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Abstract
In the present paper, we proved the sharp inequality |H3,1( f )| ≤ 1/9 for analytic
functions f with an := f (n)(0)/n!, n ∈ N, a1 := 1, such that

Re
z f ′(z)
f (z)

>
1

2
, z ∈ D := {z ∈ C : |z| < 1},

where
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∣
∣
∣
∣
∣
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is the third Hankel determinant.
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1 Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1} and let A be its
subclass of functions f normalized by f (0) := 0, f ′(0) := 1, i.e., of the form

f (z) =
∞
∑

n=1

anz
n, a1 := 1, z ∈ D. (1.1)

Given α ∈ [0, 1), let S∗(α) denote the subclass of A of functions f such that

Re
z f ′(z
f (z)

> α, z ∈ D, (1.2)

called starlike of order α. In particular, S∗(0) =: S∗ is the class of starlike functions,
i.e., the family of all univalent functions inAwhichmapD onto starlike domains (with
respect to the origin). Starlike functions of order α were introduced by Robertson [19]
(see also [7, Vol. I, p. 138]). An important role is played by the class S∗(1/2). One of
the significant results belongs to Marx [15] and Strohhäcker [23]. They proved that

Sc ⊂ S∗(1/2) (1.3)

(see also [16, Theorem 2.6a, p. 57]), where Sc means the class of convex functions,
i.e., the family of all univalent functions inA which map D onto convex domains. By
the well known result due to Study ([24], see also [6, p. 42]) a function f is in Sc if
and only if

Re

{

1 + z f ′′(z)
f ′(z)

}

> 0, z ∈ D.

What is interesting, a function

f (z) := z

1 − z
, z ∈ D, (1.4)

is extremal for many computational problems in both these two classes, i.e., in Sc and
S∗(1/2).

For q, n ∈ N, the Hankel determinant Hq,n( f ) of function f ∈ A of the form (1.1)
is defined as

Hq,n( f ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Given a subfamilyF ofA,q andn, computing the upper boundof Hq,n is an interesting
problem to study. Recentlymany authors examined theHankel determinant H2,2( f ) =



The Sharp Bound of the Hankel Determinant of the Third Kind… 2233

a2a4−a23 of order 2 (see e.g., [4,5,8,9,12,17]). Note also that H2,1( f ) = a3−a22 is the
well known coefficient functional which for S was estimated in 1916 by Bieberbach
(see e.g., [7, Vol. I, p. 35]). To find the upper bound of the Hankel determinant

H3,1( f ) =
∣
∣
∣
∣
∣
∣

a1 a1 a3
a2 a3 a4
a3 a4 a5

∣
∣
∣
∣
∣
∣

= a3(a2a4 − a23) − a4(a4 − a2a3) + a5(a3 − a22)

(1.5)

of the third kind, is more difficult if we expect to get sharp estimate. Results in this
direction however not sharpwere obtained by various authors, e.g., [1,2,4,5,20–22,25].

In this paper, we found the sharp bound of the Hankel determinant H3,1 over the
class S∗(1/2), namely, we proved that |H3,1( f )| ≤ 1/9 for f ∈ S∗(1/2) and that
the inequality is sharp. Since the class S∗(1/2) has a representation with using the
Carathéodory class P , i.e., the class of functions p ∈ H of the form

p(z) = 1 +
∞
∑

n=1

cnz
n, z ∈ D, (1.6)

having a positive real part inD, the coefficients of functions in S∗(1/2) have a suitable
representation expressed by coefficients of functions in P. Therefore to get the upper
bound of H3,1, we based our computing on the well known formulas on coefficient
c2 (e.g., [18, p. 166]), the formula c3 due to Libera and Zlotkiewicz [13,14] and the
formula for c4 recently found in [11].

At the end let us mention that in [10] the authors proved that |H3,1( f )| ≤ 4/135 =
0.0296 . . . for f ∈ S� and that the result is sharp. Looking at the inclusion (1.3) we
can state that the the corresponding bounds of H3,1 carry some information about the
richness of classes. Classical estimates of coefficients does not necessarily include
such a distinction, e.g., both in the class Sc and in the class S∗(1/2) modules of all
coefficients are bounded by 1 (see [7, Theorem 7, p. 117; Theorem 2, p. 140]) with
the extremal function given by (1.4).

2 Main Result

The basis for proof of the main result is the following lemma which contains the
well known formula for c2 (e.g., [18, p. 166]), the formula for c3 due to Libera and
Zlotkiewicz [13,14] and the formula for c4 found in [11].

Lemma 2.1 If p ∈ P is of the form (1.6) with c1 ≥ 0, then

2c2 = c21 + (4 − c21)ζ, (2.1)

4c3 = c31 + (4 − c21)c1ζ(2 − ζ ) + 2(4 − c21)(1 − |ζ |2)η (2.2)
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and

8c4 = c41 + (4 − c21)ζ
[

c21(ζ
2 − 3ζ + 3) + 4ζ

]

−4(4 − c21)(1 − |ζ |2)
[

c1(ζ − 1)η + ζη2 −
(

1 − |η|2
)

ξ
]

(2.3)

for some ζ, η, ξ ∈ D := {z ∈ C : |z| ≤ 1}.
Wewill now estimate the third order Hankel determinant H3,1( f ) for f ∈ S∗(1/2).

Theorem 2.2

max
{|H3,1( f )| : f ∈ S∗(1/2)

} = 1

9
(2.4)

with the extremal function

f (z) := z
3
√
1 − z3

, z ∈ D,
3
√
1 := 1. (2.5)

Proof Let f ∈ S∗(1/2) be of the form (1.1). Then by (1.2) we have

z f ′(z) = 1

2
(p(z) + 1) f (z), z ∈ D, (2.6)

for some function p ∈ P of the form (1.6). Since the classes P and S∗(1/2) are
invariant under the rotations, by Carathéodory Theorem we may assume that c :=
c1 ∈ [0, 2] ([3], see also [7, Vol. I, p. 80, Theorem 3]). Putting the series (1.1) and
(1.6) into (2.6) and equating coefficients we get

a2 = 1

2
c, a3 = 1

8

(

2c2 + c2
)

, a4 = 1

48

(

8c3 + 6cc2 + c3
)

,

a5 = 1

384

(

48c4 + 32cc3 + 12c22 + 12c2c2 + c4
)

.

Hence and by (1.5) we have

H3,1( f ) = 1

9216

(

−c6 + 6c4c2 − 72c32 + 32c3c3

+ 192cc2c3 − 256c23 − 36c2c22 + 288c2c4 − 144c2c4
)

. (2.7)

To simplify computation, let t := 4− c2. Thus formulas (2.1)-(2.3) we can rewrite as

c2 = 1

2
(c2 + tζ ), c3 = 1

4

(

c3 + 2ctζ − ctζ 2 + 2t(1 − |ζ |2)η
)

,

c4 = 1

8

[

c4 + 3c2tζ + (4 − 3c2)tζ 2 + c2tζ 3 + 4t(1 − |ζ |2)
(

cη − cζη − ζη2
)

+ 4t(1 − |ζ |2)(1 − |η|2)ξ
]

.
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Hence by straightforward algebraic computation we have

6c4c2 = 3(c6 + c4tζ ),

72c32 = 9
[

c6 + 3c4tζ + 3c2t2ζ 2 + t3ζ 3
]

,

32c3c3 = 8
[

c6 + 2c4tζ − c4tζ 2 + 2c3t(1 − |ζ |2)η
]

,

192cc2c3 = 24
[

c6 + 3c4tζ + 2c2t2ζ 2 − c4tζ 2 − c2t2ζ 3

+ 2t(c3 + ctζ )(1 − |ζ |2)η
]

,

256c23 = 16
[

c6 + 4c4tζ + 4c4t2ζ 2 − 2c4tζ 2 − 4c2t2ζ 3 + c2t2ζ 4

+ 4t(c3 + 2ctζ − ctζ 2)(1 − |ζ |2)η + 4t2(1 − |ζ |2)2η2
]

,

36c2c22 = 9
[

c6 + 2c4tζ + c2t2ζ 2
]

,

144(2c2c4 − c2c4) = 18
[

c4tζ + 3c2t2ζ 2 + (4 − 3c2)t2ζ 3 + c2t2ζ 4

+ 4t2cζ(1 − ζ )(1 − |ζ |2)η
− 4t2(1 − |ζ |2)|ζ |2η2 + 4t2(1 − |ζ |2)(1 − |η|2)ζ ξ

]

.

Setting the above expression to (2.7) we get

H3,1( f )

= 1

9216
(4 − c2)2

[

γ1(c, ζ ) + γ2(c, ζ )η + γ3(c, ζ )η2 + γ4(c, ζ, η)ξ
]

,

(2.8)

where for ζ, η, ξ ∈ D,

γ1(c, ζ ) := ζ 2
[

2c2 + (36 − 5c2)ζ + 2c2ζ 2
]

,

γ2(c, ζ ) := −8cζ(1 + ζ )(1 − |ζ |2),
γ3(c, ζ ) := −8(8 + |ζ |2)(1 − |ζ |2),

and

γ4(c, ζ, η) := 72(1 − |ζ |2)(1 − |η|2)ζ.

Let x := |ζ | ∈ [0, 1] and y := |η| ∈ [0, 1]. Since |ξ | ≤ 1, from (2.8) we obtain

|H3,1( f )| ≤ 1

9216
(4 − c2)2

[

|γ1(c, ζ )|
+ |γ2(c, ζ )||η| + |γ3(c, ζ )||η|2 + |γ4(c, ζ, η)|

]

≤ 1

9216
(4 − c2)2F(c, x, y), (2.9)
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where

F(c, x, y) := f1(c, x) + f4(c, x) + f2(c, x)y + ( f3(c, x) − f4(c, x))y
2,

with

f1(c, x) := x2
[

2c2 + (36 − 5c2)x + 2c2x2
]

,

f2(c, x) := 8cx(1 + x)(1 − |x |2),
f3(c, x) := 8(8 + x2)(1 − x2)

and

f4(c, x) := 72(1 − x2)x .

Now, we will show that

F(c, x, y) ≤ 64, c ∈ [0, 2], x ∈ [0, 1], y ∈ [0, 1]. (2.10)

Since f2(c, x) > 0 and

f3(c, x) − f4(c, x) = 8(1 − x)(8 − x)(1 − x2) > 0

for c ∈ (0, 2) and x ∈ (0, 1), so for c ∈ (0, 2) and x ∈ (0, 1),

F(c, x, y) ≤ F(c, x, 1)

= f1(c, x) + f2(c, x) + f3(c, x)

= x2(x − 2)(2x − 1)c2 + 8x(x + 1)(1 − x2)c

− 4(2x4 − 9x3 + 14x2 − 16) =: G(c, x). (2.11)

For x = 1/2 the function (0, 2) 
 c �→ G(c, 1/2) has no critical point, obviously.
When x = 1/2, then ∂G/∂c = 0 iff

c = 4x(x + 1)(1 − x2)

x2(2 − x)(2x − 1)
=: c0 ∈ (0, 2),

which holds only for x ∈ ((2 + 3
√
2)/7, 1). Thus

∂G

∂x
(c0, x) = 0

iff

4(8x2 − 15x + 4)(x + 1)2(1 − x2)2

+ 8(4x3 + 3x2 − 2x − 1)(x + 1)(1 − x2)(x − 2)(2x − 1)

− x2(8x2 − 27x + 28)(x − 2)2(2x − 1)2 = 0
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which after simplifying reduces to

−64x7 + 320x6 − 788x5 + 1503x4 − 1624x3 + 760x2 − 80x − 36 = 0

for x ∈ ((2 + 3
√
2)/7, 1). As we can check the above equation has no solution in

((2 + 3
√
2)/7, 1) (real solutions are x1 ≈ −0.1513, x2 ≈ 1.0622, x3 ≈ 2.4952).

Thus the function G has no critical point in (0, 2) × (0, 1).
For c = 0 and c = 2 both functions

g1(x) := F(0, x, 1) = 4(−2x4 + 9x3 − 14x2 + 16), x ∈ [0, 1],

and

g2(x) := F(2, x, 1) = 16(−x4 − 2x2 + 4), x ∈ [0, 1],

are decreasing, so

gi (x) ≤ gi (0) = 64, i = 1, 2, x ∈ [0, 1]. (2.12)

For x = 0 and x = 1 we have respectively,

F(c, 0, 1) = 64, c ∈ [0, 2],

and

F(c, 1, 1) = −c2 + 36 ≤ 36, c ∈ [0, 2].

Hence, by (2.12) and (2.11) it follows that the (2.9) holds. This together with (2.9)
shows that |H3,1( f )| ≤ 1/9.

For the function (2.5) which is in S∗(1/2), we have a2 = a3 = a5 = 0 and
a4 = 1/3. Thus H3,1( f ) = −1/9, which makes equality in (2.4). ��
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