinities G, F ∈ L(H) such that T G = GC,

FT = C F, and either ran T ⊆ ran(GG∗) or ran T ∗ ⊆ ran(F∗F).

Proof The equivalence of (i) and (ii) in Theorem 7.1 gives the equivalence of the first
two items here. Assuming T ∈ L+ 2 and T quasi-similar to a positive operator, one
has T ∗ quasi-affine to a positive operator, and from this ran T ∗ � ker T ∗ = H. Taking
orthogonal complements gives ran T ∩ker T = {0} and so ran T � ker T = H. On the
other hand, if ran T � ker T = H, then ran T ∩ker T = {0}, and so taking orthogonal
complements, ran T ∗ � ker T ∗ = H.

Consequently, Theorem 7.1 applies to both T and T ∗. Since σ(T ∗) = {λ : λ ∈
σ(T )}, σ(T ∗)∩ (−∞, 0) = ∅ as well. The rest of the equivalences then easily follow.


�
Corollary 7.4 If T ∈ L+ 2 and T = AB where (A, B) is an optimal pair and either
ran B, respectively ran A, is closed, then T , respectively T ∗ is quasi-affine to a positive
operator. If there is such a pair with both ran A and ran B closed, then T is quasi-
similar to a positive operator.

Proof Suppose T ∈ L+ 2 and T = AB where (A, B) is an optimal pair and ran B is
closed. FromProposition 4.2, ran B∩ker A = {0}, and taking orthogonal complements
gives that ker T � ran T is dense in H. Therefore, by Theorem 7.1, T is quasi-affine
to a positive operator. The other case is handled identically. If both A and B have
closed range, T and T ∗ are both quasi-affine to positive operators. By Lemma 3.4, T
is quasi-similar to a positive operator. 
�
Remark As was noted in Example 3 in Sect. 4, there exists an operator T ∈ L+ 2 for
which neither ran T � ker T nor ran T ∗ � ker T ∗ are dense. Hence by the results of
this section, in this particular example neither T nor T ∗ is quasi-affine to a positive
operator, and in particular, T will not be quasi-similar to a positive operator.

On the other hand, Example 4 gives an operator T ∈ L+ 2 which is quasi-similar to
a positive where there is no optimal pair (A, B) with ran A or ran B closed, so there
is no converse to Corollary 7.4.

While the operators which are similar to a positive operator are in L+ 2, this is no
longer necessarily true for those which are quasi-similar to a positive operator.
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Proposition 7.5 For T ∈ L+ 2, T is quasi-affine, respectively quasi-similar, to a pos-
itive operator if and only if T has a square root which is quasi-affine, respectively,
quasi-similar to a positive operator. Consequently, there exists an operator which is
quasi-similar to a positive operator which is not in L+ 2.

Proof Suppose that T is quasi-affine to a positive operator. By Theorem 7.1, T = AB
with A, B ∈ L+ and A injective. SetC = A1/2B A1/2 and X = A1/2. ThenT X = XC .
By Douglas’ lemma, C1/2 = A1/2B1/2G, so in particular, ranC1/2X∗ ⊆ ran X∗, and
so another application of Douglas’ lemma gives R ∈ L(H) such that R X = XC1/2.
Thus R is quasi-affine to C1/2. Since R2X = XC = T X and ran X is dense, R2 = T .
Conversely, if R2 = T and R X = X D, D ≥ 0 and X a quasi-affinity, then R2X =
X D2.

If in addition, T is quasi-similar to C , Y R2 = CY . Hence C(Y X) = Y R2X =
(Y X)C , and by Lemma 4.15, C1/2(Y X) = (Y X)C1/2. Therefore,

Y R(XC1/2) = Y R2X = C(Y X) = C1/2Y (XC1/2).

It is straightforward to see that ran (XC1/2) = ran T , ran (R∗Y ∗) = ran T ∗, and
ran (Y ∗C1/2) = ran T ∗. Also, ker(R∗Y ∗) = ker(Y ∗C1/2) = ker T . By Corollary 7.3,
ran T � ker T = H, and so Y R = C1/2Y on a dense subset. By continuity, Y R =
C1/2Y on all of H, and thus R is quasi-similar to C1/2. The converse is as in the
quasi-affine case.

By Example 6, there is a T ∈ L+ 2 which is quasi-similar to a positive operator, yet
does not have a square root inL+ 2. Hence for this operator, the square root constructed
above is quasi-similar to a positive operator but is not in L+ 2. 
�
Remark In the last proposition, the operator R constructed there has σ(R) ⊆
σ(C1/2) ∪ σ(−C1/2), which is a slight strengthening of Lemma 3.7 in this setting.

There is no obvious way to rule out negative values in σ(R) if R is not in L+ 2.

Nevertheless, for the operator in Example 6, the square root is R =
(

S1/2 0
(1 − S)1/2 0

)
,

which happens to be a partial isometry with σ(R) = σ(S1/2) ∪ {0} = σ(S1/2). For

C =
(

S 0
0 0

)
, X =

(
S1/2 0

(1 − S)1/2 1

)
, Y =

(
1 0

−(1 − S)1/2 S1/2

)
,

C ≥ 0, X and Y are quasi-affinities, R X = XC1/2 and Y R = C1/2Y . So even though
R /∈ L+ 2, σ(R) = σ(C1/2).

8 L+ 2: The General Case

The sole remaining case to consider are those operators T ∈ L+ 2 for which neither
M := ran T � ker T nor N := ran T ∗ � ker T ∗ equals H. Decompose

H = M ⊕ (ran T ∗ ∩ ker T ∗) = N ⊕ (ran T ∩ ker T ).
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The spacesM andN⊥ are invariant for T , whileN andM⊥ are invariant for T ∗. In
what follows, statements involving only the spaces M and M⊥ are given, since it is
obvious what the equivalent statements for N and N⊥ should be.

Lemma 8.1 Let T ∈ L+ 2. Then TM := T PM ∈ L+ 2, ran TM = ran T , ker TM =
ker T ⊕ M⊥, and TM is quasi-affine to a positive operator. Also, if (A, B) is an
optimal pair for T , then ran T ⊆ ran(A(PMB PM)1/2) and (A, PMB PM) is an
optimal pair for TM.

Proof Applying Proposition 4.8 and Corollary 4.3, TM ∈ L+ 2 and ran TM = ran T .
Write T = AB, where (A, B) is optimal. Since ker B = ker T ⊆ M and PMA =

A = APM,

TM = (A + Pker T + PM⊥)(PMB PM),

where A + Pker T + PM⊥ is positive and injective since by now standard calculations,
A + Pker T has this property on M. It then follows from Theorem 7.1 that TM is
quasi-affine to a positive operator. Also ker TM = ker(PMB PM) = ker T ⊕ M⊥.

Finally, since B ≥ 0, ran(PMB PM⊥) ⊆ ran(PMB PM)1/2. Then from

T = (
TM T PM⊥

) = A
(
PMB PM PMB PM⊥

)
,

the last claim follows. 
�
It is also true that T is the restriction of an operator in L+ 2 which is quasi-affine to

a positive operator in the following sense.

Lemma 8.2 Let T ∈ L+ 2. Then there is an operator TM ∈ L+ 2 with the properties
that TM is quasi-affine to a positive operator, T = PMTM, ran TM = ran T ⊕M⊥
and ker TM = ker T .

Proof Write T = AB with (A, B) optimal. Set

TM = T + PM⊥ B = (A + PM⊥)B = (A + Pker T + PM⊥)B.

Then TM ∈ L+ 2, A + Pker T + PM⊥ ≥ 0 is injective, and ker TM = ker B. By
Theorem 7.1, TM is quasi-affine to a positive operator.

Since TM ∗ = B(A + PM⊥), ker TM ∗ ⊇ ker(A + PM⊥) = ker A ∩ M, and if
TM ∗x = 0, then (A + PM⊥)x ∈ ker B ∩ ran(A + PM⊥) = {0}. The last equality
follows since if x ∈ ker B ⊆ M and x = x1 + x2, x1 ∈ ran A ⊆ M and x2 ∈ M⊥,
then x2 = 0, and since ran A ∩ ker B = {0} by Proposition 4.2, x = 0. Hence
ker TM ∗ = ker(A + PM⊥), and so ran TM = ran T ⊕ M⊥. 
�
Theorem 8.3 Let T ∈ L(H) and M = ran T + ker T . The following are equivalent:

(i) T ∈ L+ 2;
(ii) TM := T PM ∈ L+ 2 and there exists an optimal pair (A, B) for TM such that

ran T ⊆ AB1/2;
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(iii) There exists TM ∈ L+ 2 satisfying T = PMTM and an optimal pair (A, B) for
TM such that AM⊥ = M⊥.

In this case, both TM and TM are quasi-affine to positive operators.

Proof (i) ⇒ (ii) and (i) ⇒ (iii) follow from the last two lemmas.
Assume (ii) holds and that TM = AB for an optimal pair (A, B) such that

ran(T PM⊥) ⊆ ran T ⊆ ran(AB1/2). By Douglas’ lemma, there is an operator
Z ∈ L(H) with ker Z = ker(T PM⊥) = M and such that T PM⊥ = AB1/2Z .
Hence,

T =TM+T PM⊥ = A(B + B1/2Z)= AB1/2(B1/2 + Z) = A(B1/2 + Z∗)(B1/2 + Z)

is in L+ 2, the last equality following since ran Z∗ ⊆ M⊥ ⊆ ker A. Thus (i) holds.
Now assume (iii) is true. Then for the optimal pair (A, B) there, PMA =

PM(APM + APM⊥) = PMAPM. Hence T = PMAPMB ∈ L+ 2, which is
(i). 
�
Remark Since TM = T PM, σ(TM) ∪ {0} = σ(PMT ) ∪ {0} = σ(T ) ∪ {0}. If
0 /∈ σ(T ), PM = 1, and likewise, if 0 /∈ σ(TM), ran PM = H, so again PM = 1.
Thus, σ(TM) = σ(T ). Unfortunately, there does not seem to be any similar relation
between σ(TM) and σ(T ).

There is also the dilation result for the class L+ 2 in Proposition 4.11, though there
does not appear to be such a close connection for the spectra of these with that of T .
These dilations are in a sense extremal for the familyL+ 2, in that any further dilations
are direct sums.

Theorem 5.4 indicates that all operators in L+ 2 are generalized scalar, so it is
natural to wonder if there is some characterization of the class L+ 2 in terms of this
property and the spectrum of the operator being in R

+.

9 Examples

Recall that an operator T is algebraic if there is a polynomial p such that p(T ) = 0.
By the spectral mapping theorem, σ(T ) is then contained in the set of roots of the
polynomial.

Proposition 9.1 Suppose that T ∈ L+ 2 is algebraic. Then T has the form

T =
∑

j

λ j Q j ,

where each λ j ≥ 0 is an eigenvalue for T and Q j is an oblique projection. In this
case, ran T is closed and T is similar to C = ∑

j λ j Pj ≥ 0, where each Pj is an

orthogonal projection and
⊕

j Pj = 1. Conversely, if T has this form, then T ∈ L+ 2

and is algebraic.
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Proof As noted above, if p(T ) = 0 for a polynomial p, the spectrum of T is a
finite set of points taken from the non-negative roots of p. For each λ j ∈ σ(T ), let
Q j be the Riesz projection for λ j ∈ σ(T ). Then H j = ran Q j is invariant for T
and σ(T |H j ) = λ j . Furthermore, Qi Q j = 0 for i �= j . By Proposition 4.8 and
Proposition 5.2, T |H j = G AG−1, with A ≥ 0, G invertible inH j , and σ(A) = {λ j }.
Thus A = λ j1H j , and so T |H j = λ j1H j . Therefore, T Q j = λ j Q j for some oblique
projection Q j and if λ j �= 0, T |H j is invertible. Since Qi Q j = 0 when i �= j ,

∑
j Q j

is a projection, and moreover
∑

j Q j = 1. So T has the claimed form.
Since Qi Q j = 0 when i �= j , ran Qi � ran Q j is closed, and consequently,

ran T = ∨
j �=0 H j is closed. So by Corollary 6.6, T is similar to a positive operator

C . In this case, C must be as in the statement of the proposition.
For the converse, the statement that T is algebraic follows from the spectralmapping

theorem, using a polynomial with roots equal to the set of eigenvalues. Furthermore,
T is a scalar operator and its spectrum is in a set of the form {0} ∪ [c,∞), c > 0.
Therefore by Corollary 6.4, T is in L+ 2. 
�
Remark Using Example 2, it is possible to write down an optimal pair for any T in
L+ 2 which is algebraic. Let (A j , B j ) be the optimal pair for the oblique projection
Q j , as constructed in that example. Claim that for A = ∑

j λ j A j , B = ∑
j B j ,

(A, B) is an optimal pair for T . Since Q j Qk = 0 if k �= j , B j Ak = 0, or equivalently,
Ak B j = 0. Hence T = AB. It is immediate that ran A = ran T and ran B = ran T ∗,
so the pair is optimal.

Next consider the class of compact operators in L+ 2.

Corollary 9.2 Let T be a compact operator in L+ 2 and let σ(T ) = {λ j }. Then
restricted to the range H j of the Riesz projection corresponding to λ j �= 0,
T |H j = λ j1H j . Furthermore, T has no quasi-nilpotent part other than T | ker T .

Proof The first part is obtained in the same way as in the proof of the last proposition,
The last part follows directly from Proposition 5.2. 
�
Remark Despite the simple form of the eigenspaces for a compact operator in L+ 2,
a compact operator is generally not as nice as an algebraic operator. Indeed, it need
not be quasi-affine to a positive operator, even if it is in a Schatten class. It suffices to
verify this with the trace class operators.

For example, let (en)∞n=1 be an orthonormal basis on H, and {λ j } ⊂ R
+ non-zero

and absolutely summable. Also let Pn be the orthonormal projection onto the span
of en . Define A = ∑

n λn Pn , a positive trace class operator. If x = ∑
n λnen , then

x ∈ H, and there is obviously no vector y ∈ H such that Ay = x . As in Example 3,
define B to be the orthogonal projection onto (

∨
x)⊥. Then T = AB is trace class,

and is not quasi-similar to a positive operator. With minor modifications, T can be
chosen to be trace class and not even quasi-affine to a positive operator.

It follows from Apostol’s theorem (Theorem 3.3) that the eigenspaces of T do not
form a basic system of subspaces. Moreover, it is not clear that a compact operator
with eigenvalues and eigenspaces as in Corollary 9.2 will necessarily be in L+ 2, even
if the eigenspaces do form a basic system.
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Suppose that T is compact and of the form given in Corollary 9.2. Suppose fur-
thermore that

∨
nHn = H. In this case the eigenspaces form a basic system. For

{αn} ⊂ R
+\{0} with ∑

n αn < ∞, define X : ⊕
n Hn → H by

X(⊕n xn) =
∑

n

αn xn, xn ∈ Hn .

Notice that
⊕

n Hn is a sort of “straightened” version ofH and is isomorphic toH. By
the arguments in [1], X is bounded. Let Qn : ⊕

n Hn → H be the oblique projection
defined by

Qn x =
{

x, x ∈ Hn;
0, x ∈ ⊕

k �=n Hn .

Lemma 9.3 For X defined as above,

X∗y =
∑

n

αn Q∗
n y, y ∈ H.

Proof Asdefined, Qn has the properties that ran Q∗
n = (ker Qn)

⊥ = Hn and ker Q∗
n =

(ran Qn)⊥ = H⊥
n . Thus, for y ∈ H and x = ⊕n xn ∈ ⊕

n Hn ,

〈 ∑
n

αn Q∗
n y, x

〉
=

∑
n

αn 〈 y, Qn x 〉 =
∑

n

αn 〈 y, xn 〉

=
〈

y,
∑

n

αn xn

〉
= 〈 y, X x 〉 .


�
Proposition 9.4 Let T be a compact operator in L(H) with σ(T ) = {λ j } ≥ 0, and
suppose that when restricted to the the rangeH j of the Riesz projection corresponding
to λ j �= 0, T |H j = λ j1H j , and that the quasi-nilpotent part of T is T | ker T . If∑

j λ
1/2
j < ∞, then T ∈ L+ 2.

Proof Take X defined as above, but with αn = λ
1/2
n if λn > 0 and 1 otherwise. Then∑

n αn < ∞ and by Lemma 9.3, for x = ⊕n xn ∈ ⊕
n Hn ,

‖X x‖2 =
〈

X∗(
∑

n

αn xn),⊕n xn

〉
=

∑
n

αn
〈

X∗xn,⊕n xn
〉

=
∑

n

α2
n 〈 ⊕n xn,⊕n xn 〉 =

∑
n

α2
n‖xn‖2.

Define C ≥ 0 on
⊕

n Hn by 〈 Cx, x 〉 = ∑
n λn‖xn‖2. Then X is a quasi-affinity and

X∗ X ≥ C (in fact, it will be equal if ker T = {0}). By Douglas’ lemma, C1/2 = X∗Z
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for bounded Z . By Apostol’s theorem (or rather, the proof of it),

T X = XC = X X∗Z Z∗ X ,

and so since ran X is dense, T ∈ L+ 2. 
�
Next consider Fredholm operators in L+ 2. Recall that T is left-semi-Fredholm if

there exists a bounded operator R and a compact operator K such that RT = 1 + K .
On the other hand, it is right semi-Fredholm if there exist such R and K such that
T R = 1 + K . Finally, T is Fredholm if it is both left and right semi-Fredholm.

Proposition 9.5 Let T ∈ L+ 2. Then T is left / right semi-Fredholm if and only if T is
Fredholm and similar to a positive operator with closed range and finite dimensional
kernel. In this case,

ind T := dim ker T − dim ker T ∗ = 0.

Proof Suppose thatT ∈ L+ 2 and that it is left semi-Fredholm (theother case is handled
identically). Then by Atkinson’s theorem, ran T is closed and dim ker T < ∞. Hence
by Proposition 6.3, T is similar to a positive operator. If T = LC L−1 where C ≥ 0
and L is invertible, ran T closed implies that ranC is closed, and dim ker T < ∞
gives dim ker C < ∞. Since T ∗ = L∗−1C L∗, dim ker T ∗ = dim ker T . 
�
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