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Abstract
We establish an improvement of Bernstein–Jackson inequalities by explicitly calculat-
ing constants on special approximation scales of analytic vectors of finite exponential
types, generated by unbounded operators. Inequalities are applied to analytical esti-
mates of spectral approximations of unbounded operators. Applications to spectral
approximations of elliptic and ordinary differential boundary-value problems are
shown.

Keywords Spectral approximations · Bernstein–Jackson inequalities

Mathematics Subject Classification 47A58 · 41A17

1 Introduction

We investigate a spectral approximation problem for a linear closed unbounded oper-
ator A in a Banach space X , using the subspace E (A) ⊂ X of its analytic vectors of
finite exponential types. We call this the spectral approximation because in the case
of operators A with discrete spectrum the subspaces E (A) exactly coincide with the
linear span of all its spectral subspacesR(A) [5]. For many other operators (see e.g.,
[13]), the subspace E (A) also contains all their spectral subspaces. Non-triviality of
E (A), for example, in the case of generators A of strongly continuous 1-parameter
groups, is checked in Proposition 1.
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The basic tool in our approach is the functional E (t, x;E (A), X) (more details in
[2,16]) which in our cases characterizes the shortest distance from x ∈ X to a sub-
space of vectors with an exponential type not larger than t > 0. We use an adaptation
of approximation scales (in terms of [17]) of quasi-normed Besov spaces Bs

τ (A),
determined by E (t, x;E (A), X), which are connected with the approximation errors
by Bernstein–Jackson type inequalities.

Earlier applications of analytic vectors of finite exponential types to approximation
problems can be found in [7,8]. Looking historically, the idea of exponential type
vectors comes from analytic vectors in Nelson’s theorem [14]. Analyses of various
estimates via approximation functionals are carried out in [1] and in other publications.
In [9,10] instead of the functional E (t, x;E (A), X), a modulus of smoothness ω(·)
was used.

One of our aims is to prove the inverse and direct theorems that give an esti-
mate of approximation errors by means of elements E (A). Namely, the inverse
Theorem 2(a) which is usually identified with Bernstein’s inequality (1) and the
direct Theorem 2(b) which is identified with Jackson’s inequality (2). Here, the
main result is that in the inequalities (1)– (2) we obtain the explicit depen-
dence of constants cs,τ , Cs,τ on parameters of the Besov spaces Bs

τ (A). The
calculated constants are exact in the sense that the limits (3) of direct and
inverse sequences as τ → ∞ coincide with 1. These theorems characterize sub-
classes of elements from X in relation to rapidity of approximations. In our case,
these subclasses are completely described by the quasi-normed Besov-type spaces
Bs

τ (A).
Theorem 2 uses the completeness of quasi-normed space E (A), which previously

is proved in Theorem 1(a). The proof of completeness is based on Bernstein’s com-
pactness principle for entire analytic functions of exponential type. Under an implicit
assumption of this completeness, the second part of this theorem in a somewhat dif-
ferent form was given in [6, Thm 3(i)].

It is important that in the case, when A is the operator of differentiation D in L p(R),
the scale of Besov spacesBs

τ (A), as well as, the Bernstein–Jackson inequalities fully
coincide with known classical analogs (see [6, Thm 7–8]). However, in this case, the
exact values of constants in these inequalities were not earlier calculated.

The last two sections are applications. It is essential that estimates of spectral
approximations are given in terms of quasi-norms of classic Besov spaces what are
well investigated.

If A is a regular elliptic operator with variable smooth coefficients over the space
L p(Ω) on a bounded domain Ω ⊂ R

n , we prove in Theorem 3 that the spaceBs
τ (A)

coincides with an appropriate subspace in the classic Besov space Bs
p,τ (Ω) and the

Bernstein–Jackson inequalities for the last space give estimates of spectral approxi-
mations. A partial case of constant coefficients in elliptic boundary-value problems
was considered earlier in [6].

Second example of analytic estimates of spectral approximations errors for some
self-adjoint ordinary differential boundary-value problems is described in Theo-
rem 4.
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2 Approximation Scales Generated by Unbounded Operators

In what follows, let A : D(A) → X be a closed linear operator with dense domain
D(A) in a complexBanach space (X , ‖·‖). SetDk+1(A):={

x∈Dk(A) : Akx ∈ D(A)
}

and D∞(A) := ⋂
k∈NDk(A) where all integer powers Ak are assumed closed. We

associate with an element x ∈ D∞(A) the scalar functions

x(z) =
∑∞

k=0

‖Akx‖
k! zk and x̂(z) =

∑∞
k=0

‖Akx‖
zk+1

in variable z ∈ C, interconnected by Laplace’s transform.
An element x ∈ D∞(A) is called the vector of exponential type ν > 0 of A, if one

of the following equivalent conditions holds (see, e.g. [3, Thm 1.1.1]):

(i) x(z) is entire with the exponential type ν = lim supr→∞
lnM(r)

r with M(r) =
max|λ|=r |x(λ)|;

(ii) the power series x̂(z) is such that ν = lim supk→∞ ‖Akx‖1/k < ∞.

We consider the subspace of all exponential type vectors E (A) as the union⋃
ν>0 E

ν(A) which is endowed with the quasinorm

|x |E (A) = ‖x‖ + inf
{
ν > 0 : x ∈ E ν(A)

}
,

where for any ν > 0 the subspace E ν(A) = {
x ∈ E (A) : x̂(ν) < ∞}

is endowed with
norm

‖x‖ν := ν x̂(ν).

Then the continuous embedding E ν(A) � E μ(A) with μ > ν holds and each E ν(A)

is A-invariant, as well as, the restriction A|E ν (A) is a bounded operator (see [6, Thm
1]).

We assume that exponential type vectors E (A) are dense in X . Such an assumption
is not restrictive, since E (A) contains spectral subspaces of A (see, e.g., Propositions 1
and Remark 3 or [5, Thm 2.2]).

To investigate approximation errors, we consider a special scale of Besov-type
spacesBs

τ (A) = {
x ∈ X : |x |Bs

τ (A) < ∞}
with apair indexes {0<s<∞, 0 < τ ≤ ∞}

or {0 ≤ s < ∞, τ = ∞}, where

|x |Bs
τ (A) =

⎧
⎪⎨

⎪⎩

( ∫ ∞

0

[
t s E(t, x;E (A), X)

]τ dt

t

)1/τ
, 0 < τ < ∞,

sup
t>0

t s E(t, x;E (A), X), τ = ∞

with E(t, x;E (A), X) = inf
{‖x − x0‖: x0 ∈ E (A), |x0|E (A) ≤ t

}
for all x ∈ X

and t > 0.
We will use the real interpolation method. Recall that for a pair of quasi-normed

spaces (X0, | · |X0), (X1, | · |X1) and 0 < θ < 1, 1 ≤ q < ∞ the interpolation space
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generated by K -functional is defined as

(X0, X1)θ,q = {
x ∈ X0 + X1 : |x |(X0,X1)θ,q < ∞}

with |x |(X0,X1)θ,q = (∫ ∞
0

[
t−θK (t, x; X0, X1)

]q
dt/t

)1/q
, where K -functional is

determined to be K (t, x; X0, X1) = inf
x=x0+x1

(|x0|X0 + t |x1|X1

)
for all x0 ∈ X0,

x1 ∈ X1 and t > 0 (see, e.g. [2]).

Theorem 1 (a) The quasi-normed space E (A) is complete.
(b) For 0 < θ < 1, 1 ≤ q < ∞, τ = θq, s = 1/θ − 1 the following isomorphism

holds,

Bs
τ (A) = (E (A), X)

1/θ
θ,q ,

where (E (A) , X)θ,q is the interpolation space determined by K -method, and

(E (A) , X)
1/θ
θ,q is defined to be (E (A) , X)θ,q endowed with the quasi-norm

|x |1/θ
(E (A) ,X)θ,q

.

Proof (a) By definition ‖x‖ν = ν x̂(ν) for each x ∈ E ν(A) with a given ν > 0, where
x̂(z) = L[x(t)] = ∫ ∞

0 x(t) exp (−zt) dt with {z ∈ C : |Re z| > hx } is Laplace’s trans-
form of the entire function x(λ) in variable λ ∈ C of an exponential type hx < ν.

Let (xn) be a fundamental sequence in E (A). It is uniformly bounded, i.e., ∃ν > 0 :
|xn|E (A) < ν for alln ∈ N. Since inf {μ : (xn) ⊂ E μ(A)} < ν,wehave (xn) ⊂ E ν(A).
Thus, the sequence {[0,∞) 	 t 
→ xn(t) exp (−tν) : n ∈ N} is uniformly absolutely
bounded by a constant Kν > 0 for all t ≥ 0.

By Bernstein’s compactness theorem [15, Thm 3.3.6] there exists a convergent
subsequence

{
xni (t) exp (−tν) : i ∈ N

}
with respect to the topology of uniform

convergence in variable t ∈ [0, r ] for all r > 0. Thus, ∀ε > 0, ∃nε ∈ N :
supt∈[0,rε] |xni (t) − xmi (t)| exp (−tν) < ε, ∀ni ,mi ≥ nε, where r = rε > 0 is chosen
so large that Kν exp (−rεν) < ε. Therefore,

‖xni − xmi ‖2ν = 2νL[|xni (t) − xmi (t)|]
= 2ν

∫ ∞

0
|xni (t) − xmi (t)| exp (−2tν) dt

= 2ν
( ∫ rε

0
+

∫ ∞

rε

) [|xni (t) − xmi (t)| exp (−tν)
]
exp (−tν) dt

≤ 2νε

∫ rε

0
exp (−tν) dt + 2νKν

∫ ∞

rε
exp (−tν) dt

= 2ε[1 − exp (−rεν)] + 2Kν exp (−rεν) < 4ε, ni ,mi ≥ nε.

Thus, (xni ) is fundamental inE 2ν(A). Below, itwill be proven thatE 2ν(A) is complete.
As a conclusion of this, there exists x0 ∈ E 2ν(A) such that xni → x0 at i → ∞ and,
consequently, xn → x0 in E 2ν(A). Hence, E (A) is complete.
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Now, we prove that E ν(A) with any ν > 0 is complete. Let (xn) be a fundamental
sequence in E ν(A), i.e., ∀ε > 0 ∃nε ∈ N : ‖xn − xm‖ν < ε for all n,m ≥ nε. From
‖x‖ν ≥ ‖(A/ν)k x‖with x ∈ E ν(A) it follows that the sequences (xn) and

(
(A/ν)k xn

)

for any k ∈ Z+ are fundamental in X . By completeness of X and closeness of Ak there
exist x, yk ∈ X such that xn → x and (A/ν)k xn → yk in X . So, yk = (A/ν)k x with
x ∈ Dk(A) for all k ∈ Z+. Thus, x ∈ D∞(A) and (A/ν)k xn → (A/ν)k x in X as
n → ∞ for all k ∈ Z+.

Taking in X the limit of ‖xn‖ν ≤ ‖xn − xnε‖ν + ‖xnε‖ν ≤ ε + ‖xnε‖ν as n → ∞,
we find ‖x‖ν ≤ ‖xnε‖ν + ε, that is, x ∈ E ν(A), since xnε ∈ E ν(A). Similarly, from
‖xn − xm‖ν < ε asm → ∞, we find that ‖xn − x‖ν ≤ ε for all n ≥ nε. Hence,E ν(A)

is complete.
b) Now, taking into account the completeness of E (A) and the continuous embed-

ding E (A) � X , the required equalityBs
τ (A) = (E (A), X)

1/θ
θ,q directly follows from

[2, Thm 7.1.7]. The proof is completed. 
�
Remark 1 Note that if A is the closure of the differentiation operator D in X = L p(R)

with 1 < p ≤ ∞ thenBs
τ (A) exactly coincides with the classic Besov space Bs

p,τ (R)

[6, Thm 7].

3 Analytical Estimates of Best Approximation Errors

The analytical estimates of approximation errors are based on exact values of constants.
In direct and inverse approximation theorems this problem is solved by exact values of
constants in the Bernstein–Jackson inequalities, presented in the following statements.

Theorem 2 Let 0 < s < ∞, 0 < τ ≤ ∞ and κs,τ := (
τ s−1(s + 1)2

)1/τ
.

(a) For each x ∈ E (A) the Bernstein-type inequality holds,

|x |Bs
τ (A) ≤ cs,τ |x |sE (A)

‖x‖ where cs,τ :=
{

κs,τ : τ < ∞
1 : τ = ∞.

(1)

(b) For each x ∈ Bs
τ (A) the following Jackson-type inequality holds,

t s E(t, x;E (A), X) ≤ 2s+1Cs,τ |x |Bs
τ (A), Cs,τ :=

{
κ−1
s,τ : τ < ∞
2−s−1 : τ = ∞.

(2)

Herewith, for a fixed s, we have

lim inf
τ→∞ κs,τ = lim sup

τ→∞
κ−1
s,τ = 1. (3)

Proof (a) Let 1 ≤ q < ∞ and x �= 0. Since K (t, x;E (A), X) ≤ min
(|x |E (A), t‖x‖

)
,

we obtain

|x |q
(E (A),X)θ,q

≤ ‖x‖q
∫ α

0
t−1+q(1−θ)dt + |x |qE (A)

∫ ∞

α

t−1−θqdt
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= 1

q(1 − θ)
αq(1−θ)‖x‖q + 1

θq
α−θq |x |qE (A)

= 1

qθ(1 − θ)

(
|x |1−θ

E (A)
‖x‖θ

)q

with α = |x |E (A)/‖x‖. It can be rewritten as

|x |(E (A),X)θ,q ≤ [qθ(1 − θ)]−1/q |x |1−θ
E (A)

‖x‖θ .

If q = ∞, we have K (t, x;E (A), X) ≤ tθ |x |1−θ
E (A)

‖x‖θ . By combining the previous
inequalities,

|x |(E (A),X)θ,q
≤

{
[qθ(1 − θ)]−1/q |x |1−θ

E (A)
‖x‖θ : q < ∞

|x |1−θ
E (A)

‖x‖θ : q = ∞.
(4)

Consider the functional K∞(t, x;E (A), X) := infx=x0+x1 max
(|x0|E (A), t‖x1‖

)
.

Note that v−θK∞(v, x;E (A), X) → 0 at v → 0 or v → ∞, as well as,
t s E(t, x;E (A), X) → 0 at t → 0 or t → ∞. Integrating by parts with the change
of variables v = t/E(t, x;E (A), X), we get

∫ ∞

0
(v−θK∞(v, x;E (A), X))qdv/v

= − 1

θq

∫ ∞

0
K∞(v, x;E (A), X)qdv−θq

= 1

θq

∫ ∞

0
v−θqdK∞(v, x;E (A), X)q = 1

θq

∫ ∞

0
(t/E(t, x;E (A), X))−θqdtq

= 1

θq2

∫ ∞

0
(t s E(t, x;E (A), X))θqdt/t with s = 1/θ − 1.

The following inequalities are a consequence of definitions K and K∞ [16, Rem.
3.1],

K∞(t, x;E (A), X) ≤ K (t, x;E (A), X) ≤ 2K∞(t, x;E (A), X). (5)

According to the left inequality from (5), we have
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1

θq2
|x |θqBs

τ (A)
= 1

θq2

∫ ∞

0
(t s E(t, x;E (A), X))θqdt/t

=
∫ ∞

0
(v−θK∞(v, x;E (A), X))qdv/v

≤
∫ ∞

0
(v−θK (v, x;E (A), X))qdv/v = |x |q

(E (A),X)θ,q
.

On the other hand, from the right inequality (5) it follows that

|x |q
(E (A),X)θ,q

=
∫ ∞

0
(v−θK (v, x;E (A), X))qdv/v

= 2q
∫ ∞

0
(v−θK∞(v, x;E (A), X))qdv/v

= 2q
1

θq2

∫ ∞

0
(t s E(t, x;E (A), X))θqdt/t = 2q

1

θq2
|x |θqBs

τ (A)
.

Thus, combining the previous inequalities, we get

|x |q
(E (A),X)θ,q

≤ 2q(θq2)−1|x |θqBs
τ (A)

≤ 2q |x |q
(E (A),X)θ,q

with τ = θq. (6)

Via [2, Lemma 7.1.2] for every v > 0 there exists t > 0 such that

t s E(t, x;E (A), X))θ ≤ v−θ K∞(v, x;E (A), X)

≤ (
t s E(t − 0, x;E (A), X)

)θ
. (7)

Since |x |θBs∞(A)
≤ |x |(E (A),X)θ,∞ , the inequalities (7) yield

ν−θ K (ν, x;E (A), X) ≤ ν−θ2K∞(ν, x;E (A), X) ≤ 2(t s E(t − 0, x;E (A), X))θ

≤ 2(sup
t>0

t s E(t, x;E (A), X))θ = 2|x |θBs∞(A)
.

As result, |x |(E (A),X)θ,∞ ≤ 2|x |θBs∞(A)
. By applying (4), we obtain

|x |θBs
τ (A)

≤
{

[q/(1 − θ)]1/q |x |1−θ
E (A)

‖x‖θ : q < ∞
|x |1−θ

E (A)
‖x‖θ : q = ∞.

(8)

Setting s = 1/θ − 1 and τ = θq in (8), we get the inequalities (1).
b) By integration both sides of min(1, v/t)K (t, x;E (A), X) ≤ K (v, x;E (A), X),

we get
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( ∫ ∞

0

(
v−θ min(1, v/t)

)q dv

v

)1/q
K (t, x;E (A), X)

≤
( ∫ ∞

0

(
v−θK (v, x;E (A), X)

)q dv

v

)1/q= |x |(E (A),X)θ,q
and

( ∫ ∞

0

(
v−θ min(1, v/t)

)q dv

v

)1/q =
( ∫ t

0
v(1−θ)q−1t−qdv +

∫ ∞

t
v−θq−1dv

)1/q

= 1

[qθ(1 − θ)]1/q tθ ,

respectively. As a result,

( ∫ t

0

v(1−θ)q−1

tq
dv +

∫ ∞

t
v−θq−1dv

)1/q
K (t, x;E (A), X)

= K (t, x;E (A), X)

[qθ(1 − θ)]1/q tθ ≤ |x |(E (A),X)θ,q
.

Hence, K (t, x;E (A), X) ≤ [qθ(1 − θ)]1/q tθ |x |(E (A),X)θ,q
. Taking into account (5),

(7), we get

v1−θ E(v, x;E (A), X)θ ≤ t−θK∞(t, x;E (A), X) ≤ [qθ(1 − θ)]1/q |x |(E (A),X)θ,q
.

Applying (6), we obtain v1−θ E(v, x;E (A), X)θ ≤ 2[(1 − θ)/q]1/q |x |θBs
τ (A)

. Setting
s = (1 − θ)/θ and τ = θq, we get (2) in the case 1 ≤ q < ∞. In the case q = ∞,
we have

t s E(t, x;E (A), X) ≤ sup
t>0

t s E(t, x;E (A), X) = |x |Bs∞(A)

for all x ∈ Bs∞(A). Thus, the inequalities (2) hold for both cases that ends the proof.
The limits (3) are calculated directly. 
�
Remark 2 The known values of constants in the Bernstein–Jackson inequalities for
some particular cases can be found in [11, pp. 257–259], [10, Thm 1], [19, p. 595] and
in others.

4 Conditions for Non-triviality of Approximation Scales

Wegive a simple criterion that, in the case of self-adjoint operators, ensures the equality
of E (A) with all spectral subspaces of A.

Proposition 1 If a strongly continuous group R 	 t → eit A on X, generated by iA,
is such that lim sup|t |→∞ ‖eit Ax‖ = Mx < ∞ for all x ∈ X then the embedding
E (A) � X is dense.
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Proof Let a function f ∈ L1(R) be the restriction to R of an entire function of
exponential type τ > 0 such that

∫ ∞
−∞ f (t) dt = 1 and Pα = α

∫ ∞
−∞ f (αt)eit Adt

with α > 0. There exists c > 0 independent on k such that Bernstein’s inequality∫ ∞
−∞ | f (k)(t)| dt ≤ cτ k holds for all k ∈ Z+ [15, p. 115]. From the known relation
lim|t |→∞ | f (k)(t)| = 0 (see [15, Thm 3.2.5]) via integration by parts, we have

(iA)k Pkx = α

∫ ∞

−∞
f (αt)(iA)keit Ax dt = αk

∫ ∞

−∞
f (k)(t) eit/α Ax dt, x ∈ X .

ByBernstein’s inequality it follows, that ‖Ak Pαx‖ ≤ c‖x‖(τα)k for all x ∈ X . Conse-
quently, ‖Ak Pαx‖1/k ≤ (c‖x‖)1/kτα and lim supk→∞ ‖Ak Pαx‖1/k ≤ τα. If ν > τα

then Pαx ∈ E ν(A) for all x ∈ X . Hence,
⋃

α>0 {Pαx : x ∈ X} ⊂ E (A).
Using the equality Pαx − x = α

∫ ∞
−∞ f (αt)(eit Ax − x) dt , we show that

lim
α→∞ ‖Pαx − x‖ = 0, x ∈ X . (9)

Since the X -valued function R 	 t → eit Ax − x is continuous at t = 0, for every
ε > 0 there exists δ > 0 such that max|t |≤δ ‖eit Ax − x‖ ≤ ε. Therefore,

‖Pαx − x‖ ≤ ε

∫

|t |≤δ

|α f (αt)| dt +
∫

|t |>δ

|α f (αt)| ‖eit Ax − x‖ dt

≤ ε

∫

|t |≤δα

| f (t)| dt + max|t |>δα
‖eit Ax − x‖

∫

|t |>δα

| f (t)| dt .

Since lim sup|t |→∞ ‖eit Ax − x‖ ≤ Mx + ‖x‖ < ∞ for all x ∈ X , we obtain

lim
α→∞ ‖Pαx − x‖ ≤ ε‖ f ‖L1(R) + (Mx + ‖x‖) lim

α→∞

∫

|t |>δα

| f (t)| dt = ε‖ f ‖L1(R).

Since ε is arbitrary, (9) holds. Hence,
⋃

α>0 {Pαx : x ∈ X} and therefore E (A) are
dense in X what ends the proof. 
�
Remark 3 If A is self-adjoint in a Hilbert space X then the group eit A is unitary by
Stone’s theorem. Thus, in this case Mx ≡ 1 and the embedding E (A) � X is dense.
Approximation problems for cases of self-adjoint operators A was analyzed in [10]
where, instead of the Besov-type quasi-norm, the smoothness modulus is used.

5 Applications to Elliptic Operators on Bounded Domains with
Smooth Coefficients

Note that a simple case of elliptic operators with constant coefficients was considered
in [6]. Now, we adapt the Bernstein–Jackson inequalities (1–2) to the case of regular
elliptic operators with variable smooth coefficients.
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Wewill need one general result obtained earlier in [5]. Suppose that A has a discrete
spectrum σ(A), i.e., its resolvent R(λ, A) = (λ − A)−1 has only isolated eigenvalues
{λ j ∈ C : j ∈ N} of finite multiplicities which are poles with the limit at infinity. In
particular, this guarantees the compactness of R(λ, A) (see, e.g. [12, p.187]). Let
Rλ j (A) = {

x ∈ D∞(A) : (λ j − A)r j x = 0
}
be the spectral subspace, corresponding

to the eigenvalue λ j of multiplicity r j . Denote by Rν(A) the complex linear span in
X of all spectral subspaces Rλ j (A) such that |λ j | < ν. Let us define on R(A) :=⋃

ν>0 R
ν(A) the quasi-norm

|x |R(A) = ‖x‖ + inf
{
ν > 0 : x ∈ Rν(A)

}
.

In [5, Thm 2.2] it is proved that the following equalities hold,

E (A) = R(A), |x |E (A) = |x |R(A) (∀x ∈ E (A)). (10)

As a consequence, in the case of operators A with discrete spectrum, Theorem 2 can
be slightly strengthened. Namely (see [6, Thm 6]), the following inequalities hold,

|x |Bs
τ (A) ≤ cs,τ |x |sR(A)

‖x‖, u ∈ R(A),

inf
{
‖x − x0‖: x0 ∈ Rν(A)

}
≤ ν−s2s+1Cs,τ |x |Bs

τ (A), x ∈ Bs
τ (A) (11)

with the constants cs,τ and Cs,τ from Theorem 2.
Consider the space L p(Ω), (1 < p ≤ ∞) on Ω ⊂ R

n . The Sobolev space
Wm

p (Ω) has norm ‖u‖Wm
p (Ω) = ∑

|α|≤m ‖Dαu‖L p(Ω), α = (α1, . . . , αn) ∈
N
n , |α| = α1 + · · · + αn , where D is differentiation. The asymptotic equality

K
(
tm, u,Wm

p (Ω), L p(Ω)
)

� ωm(u, t)L p holds, whereωm(u, t)L p := sup|h|≤t ‖Δm
h

(u, ·)‖L p(Ω) is themth order modulus of smoothness for u ∈ L p(Ω) and Δm
h (u, t) :=

∑m
k=0(−1)m−k

(m
k

)
u(t + kh) is the mth difference with step h. Take m = [s] + 1 (the

smallest integer larger than s), then the classic Besov space Bs
p,τ (Ω) can be endowed

with the norm (see e.g., [4,16])

‖u‖Bs
p,τ (Ω) =

⎧
⎪⎨

⎪⎩

( ∫ ∞

0

[
t−sω[s]+1(u, t)L p

]τ dt

t

)1/τ
, 0 < τ < ∞,

sup
t>0

t−sω[s]+1(u, t)L p , τ = ∞.

Now, let A be a closed linear operator in the space L p(Ω) over an open bounded
set Ω ⊂ R

n with infinitely smooth boundary ∂Ω , which is determined on the domain

W 2m
p,A(Ω) =

{
u ∈ W 2m

p (Ω) : b ju |∂Ω= 0, j = 1, . . . ,m
}
via the regular elliptic sys-

tem [18, Def. 5.2.1/4]
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(Au)(ξ) =
∑

|α|≤2m

aα(ξ)Dαu(ξ), aα ∈ C∞(Ω̄), Ω̄ = Ω ∪ ∂Ω,

(b ju)(ξ) =
∑

|α|≤m j

b j,α(ξ)Dαu(ξ), b j,α ∈ C∞(∂Ω), j = 1, . . . ,m.

We assume that its resolvent set ρ(A) is non empty. This is enough for the compactness
of R(λ, A) for any λ ∈ ρ(A) and the closeness for all integer powers Ak . Thus, the
spectrum σ(A) is discrete and is independent on p [18, Sec. 5.4.4]. Let 0 ∈ ρ(A) for
simplicity.

Let 0 < s < ∞, 1 < p < ∞, 1 ≤ τ ≤ ∞. In theBesov space Bs
p,τ (Ω)we consider

the subspace which is associated with the operator A (see [18, Def. 4.2.1/1]),

Bs
p,τ,A(Ω) := {

u ∈ Bs
p,τ (Ω) : b j A

ku |∂Ω= 0, j = 1, . . . ,m, k ∈ Z+
}
.

Theorem 3 The following Bernstein–Jackson inequalities hold,

‖u‖Bs
p,τ (Ω) ≤ cs,τ |u|sR(A)

‖u‖L p(Ω), u ∈ R(A), (12)

t s E(t, u;R(A), L p(Ω)) ≤ 2s+1Cs,τ‖u‖Bs
p,τ (Ω), u ∈ Bs

p,τ,A(Ω) (13)

with the constants cs,τ and Cs,τ from Theorem 2, where is denoted E(t, u;R(A),

L p(Ω)) = inf
{‖u − u0‖L p(Ω) : u0 ∈ R(A), |u0|R(A) ≤ t

}
for all u ∈ L p(Ω). In

addition, for each functions u ∈ Bs
p,τ,A(Ω) the following inequality holds,

inf
{‖u − u0‖L p(Ω) : u0 ∈ Rν(A)

} ≤ ν−s2s+1Cs,τ ‖u‖Bs
p,τ (Ω). (14)

Proof Let the space E ν(D) = {
u ∈ C∞(Ω̄) : Dαu ∈ L p(Ω), |α| = k ∈ Z+

}
be

endowed with the norm ‖u‖E ν (D) = ∑
k≥0

∑
|α|=k ν−k‖Dαu‖L p(Ω). On E (D) =⋃

ν>0 E
ν(D)wedefine thequasinorm |u|E (D) = ‖u‖L p(Ω)+inf {ν > 0 : u ∈ E ν(D)}.

First, we show that for any aα ∈ C∞(Ω̄) the following equality holds,

Bs
τ (A, L p(Ω)) = Bs

p,τ,A(Ω), (15)

whereBs
τ (A, L p(Ω)) := Bs

τ (A)with X = L p(Ω). It is enough to prove the equality

E (A) = {
u ∈ E (D) : b j A

ku |∂Ω= 0, j = 1, . . . ,m, k ∈ Z+
}
. (16)

Since ‖Aku‖L p(Ω) ≤ νk‖u‖L p(Ω) ≤ ν2k
(∑

|α|=k ν−k‖Dαu‖L p(Ω) + ν−k‖u‖L p(Ω)

)

for all u ∈ E ν(A), we get
∑

ν−2k‖Aku‖L p(Ω) ≤ ∑( ∑
|α|=k ν−k‖Dαu‖L p(Ω) +

ν−k‖u‖Lq (Ω)

)
. Substituting μ = ν2 with ν > 1, we have

‖u‖μ ≤ ‖u‖E ν (D) + ν‖u‖L p(Ω)

ν − 1
≤ ‖u‖E ν (D) + ν‖u‖E ν (D)

ν − 1
= 2ν − 1

ν − 1
‖u‖E ν (D).
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It directly follows that
{
u ∈ E

√
ν(D) : b j Aku |∂Ω= 0, j = 1, . . . ,m, k ∈ Z+

}
⊂

E ν(A).
On the other hand, according to [18, Thm 5.4.3] for any k ∈ N there exists ck > 0

such that ‖Aku‖L p(Ω) ≥ ck‖u‖W 2mk
p (Ω) for all u ∈ Dk(A). Thus,

‖Ak+1u‖L p(Ω) = ‖Ak(Au)‖L p(Ω) ≥ ck‖Au‖W 2mk
p (Ω) = ck

∑

|α|≤2mk

‖DαAu‖L p(Ω)

≥ ck
∑

|α|≤2mk

‖ADαu‖L p(Ω) ≥ ckc1
∑

|α|≤2mk

‖Dαu‖W 2m
p (Ω)

= ck+1‖u‖
W 2m(k+1)

p (Ω)

where ck+1 = ckc1 = ck1 by induction on k. Hence, for each k ∈ Z+ and u ∈ Dk(A),
we have ‖Aku‖L p(Ω) ≥ ck1‖u‖W 2mk

p (Ω) for all u ∈ Dk(A), where c1 > 0 does not

depend on k. This leads to the inequality
∑

ν−k‖Aku‖L p(Ω) ≥ ∑
(c−1

1 ν)−k‖u‖Wk
p(Ω)

from which it follows that

E ν(A) ⊂ {
u ∈ E c−1

1 ν(D) : b j A
ku |∂Ω= 0, j = 1, . . . ,m, k ∈ Z+

}
.

Hence, the equality (16) holds.
Applying now Theorem 2 and (10), as well as, taking into account (16), we obtain

the required inequalities (12–13), while (14) directly follows from (11). 
�

6 Cases of Ordinary Differential Operators

Set −∞ < a < b < ∞. Let Bs
2,τ (Ω) be the classical Besov space on Ω = (a, b) and

a function p ∈ C∞(Ω̄) is such that p(ξ) > 0 (ξ ∈ Ω), 0 < Ca = limξ↓a p(ξ)
ξ−a < ∞,

0 < Cb = limξ↑b p(ξ)
b−ξ

< ∞. Let us define the Legendre operators

Am,lu = (−1)m
dm

dξm

(
pl(ξ)

dmu

dξm

)
, l = 0, 1, . . . ,m, m = 1, 2, . . .

with D(Am,l) = {
u ∈ C∞(Ω̄) : u( j)(a) = u( j)(b) = 0, j = 0, . . . ,m − l − 1

}
for

all indexes l = 0, 1, . . . , m − 1 where D(Am,m) = C∞(Ω̄).
From [18, Thm 7.4.1], it follows that Am,l have closures Ām,l in L2(Ω) with

D( Ām,l) = {
u ∈ W 2m

2 (Ω; p2l) : u( j)(a) = u( j)(b) = 0, j = 0, . . . ,m − l − 1
}

for l = 0, 1, . . . , m − 1. Here W 2m
2 (Ω; p2l) =

{
u ∈ L2(Ω) : ‖u‖2

W 2m
2 (Ω; p2l ) =

∑2m
j=0

∫
Ω

p2l(ξ)|u( j)(ξ)|2 dξ < ∞
}
andD( Ām,m) = W 2m

2 (Ω; p2m). Then the oper-

ators Ām,l are self-adjoint with discrete σ( Ām,l) in L2(Ω) and their sets of exponential
type vectors are dense in L2(Ω) by Proposition 1. We assume that 0 ∈ ρ( Ām,l), oth-
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erwise, we replace L2(Ω) through the subspace without the finite-dimensional kernel
of Ām,l .

Theorem 4 The following Bernstein–Jackson inequalities hold,

‖u‖Bs
2,τ (Ω) ≤ cs,τ |u|s

R( Ām,l )
‖u‖L2(Ω), u ∈ R( Ām,l),

t s E(t, u;R( Ām,l), L2(Ω)) ≤ 2s+1Cs,τ‖u‖Bs
2,τ (Ω), u ∈ Bs

τ ( Ām,l , L2(Ω))

with the constants cs,τ and Cs,τ from Theorem 2, where is denoted

E(t, u;R( Ām,l), L2(Ω)) = inf
{‖u − u0‖L2(Ω) : u0 ∈ R( Ām,l), |u0|R( Ām,l )

≤ t
}

for all u ∈ L2(Ω),

Bs
τ ( Ām,l , L2(Ω)) = {

u ∈ Bs
2,τ (Ω) : ( Ā k

m,lu)( j)(a) = ( Ā k
m,lu)( j)(b) = 0,

j = 0, . . . ,m − l − 1, k = 0, 1, . . .
}
,

l = 0, 1, . . . , m − 1, (17)

Bs
τ ( Ām,m, L2(Ω)) = Bs

2,τ (Ω). (18)

In addition, for all u ∈ Bs
τ

(
Ām,l , L2(Ω)

)
the following inequality holds,

inf
{
‖u − u0‖L2(Ω) : u0 ∈ Rν( Ām,l)

}
≤ ν−s2s+1Cs,τ |u|Bs

2,τ (Ω).

Proof Let us consider the space E ν(D) = {
u ∈ C∞(Ω̄) : u(k) ∈ L2(Ω), k ∈ Z+

}

endowed with the norm ‖u‖E ν (D) = ∑
k≥0 ν−k‖u(k)‖L2(Ω) and set E (D) =⋃

ν>0 E
ν(D), where D means the differentiation operator in L2(Ω). The space

E (D) we endow with the quasi-norm |u|E (D) = ‖u‖L2(Ω) + inf
{
ν > 0 : u ∈

E ν(D)
}
. Applying [18, Lemma 7.3.1/1] for all u ∈ C∞(Ω̄), we obtain the equiv-

alence ‖ Āk
m,lu‖2L2(Ω) � ‖u‖2

W 2km
2 (Ω; p2kl ). Hence, there exists ck(l) > 0 such that

‖ Āk
m,lu‖L2(Ω) ≥ ck‖u(k)‖L2(Ω) for all u ∈ Dk( Ām,l). Then by iteration

‖ Āk+1
m,l u‖L2(Ω) = ‖ Āk

m,l( Ām,lu)‖L2(Ω) ≥ ck‖( Ām,lu)(k)‖L2(Ω)

≥ ck‖ Ām,lu
(k)‖L2(Ω) ≥ ck+1‖u(k+1)‖L2(Ω)

where ck+1 = ckc1 = ck1. Thus, ‖ Āk
m,lu‖L2(Ω) ≥ ck1‖u(k)‖L2(Ω) for k ∈ Z+,

u∈Dk( Ām,l)with c1(l)>0 independent on k. This implies that
∑

ν−k‖ Āk
m,lu‖L2(Ω) ≥

∑
(c−1

1 ν)−k‖u(k)‖L2(Ω). Hence, E ν( Ām,m) ⊂ E c−1
1 ν(D), as well as,

E ν( Ām,l) ⊂ {
u ∈ E c−1

1 ν(D) : ( Ā k
m,lu)( j)(a) = ( Āk

m,lu)( j)(b) = 0,

j = 0, . . . ,m − l − 1, k ∈ Z+
}
,

l = 0, 1, . . . ,m − 1.
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On the other hand, ‖ Āk
m,lu‖L2(Ω) ≤ νk‖u‖L2(Ω) for all u ∈ E ν( Ām,l), k ∈ Z+.

Thus,
∑

ν−2k‖ Āk
m,lu‖L2(Ω) ≤ ∑

ν−k
(‖u‖L2(Ω) + ‖u(k)‖L2(Ω)

)
. It follows that

E
√

ν(D) ⊂ E ν( Ām,m),

E ν( Ām,l) ⊃ {
u ∈ E

√
ν(D) : ( Ā k

m,lu)( j)(a) = ( Ā k
m,lu)( j)(b) = 0,

j = 0, . . . ,m − l − 1, k ∈ Z+
}
, l = 0, 1, . . . ,m − 1.

Applying now the isomorphism (15) from Theorem 3, we obtain (17) and (18). It
remains to apply (10) and (11). 
�
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