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Abstract
Passive discrete-time systems with Hilbert spaces as an incoming and outgoing space
and a Pontryagin space as a state space are investigated. A geometric characterization
when the index of the transfer function coincides with the negative index of the state
space is given. In this case, an isometric (co-isometric) system has a product repre-
sentation corresponding to the left (right) Kreı̆n–Langer factorization of the transfer
function. A new criterion, based on the inclusion of reproducing kernel spaces, when a
product of two isometric (co-isometric) systems preserves controllability (observabil-
ity), is obtained. The concept of the defect function is expanded for generalized Schur
functions, and realizations of generalized Schur functions with zero defect functions
are studied.
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1 Introduction

Let U and Y be separable Hilbert spaces. The generalized Schur class Sκ(U ,Y)

consists of L(U ,Y)-valued functions S(z) which are meromorphic in the unit disc D
and holomorphic in a neighbourhood � of the origin such that the Schur kernel
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KS(w, z) = 1 − S(z)S∗(w)

1 − zw̄
, w, z ∈ �, (1.1)

has κ negative squares (κ = 0, 1, 2, . . .). This means that for any finite set of points
w1, . . . , wn in the domain of holomorphy ρ(S) ⊂ D of S and vectors f1, . . . , fn ⊂ Y,

the Hermitian matrix (〈
KS(w j , wi ) f j , fi

〉)n
i, j=1 (1.2)

has at most κ negative eigenvalues, and there exists at least one such matrix that
has exactly κ negative eigenvalues. It is known from the reproducing kernel theory
[1,4,23,27,30] that the kernel (1.1) generates the reproducing kernel Pontryagin space
H(S) with negative index κ. The spaces H(S) are called generalized de Branges–
Rovnyak spaces, and the elements inH(S) are functions defined on ρ(S) with values
in Y . The notation S∗(z) means (S(z))∗, a function S#(z) is defined to be S∗(z̄) and
S# ∈ Sκ(Y,U) whenever S ∈ Sκ(U ,Y) [1, Theorem 2.5.2].

The class S0(U ,Y) is written as S(U ,Y) and it coincides with the Schur class,
that is, functions holomorphic and bounded by one in D. The results first obtained by
Kreı̆n and Langer [26], see also [1, §4.2] and [21], show that S ∈ Sκ(U ,Y) hasKreı̆n–
Langer factorizations of the form S = Sr B−1

r = B−1
l Sl , where Sr , Sl ∈ S0(U ,Y).

The functions B−1
r and B−1

l are inverse Blaschke products, and they have unitary
values everywhere on the unit circle T. It follows from these factorizations that many
properties of the functions in the Schur class S(U ,Y) hold also for the generalized
Schur functions.

The properties of the generalized Schur functions can be studied by using oper-
ator colligations and transfer function realizations. An operator colligation � =
(T�;X ,U ,Y; κ) consists of a Pontryagin space X with the negative index κ (state
space), Hilbert spaces U (incoming space), and Y (outgoing space) and a system
operator T� ∈ L(X ⊕U ,X ⊕Y). The operator T� can be written in the block form

T� =
(
A B
C D

)
:
(X
U

)
→

(X
Y

)
, (1.3)

where A ∈ L(X ) (main operator), B ∈ L(U ,X ) (control operator), C ∈ L(X ,Y)

(observation operator), and D ∈ L(U ,Y) (feedthrough operator). Sometimes the
colligation is written as � = (A, B,C, D;X ,U ,Y; κ). It is possible to allow all
spaces to be Pontryagin or even Kreı̆n spaces, but colligations with only the state space
X allowed to be a Pontryagin space will be considered in this paper. The colligation
generated by (1.3) is also called a system since it can be seen as a linear discrete-time
system of the form {

hk+1 = Ahk + Bξk,

σk = Chk + Dξk,
k ≥ 0,

where {hk} ⊂ X , {ξk} ⊂ U and {σk} ⊂ Y . In what follows, “system” always refers to
(1.3), since other kind of systems are not considered.

When the system operator T� in (1.3) is a contraction, the corresponding system
is called passive. If T� is isometric (co-isometric, unitary), then the corresponding
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system is called isometric (co-isometric, conservative). The transfer function of the
system (1.3) is defined by

θ�(z) := D + zC(I − zA)−1B, (1.4)

whenever I − zA is invertible. Especially, θ is defined and holomorphic in a neigh-
bourhood of the origin. The values θ�(z) are bounded operators from U to Y . The
adjoint or dual system is �∗ = (T ∗

�;X ,Y,U; κ) and one has θ�∗(z) = θ�
#(z).

Since contractions between Pontryagin spaces with the same negative indices are bi-
contractions, �∗ is passive whenever � is. If θ is an L(U ,Y)-valued function and
θ�(z) = θ(z) in a neighbourhood of the origin, then the system � is called a realiza-
tion of θ. A realization problem for the function θ ∈ Sκ(U ,Y) is to find a system
� with a certain minimality property (controllable, observable, simple, minimal); for
details, see Theorem 2.4, such that � is a realization of θ.

If κ = 0, the system reduces to the standard Hilbert space setting of the passive
systems studied, for instance, by de Branges and Rovnyak [18,19], Ando [2], Sz.-Nagy
and Foias [32], Helton [24], Brodskiı̆ [20], Arov [5,6] and Arov et al. [7–10,13]. The
theory has been extended to Pontryagin state space case by Dijksma et al. [21,22],
Saprikin [28], Saprikin and Arov [12] and Saprikin et al. [11]. Especially, in [28],
Arov’s well-known results of minimal and optimal minimal systems are generalized to
the Pontryagin state space settings. Part of those results are used in [11], where transfer
functions, Kreı̆n–Langer factorizations, and the corresponding product representation
of systemare studied and,moreover, the connectionbetweenbi-inner transfer functions
and systemswith bi-stablemain operators are generalized to the Pontryagin state space
settings. In this paper those results will be further expanded and improved.

The casewhen all the spaces are indefinite, the theory of isometric, co-isometric and
conservative systems is considered, for instance, in [1], see also [23]. The indefinite
reproducing kernel spaces were first studied by Schwartz in [29] and Sorjonen in [30].

The paper is organized as follows. In Sect. 2, basic notations and definitions about
the indefinite spaces and their operators are given.Also, the left and rightKreı̆n–Langer
factorizations are formulated, and the boundary value properties of generalized Schur
functions are introduced. After that, basic properties of linear discrete time systems,
or operator colligations, especially in Pontryagin state space, are recalled without
proofs. However, the extension of Arov’s result about the weak similarity between
two minimal passive realizations of the same transfer function, is given with a proof.

Section 3 deals mainly with the dilations, embeddings and products of two systems.
The transfer function θ� of the passive system � = (T�;X ,U ,Y; κ) is a generalized
Schur function with negative index no larger than the negative index of the state space
X , but the theory of passive systems will often be meaningful only if the indices
are equal. A simple geometric criterion for these indices to coincides is given in
Lemma 3.2. Main results in this section contain criteria when the product of two co-
isometric (isometric) systems preserves observability (controllability). These results
are obtained in Theorems 3.6 and 3.7. The criteria involve the reproducing kernel
spaces induced by the generalized Schur functions. Moreover, Theorem 3.9 expands
the results of [11] about the realizations of generalized Schur functions and their
product representations corresponding to the Kreı̆n–Langer factorizations. In the end
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of Sect. 3, it is obtained that if A is the main operator of � = (T�;X ,U ,Y; κ)

such that θ� ∈ Sκ(U ,Y), then there exist unique fundamental decompositions X =
X+
1 ⊕ X−

1 = X+
2 ⊕ X−

2 such that AX+
1 ⊂ X+

1 and AX−
2 ⊂ X−

2 , respectively; see
Proposition 3.10.

Section 4 expands and generalizes the results of [6,11] about the realizations of
bi-inner functions. It will be shown that the notions of stability and co-stability can be
generalized to the Pontryagin state space settings in a similar manner as bi-stability
is generalized in [11]. Moreover, the results of [3] about the realizations of ordinary
Schur functions with zero defect functions will be generalized. This yields a class
of generalized Schur functions with boundary value properties very close to those of
inner functions in a certain sense.

2 Pontryagin Spaces, Kreı̆n-Langer Factorizations and Linear Systems

LetX be a complex vector space with a Hermitian indefinite inner product 〈·, ·〉X . The
anti-space of X is the space −X that coinsides with X as a vector space but its inner
product is−〈·, ·〉X .Notions of orthogonality and orthogonal direct sum are defined as
in the case of Hilbert spaces, andX ⊕Y is often denoted by

(X Y)ᵀ
. SpaceX is said

to be a Kreı̆n space if it admits a decompositionX = X+⊕X− where (X±,±〈·, ·〉X )

are Hilbert spaces. Such a decomposition is called a fundamental decomposition.
In general, it is not unique. However, a fundamental decomposition determines the
Hilbert space |X | = X+⊕(−X−)

with the strong topology which does not depend on
the choice of the fundamental decomposition. The dimensions of X+ and X−, which
are also independent of the choice of the fundamental decomposition, are called the
positive and negative indices ind± X = dimX± ofX . In what follows, all notions of
continuity and convergence are understood to be with respect to the strong topology.
All spaces are assumed to be separable. A linear manifold N ⊂ X is a regular
subspace, if it is itself a Kreı̆n space with the inherited inner product of 〈·, ·〉X . A
Hilbert subspace is a regular subspace such that its negative index is zero, and a
uniformly negative subspace is a regular subspace with positive index zero, i.e., an
anti-Hilbert space. If N ⊂ X is a regular subspace, then X = N ⊕ N⊥, where ⊥
refers to orthogonality w.r.t. indefinite inner product 〈·, ·〉X .Observe thatN is regular
precisely when N⊥ is regular.

Denote by L(X ,Y) the space of all continuous linear operators from the Kreı̆n
space X to the Kreı̆n space Y . Moreover, L(X ) stands for L(X ,X ). Domain of a
linear operator T is denoted by D(T ), kernel by ker T and T �N is a restriction of T
to the linear manifold N . The adjoint of A ∈ L(X ,Y) is an operator A∗ ∈ L(Y,X )

such that 〈Ax, y〉Y = 〈x, A∗y〉X for all x ∈ X and y ∈ Y . Classes of invertible,
self-adjoint, isometric, co-isometric and unitary operators are defined as for Hilbert
spaces, but with respect to the indefinite inner product. For self-adjoint operators
A, B ∈ L(X ,Y), the inequality A ≤ B means that 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ X .
A self-adjoint operator P ∈ L(X ) is an 〈·, ·〉-orthogonal projection if P2 = P . The
unique orthogonal projection onto a regular subspace N of X exists and is denoted
by PN . A Pontryagin space is a Kreı̆n space X such that ind− X < ∞. A linear
operator A ∈ L(X ,Y) is a contraction if 〈Ax, Ax〉 ≤ 〈x, x〉 for all x ∈ X . If X and
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Y are Pontryagin spaces with the same negative index, then the adjoint of a contraction
A ∈ L(X ,Y) is still a contraction, i.e., A is a bi-contraction. The identity operator of
the space X is denoted by IX or just by I when the corresponding space is clear from
the context. For further information about the indefinite spaces and their operators, we
refer to [14,17,23].

For ordinary Schur class S(U ,Y), it is well known [32] that S ∈ S(U ,Y) has
non-tangential strong limit values almost everywhere (a.e.) on the unit circle T. It
follows that S ∈ S(U ,Y) can be extended to L∞(U ,Y) function, that is, the class of
weakly measurable a.e. defined and essentially bounded L(U ,Y)-valued functions on
T.Moreover, S(ζ ) is contractive a.e. onT. If S ∈ S(U ,Y) has isometric (co-isometric,
unitary) boundary values a.e. on T, then S is said to be inner (co-inner, bi-inner).

If U = Y, then the notations S(U) and Sκ(U) are often used instead of S(U ,U) and
Sκ(U ,U). Suppose that P ∈ L(U) is an orthogonal projection from the Hilbert space
U to an arbitrary one dimensional subspace. Then a function defined by

b(z) = I − P + ρ
z − α

1 − ᾱz
P, |ρ| = 1, 0 < |α| < 1, (2.1)

is a simple Blaschke-Potapov factor. Easy calculations show that b is holomorphic
in the closed unit disc D, it has unitary values everywhere on T and b(z) is invertible
whenever z ∈ D \ {α}. In particular, b ∈ S0(U) is bi-inner. A finite product

B(z) =
n∏

k=1

(
I − Pk + ρk

z − αk

1 − ᾱk z
Pk

)
, |ρk | = 1, 0 < |αk | < 1, (2.2)

of simple Blaschke-Potapov factors is called Blaschke product of degree n, and it is
also bi-inner and invertible on D \ {α1, . . . , αn}. The following factorization theorem
was first obtained by Kreı̆n and Langer [26], see also [1, §4.2] and [21].

Theorem 2.1 Suppose S ∈ Sκ(U ,Y). Then

S(z) = Sr (z)B
−1
r (z) (2.3)

where Sr ∈ S(U ,Y) and Br is a Blaschke product of degree κ with values in L(U)

such that Br (w) f = 0 and Sr (w) f = 0 for some w ∈ D only if f = 0. Moreover,

S(z) = B−1
l (z)Sl(z) (2.4)

where Sl ∈ S(U ,Y) and Bl is a Blaschke product of degree κ with values in L(Y)

such that B∗
l (w)g = 0 and S∗

l (w)g = 0 for some w ∈ D only if g = 0.
Conversely, any function of the form (2.3) or (2.4) belongs to Sκ ′ for some κ ′ ≤ κ,

and κ ′ = κ exactly when the functions have no common zeros in sense as described
above. Both factorizations are unique up to unitary constant factors.

The factorization (2.3) is called the right Kreı̆n-Langer factorization and (2.4)
is the left Kreı̆n-Langer factorization. It follows that S ∈ Sκ(U ,Y) has κ poles
(counting multiplicities) inD, contractive strong limit values exist a.e. on T and S can
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also be extended to L∞(U ,Y)-function. Actually, these properties also characterize
the generalized Schur functions. This result will be stated for reference purposes. For
the proof of the sufficiency, see [21, Proposition 7.11].

Lemma 2.2 Let S be an L(U ,Y)-valued function holomorphic at the origin. Then
S ∈ Sκ(U ,Y) if and only if S is meromorphic on D with finite pole multiplicity κ and

lim
r→1

sup
|z|=r

‖S(z)‖ ≤ 1

holds.

A function S ∈ Sκ(U ,Y) and the factors Sr and Sl in (2.3) and (2.4) have simulta-
neously isometric (co-isometric, unitary) boundary values since the factors B−1

l and
B−1
r have unitary values everywhere on T.

The following result [32, Theorem V.4.2], which involves the notion of an outer
function (for the definition, see [32]), will be utilized.

Theorem 2.3 If U is a separableHilbert space and N ∈ L∞(U) such that0 ≤ N (ζ ) ≤
IU a.e. on T, then there exist a Hilbert space K and an outer function ϕ ∈ S(U ,K)

such that

(i) ϕ∗(ζ )ϕ(ζ ) ≤ N 2(ζ ) a.e. on T;
(ii) if K̂ is a Hilbert space and ϕ̂ ∈ S(U , K̂) such that ϕ̂∗(ζ )ϕ̂(ζ ) ≤ N 2(ζ ) a.e. on

T, then ϕ̂∗(ζ )ϕ̂(ζ ) ≤ ϕ∗(ζ )ϕ(ζ ) a.e. on T.

Moreover, ϕ is unique up to a left constant unitary factor.

For S ∈ Sκ(U ,Y) with the Kreı̆n–Langer factorizations S = Sr B−1
r = B−1

l Sl ,
define

N 2
S (ζ ) := IU − S∗(ζ )S(ζ ), a.e. ζ ∈ T,

M2
S(ζ ) := IY − S(ζ )S∗(ζ ), a.e. ζ ∈ T.

Since Blaschke products are unitary on T, it follows that

N 2
S (ζ ) = IU − S∗

l (ζ )Sl(ζ ) = N 2
Sl (ζ ) (2.5)

M2
S(ζ ) = IY − Sr (ζ )S∗

r (ζ ) = M2
Sr (ζ ). (2.6)

Theorem 2.3 guarantees that there exists an outer function ϕS with properties intro-
duced in Theorem 2.3 for NS . An easy modification of Theorem 2.3 shows that there
exists a Schur function ψS such that ψ#

S is an outer function, ψS(ζ )ψ∗
S (ζ ) ≤ M2

S(ζ )

a.e. ζ ∈ T andψS(ζ )ψ∗
S (ζ ) ≤ ψ̂(ζ )ψ̂∗(ζ ) for every Schur function ψ̂ with a property

ψ̂S(ζ )ψ̂∗
S (ζ ) ≤ M2

S(ζ ). Moreover,it follows from the identies (2.5) and (2.6) that

ϕS = ϕSl and ψS = ψSr . (2.7)

The function ϕS is called the right defect function and ψS is the left defect func-
tion.
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Let � = (A, B,C, D;X ,U ,Y; κ) be a passive system. The following subspaces

X c := span {ran AnB : n = 0, 1, . . .}, (2.8)

X o := span {ran A∗nC∗ : n = 0, 1, . . .}, (2.9)

X s := span {ran AnB, ran A∗mC∗ : n,m = 0, 1, . . .}, (2.10)

are called respectively controllable, observable and simple subspaces. The system �

is said to be controllable (observable, simple) if X c = X (X o = X ,X s = X ) and
minimal if it is both controllable and observable. When � � 0 is some symmetric
neighbourhood of the origin, that is, z̄ ∈ � whenever z ∈ �, then also

X c = span {ran (I − zA)−1B : z ∈ �}, (2.11)

X o = span {ran (I − zA∗)−1C∗ : z ∈ �}, (2.12)

X s = span {ran (I − zA)−1B, ran (I − wA∗)−1C∗ : z, w ∈ �}. (2.13)

If the system operator T� in (1.3) is a contraction, that is, � is passive, the operators

A : X → X ,

(
A
C

)
: X →

(X
Y

)
,

(
A B

) :
(X
U

)
→ X ,

are also bi-contractions. Moreover, the operators B and C∗ are contractions but not
bi-contractions unless κ = 0.

The following realization theorem is known, and the parts (i)–(iii) can be found e.g.
in [1, Chapter 2] and the part (iv) in [28, Theorem 2.3 and Proposition 3.3].

Theorem 2.4 For θ ∈ Sκ(U ,Y) there exist realizations �k, k = 1, . . . , 4, of θ such
that

(i) �1 is conservative and simple;
(ii) �2 is isometric and controllable;
(iii) �3 is co-isometric and observable;
(iv) �4 is passive and minimal.

Conversely, if the system � has some of the properties (i)–(iv), then θ� ∈ Sκ(U ,Y),

where κ is the negative index of the state space of �.

It is also true that the transfer function of passive system is a generalized Schur
function, but its index may be smaller than the negative index of the state space [28,
Theorem 2.2]. For a conservative system � it is known from [1, Theorem 2.1.2 (3)]
that the index of the transfer function θ� of � co-insides with the negative index of
the state space X of � if and only if the space (X s)⊥ is a Hilbert subspace. This
result holds also in more general settings when � is passive, as it will be proved in
Lemma 3.2, after introducing some machinery.

Two realizations �1 = (A1, B1,C1, D1;X1,U ,Y; κ) and �2 = (A2, B2,C2, D2;
X2,U ,Y; κ) of the same function θ ∈ Sκ(U ,Y) are called unitarily similar if D1 =
D2 and there exists a unitary operator U : X1 → X2 such that

A1 = U−1A2U , B1 = U−1B2, C1 = C2U .
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Moreover, the realizations �1 and �2 are said to be weakly similar if D1 = D2 and
there exists an injective closed densely defined possibly unbounded linear operator
Z : X1 → X2 with the dense range such that

Z A1 f = A2Z f , C1 f = C2Z f , f ∈ D(Z), and Z B1 = B2.

Unitary similarity preserves dynamical properties of the systemand also the spectral
properties of themain operator. If two realizations of θ ∈ Sκ(U ,Y) both have the same
property (i), (ii) or (iii) of Theorem 2.4, then they are unitarily similar [1, Theorem
2.1.3]. In Hilbert state space case, results of Helton [24] and Arov [5] state that two
minimal passive realizations of θ ∈ S(U ,Y) are weakly similar. However, weak
similarity preserves neither the dynamical properties of the system nor the spectral
properties of its main operator. The following theorem shows that Helton’s and Arov’s
statement holds also in Pontryagin state space settings. Proof is similar to the one
given in the Hilbert space settings in [15, Theorem 3.2] and [16, Theorem 7.13].

Theorem 2.5 Let �1 = (T�1;X1,U ,Y; κ) and �2 = (T�2;X2,U ,Y; κ) be two
minimal passive realizations of θ ∈ Sκ(U ,Y). Then they are weakly similar.

Proof Decompose the system operators as in (1.3). In a sufficiently small neighbour-
hood of the origin, the functions θ�1 and θ�2 have the Neumann series which coincide.
Hence D1 = D2 and C1Ak

1B1 = C2Ak
2B2 for any k ∈ N0 = {0, 1, 2, . . .}. Since �1 is

controllable, vectors of the form x = ∑N
k=0 A

k
1B1uk, uk ∈ U , are dense inX1.Define

Rx =
N∑

k=0

Ak
2B2uk,

and let Z be the closure of the graph of R. Let {xn}n∈N ⊂ span{ran Ak
1B1 : k ∈ N0} =

D(R) such that xn → 0 and Rxn → y when n → ∞. Since C1Ak
1B1 = C2Ak

2B2 for
any k ∈ N0, also C1Ak

1xn = C2Ak
2Rxn, and the continuity implies

C2A
k
2y = lim

n→∞C2A
k
2Rxn = lim

n→∞C1A
k
1xn = 0.

Since �2 is observable, it follows from (2.9) that

⋂

k∈N0

kerC2A
k
2 = {0}, (2.14)

and therefore y = 0. This implies that Z is a closed densely defined linear operator.
Since �2 is controllable, the range of Z is dense.

To prove the injectivity, let x ∈ D(Z) such that Zx = 0. Then there exists
{xn}n∈N ⊂ D(R) such that xn → x and Rxn → 0.
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By the continuity,

C1A
k
1x = lim

n→∞C1A
k
1xn = lim

n→∞C2A
k
2Rxn = 0

for any k ∈ N0. Since �1 is observable, this implies that x = 0, and Z is injective.
For x ∈ D(Z), there exists {xk}k∈N ⊂ D(R) such that xk → x and Rxk → Zx .

Then

A1x = lim
k→∞ A1xk (2.15)

A2Zx = lim
k→∞ A2Rxk = lim

k→∞ RA1xk = lim
k→∞ Z A1xk (2.16)

C1x = lim
k→∞C1xk = lim

k→∞C2Rxk = C2Zx (2.17)

Z B1 = RB1 = B2. (2.18)

Since Z is closed, Eqs. (2.15) and (2.16) show that A1x ∈ D(Z) and Z A1x = A2Zx .
Since (2.17) and (2.18) hold also, it has been shown that Z is a weak similarity. ��
Remark 2.6 It should be noted that Theorem 2.5 holds also when all the spaces are
Pontryagin,Kreı̆n or, if one defines the observability criterion as∩n∈N0kerCAn = {0},
even Banach spaces. This result can also be derived from [31, p. 704].

3 Julia Operators, Dilations, Embeddings and Products of Systems

The system (1.3) can be expanded to a larger system either without changing the
transfer function or without changing the main operator. Both of these can be done by
using the Julia operator, see (3.1) below. For a proof of the next theorem and some
further details about Julia operators, see [23, Lecture 2].

Theorem 3.1 Suppose that X1 and X2 are Pontryagin spaces with the same negative
index, and A : X1 → X2 is a contraction. Then there exist Hilbert spaces DA and
DA∗ , linear operators DA : DA → X1, DA∗ : DA∗ → X2 with zero kernels and a
linear operator L : DA → DA∗ such that

UA :=
(

A DA∗
D∗

A −L∗
)

:
( X1
DA∗

)
→

(X2
DA

)
(3.1)

is unitary. Moreover, UA is essentially unique.

A dilation of a system (1.3) is any system of the form �̂ = ( Â, B̂, Ĉ, D; X̂ ,U ,

Y; κ ′), where

X̂ = D ⊕ X ⊕ D∗, ÂD ⊂ D, Â∗D∗ ⊂ D∗, ĈD = {0}, B̂∗D∗ = {0}.
(3.2)
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That is, the system operator T�̂ of �̂ is of the form

T�̂ =

⎛

⎜⎜
⎝

⎛

⎝
A11 A12 A13
0 A A23
0 0 A33

⎞

⎠

⎛

⎝
B1
B
0

⎞

⎠

(
0 C C1

)
D

⎞

⎟⎟
⎠ :

⎛

⎜⎜
⎝

⎛

⎝
D
X
D∗

⎞

⎠

U

⎞

⎟⎟
⎠ →

⎛

⎜⎜
⎝

⎛

⎝
D
X
D∗

⎞

⎠

Y

⎞

⎟⎟
⎠ ,

Â =
⎛

⎝
A11 A12 A13
0 A A23
0 0 A33

⎞

⎠ , B̂ =
⎛

⎝
B1
B
0

⎞

⎠ , Ĉ = (
0 C C1

)
.

(3.3)

Then the system � is called a restriction of �̂, and it has an expression

� = (PX Â�X , PX B̂, Ĉ�X , D; PX X̂ ,U ,Y; κ). (3.4)

Dilations and restrictions are denoted by

�̂ = dilX→X̂�, � = resX̂→X �̂, (3.5)

mostly without subscripts when the corresponding state spaces are clear. A calculation
show that the transfer functions of the original system and its dilation coincide.

The second way to expand the system (1.3) is called an embedding, which is any
system determined by the system operator

T�̃ =
(
A B̃
C̃ D̃

)
:
(X
Ũ

)
→

(X
Ỹ

)

⇐⇒
⎛

⎝
A

(
B B1

)
(
C
C1

) (
D D12
D21 D22

)
⎞

⎠ :
⎛

⎝
X(U
U ′

)
⎞

⎠ →
⎛

⎝
X(Y
Y ′

)
⎞

⎠ , (3.6)

where U ′ and Y ′ are Hilbert spaces. The transfer function of the embedded system is

θ�̃(z) =
(

D D12
D21 D22

)
+ z

(
C
C1

)
(IX − zA)−1 (

B B1
)

=
(

D + zC(IX − zA)−1B D12 + zC(IX − zA)−1B1

D21 + zC1(IX − zA)−1B D22 + zC1(IX − zA)−1B1

)

=
(

θ�(z) θ12(z)
θ21(z) θ22(z)

)
,

(3.7)

where θ� is the transfer function of the original system.
For a passive system there always exist a conservative dilation [28, Theorem 2.1]

and a conservative embedding [11, p. 7]. Both of these can be constructed such that
the system operator of the expanded system is the Julia operator of T� . Such expanded
systems are called Julia dilation and Julia embedding, respectively.

If the passive system (1.3) is simple (controllable, observable, minimal), then so
is any conservative embedding (3.6) of it. This follows from the fact that BU ⊂ B̃Ũ
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and C∗Y ⊂ C̃∗Ỹ . A detailed proof of simplicity can be found in [11, Theorem 4.3].
The same argument works also in the rest of the cases. However, it can happen that a
simple passive system has no simple conservative dilation, even in the case when the
original system is minimal, see the example on page 15 in [11].

Lemma 3.2 Let θ� be the transfer function of a passive system� = (T�;X ,U ,Y; κ).

If θ� ∈ Sκ(U ,Y), then the spaces (X c)⊥, (X o)⊥ and (X s)⊥ are Hilbert subspaces
of X . Moreover, if one of the spaces (X c)⊥, (X s)⊥ and (X s)⊥ is a Hilbert subspace,
then so are the others and θ� ∈ Sκ(U ,Y).

Proof If θ� ∈ Sκ(U ,Y), it is proved in [28, Lemma 2.5] that (X c)⊥ and (X o)⊥ are
Hilbert spaces. It easily follows from (2.8) and (2.9) that

(X s)⊥ = (X c)⊥ ∩ (X o)⊥, (3.8)

so (X s)⊥ is also a Hilbert space, and the first claim is proved.
Suppose next that (X s)⊥ is a Hilbert space. Consider a conservative embedding

�̃ of �, and represent the system operator T�̃ as in (3.6). The first identity in (3.7)
shows that the transfer function of any embedding of � has the same number of poles
(counting multiplicities) as θ�, and therefore it follows from Lemma 2.2 that the
indices of θ� and θ�̃ coincides. Denote the simple subspace of the embedded system
as X̃ s . Since X s ⊂ X̃ s, it holds (X̃ s)⊥ ⊂ (X s)⊥, and therefore (X̃ s)⊥ is also a
Hilbert space. It follows from [1, Theorem 2.1.2 (3)] that the transfer function θ�̃ of �̃
belongs to Sκ(Ũ , Ỹ), which implies now θ� ∈ Sκ(U ,Y). Then the first claim proved
above implies that (X c)⊥ and (X o)⊥ are Hilbert subspaces.

If one assumes that (X c)⊥ or (X o)⊥ is a Hilbert space, the identity (3.8) shows
that (X s)⊥ is a Hilbert space as well. Then the argument above can be applied, and
the second claim is proved. ��

The product or cascade connection of two systems �1 = (A1, B1,C1, D1;X1,

U ,Y1; κ1) and �2 = (A2, B2,C2, D2;X2,Y1,Y; κ2) is a system �2 ◦ �1 =
(T�2◦�1;X1 ⊕ X2,U ,Y; κ1 + κ2) such that

T�2◦�1 =
⎛

⎝

(
A1 0

B2C1 A2

) (
B1

B2D1

)

(
D2C1 C2

)
D2D1

⎞

⎠ :
⎛

⎝

(X1
X2

)

U

⎞

⎠ →
⎛

⎝

(X1
X2

)

Y

⎞

⎠ . (3.9)

Written in the form (1.3), one has X =
(X1
X2

)
and

A =
(

A1 0
B2C1 A2

)
, B =

(
B1

B2D1

)
, C = (

D2C1 C2
)
, D = D2D1.

(3.10)
Note that A2 = A�X2

and

⎛

⎝
A1 0 B1

B2C1 A2 B2D1
D2C1 C2 D2D1

⎞

⎠ =
⎛

⎝
IX1 0 0
0 A2 B2
0 C2 D2

⎞

⎠

⎛

⎝
A1 0 B1
0 IX2 0
C1 0 D1

⎞

⎠ :
⎛

⎝
X1
X2
U

⎞

⎠ →
⎛

⎝
X1
X2
Y

⎞

⎠ . (3.11)
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The product�2◦�1 is defined when the incoming space of�2 is the outgoing space of
�1. Again, direct computations show that θ�2◦�1 = θ�2θ�1 whenever both functions
are defined. For the dual system one has (�2 ◦ �1)

∗ = �∗
1 ◦ �∗

2 . It follows from
the identity (3.11) that the product �2 ◦ �1 is conservative (isometric, co-isometric,
passive) whenever �1 and �2 are. Also, if the product is isometric (co-isometric,
conservative) and one factor of the product is conservative, then the other factor must
be isometric (co-isometric, conservative).

The product of two systems preserves similarity properties introduced on page 7
in sense that if � = �2 ◦ �1 and �′ = �′

2 ◦ �′
1 such that �1 is unitarily (weakly)

similar with �′
1 and �2 is unitarily (weakly) similar with �′

2, then easy calculations
using (3.11) show that � and �′ are unitarily (weakly) similar.

It is known (c.f. e.g. [1, Theorem 1.2.1]) that if �2 ◦ �1 is controllable (observ-
able, simple, minimal), then so are �1 and �2. The converse statement is not true.
The following lemma gives necessary and sufficient conditions when the product is
observable, controllable or simple. The simple case is handled in [11, Lemma 7.4].

Lemma 3.3 Let �1 = (A1, B1,C1, D1;X1,U ,Y1; κ1),�2 = (A2, B2,C2, D2;X2,

Y1,Y; κ2) and � = �2 ◦ �1. Let � = � be a symmetric neighbourhood of the
origin such that the transfer function θ� = θ�2θ�1 of � is analytic in �. Consider
the equations

θ�2(z)C1(I − zA1)
−1x1 = −C2(I − zA2)

−1x2, for all z ∈ �; (3.12)

θ#�1
(z)B∗

2 (I − zA∗
2)

−1x2 = −B∗
1 (I − zA∗

1)
−1x1, for all z ∈ �, (3.13)

where x1 ∈ X1 and x2 ∈ X2. Then � is observable if and only if (3.12) has only the
trivial solution, and� is controllable if and only if (3.13) has only the trivial solution.
Moreover, � is simple if and only if the pair of equations consisting of (3.12) and
(3.13) has only the trivial solution.

Proof Write the system operator T�2◦�1 in (3.9) in the form (1.3). It follows from
(2.11)–(2.13) that

x ∈ (X o)⊥ ⇐⇒ C(I − zA)−1x = 0 for all z ∈ �; (3.14)

x ∈ (X c)⊥ ⇐⇒ B∗(I − zA∗)−1x = 0 for all z ∈ �; (3.15)

x ∈ (X s)⊥ ⇐⇒ B∗(I − zA∗)−1x = 0 and C(I − A)−1x = 0 for all z ∈ �.

(3.16)

Decompose x = x1 ⊕ x2, where x1 ∈ X1 and x2 ∈ X2. With respect to the this
decomposition, the definition of the main operator A from (3.10) yields

(I − zA)−1 =
(

(IX1 − zA1)
−1 0

z(IX2 − zA2)
−1B2C1(IX1 − zA1)

−1 (IX2 − zA2)
−1

)
.

From this relation and (3.10), it follows that the right hand side of (3.14) is equivalent
to
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(
D2C1 C2

) (
(IX1 − zA1)

−1 0
z(IX2 − zA2)

−1B2C1(IX1 − zA1)
−1 (IX2 − zA2)

−1

) (
x1
x2

)
= 0

for all z ∈ �. (3.17)

Similar calculations show that the right hand side of (3.15) is equivalent to

(
B∗
1 D∗

1B
∗
2

)(
(IX1 − zA∗

1)
−1 z(IX1 − zA∗

1)
−1C∗

1 B
∗
2 (IX2 − zA∗

2)
−1

0 (IX2 − zA∗
2)

−1

)(
x1
x2

)
= 0

for all z ∈ �. (3.18)

Expanding the identity (3.17) and using the definition of the transfer function

θ�2(z) = D2 + zC2(IX2 − zA2)
−1B2

one gets that (3.17) is equivalent to

(
D2 + C2z(IX2 − zA2)

−1B2

)
C1(IX1 − zA1)

−1x1 = −C2(IX2 − zA2)
−1x2

⇐⇒ θ�2(z)C1(IX1 − zA1)
−1x1 = −C2(IX2 − zA2)

−1x2.

That is, the identity (3.17) is equivalent to (3.12). Similar calculations and the identity

θ#�1
(z) = D∗

1 + zB∗
1 (IX1 − zA∗

1)
−1C∗

1

shows that the identity (3.18) is equivalent to (3.13). The results follow now by observ-
ing that if the system � is observable, controllable or simple, then, respectively,
(X o)⊥ = {0}, (X c)⊥ = {0} or (X s)⊥ = {0}. ��

Part (iii) of the theorem below with an additional condition that all the realizations
are conservative, is proved in [11, Theorem 7.3, 7.6]. Similar techniques will be used
to expand this result as follows.

Theorem 3.4 Let θ ∈ Sκ(U ,Y) and let θ = θr B−1
r = B−1

l θl be its Kreı̆n–Langer
factorizations. Suppose that

�θr = (T�θr
,X+

r ,U ,Y, 0), �θl = (T�θl
,X+

l ,U ,Y, 0),

�B−1
r

= (T�
B−1
r

,X−
r ,U ,U , κ), �B−1

l
= (T�

B−1
l

,X−
l ,Y,Y, κ),

are the realizations of θr , θl , B−1
r and B−1

l , respectively. Then:

(i) If �θr and �B−1
r

are observable and passive, then so is �θr ◦ �B−1
r
;

(ii) If �θl and �B−1
l

are controllable and passive, then so is �B−1
l

◦ �θl ;

(iii) If all the realizations described above are simple passive, then so are �θr ◦�B−1
r

and �B−1
l

◦ �θl .
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Proof Suppose first that �B−1
r

is a simple passive system and �θr is a passive system.
The results from [11, Theorems 9.4 and 10.2] show that all the simple passive real-
izations of B−1

r are conservative and minimal. Thus, the assumptions guarantees that
�B−1

r
is conservative and minimal. Represent the system operators T�

B−1
r

and T�θr
as

T�
B−1
r

=
(
A1 B1
C1 D1

)
:
(X−

r
U

)
→

(X−
r
U

)
, T�θr

=
(
A2 B2
C2 D2

)(X+
r
U

)
→

(X+
r
Y

)
.

(3.19)
Let � = � be a symmetric neighbourhood of the origin such that B−1

r is analytic in
�. Suppose that x1 ∈ X−

r and x2 ∈ X+
r satisfy

θr (z)C1(I − zA1)
−1x1 = −C2(I − zA2)

−1x2, for all z ∈ �. (3.20)

The space X−
r is κ-dimensional anti-Hilbert space, and all the poles of B−1

r are also
poles of C1(I − zA1)

−1x1. Since X+
r is a Hilbert space, the operator A2 is a Hilbert

space contraction, and (I − zA2)
−1 exists for all z ∈ D. That is, the right hand side

of (3.20) is holomorphic in D, and then so is the left hand side also. Since θr and Br
have no common zeros in the sense of Theorem 2.1 and the zeros of Br are the poles
of B−1

r , the factor θr (z) cannot cancel out the poles of C1(I − zA1)
−1x1 (For a more

detailed argument, see the proof of [11, Theorem 7.3]). That is, θr (z)C1(I − zA1)
−1x1

is holomorphic in D only if C1(I − zA1)
−1x1 ≡ 0. Then also C2(I − zA2)

−1x2 ≡ 0,
and it follows from (2.12) that x1 ∈ (X−

r
o
)⊥ and x2 ∈ (X+

r
o
)⊥. Since the system

�B−1
r

is minimal, x1 = 0. If the system �θr is observable, then x2 = 0, and it follows
from Lemma 3.3 that �θr ◦ �B−1

r
is observable and passive, and part (i) is proven.

Next suppose that x1 and x2 satisfy (3.20) and

B−1#
r (z)B∗

2 (I − zA∗
2)

−1x2 = −B∗
1 (I − zA∗

1)
−1x1, for all z ∈ �. (3.21)

The argument above gives x1 = 0 and x2 ∈ (X+
r

o
)⊥. Then,

B−1#
r (z)B∗

2 (I − zA∗
2)

−1x2 ≡ 0.

Since B−1#
r (z) has just the trivial kernel for every z ∈ �, also B∗

2 (I − zA∗
2)

−1x2 ≡ 0.
The identity (2.11) implies now x2 ∈ (X+

r
c
)⊥, and therefore

x2 ∈ (X+
r

c
)⊥ ∩ (X+

r
o
)⊥ = (X+

r
s
)⊥.

If the system�θr is simple, then x2 = 0, and it follows fromLemma3.3 that�θr ◦�B−1
r

is simple and passive, and the first claim of the part (iii) is proven. The other claim in
part (iii) and also part (ii) follow now by considering the dual systems. ��

The product of the form �B−1
l

◦ �θl does not necessarily preserve observability as
is shown in Example 3.8 below. A counter-example is constructed with the help of the
following realization result. For the proof and more details, see [1, Theorem 2.2.1].
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Lemma 3.5 Let S ∈ Sκ(U ,Y) and let H(S) be the Pontryagin space induced by the
reproducing kernel (1.1). Then the system � = (A, B,C, D,H(S),U ,Y; κ) where

⎧
⎨

⎩
A : h(z) �→ h(z) − h(0)

z
, B : u �→ S(z) − S(0)

z
u,

C : h(z) �→ h(0), D : u �→ S(0)u,

(3.22)

is co-isometric and observable realization of S. Moreover, C(I − zA)−1h = h(z) for
h ∈ H(S).

The system � in Lemma 3.5 is called a canonical co-isometric realization of S.

If the systems �1 and �2 in Lemma 3.3 have additional properties, a criterion for
observability that does not explicitly depend on a system operator can be obtained.

Theorem 3.6 Let �1 = (A1, B1,C1, D1;X1,U ,Y1;κ1) and �2 = (A2, B2,C2, D2;
X2,Y1,Y; κ2 ) be co-isometric and observable realizations of the functions S1 ∈
S(U ,Y1) and S2 ∈ S(Y1,Y), respectively. Then � = �2 ◦�1 is co-isometric observ-
able realization of S = S2S1 if and only if the following two conditions hold:

(i) H(S) = S2H(S1) ⊕ H(S2);
(ii) The mapping h1 �→ S2h1 is an isometry fromH(S1) to S2H(S1).

Proof Since all co-isometric observable realizations of S1 and S2 are unitarily similar, it
can be assumed that�1 and�2 are realized as inLemma3.5. Let� be a neighbourhood
of the origin such that S1 and S2 are analytic in �. By combining Lemma 3.5 and the
condition (3.12) in Lemma 3.3, it follows that � is observable if and only if

S2(z)h1(z) = −h2(z), h1 ∈ H(S1), h2 ∈ H(S2), (3.23)

holds for every z ∈ � only when h1 ≡ 0 and h2 ≡ 0.
Assume the conditions (i) and (ii). Then S2(z)h1(z) = −h2(z) can hold only if

h2 ≡ 0. Since the mapping h1 �→ S2h1 is an isometry, it has only the trivial kernel.
Therefore h1 ≡ 0, and sufficiency is proven.

Conversely, assume that � is co-isometric and observable. The condition (3.23)
shows that the mapping h1 �→ S2h1 has only the trivial kernel, and

S2H(S1) ∩ H(S2) = {0}. (3.24)

It now follows from [1, Theorem 4.1.1] thatH(S1) and S2H(S1) are contained contrac-
tively inH(S), and h1 �→ S2h1 is a partial isometry. Since it has only the trivial kernel,
it is an isometry, and (ii) holds. Since (3.24) holds and H(S1) and S2H(S1) are con-
tained contractively in H(S), a result from [1, Theorem 1.5.3] shows that H(S1) and
S2H(S1) are actually contained isometrically inH(S). ThereforeH(S1)⊥ = S2H(S1)
so the condition (i) holds and the necessity is proven. ��

The dual version can be obtained by using the canonical isometric realizations
from [1, Theorem 2.2.2] or taking adjoint systems in Theorem 3.6.
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Theorem 3.7 Let �1 = (A1, B1,C1, D1;X1,U ,Y1;κ1) and �2 = (A2, B2,C2, D2;
X2,Y1,Y; κ2 ) be isometric and controllable realizations of the functions S1 ∈
S(U ,Y1) and S2 ∈ S(Y1,Y), respectively. Then � = �2 ◦ �1 is isometric and
controllable realization of S = S2S1 if and only if the following two conditions hold:

(i) H(S#) = S#1H(S#2 ) ⊕ H(S#1 );
(ii) The mapping h2 �→ S#1h2 is an isometry fromH(S#2 ) to S#1H(S#2 ).

In the Hilbert state space settings, a different criterion than in Theorems 3.6 and 3.7
was obtained in [25]. If�1 and�2 are simple conservative, a criterion for� = �2◦�1
to be simple conservative was obtained in the Hilbert state space case in [20] and
generalized to the Pontryagin state space case in [11].

Here is the promised counter-example.

Example 3.8 Let a ∈ H∞(D) such that ‖a‖ ≤ 1 and let b(z) = (z − α)/(1 − zᾱ)

where α ∈ D \ {0}. Define

S(z) := 1√
2

(
a(z)

1

b(z)

)
, z ∈ D \ {α}. (3.25)

Then S ∈ S1(C
2,C) and it has the left Kreı̆n–Langer factorization

S(z) = b−1(z)Sl(z) = b−1(z)
(

1√
2
a(z)b(z) 1√

2

)
. (3.26)

Consider the canonical co-isometric realizations �b−1 and �Sl of b
−1 and Sl , respec-

tively. It follows from Theorem 3.6 that if �b−1 ◦ �Sl is observable, then H(S) =
b−1H(Sl)⊕H(b−1). The argument in [1, p. 149] shows that this is false, so�b−1 ◦�Sl
is not observable. By considering the adjoint system one obtains a product of type
�Sr ◦ �B−1

r
which is not controllable, while �Sr and �B−1

r
are.

The function S in Example 3.8 is taken from [1, p. 149].
If the realization� of θ = θr B−1

r = B−1
l θl ∈ Sκ(U ,Y) has additional properties, it

can be represented as the product of the form�θr ◦�B−1
r

or�B−1
l

◦�θl . The following
theorem expands the results of [11, Theorem 7.2].

Theorem 3.9 Let θ ∈ Sκ(U ,Y) and θ = θr B−1
r = B−1

l θl be its Kreı̆n-Langer
factorizations. Let �k, k = 1, 2, 3, be the realizations of θ which are respectively
conservative, co-isometric and isometric such that the negative dimension of the state
space in each realization is κ . Then:

(i) The realization �1 can be represented as the products of the form

�1 = �θr ◦ �B−1
r

= �B−1
l

◦ �θl ,

where �θr = (T�θr
;X+

r ,U ,Y; 0) and �θl = (T�θl
;X+

l ,U ,Y; 0) are con-
servative realizations of the functions θr and θl , respectively, and �B−1

r
=

(T�
B−1
r

;X−
r ,U ,U; κ) and �B−1

l
= (T�

B−1
l

;X−
l ,Y,Y; κ) are conservative and

minimal realizations of the functions B−1
r and B−1

l , respectively.
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(ii) The realization �2 can be represented as the product of the form

�2 = �θr ◦ �B−1
r

,

where �θr = (T�θr
;X+,U ,Y; 0) is a co-isometric realization of the function

θr and �B−1
r

= (T�
B−1
r

;X−,U ,U; κ) is a conservative minimal realization of

B−1
r .

(iii) The realization �3 can be represented as the product of the form

�3 = �B−1
l

◦ �θl ,

where �θl = (T�θl
;X+,U ,Y; 0) is an isometric realization of the function θl

and�B−1
l

= (T�
B−1
l

;X−,Y,Y; κ) is a conservativeminimal realization of B−1
l .

Proof The theorem will be proved in two steps. In the first step, it is assumed that �1
is simple, �2 is observable and �3 is controllable. In the second step, the general case
will be proved by using the results from the first step.

Step 1 (i) This is stated essentially in [11, Theorem7.2] butwithout proof.According
to [21, Theorem 4.4], �1 = (T�;X ,U ,Y; κ) can be represented as the products of
the form

�1 = �r2 ◦ �r1 = �l2 ◦ �l1

such that

�r1 = (T�r1 ,X−
r ,U ,U , κ), �r2 = (T�r2 ,X+

r ,U ,Y, 0),

�l1 = (T�l1 ,X+
l ,U ,Y, 0), �l2 = (T�l2 ,X−

l ,Y,Y, κ),
(3.27)

whereX−
r andX−

l are κ-dimensional anti-Hilbert spaces. Subscripts refer “right” and
“left”, because it will be proved that the factorizations

θ = θ�r2θ�r1 = θ�l2θ�l1

of the transfer function θ of�1 corresponding to the product representations above are
actually Kreı̆n-Langer factorizations. Since all the realizations in (3.27) are simple and
conservative, it follows from Lemma 3.2 that θ�r2 , θ�l1 ∈ S(U ,Y), θ�r1Sκ(U), θ�l2 ∈
Sκ(Y), and the spaces

X−
r � X−

r
c
, X−

r � X−
r

o
, X−

l � X−
l

c
, X−

r � X−
l

o
, (3.28)

are Hilbert spaces. But since the state spaces X−
r and X−

l are anti-Hilbert spaces, all
the spaces in (3.28) must be the zero spaces. Thus �r1 and �l2 are minimal. By using
the unitary similarity introduced on page 7 it can be deduced now that all co-isometric
observable realizations of θr2 and θl1 are conservative andminimal, and then it follows
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from [1, Theorem A3] that θr2 and θl1 are inverse Blaschke products, which gives the
result.

(ii) It is known (cf. e.g. [1, Theorem 2.4.1]) that the co-isometric and observable
realization �2 = (A, B,C, D;X ,U ,Y; κ) of the function θ has a simple and conser-
vative dilation �̂2 = ( Â, B̂, Ĉ, D; X̂ ,U ,Y; κ) such that

T�̂2
=

⎛

⎝

(
A11 A12
0 A

) (
B1
B

)

(
0 C

)
D

⎞

⎠ :
⎛

⎝

(X0
X

)

U

⎞

⎠ →
⎛

⎝

(X0
X

)

Y

⎞

⎠ , (3.29)

where X0 is a Hilbert space. By [11, Theorem 7.7], there exist unique fundamental
decompositions X = X+ ⊕ X− and X̂ = X̂+ ⊕ X̂− such that AX+ ⊂ X+ and
ÂX̂+ ⊂ X̂+. Then (X0 ⊕ X+) ⊕ X− is a fundamental decomposition of X̂ , and for
x0 ∈ X0 and x+ ∈ X+

Â(x0 ⊕ x+) =
(
A11 A12
0 A

) (
x0
x+

)
=

(
A11x0 + A12x+

Ax+

)
∈

(X0
X+

)
. (3.30)

This yields X̂+ = X0 ⊕X+ and X̂− = X−
2 . Part (i) shows that �̂2 can be represented

as �̂2 = �̂θr ◦ �̂B−1
r

. The transfer functions of the components are θr and B−1
r ,

respectively, and �̂θr is simple and conservative and �̂B−1
r

is conservative andminimal.

It follows from [11, Theorem 7.7] that the state spaces of �̂θr and �̂B−1
r

are X̂+ and

X−, respectively. Thus

�̂B−1
r

= (A1, B1,C1, D1;X−,U ,U; κ), �̂θr = (A2, B2,C2, D2; X̂+,U ,Y; 0).

Now the representation �̂θr ◦ �̂B−1
r
, Eq. (3.11) and the representation (3.29) yield

T�̂2
=

⎛

⎝
IX− 0 0
0 A2 B2
0 C2 D2

⎞

⎠

⎛

⎝
A1 0 B1
0 IX̂+ 0
C1 0 D1

⎞

⎠ :
⎛

⎝
X−
X̂+
U

⎞

⎠→
⎛

⎝
X−
X̂+
Y

⎞

⎠ ⇐⇒

T�̂2
=

⎛

⎜⎜
⎝

IX− 0 0 0
0 PX0 A2�X0

PX0 A2�X+ PX0 B2
0 PX+ A2�X0

PX+ A2�X+ PX+ B2
0 0 C2 D2

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

A1 0 0 B1
0 IX 0 0 0
0 0 IX+ 0
C1 0 0 D1

⎞

⎟⎟
⎠ :

⎛

⎜⎜
⎝

X−
2

X0
X+
U

⎞

⎟⎟
⎠ →

⎛

⎜⎜
⎝

X−
2

X0
X+
Y

⎞

⎟⎟
⎠ .

By using the representation above and (3.2)–(3.5), it follows that

resX̂→X �̂2 = resX̂→X (�̂θr ◦ �̂B−1
r

) = (
resX̂+→X+�̂θr

) ◦ �̂B−1
r

= �2.

Define �̂B−1
r

:= �B−1
r

and resX̂+→X+�̂θr := �θr . Since �2 is co-isometric and
observable and �B−1

r
is minimal and conservative, �θr must be co-isometric and

observable. That is, �2 = �θr ◦ �B−1
r

is the desired representation.
(iii) This can be done by using [1, Theorem 2.4.3] and then proceeding along the

lines of the proof of (ii).
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Step 2. (i) Denote �1 = (A, B,C, D;X ;U ,Y; κ). Since the index of the transfer
function θ coincides with the negative index of X , Lemma 3.2 shows that (X s)⊥
is a Hilbert space. It easily follows from (2.10) that C(X s)⊥ = {0}, B∗(X s)⊥ =
{0}, AX s ⊂ X s and A(X s)⊥ ⊂ (X s)⊥. This implies that the system operator has the
representation

T�1 =
⎛

⎝

(
A1 0
0 A0

) (
0
B0

)

(
0 C0

)
D

⎞

⎠ :
⎛

⎝

(
(X s)⊥
X s

)

U

⎞

⎠ →
⎛

⎝

(
(X s)⊥
X s

)

Y

⎞

⎠ . (3.31)

Easy calculations show that the restriction

resX→X s�1 = (A0, B0,C0, D;X s,U ,Y; κ) := �0

is conservative and simple. Step 1 (i) shows that �0 = �θr ◦ �B−1
r

= �B−1
l

◦ �θl ,

where

�θr = (T�θr
;X s+

r ,U ,Y; 0), �B−1
r

= (T�
B−1
r

;X s−
r ,U ,U; κ),

�θl = (T�θl
;X s+

l ,U ,Y; 0), �B−1
l

= (T�
B−1
l

;X s−
l ,Y,Y; κ).

The spaces X s−
r and X s−

l are κ-dimensional anti-Hilbert spaces, �θr and �θl are
conservative and simple and �B−1

r
and �B−1

l
are conservative and minimal. It can be

now deduced that X has the fundamental decompositions ((X s)⊥ ⊕X s+
r )⊕X s−

r and
((X s)⊥ ⊕ X s+

l ) ⊕ X s−
l . Moreover,

A((X s
r )⊥ ⊕ X s+

r ) ⊂ (X s
r )⊥ ⊕ X s+

r , AX s−
l ⊂ X s−

l .

Similar calculations as in the proof of Step 1 (ii) show that

dil �0 = (
dil �θr

) ◦ �B−1
r

= �B−1
l

◦ (
dil �θl

) = �1.

Since �1, �B−1
l

and �B−1
r

are conservative, dil �θr and dil �θl must be conservative.

Moreover, the state spaces (X s)⊥ ⊕ X s+
r and (X s)⊥ ⊕ X s+

l of dil �θr and dil �θl ,

respectively, are Hilbert spaces. That is, �1 = (
dil �θr

) ◦ �B−1
r

and �1 = �B−1
l

◦
(
dil �θl

)
are the desired representations.

(ii) Denote �2 = (A, B,C, D;X ,U ,Y; κ). Lemma 3.2 show that (X o)⊥ is a
Hilbert space. From the identity (2.9) it follows easily that A(X o)⊥ ⊂ (X o)⊥ and
C(X o)⊥ = {0}. This implies that the system operator can be represented as
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T�2 =
⎛

⎝
A1 A2 B1
0 A0 B0
0 C0 D

⎞

⎠ :
⎛

⎝
(X o

2 )⊥
X o
2
U

⎞

⎠ →
⎛

⎝
(X o

2 )⊥
X o
2
Y

⎞

⎠ . (3.32)

Moreover, the restriction

resX2→X o
2
�2 = (A0, B0,C0, D;X o

1 ,U ,Y; κ) := �0

is co-isometric and observable. Step 1 (ii) shows that �0 has the representation �0 =
�θr ◦ �B−1

r
such that the components

�θr = (T�θr
,X o+,U ,Y, 0), �B−1

r
= (T�

B−1
r

,X o−,U ,U , κ)

have the properties introduced in Part 1 (ii). The final statement is obtained by pro-
ceeding as in the proof of (i).

(iii) The proof is similar to the proofs of (i) and (ii) and hence the details are omitted.
��

Proposition 3.10 Suppose that A ∈ L(χ) is the main operator of a passive system
� = (T�;X ,U ,Y; κ) such that the index of the transfer function of � is κ. Then
there exist unique fundamental decompositions X = X+

1 ⊕ X−
1 = X+

2 ⊕ X−
2 such

that AX+
1 ⊂ X+

1 and AX−
2 ⊂ X−

2 , respectively.

Proof Embed the system � in a conservative system �̃ = (T�̃,X , Ũ , Ỹ, κ) without
changing themain operator and the state space.Now thefirst identity in (3.7) shows that
the transfer function θ�̃ of �̃ has the same amount of poles (counting multiplicities)
as the transfer function of the original system. Hence it follows from Lemma 2.2
that the index of θ�̃ is κ. The representations in Theorem 3.9 (i) combined with
the decomposition of the main operator A in (3.7) give the claimed fundamental
decompositions. The decomposition X+

1 ⊕X−
1 corresponds to the one induced by the

product representation �̃ = �θ̃r
◦ �B̃−1

r
, where θ̃ = θ̃r B̃−1

r is the right Kreı̆n-Langer

factorization of θ̃ . Similarly, the decomposition X+
2 ⊕ X−

2 corresponds to the one
induced by the product representation �̃ = �B̃−1

l
◦ �θ̃l

, where θ̃ = B̃−1
l θ̃l is the left

Kreı̆n-Langer factorization of θ̃ .

To prove the uniqueness, the fact that A has no negative eigenvector with corre-
sponding eigenvalue modulus one is needed. To this end, assume that Ax = λx for
some x ∈ X and λ ∈ T. Consider again a conservative embedding �̃ of �, and
represent �̃ as in (3.6) . Then,

(
A B̃
C̃ D̃

)(
x
0

)
=

(
λx
C̃x

)
.

Since �̃ is conservative, the system operator T�̃ of �̃ is unitary. Therefore 〈x, x〉X =
〈λx, λx〉X + 〈C̃x, C̃x〉Ỹ , and since Ỹ is a Hilbert space and |λ| = 1, it must be
C̃x = 0. Then, C̃ Anx = λnC̃x = 0 for any n ∈ N0. That is, x ∈ (X̃ o)⊥, where X̃ o
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is the observable subspace of the system �̃. Since the index of θ̃ is κ, the subspace
(X̃ o)⊥ is a Hilbert space by Lemma 3.2, and x must be non-negative.

Suppose now that X+ ⊕X− is some other fundamental decomposition of X such
that AX− ⊂ X−. Itwill be shown thatX− ⊂ X−

2 , since thenX− = X−
2 because these

subspaces have the same finite dimension, and thus X+ ⊕X− is equal to X+
2 ⊕X−

2 .

It suffices to show that X−
2 contains all generalized eigenvectors of A�X− . Let x be a

non-zero vector in X− such that (A − λI )nx = 0 for some λ ∈ C and n ∈ N. Since
X−
2 is an anti-Hilbert space and A�X− is a contraction, |λ| ≥ 1. The fact proved above

gives now |λ| > 1. Represent the vector x in the form x = x+ + x−,where x± ∈ X±
2 .

Since AX−
2 ⊂ X−

2 , the operator A has a block representation

A =
(
A11 0
A12 A22

)
:
(X+

2
X−
2

)
→

(X+
2

X−
2

)
.

Since A∗ is also a contraction, A∗
11 is a Hilbert space contraction, and therefore A11

must be a contraction. Now

(A − λI )nx =
(

(A11 − λIX+
2

)n 0

f (n) (A22 − λIX−
2

)n

) (
x+
x−

)
=

(
0
0

)
,

where f (n) is an operator depending on n. This implies (A11 − λIX+
2

)nx+ = 0,

but since A11 is a Hilbert space contraction and |λ| > 1, it must be x+ = 0. Hence
x = x− ∈ X−

2 , an the uniqueness of the decomposition X = X+
2 ⊕ X−

2 is proved.
The uniqueness of the decomposition X = X+

1 ⊕X−
1 can be proved by using the fact

A∗X−
1 ⊂ X−

1 , and then proceeding as above. ��
Proposition 3.10 is a generalization of [11, Theorem7.7] in a sense that the condition

that the system is simple can be relaxed. As proved, it suffices that the orthocomple-
ment (X s)⊥ of the simple subspace is a Hilbert space, see Lemma 3.2. The proof of
Proposition 3.10 follows the lines of the proof of [11, Theorem 7.7].

The results of Theorem 3.9 (i) cannot be extended to isometric or co-isometric
systems as the next example shows.

Example 3.11 Let S be as in Example 3.8 and let � be any co-isometric observable
realization of S. Suppose that � = �′

b−1 ◦ �′
Sl

for some co-isometric observable

realizations of b−1 and Sl . Then the realizations �′
b−1 and �′

Sl
are unitarily similar,

respectively, with the canonical co-isometric observable realizations �b−1 of b−1 and
�Sl of Sl . An easy calculation shows that�

′
b−1◦�′

Sl
is unitarily similarwith�b−1◦�Sl ,

which is a contradiction since �b−1 ◦ �Sl is not observable by Example 3.8. Thus �

cannot be represented as a product of the form �′
b−1 ◦ �′

Sl
.

4 Stable Systems and Zero Defect Functions

A contraction A ∈ L(X ), where X is a Hilbert space, belongs to the classes C0 ·
or C· 0 if, respectively, limn→∞ Anx = 0 or limn→∞ A∗nx = 0 for every x ∈ X .



3788 L. Lilleberg

The class C00 is defined to be C0 · ∩ C· 0. A system with a Hilbert state space is said
to be strongly stable (strongly co-stable, strongly bi-stable) if the main operator
of the system belongs to C0 · (C· 0 , C00). When the state space X is a Pontryagin
space, stability cannot be defined verbatim, because for any contractive A ∈ L(X ),

the equality limn→∞ Anx = 0 does not hold for any negative vector x . The stability
property can therefore hold only in certain Hilbert subspaces. The following definition
of stability generalizes and expands [11, Definition 9.1].

Definition 4.1 Let� = (T�;X ,U ,Y; κ)be apassive systemwith themainoperator A
such that θ� ∈ Sκ(U ,Y). LetX = X+

1 ⊕X−
1 = X+

2 ⊕X−
2 be the unique fundamental

decompositions of X introduced in Proposition 3.10 such that AX+
1 ⊂ X+

1 and
AX−

2 ⊂ X−
2 . Then:

(i) � belongs to class Pκ
0 · if A�X+

1
∈ C0 ·;

(ii) � belongs to class Pκ· 0 if A∗�X+
2

∈ C0 ·;
(iii) � belongs to class Pκ

00 if A�X+
1

∈ C00;
(iv) � belongs to class Cκ

0 · if � is simple conservative and � ∈ Pκ
0 ·;

(v) � belongs to class Cκ· 0 if � is simple conservative and � ∈ Pκ· 0;
(vi) � belongs to class Cκ

00 if � is simple conservative and � ∈ Pκ
00;

(vi) � belongs to class Iκ
0 · if � is controllable isometric and � ∈ Pκ

0 ·;
(vii) � belongs to class I∗κ· 0 if � is observable co-isometric and � ∈ Pκ· 0;

The classes Pκ
00 and Cκ

00 are defined in [11, Definition 9.1], as well as the class Pκ
00

with the additional condition that � must be simple. It will be shown later that the
realizations in the classes Cκ

00, Iκ
0 · and I∗κ· 0 are minimal, the realizations in Cκ

0 · are
observable and the realizations in Cκ· 0 are controllable.

Theorem 4.2 A simple conservative system � = (A, B,C, D;X ,U ,Y; κ) belongs
to

(i) Cκ
0 · if and only if θ� has isometric boundary values a.e.;

(ii) Cκ· 0 if and only if θ� has co-isometric boundary values a.e.;
(iii) Cκ

00 if and only if θ� has unitary boundary values a.e.

In the Hilbert state space case, i.e. κ = 0, the result is known and goes back
essentially to [32]. For κ > 0, part (iii) is first proved in [11, Theorem 9.2].

Proof Since the results hold for κ = 0, it suffices to prove the them in case κ > 0.
Consider the representations � = �θr ◦ �B−1

r
= �B−1

l
◦ �θl as in Theorem 3.9. Now

the results follow by observing that the main operator of �θr is A�X+
1
and the main

operator of �∗
θl
is A∗�X+

2
, and then using the case κ = 0. ��

In Sect. 2, the notions of defect functions were introduced. If the right or the left
defect function of θ ∈ Sκ(U ,Y) is identically equal to zero, the realizations of θ have
some strong structural properties.

Lemma 4.3 For a simple conservative system� = (A, B,C, D;X ,U ,Y; κ)with the
transfer function θ ∈ Sκ(U ,Y), the following statements hold:
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(i) � is controllable if and only if ψθ ≡ 0;
(ii) � is observable if and only if ϕθ ≡ 0;
(iii) � is minimal if and only if ψθ ≡ 0 and ϕθ ≡ 0.

Proof For the case κ = 0, see [3, Corollary 6.4] or [10, Theorem 1]. For κ > 0,
consider the representations � = �θr ◦ �B−1

r
= �B−1

l
◦ �θl as in Theorem 3.9. If �

is controllable, then so is �θl and from case κ = 0 it follows that ψθl ≡ 0. Now the
identity (2.7) implies thatψθ ≡ 0.Conversely, ifψθ ≡ 0, the identity (2.7) shows that
also ψθl ≡ 0, and from the case κ = 0 it follows that �θl is controllable. By Theorem
3.9 (i), �B−1

l
is minimal. Then it follows from Theorem 3.4 that � = �B−1

l
◦ �θl is

controllable, and part (i) is proven. Proof of part (ii) is similar, and part (iii) follows
by combining (i) and (ii). ��

The following theorem in the Hilbert state space case was obtained in [3, Theorem
1.1]. The proof therein was based on the block parametrization of the system operator.
The proof given here for the general case is based on the existence of minimal passive
realizations. It also uses some techniques appearing in the proof of [6, Theorem 1]
and, in addition, implements the product representations provided in Theorem 3.9.

Theorem 4.4 Let� = (A, B,C, D,X ,U ,Y, κ) be a passive system with the transfer
function θ. Then:

(i) If � is controllable and ϕθ ≡ 0, then � is isometric and minimal. Moreover, if
θ has isometric boundary values a.e., then � ∈ Iκ

0 ·.
(ii) If � is observable and ψθ ≡ 0, then � is co-isometric and minimal. Moreover,

if θ has co-isometric boundary values a.e., then � ∈ I∗κ· 0.
(iii) If � is simple and ϕθ ≡ 0 and ψθ ≡ 0, then � is conservative and minimal.

Moreover, if θ has unitary boundary values a.e., then � ∈ Cκ
00.

Proof (i) Denote the system operator of � by T , and consider the Julia embedding
�̃ of the system �. This means that the corresponding system operator is a unitary
operator of the form

T�̃ =

⎛

⎜
⎜
⎝

A
(
B DT ∗

,1

)

(
C
D∗
T,1

) (
D DT ∗

,2

D∗
T,2

−L∗

)

⎞

⎟
⎟
⎠ :

⎛

⎝
X( U
DT ∗

)
⎞

⎠ →
⎛

⎝
X( Y
DT

)
⎞

⎠ , (4.1)

where

DT ∗ =
(
DT ∗

,1

DT ∗
,2

)

, DT =
(
DT,1

DT,2

)
, DT ∗ D∗

T ∗ = IX − T T ∗, DT D
∗
T = IX − T ∗T ,

such that DT and DT ∗ have zero kernels. The transfer function of the embedded system
is
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θ�̃(z) =
(

D + zC(I − zA)−1B DT ∗
,2

+ zC(I − zA)−1DT ∗
,1

D∗
T,2

+ zD∗
T,1

(I − zA)−1B −L∗ + zD∗
T,1

(I − zA)−1DT ∗
,1

)

=
(

θ(z) θ12(z)
θ21(z) θ22(z)

)
.

Notice that θ, θ12, θ21 and θ22 all are generalized Schur functions. Because I −
θ�̃(ζ )θ ∗̃

�
(ζ ) ≥ 0 and I − θ ∗̃

�
(ζ )θ�̃(ζ ) ≥ 0 a.e. on ζ ∈ T, one concludes that

I − θ∗(ζ )θ(ζ ) ≥ θ∗
21(ζ )θ21(ζ ); (4.2)

I − θ(ζ )θ∗(ζ ) ≥ θ12(ζ )θ∗
12(ζ ). (4.3)

Since ϕθ ≡ 0, it follows from the identity (4.2) and Theorem 2.3 that θ21 ≡ 0. Then
D∗
T,2

= 0 and D∗
T,1

(I − zA)−1B = 0 for every z in some neighbourhood of the origin.
Since � is controllable, it follows from (2.11) that D∗

T,1
= 0 and then DT = 0, which

means that � is isometric.
If� is chosen to be minimal passive, the previous argument shows that� is an iso-

metric and minimal realization of θ. Since the controllable isometric realizations of θ

are unitarily similar, they all are now alsominimal. This proves the first statement in (i).
If θ has isometric boundary values a.e., then θl in the left Kreı̆n-Langer factoriza-

tion of θ is inner. Consider the product � = �B−1 ◦ �θl as in the Theorem 3.9. Let
X+
1 ⊕X−

1 andX+
2 ⊕X−

2 be the unique fundamental decompositions ofX of, given by
Proposition 3.10, such that AX+

1 ⊂ X+
1 and A∗X+

2 ⊂ X+
2 . The case κ = 0 from [3,

Theorem 1.1] shows that the main operator of �θl belongs to C0 ·, and then the main
operator of �∗

θl
, which is A∗�X+

2
, belongs to C· 0. It suffices to show that this is equiv-

alent to A�X+
1

∈ C0 ·. Consider a simple conservative embedding �̃ of �. Represent

�̃ as in the products �̃ = �θ ′
r
◦ �

B−1′
r

= �
B−1′
l

◦ �θ ′
l
, see Theorem 3.9. In views

of (3.11), the main operator A∗�X+
2

of �∗
θ ′
l
belongs to C· 0, and therefore the main

operator of �θ ′
l
belongs to C0 ·, see (3.9). It follows from Theorem 4.2 that θ ′

l is inner.
Then so is θ ′

r , and again from the Theorem 4.2 it follows that the main operator A�X+
1

of the system �θ ′
r
is in C0 ·. Then � ∈ Iκ

0 ·, and the second statement in (i) is proved.
(ii) If ψθ ≡ 0, the identity (4.3) and Theorem 2.3 show that θ12 ≡ 0, which means

DT ∗
,2

= 0 and C(I − zA)−1DT ∗
,1

≡ 0. Since � is observable, one concludes as above
that DT ∗ = 0, which means that � is co-isometric. Similar arguments as above show
that � is also minimal. Moreover, co-isometric boundary values of θ implies that
� ∈ I∗κ· 0.

(iii) If � is simple and ϕθ ≡ 0 and ψθ ≡ 0, arguments used in the proof of [11,
Theorem 9.4] show that � is conservative. Minimality of � is obtained analogously
as above. The last assertion is contained in Theorem 4.2. ��

For the classes Iκ
0 · and I∗κ· 0, conditions of Theorem 4.4 are also necessary.

Proposition 4.5 An isometric controllable (co-isometric observable) system� belongs
to Iκ

0 · (I∗κ· 0) if and only if θ� has isometric (co-isometric) boundary values a.e. on T.

Proof Only the proof of necessity needs to be given. For this, embed� to a conservative
system �̃ with the representation as in Theorem 3.9 and then apply Theorem 4.2. ��
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The existence of a co-isometric observable realization is guaranteed by Theo-
rem2.4. It is also possible that θ ∈ Sκ(U ,Y) has a co-isometric controllable realization
that is neither observable nor conservative.

Example 4.6 Consider the function in Example 3.8 and choose a to be a scalar inner
function. Easy calculations show that then Sl is co-inner and the right defect function
ϕSl of SL is not identically zero. Theorem 4.4 shows that an observable passive real-
ization �Sl of Sl is co-isometric and minimal. The property ϕSl �= 0 and Lemma 4.3
show that �Sl cannot be conservative. If �b−1 is a minimal conservative realization
of b−1, Theorem 3.4 shows that �b−1 ◦ �Sl is controllable while Example 3.8 shows
that it is not observable. The product cannot be conservative either, and thus S has a
co-isometric controllable realization.

If the defect functions of θ ∈ Sκ(U ,Y) are zero functions, the results ofTheorem3.9
can be extended.

Proposition 4.7 � = (A, B,C, D,X ,U ,Y, κ) be a passive system such that the
transfer function θ of � belongs to Sκ(U ,Y). Let θ = B−1

l θl = θr B−1
r be the Kreı̆n–

Langer factorizations of θ. Then the following statements hold:

(i) If ϕθ ≡ 0, then � can be represented as in the product of the form

� = �B−1
l

◦ �θl ,

where�B−1
l

and�θl and areminimal conservative realization of B
−1
l and passive

realization of θl , respectively;
(ii) If ψθ ≡ 0, then � can be represented as in the product of the form

� = �θr ◦ �B−1
r

where �B−1
r

and �θr are minimal conservative realization of B−1
r and passive

realization of θl , respectively;
(iii) If ϕθ ≡ 0 and ψθ ≡ 0, then � can be represented as in the products of the form

� = �B−1
l

◦ �θl = �θr ◦ �B−1
r

,

where �B−1
l

and �B−1
r

are minimal conservative realizations of B−1
l and B−1

r ,

respectively, and �θl and �θr are passive realizations of θl and θr , respectively.

Proof Only the proof of (ii) is provided, since the other assertions are obtained analo-
gously. Suppose thatψθ ≡ 0.Lemma3.2 shows that the space (X c)⊥ is aHilbert space.
It follows easily from the identity (2.8) that A∗(X c)⊥ ⊂ (X c)⊥ and B∗(X c)⊥ = {0}.
This implies that the system operator can be represented as

T� =
⎛

⎝
A1 0 0
A2 A0 B0
C1 C0 D

⎞

⎠ :
⎛

⎝
(X c)⊥
X c

U

⎞

⎠ →
⎛

⎝
(X c)⊥
X c

Y

⎞

⎠ . (4.4)
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Now easy calculations show that a restriction �0 = (A0, B0,C0, D,X c,U ,Y, κ) of
� is controllable and passive, and then according to Theorem 4.4, �0 is isometric and
minimal. From Theorem 3.9 it follows that�0 = �B−1

l
◦�θl and the components have

properties introduced in Theorem 3.9 (iii). The state space X c− of �B−1
l

is invariant

respect to A0. Denote the state space of �θl by X c+. Then
(
(X c)⊥ ⊕ X c+) ⊕X c− is

a fundamental decomposition of X , and AX c− ⊂ X c−. Similar calculations as in the
Step 1 (ii) of the proof of Theorem 3.9 show that

� = dil�0 = dil
(
�B−1

l
◦ �θl

)
= �B−1

l
◦ dil�θl ,

and this is the desired representation. ��
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