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Abstract
Given a closed linear relation T between two Hilbert spacesH andK, the correspond-
ing first and second coordinate projections PT and QT are both linear contractions
from T toH, and to K, respectively. In this paper we investigate the features of these
graph contractions. We show among other things that PT P

∗
T = (I +T ∗T )−1, and that

QT Q
∗
T = I − (I + T T ∗)−1. The ranges ran P∗

T and ran Q∗
T are proved to be closely

related to the so called ‘regular part’ of T . The connection of the graph projections to
Stone’s decomposition of a closed linear relation is also discussed.
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1 Introduction

When dealing with (unbounded) operators, it is sometimes beneficial to identify them
with their graph, that is, to treat them as linear subspaces of the corresponding product
space. This approach is especially useful if the operator in question is non-closable,
that is, when the closure of its graph is not the graph of a ‘single-valued’ operator
anymore. In addition, the adjoint of a linear transformation can be interpreted as an
operator only if it is densely defined.

The theory of linear relations (or ‘multi-valued’ linear operators in other words)
between Hilbert spaces goes back at least to the fundamental paper by Arens [1]. By
definition, a linear relation T between two Hilbert spaces H and K is just a vector
subspace of the product Hilbert space H × K. In this way, the only (but significant)
difference between operators and relations is that {0, k} ∈ T does not necessarily
imply k = 0. However, this generality greatly simplifies the handling of operations
such as taking closure, adjoint, or inverse.

A linear relation T consists of certain ordered pairs {x, y} of H × K, so one may
consider the first and second coordinate projections of T intoH and K, respectively:

PT {x, y} := x, QT {x, y} := y, {x, y} ∈ T .

Note that both PT and QT are continuous (with norm bound 1) if we endow T with the
inner product coming from that ofH×K.We shall therefore call PT and QT the canon-
ical contractions of T . Assume in addition that T is a closed relation, then the domain
of PT and QT becomes a Hilbert space and thus we may take the adjoint operators
P∗
T : H → T and Q∗

T : K → T , and also the product operators PT P
∗
T , PT Q

∗
T , QT P

∗
T

and QT Q
∗
T are well defined contractions (Fig. 1).

The present paper is devoted to the study of these canonical contractions and their
connection with the closed linear relation T . The paper is organized as follows. Sec-
tion 2 contains a short overview of concepts that are needed in later sections of the
paper. In Sect. 3we analyse the first coordinate projection PT . It turns out that the range
of P∗

T is identical with the restriction of Ts, the so called regular part of T , to dom T ∗T .
(We recall that the regular part Ts of T is defined as the relation Ts := (I − Pm)T
where Pm is the orthogonal projection ofK onto mul T , see [6].) Being so, the relation
ran P∗

T is always the graph of a closable linear operator. In Sect. 4 we are going to
establish some necessary and sufficient conditions for a pair S, T of operators in order
that they satisfy

S∗ = T and T ∗ = S, (1.1)

Fig. 1 The canonical graph contractions and their adjoints
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by means of the corresponding graph contractions PT , QT and PS, QS , respectively.
A different approach to the the same issue was treated in the recent paper [15] of the
authors. The interested reader may also consult with [10,11,13,14,16]. In Sect. 5, we
examine the appropriate products PT P

∗
T , PT Q

∗
T , QT P

∗
T and QT Q

∗
T of the contrac-

tions in question, and we are going to clarify their connection with the relations T
and T ∗. In particular, we present a new and constructive proof of self-adjointness of
T ∗T (provided that T is closed) by showing that (I + T ∗T )−1 = PT P

∗
T . Finally, we

conclude the paper by showing how Stone’s decomposition [17] of a closed linear
relation T can be obtain by applying the results.

2 Linear Relations

Throughout the paper, H and K will denote real or complex Hilbert spaces. A linear
relation T between H and K is nothing but a linear subspace of the product Hilbert
spaceH × K. We shall call the relation T closed if it is a closed subspace ofH × K.
Accordingly, the closure T of T is always a closed linear relation, and being so, it
becomes a Hilbert space with respect to the induced inner product

({x, y} | {u, v})T := (x | u)H + (y | v)K, {x, y}, {u, v} ∈ T .

If we refer to T as the above Hilbert space, we shall denote it by G(T ).
Recall that every linear operator T : H → K when identified with its graph is a

linear relation:

T ≡ {{x, T x} : x ∈ dom T }.

Nevertheless, the closure (of the graph) of a linear operator is no longer an operator
in general, namely, it may be that {0, k} ∈ T for some non-zero k. Accordingly, we
call T closable if its closure T is itself an operator.

The domain, range, kernel and multivalued part of a linear relation T are defined
to be the following linear subspaces, respectively:

dom T := {x ∈ H : {x, y} ∈ T }, ran T := {y ∈ K : {x, y} ∈ T },
ker T := {x ∈ H : {x, 0} ∈ T }, mul T := {y ∈ K : {0, y} ∈ T }.

It is immediate that ker T and mul T are both closed subspaces whenever T itself is
closed. It goes also without saying that T is (the graph of) an operator if and only if
mul T = {0}, and that T is (the graphof) a closable operator if and only ofmul T = {0}.

The inverse of a linear relation T is defined as

T−1 := {{y, x} : {x, y} ∈ T }.

If S and T are both linear relations then their product T S is given by

T S := {{x, z} : {x, y} ∈ S and {y, z} ∈ T for some y}.
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The operatorlike sum of S and T is

S + T := {{x, y + z} : {x, y} ∈ S, {x, z} ∈ T },

just like in the case of operators, while the componentwise (or Minkowski) sum is

S ̂+ T := {{x + v, y + z} : {x, y} ∈ S, {v, z} ∈ T }.

The adjoint of a linear relation T is defined by

T ∗ := W (T )⊥,

where W : H × K → K × H is the ‘flip’ operator

W {h, k} := {k,−h}, {h, k} ∈ H × K. (2.1)

It is immediate that T ∗ is a closed linear relation betweenK andH and that T ∗∗ = T .
Note that the following orthogonal decomposition of K × H holds also true:

T ∗
̂⊕W (T ∗∗) = K × H. (2.2)

Another equivalent definition of T ∗ might be given in terms of the inner product,
namely,

{k, h} ∈ T ∗ ⇐⇒ (y | k)K = (x | h)H, ∀{x, y} ∈ T .

Recall also the following identities:

ker T ∗ = (ran T )⊥, mul T ∗ = (dom T )⊥. (2.3)

For a given linear relation T , let us denote by Pm the orthogonal projection of K
onto mul T . The regular part of T is defined as the linear relation

Ts := {{x, (I − Pm)y} : {x, y} ∈ T }. (2.4)

It can be shown that Ts is (the graph of) a closable operator. In contrast, the singular
part

Tsing := {{x, Pm y} : {x, y} ∈ T } (2.5)

is a so called singular relation which means that Tsing is the product of two closed
subspaces. By means of the regular and singular parts, the linear relation T allows the
following canonical sum decomposition

T = Ts + Tsing,



Canonical Graph Contractions of Linear Relations… Page 5 of 16 21

see [6, Theorem 4.1]. Note also immediately that the regular and singular parts may
be written as

Ts = (I − Pm)T , Tsing = PmT .

We shall also use the fact that “regular part” and “closure” operations commute in the
sense that

(Ts)
∗∗ = (T ∗∗)s, (2.6)

see [6, Proposition 4.5]. An important consequence of this result is that the regular
part of a closed linear relation is closed itself, and also that Ts ⊆ T , provided that T
is closed.

The interested reader is referred to the books [2,12] and papers [1,6,7] where, in
addition to the proofs of the above statements, more information about linear relations
can be found.

3 Canonical Graph Contractions of a Linear Relation

Let T be a linear relation between the real or complex Hilbert spaces H and K. The
canonical graph contractions PT : T → H and QT : T → K of T are defined as the
mappings

PT {x, y} := x, QT {x, y} := y, {x, y} ∈ T .

Note that both of those mappings are linear contractions if we consider them as oper-
ators from the Hilbert space G(T ) into H and K, respectively:

PT ∈ B(G(T );H), ‖PT ‖ ≤ 1 and QT ∈ B(G(T );K), ‖QT ‖ ≤ 1.

Therefore, their adjoint operators P∗
T ∈ B(H;G(T )) and Q∗

T ∈ B(K;G(T )) are
themselves linear contractions, and their ranges ran P∗

T and ran Q∗
T are linear relations.

Observe immediately that

ker PT = {0} × mul T , and ker QT = ker T × {0}. (3.1)

Consequently, we see that T is (the graph) of a closable operator if and only if PT is
one-to-one. The following identities

ran PT = dom T , ker P∗
T = mul T ∗ (3.2)

and

ran QT = ran T , ker Q∗
T = ker T ∗ (3.3)
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are also easy to verify. However, the descriptions of ran P∗
T and ran Q∗

T are somewhat
more involved and need some preparations. We are going to deal with those subspaces
in Theorem 3.6 and Proposition 5.5, respectively.

Note also that PT = PT and QT = QT , by definition. Hence, there is no loss of
generality in assuming that the linear relation T is closed. In light of this, with a few
exceptions, we will do so.

Below we are going to examine the properties of the contractions PT and QT

and their connection with T in detail. We start out by analysing the first coordinate
projection PT .

Lemma 3.1 Let T be a linear relation between H and K, then

ran QT P
∗
T ⊆ dom T ∗.

Proof Consider h ∈ H and let P∗
T h := {z, w} ∈ ran P∗

T , then we have

(x | z)H + (y |w)K = ({x, y} | P∗
T h)T = (x | h)H,

for every {x, y} ∈ T . Hence we get

(y |w)K = (x | h − z)H,

which implies that {w, h − z} ∈ T ∗ and therefore w = QT P
∗
T h ∈ dom T ∗. ��

Proposition 3.2 Let T be a linear relation between H and K, then

dom T ∗T = PT (T ∩ ran P∗
T ).

Proof ‘⊇:’ Assume first that {x, y} ∈ T ∩ ran P∗
T , then y ∈ ran QT P

∗
T ⊆ dom T ∗ by

Lemma 3.1, and therefore there exists z ∈ H such that {y, z} ∈ T ∗. This means that
{x, z} ∈ T ∗T and therefore x ∈ dom T ∗T .

‘⊆:’ Suppose on the converse that x ∈ dom T ∗T , then {x, y} ∈ T and {y, z} ∈ T ∗
for some y and z. It suffices to show that {x, y} ∈ ran P∗

T . Let therefore {u, v} ∈ T ,
then we have

({x, y} | {u, v})T = (x | u)H + (y | v)K = (x | u)H + (z | u)H
= (x + z | PT {u, v})H = (P∗

T (x + z) | {u, v})T ,
whence it follows that {x, y} = P∗

T (x + z) ∈ ran P∗
T . ��

From the above proposition we get the following two straightforward corollaries:

Corollary 3.3 If T is (the graph of) an operator, then

T |dom T ∗T = T ∩ ran P∗
T .

If T is closed in addition, then

T |dom T ∗T = ran P∗
T .
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Corollary 3.4 If T is a closed linear relation then

dom T ∗T = dom(ran P∗
T ).

At the beginning of this section we determined the subspaces ker PT , ran PT and
ker P∗

T [see formulas (3.1) and (3.2)].Nextwe dealwith the range space of P∗
T . Observe

that ran P∗
T , being a linear subspace of T , is itself a linear relation. In the ensuing result

we shall see that ran P∗
T is, in fact, (the graph of) a closable operator.

Theorem 3.5 Let T be a linear relation between H and K, then

ran P∗
T = Ts.

In particular, ran P∗
T is always (the graph of) a closable operator.

Proof First of all note that if {x, (I − Pm)y} ∈ T for some {x, y} ∈ H × K, then
necessarily {x, y} ∈ T . (Recall that Pm stands for the orthogonal projection ofK onto
mul T .) Indeed,

{x, y} = {x, (I − Pm)y} + {0, Pm y} ∈ T ̂+ ({0} × mul(T )) ⊆ T + T = T .

Recall that by (3.1) we have ker PT = {0} × mul T . Hence we have

ran P∗
T = ({0} × mul T

)⊥

= {{x, y} ∈ T : y ∈ (mul T )⊥}
= {{x, y} ∈ T : y ∈ ran(I − Pm)}
= {{x, (I − Pm)v} : v ∈ K, {x, (I − Pm)v} ∈ T }
= {{x, (I − Pm)v} : {x, v} ∈ T }
= (T )s = Ts,

as it is claimed. ��
Theorem 3.6 For every linear relation T between H and K we have

ran P∗
T = (Ts)|dom T ∗T . (3.4)

Proof Note that we have identity PT = PT for every linear relation. On the other hand,
Ts = (T )s according to (2.6). Therefore, without loss of generality we may assume
that T is closed, in which case (3.4) reduces to

ran P∗
T = (Ts)|dom T ∗T . (3.5)

ByTheorem 3.5we have ran P∗
T ⊆ Ts and byCorollary 3.4, dom(ran P∗

T ) = dom T ∗T
whenever T is closed. Since Ts is the graph of an operator, we obtain (3.5). ��
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4 Linear Relations Adjoint to Each Other

Let T and S be linear relations betweenH and K, respectively, K andH. We say that
T and S are adjoint to each other (or that T , S form an adjoint pair), if they satisfy

T ⊂ S∗ and S ⊂ T ∗, (4.1)

or equivalently, if

(y | v)K = (x | u)H, ∀{x, y} ∈ T , ∀{v, u} ∈ S. (4.2)

An important and natural question is under what conditions are the equations T = S∗
and S = T ∗ satisfied. Below we provide some necessary and sufficient conditions on
the pair S, T by means of the corresponding graph contractions PT , QT and PS, QS
in order that they satisfy the weaker identities T ∗∗ = S∗ and S∗∗ = T ∗

Theorem 4.1 Let S, T be linear relations between H and K, respectively, K and H,
that are adjoint to each other in the sense of (4.1). Then the following statements are
equivalent:

(i) S∗ = T ∗∗ and T ∗ = S∗∗,
(ii) (a) PT P

∗
T + QSQ

∗
S = IH,

(b) PS P
∗
S + QT Q

∗
T = IK,

(c) QT P
∗
T = PSQ

∗
S.

Proof Since the corresponding canonical contractions of T and T (resp., of S and S)
are identical, we may assume without loss of generality that both S and T are closed.
Let us introduce the following operator matrix

UT ,S :=
[

PT −QS

QT PS

]

: G(T ) × G(S) → H × K, (4.3)

which acts between T × S and H × K by the correspondence

UT ,S

[{x, y}
{v, u}

]

:= {x − u, y + v}, {x, y} ∈ T , {v, u} ∈ S.

Since T and S are adjoint to each other, one concludes that UT ,S is an isometry: for
let {x, y} ∈ T and {v, u} ∈ S, then by (4.2)

∥

∥

∥

∥

UT ,S

[{x, y}
{v, u}

]∥

∥

∥

∥

2

= ‖x − u‖2 + ‖y + v‖2

= ‖x‖2 + ‖y‖2 + ‖v‖2 + ‖u‖2 + 2Re[(y | v)K − (x | u)H]

=
∥

∥

∥

∥

[{x, y}
{v, u}

]∥

∥

∥

∥

2

.
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Observe immediately that the range of UT ,S can be written as

ranUT ,S = T̂⊕W (S),

where W is the ‘flip’ operator (2.1) and ̂⊕ denotes orthogonal Minkowski sum. On
the other hand, we have the orthogonal decomposition

H × K = T ̂⊕W (T ∗)

for the closed linear relation T . From these last two identities it follows that UT ,S is
unitary if and only if W (S) = W (T ∗), i.e., S = T ∗. An easy calculation shows that

UT ,SU
∗
T ,S =

[

PT P
∗
T + QSQ

∗
S PT Q

∗
T − QSP

∗
S

QT P
∗
T − PSQ

∗
S PS P

∗
S + QT Q

∗
T

]

from which the desired equivalence between (i) and (ii) already follows. ��
Remark 4.2 Some characterizations of those linear operators S, T which satisfy iden-
tities S∗ = T and T ∗ = S were given in [15] by means of the operator matrix

MT ,S :=
[

IH −S
T IK

]

,

cf. also [10,14]. The general case of linear relations was discussed in [11] in the same
spirit. For an exact interpretation of matrices with linear relation entries the reader is
referred to [8].

5 Products of Graph Contractions

Let T be linear relation between the Hilbert spaces H and K and consider its canon-
ical graph contractions PT : G(T ) → H and QT : G(T ) → K. Then the following
four operators PT P

∗
T , PT Q

∗
T , QT P

∗
T and QT Q

∗
T are all well defined linear contrac-

tions between the appropriate Hilbert spaces. In this section we clarify their role and
connection with the relations T and T ∗.

Lemma 5.1 Let T be a closed linear relation between H and K, then

(a) mul(T T ∗) = mul T ,
(b) T ∗T = (Ts)∗Ts,
(c) (T T ∗)s = Ts(T ∗)s.

Proof (a) Let k ∈ mul T , then {0, 0} ∈ T ∗ and {0, k} ∈ T implies that k ∈ mul T T ∗.
Assumeon the converse that k ∈ mul T T ∗, then there exists u such that {0, u} ∈ T ∗
and {u, k} ∈ T . Since we have u ∈ dom T ∩ mul T ∗, from (2.3) it follows that
u = 0. So {0, k} ∈ T and therefore k ∈ mul T .



21 Page 10 of 16 Z. Tarcsay, Z. Sebestyén

(b) First we show inclusion T ∗T ⊂ (Ts)∗Ts. Take {x, z} ∈ T ∗T , then there exists
y such that {x, y} ∈ T and {y, z} ∈ T ∗. In particular we have y ∈ dom T ∗ ⊆
mul T⊥, thus {x, y} = {x, (I − Pm)y} ∈ Ts. On the other hand, we have inclusion
Ts ⊂ T by closedness, so T ∗ ⊂ (Ts)∗. Consequently, {x, z} ∈ (Ts)∗Ts, indeed.
Conversely, let {x, z} ∈ (Ts)∗Ts, then there exists y such that {x, y} ∈ Ts and
{y, z} ∈ (Ts)∗. Here we have {x, y} ∈ T as Ts ⊆ T . Furthermore, (Ts)∗ can be
written as

(Ts)
∗ = T ∗

̂⊕ (mul T × {0}),

wherê⊕ denotesMinkowski direct sum. This yields us {k, h} ∈ T ∗ andw ∈ mul T
such that {y, z} = {k, h}+{w, 0}. Since y, k ∈ mul T⊥,we getw = 0 and y = k,
consequently {y, z} ∈ T ∗ and {x, z} ∈ T ∗T .

(c) By (a) we have mul T = mul(T T ∗), hence

(T T ∗)s = (I − Pm)T T
∗ = TsT

∗ ⊃ Ts(T
∗)s,

because (T ∗)s ⊂ T ∗. To see the converse inclusion take {v, (I−Pm)w} ∈ (T T ∗)s,
and let {v, u} ∈ T ∗ and {u, w} ∈ T for some u, then {u, (I − Pm)w} ∈ Ts
and from u ∈ dom T we get that u ∈ (mul T )⊥, hence {v, u} ∈ (T ∗)s. Thus
{v, (I − Pm)w} ∈ Ts(T ∗)s. ��
In thenext theoremweare going todealwith the contractions PT P

∗
T , QT Q

∗
T , PT Q

∗
T

and QT P
∗
T .

Theorem 5.2 Let T be a closed linear relation between H and K. Then

(a) PT P
∗
T = (I + T ∗T )−1,

(b) QT P
∗
T = Ts(I + T ∗T )−1,

(c) PT Q
∗
T = (T ∗)s(I + T T ∗)−1,

(d) QT Q
∗
T = I − (I + T T ∗)−1 = Pm + (T T ∗)s(I + T T ∗)−1.

Proof (a) Let us introduce the linear operator

P†
T : dom T → H × K, P†

T u := {u, Tsu}.

Observe that P†
T u ∈ Ts ⊆ T for every u ∈ dom T , and that

P†
T PT {u, Tsu} = {u, Tsu}. (5.1)

Since ran P∗
T ⊂ Ts by Theorem 3.5, from (5.1) it follows that P†

T PT P
∗
T = P∗

T .
Let now x ∈ dom T and h ∈ H, then

(x | h)H = (PT P
†
T x | h)H = (P†

T x | P∗
T h)T = (P†

T x | P†
T PT P

∗
T h)T

= ({x, Tsx} | {PT P∗
T h, TsPT P

∗
T h})T

= (x | PT P∗
T h)H + (Tsx | TsPT P∗

T h)K,
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consequently,

(Tsx | TsPT P∗
T h)K = (x | h − PT P

∗
T h)H.

This implies that

PT P
∗
T h ∈ dom(Ts)

∗Ts and h = (I + (Ts)
∗Ts)PT P∗

T h,

that is, PT P∗
T = (I + (T ∗)sTs)−1. Since we have identity T ∗T = (T ∗)sTs by

Lemma 5.1, the proof of part (a) is complete.
(b) Take any vector h ∈ H. From (a) and equality P†

T PT P
∗
T = P∗

T we conclude that

QT P
∗
T h = QT P

†
T PT P

∗
T h = QT P

†
T (I + T ∗T )−1h

= QT {(I + T ∗T )−1h, Ts(I + T ∗T )−1h}
= Ts(I + T ∗T )−1h,

whence we get identity (b).
(c) Replacing T by T ∗ in (b), we obtain that

QT ∗ P∗
T ∗ = (T ∗)s(I + T T ∗)−1.

On the other hand, it follows from Theorem 4.1 (ii) (c) that PT Q
∗
T = QT ∗ P∗

T ∗ ,
hence the desired identity follows.

(d) First we note that

(I − Pm)QT = TsPT ,

because for {x, y} ∈ T ,

(I − Pm)QT {x, y} = (I − Pm)y = Tsx = TsPT {x, y}.

From this and (c) we get that

(I − Pm)QT Q
∗
T = TsPT Q

∗
T = Ts(T

∗)s(I + T T ∗)−1

= (T T ∗)s(I + T T ∗)−1.

On the other hand, we have

QT Q
∗
T = I − PT ∗ P∗

T ∗ ,

by Theorem 4.1 (ii) (b). Since ran PT ∗ = dom T ∗ ⊂ (mul T )⊥, we get

PmQT Q
∗
T = Pm − Pm PT ∗ P∗

T ∗ = Pm .
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From the above identities we get

QT Q
∗
T = PmQT Q

∗
T + (I − Pm)QT Q

∗
T = Pm + (T T ∗)s(I + T T ∗)−1,

which completes the proof. ��
Remark 5.3 We notice that P†

T appearing in the proof of the preceding theorem is
identical with the Moore–Penrose inverse of PT , cf. [3] or [4]. We also remark that the
proof might be slightly simplified when T is a closed operator. Namely, in that case
we have T = Ts and P†

T = P−1
T .

Corollary 5.4 Let T be a densely defined closed linear operator between two Hilbert
spaces. Then

(a) PT P
∗
T = (I + T ∗T )−1,

(b) QT P
∗
T = T (I + T ∗T )−1,

(c) PT Q
∗
T = T ∗(I + T T ∗)−1,

(d) QT Q
∗
T = T T ∗(I + T T ∗)−1.

Proof The proof is straightforward from Theorem 5.2 by noticing that Pm = 0 when-
ever T is a densely defined closed operator. ��

At the beginning of Sect. 3 we determined the subspaces ker QT , ker Q
∗
t and

ran QT . Now, applying Theorem 5.2 we are able to give a description of the range
space ran Q∗

T as well:

Proposition 5.5 For every linear relation T between H and K we have

ran Q∗
T = (Ts)|ran T ∗∩dom T

̂⊕({0} × mul T ) (5.2)

Proof Throughout the proof we may and will assume that T is closed. According to
Theorem 5.2 (c) and (d) we have

ran Q∗
T = {{PT Q∗

T k, QT Q
∗
T k} : k ∈ K}

= {{(T ∗)s(I + T T ∗)−1k, Ts(T
∗)s(I + T T ∗)−1k + Pmk : k ∈ K}

= {{(T ∗)s(I + T T ∗)−1k, (T T ∗)s(I + T T ∗)−1k} : k ∈ K}̂+({0} × mul T ),

where in the last equality we used that

ker(I + T T ∗)−1 = mul T T ∗ = mul T = ran Pm .

We have on the other hand

{{(T ∗)s(I + T T ∗)−1k, (T T ∗)s(I + T T ∗)−1k} : k ∈ K}
= {{(T ∗)sz, Ts(T ∗)sz} : z ∈ dom Ts(T

∗)s}
= Ts|ran(T ∗)s∩ dom Ts .
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Finally we note that dom Ts = dom T and that mul T ∗ = dom T because T is closed.
Therefore

ran(T ∗)s ∩ dom Ts = ran T ∗ ∩ dom T .

This together with the above observations yields identity (5.2). ��

Remark 5.6 One of the anonymous referees suggested the following alternative proof
of Proposition 5.5. Observe that we have

QT = PT−1V ,

where V : T → T−1 is the unitary operator V {x, y} := {y, x}. Hence

ran Q∗
T = ran V−1P∗

T−1 . (5.3)

Using Theorem 3.6 we have

ran P∗
T−1 = (T−1)s|dom(T−1)∗T−1 ,

where the regular part of T−1 can be written in the form

(T−1)s = {{y, Pker T⊥x} : {x, y} ∈ T }.

Using this and (5.3), with some calculation formula (5.2) can be deduced.

Corollary 5.7 Let T be a closed linear relation between H and K, then

Ts = Ts|dom T ∗T ̂+ Ts|ran T ∗∩ dom T .

If T is a closed operator, then

T = T |dom T ∗T ̂+ T |ran T ∗∩ dom T .

Proof Recall that the operator matrix UT ,T ∗ defined by (4.3) with S := T ∗ is an
isometry hence, in particular one has P∗

T PT + Q∗
T QT = IG(T ). As a consequence, we

have by [5, Theorem 2.2] that

T = ran(P∗
T PT + Q∗

T QT )
1/2 = ran P∗

T ̂+ ran Q∗
T

= Ts|dom T ∗T ̂+ Ts|ran T ∗∩ dom T ̂+ ({0} × mul T ).

Now the desired identity follows since Ts = T ̂� ({0} × mul T ). ��
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We conclude the paper with an application of the results. Let T be a closed linear
relation between the Hilbert spaces H and K and denote by ET the orthogonal pro-
jection of H × K onto T . Then ET admits a matrix representation as an operator in
H × K:

ET =
[

E11 E12
E21 E22

]

,

where the components Ei j are bounded operators between the appropriate Hilbert
spaces. Recall that ET is called the characteristic projection of T by Stone, who
proved that the entries Ei j may be expressed in terms of T and T ∗, provided that T is
a densely defined and closed operator (see [17, Theorem 4], cf. also [9, Theorem 3]):

ET =
[

(T ∗T + I )−1 T ∗(T T ∗ + I )−1

T (T ∗T + I )−1 T T ∗(T T ∗ + I )−1

]

.

In [6, Lemma 6.4], the above result of Stone was extended to closed linear relations.
In the ensuing theorem we are going to restate this general result as a straightforward
consequence of Theorem 5.2:

Theorem 5.8 Let T be a closed linear relation between the Hilbert spaces H and K.
Then the characteristic projection ET of T can be written as

ET =
[

PT P
∗
T PT Q

∗
T

QT P
∗
T QT Q

∗
T

]

=
[

(T ∗T + I )−1 (T ∗)s(T T ∗ + I )−1

Ts(T ∗T + I )−1 I − (T T ∗ + I )−1

]

Proof Consider the canonical embedding operator VT : G(T ) → H × K, given by

VT :=
[

PT
QT

]

{x, y} := {x, y}, {x, y} ∈ T .

Clearly, VT is a linear isometry with range T and therefore VT V
∗
T is identical with

ET , i.e.,

ET =
[

PT
QT

]

[

P∗
T Q∗

T

] =
[

PT P
∗
T PT Q

∗
T

QT P
∗
T QT Q

∗
T

]

.

Theorem 5.2 completes now the proof. ��
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