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Abstract

In the paper we consider the polyharmonic Bergman space for the union of the rotated
unit Euclidean balls. Using so called zonal polyharmonics we derive the formulas for
the kernel of this space. Moreover, we study the weighted polyharmonic Bergman
space. By the same argument we get the Bergman kernel for this space.

Keywords Polyharmonic functions - Bergman space - Bergman kernel - Zonal
polyharmonics - Weighted Bergman space - Weighted Bergman kernel
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1 Introduction

The polyharmonic Bergman spaces have recently been extensively studied (see [7,
8,11] or [12]). They are mainly considered on the unit ball or on its complement.
However, we regard the space of polyharmonic and square integrable functions on

the set Ep = ,f;é ek%B (in fact, we may assume the polyharmonicity only on B,
because every polyharmonic function can be extended analytically from B onto every
rotated Euclidean ball). More precisely, we consider the space of the polyharmonic
functions on B p such that
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Such space we denote by b%, (§ »)- The motivation to study the polyharmonic func-
tions on such set is given in the paper [3] (see also [5] and [6]).

Using the mean value property for polyharmonic functions (see Lemma 5 in [7])
and some theorems, we conclude that b2 (B ) is a Hilbert space with the inner product

= —Z/u(e » y)v(e o y)dy

k=0 g

Further, by theorem of Riesz, there exists a function R,(x,-) € bf,(ﬁ p») such that
u(x) = (u, Rp(x, -))b% for every u € bf,(gp). The function R, (x, -) is a reproducing
kernel for the Bergman space and it is called the Bergman kernel for §p. Using some

properties of spherical polyharmonics and zonal polyharmonics we get the formula
for the Bergman kernel which is similar to the harmonic Bergman kernel:

p
m

Rp(xa y) =

where Q, = 7/2/T'(n/2 + 1) is the volume of the unit ball B in R”. By the formula
for polyharmonic Poisson kernel (see Theorem 4 in [4]) we can express the Bergman
kernel in the term of polyharmonic Poisson kernel P, (x, y)

)

and from this we obtain the explicit formula for Bergman kernel

d
Rp(xd’): (an(xsy)_i_EPp(txsty)
n

(n — 4p)|x|2PH232PF2 4 8pxy —n — 4p)|x 122|727 + n(1 — |x|?[y]? )

Ry(x,
ple )= 2 (1 — 2xy + |x |2y 2y /2T

Moreover, we can express R, (x, y) in the terms of the harmonic Bergman kernel
R(x, y) and the harmonic Poisson kernel P (x, y):

— |x|?P[y)?P

Ry(x,y) = ———— " R(x, k312K P(x, y).
p(x,y) = PP @3+ s [YI7"P(x, y)

" k=0

Next we consider the weighted polyharmonic Bergman space. Here we study poly-
harmonic functions on B, which satisfy the following condition

1/2
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where n + o > 0,8 > —1. Vy\e denote this space by bi,a,ﬁ(ﬁp)' By the similar
arguments we prove that bfw’ s(Bp) is a Hilbert space and there exists the reproducing
kernel R, o g(x, ") € b;ya’ﬂ(ﬁp) such that

—1 -
1% ki [N
e =+ > [ weF D Rpaprne Tl - PV dy
k=0

for every u € b?)’ o B(ﬁp). The function R, 4 g is called a polyharmonic weighted
Bergman kernel. We get the formula for this kernel

1 = 2Im+ B+ 1459
Rpaplx,y) = Zhx, y).
pep nsz,,r;)r(ﬂﬂ)r(mju#) "
Moreover
p—1
Rpapx,y) =Y 1xP* [V Riasrarp(x, ).
k=0

The paper is organised as follows. In the next section we give some basic notations
and one lemma about extension of polyharmonic functions from the real ball onto its
rotation (Lemma 1).

In the third section we recall some informations about the spherical polyhar-
monics, zonal polyharmonics, polyharmonic Poisson kernel and their properties
(Lemmas 2-6). By these lemmas we get another properties for polyharmonic functions
(Propositions 1 and 2).

In the next section we introduce the polyharmonic Bergman space. Using Lemma
7 we get some properties for this space (Propositions 3 and 4).

In the fifth section we introduce the polyharmonic Bergman kernel for the set B »- We
give basic properties for this function (Proposition 5) and some another properties for
the polyharmonic functions (Propositions 6—8). Using these properties and those ones
given in Sect. 3 we get the formula for the polyharmonic Bergman kernel (Theorem
1). Moreover we get the explicit form for this function (Theorem 2) and we express it
in the terms of harmonic Bergman kernel and harmonic Poisson kernel (Theorem 3).

In the sixth section we consider the polyharmonic weighted Bergman space. Simi-
larly as for unweighted one we show that this space is a Hilbert space and there exists
the reproducing kernel called the weighted Bergman kernel (Corollary 1). By similar
arguments (Lemma 9, Propositions 9 and 10), we get the formulas for this kernel
(Theorems 4-6).
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2 Preliminaries

In this section we give some basic notations and definitions.
We define the real norm

1/2
n
x| =D x; for x = (xi,...,x,) € R"
j=1
and the complex norm
. 1/2
2
lzll = | D Izjl& for z=(z1,...,2,) €C"
—~

with |z;|% = z;Z;. We will also use the complex extension of the real norm for
complex vectors:

., 12
lz| = Zz? for z=1(z1,...,2,) € C".
=1

By
Xy =x1y1+x2y2+ -+ Xp¥n

we denote the usual inner product for the complex (real) vectors x, y.

By a square root in the above formula we mean the principal square root, where a
branch cut is taken along the non-positive real axis. Obviously the function | - | is not
a norm in C", because it is complex valued and hence the function |z — w| is not a
metric on C".

We will consider mainly complex vectors of the form z = e/¢x, that is vectors
x € R” rotated in C" by the angle ¢.

For the set G € R” and the angle ¢ € R we will consider the rotated set defined
by

€YG = {e'x : x € G).

We will consider mainly the following unions of rotated sets in C":

p—1 p—1
~ ki ~ ki
Bp:=Ue/’B and Sp:=UePS for peN,
k=0 k=0

where B and S are respectively the unit ball and sphere in R” with a centre at the
origin.
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Let G be an open set in R". We denote by .A(G) the space of analytic functions on
G. Similarly we say that f € A(e'?G) if and only if f,(x) := f(e'’x) € A(G). We
call

Aa(G) :={f € A(G) : A f =0}

the space of harmonic functions on G, where A, denotes the Laplacian in R”. Analo-
gously we define the family Ax (¢! G) of harmonic functions on ¢/ G. Observe that
f € Aa(e'?G) if and only if f, € Aa(G). Similarly, replacing the Laplace oper-
ator A, by its pth iteration A? in the above definitions, we introduce the spaces of
polyharmonic functions of degree p, that is Ax»(G) and Aar (/¢ G).

We will use the following lemma (see also Siciak’s Theorem, [10]).

Lemma1 [3, Lemma 1] Let ¢ € R and u € App(B). Then the function u has a
holomorphic extension to the set {z € C": z = ¢Vx, ¥ € R, x € B}, whose
restriction uy to e'? B is polyharmonic of order p, i.e. u, € Aar(e'?B).

3 Zonal Polyharmonics and Polyharmonic Poisson Kernel

In this section we recall the spherical and zonal polyharmonics and the polyharmonic
Poisson kernel (see [4]).

Let m, p € N. We denote by H},(C") the space of polynomials on C", which
are homogeneous of degree m and are polyharmonic of order p. By homogeneous
polynomial of degree m we mean the polynomial ¢ such that

q(az) =a"q(z) forevery a € C and forevery z € C".

Let’s observe thatif m < 2p, then H}, (C") is the same as the space of homogeneous
polynomials of degree m.

-~ | kmi
Definition 1 [4, Definition 1] The restriction to the set S, := ,fzol er S of an
element of H}, (C") is called a spherical polyharmonic of degree m and order p.
The set of spherical polyharmonics is denoted by H/, (S p)s SO

A Sp) = {ulg, s u e HE @}

The spherical polyharmonics of order 1 are called spherical harmonics and their
space is denoted by H,,(S) := H,ln (S) (see [1, Chapter 5]). Analogously we write
H,n (C") instead of H} (C™).

We shall recall some properties of spherical polyharmonics. To do this let us con-
sider the Hilbert space L2(Sp) of square-integrable functions on S with the inner
product defined by

(f.8)s /Zf(e g’ 0 do (o), (1

5/0
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where do is a normalized surface-area measure on the unit sphere S.
Lemma 2 [4, Propositions 4] The space HE (§p) is finite dimensional.

Lemma 3 [4, Theorem 1] The space Lz(gp) is the direct sum of spaces HE, (§,,) and
we write

L*(Sp) = P HA(S)).

It means that
(i) Hb (Sp) is a closed subspace osz(S ) for every m.
(ii) Hm(Sp) is orthogonal to ’Hk (Sp) ifm # k.
(iii) Foreveryx € LZ(S ) there exist x,, € HE (S )such thatx = xo+x1+x2+--
where the sum is converging in the norm osz(Sp)

By Lemma 3 we may consider Hh (S ») as a Hilbert space with the inner product
(1) induced from L2(S,).

Letn € S be a fixed point. Let us consider the linear functional A, cHD (S )~ C
defined as

Ay(q) = q(n) for q e Hh(S,).

Since HJ, (S ) is a finite dimensional inner-product space, it is a self-dual Hilbert
space so there exists a unique Zh(,n) e HY (S p) such that

g =g. ZiC.m)g, forevery g € Hi(S)). )

Definition 2 [4, Definition 2] The function Z}, (-, n) satisfying (2) is called a zonal
polyharmonic of degree m and of order p with a pole 5.

Zonal polyharmonics of order p = 1 are called zonal harmonics. Throughout this
paper we will denote them by Z,, (-, n) instead of Z ,(.m) forn e S.

Let’s observe that we can extend the definition of zonal harmonics from § x S on
fp X 3’}, as follows:

Imi m(j—=Dmi

Zm(e 3 C ern)i=e P Zy,n)

for any ¢{,n € S and j,/ = 0,1,..., p — 1. Moreover, the zonal harmonics are
extended on B x B (see 8.7 in [1]) and hence, by Lemma 1, they are extended on
B, x B,

Let’s give some properties of the zonal polyharmonics.

Lemma4 [4, Theorem 2] Let ¢, n € §p, then

p—1
Zh@om) =Y 1P Znak (&, ),
k=0
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where in the case m < 2p we have Z,, (¢, n) = 0 for m < 2k (see Remark 6 in

[4]).

We may extend the zonal polyharmonics from 3'}, X 3'}, on B p X B p in the same
way as for the zonal harmonics, therefore by Lemma 4 we have

p—1
Zh(x,y) = Y P Zn o (x, y). 3)
k=0
In particular
p—1
Zhe,m) =Y X Zn-ak(x, n) for x € B, “)
k=0

so by (2) and homogeneity we may write

q(x) =/11(§)Zf:l(x,§)d0(§) for x € B). (&)
s

The zonal polyharmonics give us the construction of the polyharmonic Poisson
kernel.

Definition 3 [4, Definition 6] The function Py : (B) x S,)U(S, x B,) — Cis called
a Poisson kernel for B, B/, provided for every polyharmomc function u on B which is
continuous on B us » and for each x € B holds

—1 e —
u(@) = {u, Py, 0))g, Z/u(e’T;)Pp(eT;,x)da(g).

When p = 1, the function P(x, ¢{) := Pi(x, ¢) is the classical Poisson kernel for
the real ball (see [1, Proposition 5.31] and [2, Theorem 3])

1—|x|?[g]?
(Ix[2[C]? = 2x¢ + /2’

P(x,0) =Y Zn(x,0) =

Lemma 5 [4, Theorem 4] The Poisson kernel has the expansion

> 1 — |x|2P|z 2P ~ ~
— p —
Ppy(x,¢) —mEZOZm(x,C) = PEE -2t for x € B,, £ €S,. (6)

The series converges absolutely and uniformly on K x §,,, where K is a compact
subset of B.
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ki
Lemma 6 [3, Corollary 1] If u is polyharmonic of order p on a + U,f:_é e? BO,r)

. 1 ki
and continuous on the set a + Ufzo e ? B(0,r), then

u(x) =

P ! — 2 i
/ ; al? U (a—i—rekT{) do (). @)
yep—n

1
P >0 eP(x—a)

Proposition 1 Let (u,) be a sequence of polyharmonic functions of order p such that
u, = u on every compact subset of Bp. Then u is polyharmonic on B .

Proof Let (u,) be the sequence as 1n Proposmon 1. Suppose that B(a,r) C B, then

u, is polyharmonic on a + (¥~ [ 0 e o B and continuous on its closure. By Lemma 6
we may write

2 — — 2 ikm
U (x) = lZf oA e T 0do ).

ikm
(S0 e (x—a) = g

“@

Since the Poisson kernel for B p is polyharmonic so continuous, there exists constant
M > 0 such that

r2P —|x —al?*P
<M

—ikm
20 e (x —a) — ¢ ¢

for every x € K, where K is a compact subset of B p- Therefore

p—1 20 e — 12 o
un(x>—lZ/ R e+ re T 00da )

—ikm
P n—2p y _ _ Fn
k=0 " Ple v (x —a) = | c

M ik ik
< — / up(a+rer ¢)—u(a+rer ¢)| do(l).
P o ©

Since u, = u on every compact subset of B p» we can take the limit under the integral
sign. Hence we conclude that

-1

1 4 2P _|x —al?r ik

u(x>=—Zf bl wa+re'r 0)do ()
PiZoy rm=2le r (x —a) — ¢

so u is polyharmonic on B),. O
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Proposition 2 Let u be polyharmonic on B p» then there exist q,, € HY (C") such that
o
w(x) =Y gu(x)
—
for x € B p- The series converges absolutely and uniformly on compact subsets of

B,

Proof The proof is almost the same as in the harmonic case (see [1, Corollary 5.34]).
O

At the end let us observe that by (3) and (6) we may extend the polyharmonic
Poisson kernel:

Pp(x.y) =Y Zh(x.y) =Y Zh <XIy| ﬁ)
m=0 m=0

_ 1 —|x[y]]*
x[l; ﬁ B S/ S1121 2 [2yn/2
Y (1= 2x [yl + X VP15 1)

thus

1 — |x|?P[y]%P
Py(x,y) = Z Z (x,y) = —2xy + |x|2|§|2)n/2' ®)

Let’s note that by the above considerations and the Lemma 1 we can also extend the
harmonic Poisson kernel P (x, y) onto B X B

4 The Bergman Space

Let us consider the polyharmonic functions of order p on B, p such that

1/2

1 P*l kmi 2
g o= [ =3 [ fuceF | av|  <oe.
PiZoy

The above condition makes sense because every polyharmonic function can be
extended onto any rotated ball by Lemma 1. The set of polyharmonic functions that
satisfy the above condition is called the polyharmonic Bergman space, abbreviated
the Bergman space, and we denote it by b%, (§ »), hence

b7 (Bp) := Aar(B) N L*(B)).
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When p = 1, we have the classical harmonic Bergman space b%(B) (see Chapter 8
in [1]). As in the harmonic case, we want to show that bf,(Bp) is also a Hilbert space.
To do this we will use the following mean value property for polyharmonic functions:

Lemma7 (Mean value property, [7, Lemma 5]) For every compact subset K C B
and x € K, there exists a constant C = C(K, n, p) such that

R < c/ u(y)|2dy
B

for every u € Aar(B).

Proposition 3 For every compact subset K C B, pand x € K, there exists a constant
C = C(K,n, p) such that

lu)lc = Cllullp

5 =
for every u € by, (Bp).

Proof Let K C B be compact, x € K and j = 0,1,..., p — 1. By Lemma 1 and
Lemma 7, there exists a positive constant C = C(K, n, p) such that
lu(e 7 x)|g = C | |ue 7 y)lgdy.
B

In particular

- . p—1
Jjmi Jmi ki
lu(e » x)|@2C < C/ lu(e » y)|%cdy+CZ/ lu(e P y)|édy.
k=0
B Kz B

Hence for every compact K C B pand x € K we have

p—1
kmi
@) <CY jf jue 7 )Igdy = Cpllullyy
k:OB O

Proegsition 4 The Bergman space b%(ﬁ p) is a closed subspace of the Hilbert space
L*(B p) with the inner product:

e P 7
(vl = — Z/u(e P y)u(e 7 y)dy. ©)

k=0 %
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Proof The proof follows from Proposition 3, it is analogous as in the harmonic case
(see [1, Corollary 8.3]). m]

5 The Bergman Kernel

Letx € Ep be a fixed point. Let’s consider the linear functional Ay : b%(ﬁp) — C
such that Ay (#) = u(x). By Proposition 3, A, is bounded. Since bf,(ﬁp) is a Hilbert
space with the inner product (9), by Riesz theorem, there exists a unique function
Ry(x,-) € b%(B,) such that

lp_l kmio T kmi
u(x) = (u, Rp(x, ')>b§, = ; Z/u(ekp y)Rp(x,ekp y)dy (10)
k:OB

for every u € bf,(Ep). The function R, (x, -) is called the polyharmonic Bergman
kernel for §p.

The function R(x, -) := Rj(x, -) is the harmonic Bergman kernel and this function
is given by (see Theorem 8.9 in [1]):

o]

n+2m)Z,(x,y) for x,y € B.
=0

1

R(x,y) = e

n
m

Using Lemma 1, we extend R(x, y) on B p X E,, (we can also use the fact that the
functions Z,, (x, y) are extended on B, x B), see Sect. 3).

Proposition 5 The Bergman kernel has the following properties:

(1) Rp(x,y) = Rp(y,x), .
(2) ||Rp(x’ )||,27% = Rp(xs x) forx € pr

(3) the map Q : L*(B)) — b2(B),) such that
1 Pl kmio  kmi 9 =~ ~
Olul](x) = — Z/u(e P Y)Ry(x,e? y)dy for ueL“(Bp), x € B
P>
=UB

is a unique orthogonal projection of L2(§p) onto b%(ﬁp).

Proof The proof is almost the same as in the harmonic case (see [1, Proposition 8.4]).
]

Proposition6 Letm # 1 andu € H’l’f CHve Hé,((C"), then {(u, v)b§=0.
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Proof

VRS [ emi T
)y = = Z/u(e P yuie r y)dy

k=0 %

p—1 ] R
_ Z/r"‘l/u(ek%r{)v(e%r{)do(g)dr
= S

—_
—

<

n2,
p

=~

/r”71+m+l/u(e%g)v(e%g)da(g)dr =0,
0

s
where in the last equality we use Lemma 3. O

Proposition 7 Let u be a polynomial of degree M, then

M p—1
kmi ki o~
u(x) = Z(n + 2m) Z/u(eTy)Z,ﬁ(x,eTy)dy for x € Bp.
" m=0 k=0p

Proof Suppose first that u € H% (C"). Then

u(x) Z/M(;‘)Z;’Z(x,f)dU({)

N

for every x € B »- We have

/u(y)Zr’Z(x, y)dy = n,
B

el / u(rt)ZL (x, ro)do (dr
S

o O~

=nszn/r2m+"*‘ fu(oz;i(x,;)da(;) dr
0 S
1

Q
=n§2nu(x)/r2m+"_ldr =
0

n—+2m

u(x).

Hence

2
u(x) = ”:Q " /u(y)zé'é(x,y)dy.

n

B
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By the homogeneity we may write

() = 2 qu(e P 0zl T y)dy.

" k=0

Now, let # be a polynomial of degree M, then u is the sum of the homogeneous
polynomials, so by Proposition 6 and the last equation we have the desired formula. O

Proposition 8 The space of polyharmonic polynomials is a dense subset of bf, (§ »)-

Proof The proof is the same as in the harmonic case (see [1, Lemma 8.8]). Here we
use Proposition 2. O

Lemma 8 [4, Theorem 4] Let ¢ € §p. Then there exists a constant C > 0 such that
1Zh(x, O)le < Cpm" | |x[|"

forevery x € B),.

Theorem 1 The polyharmonic Bergman kernel is given by

Rp(xs y) =

m (X, ¥),

where the series converges absolutely and uniformly on K x B p for every compact
subset K C B).

Proof By (10) and Propositions 7 and 8, we need only to show the convergence of the
series. By Lemma 8 there is

1Zh (e, e = 151" el Zh G, y/lyDle < Cpm" 2| || [[F]1™ < Cpm™ 2| |x||™

thus

max Z(n+2m)|Z (x,y)lc <Cp max Z(n—}—Zm)m" 211%™,
(x, y)€K><B (x, y)€K><B

but

(n +2(m+ 1)(m + )2
(n + 2m)mn—2

— 1 as m — o0,

what completes the proof. O
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Theorem 2 The polyharmonic Bergman kernel is given by:
Rp( )—1 Pp( )+dP(tf)
PV =g, e T g R

_ (n—4p)xPPP2FPPT2 4 Bpxy —n — 4p)xPPIF1PP + n(1 — |x 7|73
nQn (1 = 225 + |x|2[3]2)"/2+ '

Proof The proof is almost the same as in the harmonic case. By homogeneity of the
zonal polyharmonics we have

d
= —Zn(tx,1y)

d
2mZh(x,y) = —Pmzh(x, y) 7

dt

t=1 t=1

For the second equality by (8) we compute

d, (tx.1v) d 1 — 4P |x 2P|y |2P
- X, = — —
ar P T a2 + AP |
_ (—apt* P PP PP x|y P — 202xy + 1)
B (1 =225y + t41x 2 [3]2)" =1
(= P PP IFPP) (<4ixy + 42 kP (= 2075 + i x 2y
(1 =202y + 41 2 [y]2)" =1
_ 2n(1 = [xPPIYPP) (Y — [ PIFP) — 4plx PP PP (x P51 — 205 + 1)
(1= 2xy + [x |2 [y[2)/2+]

and
nP,(x,y)
n = nlxPP[31*P = 2nxy + 2nx|x[*P[§]*P + nlx P[3]* — nlx P72y
- (1 =20y + |x |2 [y|)n/>+1 .
Adding the last equalities we get the desired formula. O

In the next theorem we express the polyharmonic Bergman kernel in the terms of
the harmonic Bergman kernel and harmonic Poisson kernel.

Theorem 3 The polyharmonic Bergman kernel is given by

1 — 2P 3PP R
Ry(x,y) = R(x.y) + —— Y 4klx* /¥ Px.y). (A1)
k=0

1— |x|2y]? n<y
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Proof By Theorem 1 and (3) we have

Rp(x, ) = —
n
1 p—1 00
=~ D WP Y0 4+ 2m + 40 Z(x, )
3 120 m=—2k
= 2k 3% Z(n+2m+4k)Zm(x ¥)
m=0
= 2k|y|2’<2<n+2m)z (x, )
m=0
Z4k|x|2k|y|2"zz (X, ).
S k=0

Using (8) and Theorem 1 with p = 1 we obtain

Rp(x,y) = Z TR, )+ —— Z4k|x|2"|y|2" Z Zn(x,y)
k=0 m=0
1 — x5 o

= TWR(XJ)—F VPP (x, y).

6 The Weighted Bergman Kernel

Leta +n > 0 and B > —1. Let us consider the set of polyharmonic functions of
order p on the ball B such that

1 " ki |2 v
g, =5 3 [ fueF o pra-ppra]  <w a2
p k:OB c

p.a.p

This space is called a polyharmonic weighted Bergman space with weights «, 8 and
we denote it by bi’a’ﬂ(Bp). Hence

b2 o 5(Bp) = Aar(B) N L2(B,. |y|*(1 — [y)Pay),

where L2(§p, Iy|%(1 — |y[®)Pdy) is the space of measurable functions on §p which
satisfy (12).
By mean value property for polyharmonic functions (Lemma 7) we conclude that
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Lemma9 [11, Introduction] Letn + o > 0, B > —1, then for every compact subset
K C B and x € K, there exists a constant C = C(K, n, p) such that

) < c/ WO)IE 1y (1 = [yP)rdy

for everyu € Aar(B) N L*(B, |y|“(1 — |y|»)Pdy).

Proposition9 Letn +« > 0,8 > —1, then for every compact subset K C B and
x € K, there exists a constant C = C (K, n, p) such that

u(x < Cllull;2
uole < Cliully:

for everyu € bi,a,ﬂ(gp)'

Proof The proof follows from Lemma 9 and it is similar to the proof of Proposition 3.
]

Corollary 1 The space b? aﬂ(BP) is a closed subspace of the Hilbert space
L2(B,,, [y|*(1 — |y| )/de) with the inner product

= _Z/”(e r y)v(e a y)lyl (1—1|y»HPay. (13)

k=0p

u,v);2
(. v)y2

By the last corollary we conclude that 5> o f (B p) is a Hilbert space with the inner

product (13). Again, let x € B be a fixed point and let the linear functional A :
ﬁ(BP) — C be such that A, (u) = u(x), then by Corollary 1 and Riesz Theorem

there exists the function R, o g € bp’a’ﬁ(Bp) such that for every u € bp’a,ﬂ(Bp) we
have

u(@) = (i, Rp.aple. M)y

1
- /u(e ) Rpap(re r Iy — [yP)Pdy.
p k=0
B

The function R 4 g(x, -) is called a polyharmonic weighted Bergman kernel. Let’s
note that by the Lemma 1, the harmonic weighted Bergman kernel R; ¢, g(x, y) can
be extended from B x B on B, x B,.

Remark 1 1t is easy to observe that the analogous properties given in Propositions 5,
6 and 8 from the previous section hold, one can change R, to R « g.
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Proposition 10 Let u be a polynomial of degree M. Then

M nta
u(x):Z 2bm+=5=+B+1)

pnQ,T(B + DI (m + ¢42)

m=0

p—1 ) )
kmi kmi
X qu(e P Zinx, e r Yyl A —yPHPdy.
k=0

Proof The proof is similar to the proof of Proposition 7. First we assume that u €
H}, (C™). Then

/u(y)z,ii(x, Wy = [yHPdy
B

1
:nQn/r"+2m+°‘_l(l —r2)f‘[u(;)z,§’,(x,g)d;dr
0 S

1
= nQuu(x) / P Y O G
0

n+oa
e T+ DI(m + % W),
2F(m+ % +B+1)

Hence

2h(m+ 2 +B+1)

- Zh(x, @1 — |y|HPa
nQuL(f + DT (m +25%) u(¥) Zn (2, )11 = |y1H)Pdy

u(x)

By homogeneity (see Remark 1) we get

2F(m+ % +B+1)

“O) = T (B + DT (n + 15%)

p—1 ) )
ki ki
X qu(e P Zinx, e r Yyl = yPHPdy.
k=0 %

Now let u be a polynomial of degree M, then by last equation and Remark 1 we obtain
the desired formula. O

Theorem 4 The polyharmonic Bergman kernel is given by

1 X 20(m + 2% 4+ g+ 1)
Rpapx.y)=—>_ 2 ,

w2, 2= T+ Dl + 13y 0

" m=0
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where the series converges absolutly and uniformly on K x B p for every compact
subset K C B).

Proof By Remark 1 and Proposition 10, we need to show the convergence. As in the
proof of Theorem 1 we have

S 2M(m+ 2+ B+ 1)
max o
ek xB, == T(B+ DI'(m + *5%)

| Zn (x, Y)lc

—c N 2(m+ 2+ B+ 1)
<Cp max

ax _ ———m"|x||".
(.yekxB, f=5 T'(B+ DI(m +5%)

Moreover
2M(m+ 2 +842)  T(B+DI(m+ 252
FB+DIm+"3%+1) 2Im+ % +8+1)
n+2m+aoa+28+2
= — 1 as m - o0
n+2m+a«
and this completes the proof. O

We may also give the counterpart of Theorem 2 using the fractional derivatives in
the Riemann-Liouville sense (see for example [9]). Let’s recall the definitions.
Let! > 0, then the primitive of u € L0, 1) is as follows

1

u(t)

—1 _
D™ 'u(t) = NG —(t o T.
0

The derivative of order [ is as follows

Ny )
Du(t)—m(D J u(t)),

where j is an integer number such that j — 1 </ < j. As in harmonic case (see [9]),
using the identity

pitig - FE+D 4y
Tk —1)

and again the formula (8), we obtain the following theorem for polyharmonic case:

Theorem 5 The polyharmonic weighted Bergman kernel is given by

nta
Rpap(5,3) = DI (1548 Py 1x. )

2
nl'(B + 12,

=1
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Theorem 6 The polyharmonic weighted Bergman kernel is given by
p—1
Rpap(x,y) =Y X[V Riayanp(x, y),
k=0
in particular
p—1
Rp(x,y) = > IxI*[31% Ry aro(x, y).

k=0

Proof By Theorem 4 we have

1 izr(m+"§“+ﬂ+1) »

Rpapx,y) = Zp(x,y).
el V) =00 T(B+ Dl (m + 252) "5

n
m=0

From (3) we get

1 P
I K91 Z o (x, p)

X 2 (m + e L B+ 1)
Rp’a,ﬁ(x, y) = Z n—+o
n, om0 LB+ DHI'(m+ =5=)

1 piliZl"(m+2k+”J2r“+,B+1)

X191 Z, (3, )
nQ T(B+ DT (m + 2k + 52) Y EmtE Y

" k=0 m=0
1 p—1 o Zr(m+n+0(2+4k _I_ﬂ_l_l)

-y k:OmZ:O T(B + DI (m + etk

x5 Z (x, ).

Using Theorem 4 we obtain the desired formula. O
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