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Abstract

We consider a one parameter family of Laplacians on a closed manifold and study the
semi-classical limit of its analytically parametrized eigenvalues. Our results establish
a vector valued analogue of a theorem for scalar Schrodinger operators on Euclidean
space by Luc Hillairet which applies to geometric operators like Witten’s Laplacian
on differential forms.
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Let M be a closed smooth manifold and suppose E is a complex vector bundle over
M. Fix a smooth volume density on M and a smooth fiber wise Hermitian metric on
E. We will denote the associated L? scalar product on the space of sections, I'(E), by
{(—, —)) and write ||—|| for the corresponding L, norm.

Consider a one parameter family of operators acting on I'(E),

Ay =A+tA+12V, teR, D)

where A is a selfadjoint (bounded from below) Laplacian and A, V € I'(end(E))
are smooth symmetric sections. This is a selfadjoint holomorphic family of type (A)
in the sense of [9, Section VII§2]. According to the Kato—Rellich theorem, see [9,
Theorem VIIL.3.9], its eigenvalues can be organized in analytic families referred to
as analytic eigenbranches of A;. More precisely, there exist eigenbranches A; and
eigensections v, both analytic in ¢ € R, such that
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Ay =My, and Yyl = 1. 2

Furthermore, it is possible to choose a sequence of analytic eigenbranches, )\t(k), and
corresponding analytic eigensections, w,(k) , such that at every time ¢, the sequence )Lfk)
exhausts all of the spectrum of A;, including multiplicities, and I/fl(k) forms a complete

orthonormal basis of eigensections. The analytic parametrization of the spectrum, A,(k) ,
is unique up to renumbering. The eigensections, on the other hand, are by no means
canonical, and it seems more natural to consider the spectral projections instead.

In this note we study the semi-classical limit of the analytic eigenbranches, i.e.,
the behavior of A; as t — 0o. We will show that =2, converges to a finite limit s,
see part (b) of the theorem below. Moreover, if the potential V is scalar valued, i.e., if
V = v -idg for a smooth function v, then u has to be a critical value of v, see part (h)
in the theorem below. These observations are analogous to a result of Luc Hillairet [§]
who considered the scalar case on M = R" with A = 0.

While Hillairet’s proof uses the invariance of semi-classical measures under the
corresponding Hamiltonian flow, our approach is entirely elementary and does not
make use of these concepts. The ideas entering into the proof, however, appear to be
essentially the same. Notably, in order to show that x has to be a critical value of V,
we too rely on commutator computations. Avoiding semi-classical measures makes
the generalization to the vector valued case considered here straight forward. As in
Hillairet’s argument, convergence of t~2A, follows from the fact that this quantity,
suitably corrected due of the presence of A, is bounded and monotone, cf. (14) below.
The fact that the Laplacian is semi-bounded enters crucially at this point.

Let us emphasize that analytically parametrized eigenbranches may cross and will
in general not remain in the same order. Hence, the asymptotics of analytic eigen-
branches might be quite different from the well understood asymptotics of the spectral
distribution function, i.e., the asymptotics of the eigenvalues ordered increasingly. In
particular, we cannot rule out the existence of analytic eigenbranches which do not
correspond to any eigenvalue of the approximating harmonic oscillator associated with
the deepest wells, cf. the concluding remarks at the end of this note.

The asymptotics of the spectral distribution function in the semi-classical limit has
applications in quantum mechanics and geometric topology [4—7]. We merely mention
Witten’s influential paper [12] and and proofs of the Cheeger—Miiller theorem [1-3].
In these geometric applications, a Morse function f provides a deformation of the
deRham differential, d; = e~"/ de'/ = d +tdf. The corresponding Witten Laplacian,
Ay = (dy + d,*)2 = did} + d}'d; = [d;, d}], is a one parameter family of operators
acting on differential forms, i.e., E = A*T*M, which is of the type considered here
with scalar valued V = |df|*. Hence, in this case the absolute minima of V coincide
with the critical points of f.

Let us return to a general one parameter family of operators considered above,
see (1), and an analytic eigenbranch as in (2). Subsequently, we will use the notation
he = %A,, Uy = %%7 and

Api=2A =A+2tV, ?3)
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We have the following analogue of Theorem 1 in [8].

Theorem For each analytic eigenbranch the following hold true:

(@) Ay = O@t) and Ay = O(t%), as t — oo.
(b) t~2x; converges to a finite limit,

wi= lim 172,. )

(c) t%(fz)n,) is bounded and

limsup(t722,) = 0.

1—>0o0

(d) t72(AY;, V) is bounded and
liminf 1 2 (A, ¥, ) = 0.
—00
(e) The limit, |, has the following interpretations:

w= lim t~2x, = limsup(Vy, ¥)) = limsup(2) ~'4, = limsup & (¢ 7' ).
—o0

[—00 t—00 t—00

Furthermore, for each sequence t,, — 0o such that, cf. (d),

lim 1,72 (A, Y, ) =0, )

n—0o0

the following hold true:

(f) For every positive integer s € N,

L o
nll)fgo t W s oy = 0,

where || — || s (my denotes any Sobolev s norm on I'(E).
(g) We have
lim [[(V — )¢, |l = 0. (©)
n— o0

Hence, the eigensections Vr;, localize near £, := {x € M : det(V (x) — u) = O}.
In particular, for every open neighborhood U of X, we have

nll)ngo ||th||L2(M\U) =0. @)
(h) If, moreover, the potential V is multiplication by a (scalar) function, then

lim || |4V >y,
n—oo

=0. )
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Hence, the eigensections V;, localize near the critical points of V. For every
neighborhood U of the critical set of V we have

nllzlgo ”Vft,, ||L2(M\L7) = 0. 9

In particular, u has to be a critical value of V.

Proof From (2) we obtain

(A, dn) = s (10)

Differentiating the second equation in (2) we get

(e, Y ) + (W, Y = 0.
Differentiating (10) and using the selfadjointness of A, this leads to
(A, Yu)) = he. (11)
Combining this with (3) we obtain
e = ((A+20V)Y0, Yu)) = (A, ¥ + 20V, ). (12)

Since A and V are bounded operators, this implies i, = O(t), whence (a).
From (1) and (3) we immediately get

2A; —tA; =2A +1A.
Combining this with (10) and (11) and using the boundedness of A, we obtain

D) = =172 (20 — thy) = =t (@A — tADY, Y
= —1QAF A, Y ) = =2 (AY ) + 0D, (13)

Hence, as A is bounded from below, there exists a constant C such that
(e +Chy <0, (14)

for sufficiently large ¢. This shows that the quantity r~2A, + C¢~! is monotone, for
large ¢. In view of (a) it is bounded too. Whence 121, 4+ Ct~! converges, as 1 — oo.
This immediately implies (b).

Similarly, one can show (c) and (d): Rewriting (13) we get

—t 2720 = 2072 AYL ) + 0. (15)
As t’z)\, is bounded, we must have

limsupt%(t_2)»;) >0, (16)

—>00
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for otherwise =2, would diverge logarithmically. Moreover,
lim inf =2 (A, Y1) = 0, (17)
—00
since A is bounded from below. Combining (15)—(17) we obtain

limsup - (t722,) = 0 = liminf 1 2 ( Ay, ¥ ).
—00

t—00

This completes the proof of (c) and (d), the statements on boundedness follow imme-
diately from (a) and (15).
To see (e) note that (1) and (10) give

0 =AY Y ) A ) + (Vi Y.

Using (d) we obtain the second equality in (e). The third equality follows from (12).
The last one is immediate using %(l’l)»,) = t’l)l, — 172,

To see (f), note first that the case s = 1 is immediate from (5) since there exists
a constant C such that ||W||12L,1(M) < C({(AY, ¥) + |¥]|?). Using the eigensection
equation A;y¥, = A,Y, and (a), one obtains constants Cy such that

Il gsi2ny < C(L+ 12l s ).

This permits to establish (f) inductively for all odd integers s € N. The even case can
be reduced to the odd one using ||1ﬁ||§{2(M) < C/|W||H1(M)|W||H3(M)’ an estimate
which readily follows from the Cauchy—Schwarz inequality.

Using the estimate in (f) for s = 2, the eigensection equation,
A+ T AY A+ (V= Y = (R — WY,

implies (6). As V — p is invertible over the compact set M\ U, there exists a constant
¢ > 0 such that ¢2 < (V — u)*(V — ), over each point in M\U. Consequently,

clvillzanyy < KV =¥l vy-

Combining this with (6), we obtain (7).

Let us now turn to the proof of (h). Suppose D is a first order differential operator
acting on sections of E. Since V is scalar valued, the commutator o := [D, V] =
DV — VD is a differential operator of order zero, namely the principal symbol, o =
op(dV) € T'(end(E)). As A is a Laplacian, the commutator [ D, A] is a differential
operator of order at most two. Using

[D,t7*A0 =172[D, Al +t7'[D, Al + 0,
the Cauchy—Schwarz inequality and (f), we thus obtain

oW, I = (D, t;, 2 A 11, 0¥, ) +0(1),  asn — oo. (18)
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Using A;v; = A, one readily checks
([D, 172 A, oY) = (D, [0, 172 A1) 19)
Since V is scalar valued we have [0, V] = 0 and
tlo, t72A) =170, Al + [0, Al

where [0, A] is a differential operator of order at most one. Proceeding as above, the
Cauchy—Schwarz inequality and (f) yield

lim (D, [0, t, 2 Ay, 1¥,) = 0.

n—o00

Combining the latter with (18) and (19), we arrive at
lim |oy,, || = 0. (20)
n—oQ

Specializing to D = Vx where V is some linear connection on E and X is a vector
field on M, we obtaino = X - V = dV(X). Choosing X = grad(V) with respect to
some auxiliary Riemannian metric on M, we have o = |d V|2, and (20) becomes (8).
On M\f] we have 0 < ¢ < |dV|2 for some constant ¢, hence

Ml 2angy < 1AVIEPY] gy

and thus (8) implies (9). Combining the latter with (g), we see that u has to be a critical
value of V. This completes the proof of the theorem. O

Let us mention that many of the preceding statements remain true for continuously
parametrized eigenbranches. In particular, the limit in (4) exists for every continuous
eigenbranch A;, and this limit has to be a critical value of V, provided V is scalar.
Since continuous eigenbranches are piecewise analytic, this can readily be derived by
observing that the constants implicit in (a) are uniform for all analytic eigenbranches.

Concluding remarks

At the very end of Section 3 in [8], Hillairet points out that for M = R! and non-
degenerate minima, the limit 1 has to be the absolute minimum of V. Indeed, in this
situation the spectrum is known to be simple, hence the analytic eigenbranches cannot
cross and remain in the same order: A,(l) < Afz) < --- The semi-classical asymptotics
of the k-th eigenvalue, however, is governed by the deepest wells.

For the operators considered in the theorem above we propose the following

Conjecture If the minima of V are non-degenerate in the sense of Shubin [10, Condi-
tion C on p. 378] and M is connected, then t %, converges to the absolute minimum
of V.
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From (14) we see that there exists a constant C such that
w—Ctr=l <172,

for sufficiently large ¢. It is unclear to the author, if a similar estimate from above holds
true, i.e., if we have t‘zkt =u+ O(I_l) ast — oo.
As t — o0, the following statements are equivalent:

@ (AY:, ) = O@)

(b) MV—%Uanm==007U

(c) %(f‘" (A — pt?)) = O(t~%) for one (and then all) real @ # 1.
() 5 2h) =00

(e) A — 2ty = O(1)

Indeed, the equivalence (a) < (d) follows from (15), the equivalence (b) < (e)
follows from (12), and the equivalence (¢) < (d) < (e) follows from (4). Moreover,
if these five (equivalent) statements hold true, then clearly

T =p+00¢"Y,  ast — oo. 1)

Suppose (21) holds true. Moreover, assume that p is the absolute minimum of V
and the minima are all non-degenerate in the sense of [10, Condition C on p. 378].
Then, according to [10, Theorem 1.1] or [4, Theorem 11.1], there exists an eigenvalue
w of the harmonic oscillator associated with the minima (deepest wells) such that

A= ut? + ot + 0¢*3),  ast — oo. (22)

Better estimates are available if the geometry is flat near the minima, cf. [10, Equa-
tion (1.15)]. Under additional assumptions [11] one even obtains a full asymptotic
expansion in terms of integral powers of 7.

For every eigenvalue w of the harmonic oscillator associated with the minima of
V, there exists an analytic eigenbranch for which (22) holds true with u the absolute
minimum of V. Moreover, the number of these eigenbranches coincides with the
multiplicity of w. However, it is unclear, if these exhaust all analytic eigenbranches.
Hence, an intriguing problem remains open: Are there analytic eigenbranches with
different asymptotics which are not governed by the approximating harmonic oscillator
associated with the deepest wells?
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