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Abstract A certain kernel (sometimes called the Pick kernel) associated to Schur
functions on the disk is always positive semi-definite. A generalization of this fact
is well-known for Schur functions on the polydisk. In this article, we show that the
“Pick kernel” on the polydisk has a great deal of structure beyond being positive semi-
definite. It can always be split into two kernels possessing certain shift invariance
properties.
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1 Introduction

Let D
d be the unit polydisk in C

d . A Schur function is simply a holomorphic function
f : D

d → C bounded by one in modulus. One of the most fundamental facts about
Schur functions in one variable is that the following kernel is positive semi-definite:

1 − f (z) f (ζ )

1 − zζ̄
≥ 0. (1.1)
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(we say a function K : D
d × D

d → C is a positive semi-definite kernel and write
K ≥ 0 if for every finite subset F ⊂ D

d , the matrix

(K (z, ζ ))z,ζ∈F

is positive semi-definite—to actually form a matrix we would need an ordering of F ,
but this is unimportant).

The positive semi-definiteness of (1.1) is significant because (1) it relates function
theory to operator theory and (2) it turns out to have a very strong converse: if f
is a function on a finite subset of D such that (1.1) is positive semi-definite on that
finite set, then f is the restriction of a Schur function. This is the content of the Pick
interpolation theorem.

It is not clear what the “best” generalization of (1.1) is to several variables. For a
Schur function in d variables, it is a fact that

1 − f (z) f (ζ )
∏d

j=1(1 − z j ζ̄ j )
(1.2)

is positive semi-definite, however this does not seem to be extremely useful. Here
z = (z1, . . . , zd), ζ = (ζ1, . . . , ζd) ∈ C

d .
It was not until ca. 1988 that a more useful result was given in two variables by

Agler [1]: for any Schur function f on D
2 there exist positive semi-definite kernels

�1, �2 : D
2 × D

2 → C such that

1 − f (z) f (ζ ) = (1 − z1ζ̄1)�1(z, ζ ) + (1 − z2ζ̄2)�2(z, ζ ). (1.3)

This formula, called an Agler decomposition, does not generalize to more variables in
the way that its form suggests. Schur functions which satisfy

1 − f (z) f (ζ ) =
d∑

j=1

(1 − z j ζ̄ j )� j (z, ζ ) (1.4)

for some positive semi-definite kernels �1, . . . , �d , form a proper subclass of the set
of Schur functions called the Schur–Agler class.

Very recently, Grinshpan et al. [4] proved a decomposition that does hold in general
and which is still analogous to (1.3). We state it here in the scalar valued case (in [4]
it was proved in the operator-valued case).

Theorem 1.1 (Grinshpan et al. [4]) Let f : D
d → D be holomorphic. Then, for each

j, k ∈ {1, . . . , d}: j �= k there exist positive semi-definite kernels K and K ′ such that

1 − f (z) f (ζ ) =
∏

r �= j

(1 − zr ζ̄r )K (z, ζ ) +
∏

r �=k

(1 − zr ζ̄r )K ′(z, ζ )
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It is our goal to strengthen this theorem and to alter the point of view slightly.
Rather than looking for more decompositions analogous to (1.3), we instead attempt
to illuminate the structure of the kernel in (1.2).

Before presenting our theorem we need the following definition.

Definition 1.2 If K is a positive semi-definite kernel on D
d , we shall say K is

z j -contractive if

(1 − z j ζ̄ j )K (z, ζ ) ≥ 0.

If S ⊂ {1, . . . , d}, then we say a kernel K is S-contractive if it is z j -contractive for
all j ∈ S.

Theorem 1.3 Let d ≥ 2 and let f : D
d → D be holomorphic. Then, for each

non-empty S � {1, 2, . . . , d}, there exist positive semi-definite S-contractive kernels
KS, L S, such that if S � T = {1, . . . , d} is a non-trivial partition, then

1 − f (z) f (ζ )
∏d

j=1(1 − z j ζ̄ j )
= KS(z, ζ ) + LT (z, ζ ),

KT − LT = KS − L S ≥ 0,

and if S ⊂ S′ ⊂ {1, 2, . . . , d} then

KS ≥ KS′ .

Kernel inequalities like the last line should be interpreted as saying KS − KS′ is
positive semi-definite.

The proof of Theorem 1.1 in [4] amounts to the case where S is a singleton, how-
ever many of the decompositions provided by Theorem 1.3 can be used to reprove
Theorem 1.1.

Indeed, let S � T = {1, . . . , d} be any partition with j ∈ S and k ∈ T . Theorem 1.1
follows from writing as in Theorem 1.3

1 − f (z) f (ζ ) =
∏

r �= j

(1 − zr ζ̄r )((1 − z j ζ̄ j )KS(z, ζ ))
︸ ︷︷ ︸

K (z,ζ )

+
∏

r �=k

(1 − zr ζ̄r )((1 − zk ζ̄k)LT (z, ζ ))
︸ ︷︷ ︸

K ′(z,ζ )

and K and K ′ are positive since KS is z j -contractive and LT is zk-contractive.
Our proof of Theorem 1.3 relies on proving the result first for rational inner func-

tions continuous on Dd ; these can be characterized as follows.
Let p ∈ C[z] = C[z1, . . . , zd ] have no zeros on the closed polydisk Dd and suppose

deg p ≤ n = (n1, . . . , nd). Define
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p̃(z) := zn p(1/z̄) = zn1
1 · · · znd

d p(1/z̄1, . . . , 1/z̄d) (1.5)

(and notice |p| = | p̃| on the d-torus T
d ).

Every regular rational inner function can be represented as f (z) = p̃(z)/p(z) for
some choice of p and some choice of n ≥ deg(p) as above (see Rudin [5] Theorem
5.2.5). We state a theorem below describing the structure of the following kernel

P(z, ζ ) := p(z)p(ζ ) − p̃(z) p̃(ζ )
∏d

j=1(1 − z j ζ̄ j )
,

a trivial modification of (1.2) in the case of f = p̃/p.
First, we need another definition.

Definition 1.4 Let us call K (z, ζ ) : D
d × D

d → C a P-kernel if

• P ≥ K ≥ 0 in the sense of kernels and
• whenever P(z, ζ ) ≥ f (z) f (ζ ) and K (z, ζ ) ≥ ε f (z) f (ζ ) for some ε > 0, then we

necessarily have K (z, ζ ) ≥ f (z) f (ζ ).

See Lemma 7.5 in the Appendix for a precise description of what this means. The
(aesthetic) point here is that we have a theorem which does not refer to our methods
of proof. The follow theorem is similar to Theorem 1.3 but more precise.

Theorem 1.5 Let p ∈ C[z] be as above. For every non-empty S � {1, 2, . . . , d}, there
exist S-contractive P-kernels KS, L S, such that if S � T = {1, . . . , d} is a non-trivial
partition, then

P = KS + LT .

Moreover, KS is maximal among all S-contractive kernels bounded above by P .

This last condition makes these decompositions unique.

2 The Kernel P

The theorems from the introduction are proved by analyzing orthogonality relations
for a “Bernstein–Szegő measure”:

dμ = 1

|p(z)|2 dσ(z) (2.1)

where dσ is normalized Lebesgue measure on the d-torus T
d and p ∈ C[z] has no

zeros on the closed polydisk Dd . We also use dσ to represent normalized Lebesgue
measure on different dimensional tori, and the dimension will be made apparent by
the variable; e.g. dσ(z1) corresponds to normalized Lebesgue measure on T using the
variable z1.
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Notice that the complex Hilbert space L2(μ) is a renorming of L2(Td) and therefore
is topologically isomorphic. The inner product on L2(μ) is denoted

〈 f, g〉μ =
∫

Td

f (z)g(z)dμ(z).

For a subset X of the lattice Z
d we define the closed subspace

L2
μ(X) := { f ∈ L2(μ) : f̂ (α) = 0 for α /∈ X}

where f̂ (α) denotes the αth Fourier coefficient of f (and note we typically use
α = (α1, . . . , αd) to denote a d-tuple of integers). We use the following non-tra-
ditional notation. If Y ⊂ X ⊂ Z

d then we write

L2
μ(X � Y ) := L2

μ(X) � L2
μ(Y ). (2.2)

We use the following partial order on d-tuples of integers α = (α1, . . . , αd),

β = (β1, . . . , βd):

α ≤ β if and only if α j ≤ β j for all j = 1, . . . , d;

n = (n1, . . . , nd) is a fixed d-tuple which bounds the multi-degree of p (i.e. the degree
of p with respect to z j is at most n j ); writing α < β means α ≤ β and α �= β.

We typically write elements of C
d with z = (z1, . . . , zd). We use multi-index

notation:

zα := zα1
1 · · · zαd

d

for α ∈ Z
d and z ∈ C

d .
We need to define various subsets of Z

d :

Z
d+ := {α ∈ Z

d : α ≥ 0}
Z

d
n+ := {α ∈ Z

d : α ≥ n} (2.3)

B := Z
d+ \ Z

d
n+ = {α ∈ Z

d+ : ∃ j : α j < n j } = {α ∈ Z
d+ : α � n}

Then, for example L2
μ(Zd+) denotes the closure of the polynomials with respect

to L2(μ), a space equal to the Hardy space H2(Td) although it has a different inner
product.

The first thing we prove provides the connection to the kernel P . See [2] for back-
ground on reproducing kernel Hilbert spaces. The Szegő kernel will be denoted:

Sd(z, ζ ) =
d∏

j=1

1

(1 − z j ζ̄ j )
.
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As H2(Td) is a reproducing kernel Hilbert space with kernel Sd and since L2
μ(Zd+) is

a renorming of H2(Td), L2
μ(Zd+) and all of its closed subspaces are also reproducing

kernel Hilbert spaces.

Proposition 2.1 Let p ∈ C[z] have degree at most n, let p̃(z) = zn p(1/z̄), and let

dμ = 1

|p(z)|2 dσ(z).

Then, with B as in (2.3) the reproducing kernel for L2
μ(B) is

P(z, ζ ) = (p(z)p(ζ ) − p̃(z) p̃(ζ ))Sd(z, ζ ).

Proof The kernel for L2
μ(Zd+) is p(z)p(ζ )Sd(z, ζ ). This is a simple computation; if

f ∈ H2(Td) and ζ ∈ D
d then

∫

Td

f (z)p(z)p(ζ )Sd(z, ζ )dμ(z) =
∫

Td

f (z)p(z)p(ζ )Sd(z, ζ )
dσ(z)

|p(z)|2

=
∫

Td

f (z)

p(z)
p(ζ )Sd(z, ζ )dσ(z)

= f (ζ )

p(ζ )
p(ζ ) = f (ζ )

The third equality is the reproducing property of Sd (or just the Cauchy integral for-
mula).

We prove in Lemma 2.2 below that L2
μ(Zd+ � B) = p̃L2

μ(Zd+) and a computation

similar to that above proves that the reproducing kernel of p̃L2
μ(Zd+) is p̃(z) p̃(ζ )

Sd(z, ζ ). The result then follows from the fact that:

L2
μ(Zd+) = L2

μ(B) ⊕ L2
μ(Zd+ � B)

and that the reproducing kernel of a direct sum is the sum of the reproducing kernels
of each direct summand. Namely,

p(z)p(ζ )Sd(z, ζ )
︸ ︷︷ ︸

kernel for L2
μ(Zd+)

− p̃(z) p̃(ζ )Sd(z, ζ )
︸ ︷︷ ︸
kernel for L2

μ(Zd+�B)

= kernel for L2
μ(B).

��
The following lemma was used above.

Lemma 2.2

p̃L2
μ(Zd+) = L2

μ(Zd+ � B) = L2
μ(Zd � (Zd \ Z

d
n+))
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Proof Observe that p̃(z) = zn p(z) on T
d and so

〈zα, p̃〉μ =
∫

Td

zα p̃(z)
1

|p(z)|2 dσ(z)

=
∫

Td

zα z̄n p(z)

|p(z)|2 dσ(z)

=
∫

Td

zα−n

p(z)
dσ(z).

This equals zero if any component of α − n is negative (i.e., if α � n) since 1/ p̄ is
anti-analytic in D

d . In particular, if α � n, then for β ≥ 0, α � n + β and therefore

〈zα, zβ p̃〉μ = 0.

This shows

p̃L2
μ(Zd+) ⊥ L2

μ(Zd \ Z
d
n+)

which means

p̃L2
μ(Zd+) ⊂ L2

μ(Zd � (Zd \ Z
d
n+)) ∩ L2

μ(Zd+ � B).

Conversely, if f ∈ L2
μ(Zd+ � B) and f ⊥ p̃L2

μ(Zd+), then we can show f ⊥ L2
μ(Zd+)

as follows.
Since p(0) �= 0, p̃(z) = azn + q(z) with a = p(0) �= 0 and q of degree at most

n with no zn term. By assumption on f , f ⊥ p̃ and f ⊥ q (q ∈ L2
μ(B)). Therefore,

f ⊥ zn . From here we can give an inductive proof on the lattice Z
d+. If f is orthogonal

to all non-negative frequencies less than some α ≥ n, then f is orthogonal to

zα−n p̃(z) = azα + zα−nq(z) and zα−nq(z)

as the latter contains only frequencies less than α. This implies f ⊥ zα , and by induc-
tion f ⊥ L2

μ(Zd+). (As this is a non-traditional way of doing induction we should
explain using the contrapositive: if f is not perpendicular to some zα , then f must
also not be perpendicular to some zβ with β < α. This can be continued until f is not
perpendicular to a monomial supported in B—a contradiction.) This forces f ≡ 0.

Hence, L2
μ(Zd+ � B) = p̃L2

μ(Zd+) ⊂ L2
μ(Zd � (Zd \ Z

d
n+)). By Lemma 2.3 given

below, we automatically have

L2
μ(Zd+ � B) = p̃L2

μ(Zd+) = L2
μ(Zd � (Zd \ Z

d
n+)).

��
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Lemma 2.3 Suppose W, Y ⊂ Z
d and set X = W ∪ Y . Then,

L2
μ(X) � L2

μ(Y ) ⊂ L2
μ(W ) (2.4)

if and only if

L2
μ(W ) � L2

μ(Y ∩ W ) ⊂ (L2
μ(Y ))⊥ (2.5)

and in either case

L2
μ(X) � L2

μ(Y ) = L2
μ(W ) � L2

μ(Y ∩ W ).

Proof This is essentially a result of the decomposition

L2
μ(X � (Y ∩ W )) = L2

μ(X � Y ) ⊕ L2
μ(Y � (Y ∩ W )) (2.6)

= L2
μ(X � W ) ⊕ L2

μ(W � (Y ∩ W )). (2.7)

Suppose L2
μ(X � Y ) ⊂ L2

μ(W ) which necessarily means L2
μ(X � Y ) ⊂ L2

μ(W �
(Y ∩ W )). If f ∈ L2

μ(W � (Y ∩ W )) � L2
μ(X � Y ), then f ∈ L2

μ(Y � (Y ∩ W )) by
(2.6). Hence, f ∈ L2

μ(Y ∩ W � Y ∩ W ) = {0} showing that L2
μ(X � Y ) fills out all

of L2
μ(W � (Y ∩ W )).

Suppose L2
μ(W � (Y ∩ W )) ⊂ L2

μ(Y )⊥ which necessarily means L2
μ(W � (Y ∩

W )) ⊂ L2
μ(X � Y ). If f ∈ L2

μ(X � Y ) � L2
μ(W � (Y ∩ W )), then f ∈ L2

μ(X � W )

by (2.7). Hence, f ⊥ L2
μ(Y ) + L2

μ(W ) = L2
μ(X), forcing f ≡ 0. This shows that

L2
μ(W � (Y ∩ W )) fills out all of L2

μ(X � Y ). ��
So, we have shown that P represents the reproducing kernel of L2

μ(B). Any orthog-
onal decomposition of L2

μ(B) then gives a decomposition of P . Our goal is to prove
that L2

μ(B) has a decomposition with very special properties.

3 Orthogonal Decompositions of L2
µ(B)

We recall the definition of B and define several subsets of B below:

Notation 3.1

X j := {α ∈ Z
d+ : α j < n j }

X S :=
⋃

j∈S

X j = {α ∈ Z
d+ : ∃ j ∈ S : α j < n j }

B =
d⋃

j=1

X j = {α ∈ Z
d+ : ∃ j : α j < n j }

where S ⊂ {1, 2, . . . , d}.
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Proposition 3.2 With the same setup as Proposition 2.1 let S � T = {1, 2, . . . , d} be
a partition. Then,

L2
μ(B) = L2

μ(XT ) ⊕ L2
μ(X S � (X S ∩ XT )).

The content of the above proposition is that the subspaces listed in the orthogonal
decomposition are actually orthogonal, something which would not hold for a general
finite measure on T

d . This proposition is still valid if S or T are empty if we interpret
X∅ = {0}. This makes the proposition sensible (although trivial) in the case d = 1
(something useful later).

We need the following notation for use in dividing up all of structures according
to the partition S � T = {1, . . . , d}. There is no harm in assuming S = {1, . . . , s},
T = {s + 1, . . . , d}, and t := d − s.

zS = (z1, . . . , zs) ∈ C
s, zT = (zs+1, . . . , zd) ∈ C

t , z = (zS, zT )

nS = (n1, . . . , ns) ∈ Z
s, nT = (ns+1, . . . , nd) ∈ Z

t , n = (nS, nT )

αS = (α1, . . . , αs) ∈ Z
s, αT = (αs+1, . . . , αd) ∈ Z

t , α = (αS, αT )

BS = {αS ∈ Z
s+ : αS � nS}, BT = {αT ∈ Z

t+ : αT � nT }
It is useful to note here that

X S = BS × Z
t+, XT = Z

s+ × BT ,

BS × BT = X S ∩ XT , B = X S ∪ XT

Proof of Proposition 3.2 The proposition is really a type of inclusion-exclusion prin-
ciple as it can be rewritten as saying

L2
μ((X S ∪ XT ) � XT ) = L2

μ(X S � (X S ∩ XT )).

To prove it, consider following the measures μzS on T
t which are indexed by

zS ∈ T
s :

dμzS (zT ) = 1

|p(zS, zT )|2 dσ(zT ),

i.e. for each zS ∈ T
s we get a measure on T

t , and points in T
t are denoted by zT .

By Proposition 2.1, the reproducing kernel for L2
μzS

(BT ) is

PT
zS

(zT , ζT ) := (p(zS, zT )p(zS, ζT ) − p̃(zS, zT ) p̃(zS, ζT ))St (zT , ζT )

where again St is the t-dimensional Szegő kernel. Notice that PT
zS

(zT , ζT ) is a trig-
onometric polynomial of degree at most nS as a function of zS , while as a function
of zT this function only has Fourier coefficients corresponding to points of BT . For
these reasons, the function of z = (zS, zT ) ∈ T

d defined for each fixed ζ ∈ D
d by

Lζ (z) = L(z, ζ ) = znS
S ζ̄S

nS Ss(zS, ζS)PT
zS

(zT , ζT )
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is in L2
μ(Zs+ × BT ) = L2

μ(XT ). (Specifically, as a function of (zS, zT )

Ss(zS, ζS) ∈ L2
μ(Zs+ × {0T })

PT
zS

(zT , ζT ) ∈ L2
μ([−nS, nS] × BT )

Here 0T is the zero t-tuple in Z
t and [−nS, nS] = {αS ∈ Z

s : −nS ≤ αS ≤ nS}.) So,
if f ⊥ L2

μ(XT ), then

〈 f, Lζ 〉μ = 0 for all ζ ∈ D
d . (3.1)

On the other hand, L can be thought of as a difference of two terms:

Lζ (z) = p(zS, zT )p(zS, ζT )(znS
S ζ̄S

nS
)Sd(z, ζ )

︸ ︷︷ ︸
Aζ

− p̃(zS, zT ) p̃(zS, ζT )(znS
S ζ̄S

nS
)Sd(z, ζ )

︸ ︷︷ ︸
Bζ

.

(We used Sd(z, ζ ) = Ss(zS, ζS)St (zT , ζT ) above.)
Since znS

S p̃(zS, ζT ) has only non-negative Fourier coefficients in zS , the second
term Bζ is an element of p̃L2

μ(Zd+) = L2
μ(Zd+ � B). So, if f ∈ L2

μ(B), then Bζ ⊥ f
and we have

〈 f, Lζ 〉μ = 〈 f, Aζ 〉μ. (3.2)

Finally, if f ∈ L2
μ(Zd+) then

〈 f, Aζ 〉μ =
∫

Ts

∫

Tt

f (z)p(z)p(zS, ζT )St (zT , ζT )
dσ(zT )

|p(z)|2 (z̄S
nS ζ

nS
S )Ss(zS, ζS)dσ(zS)

=
∫

Ts

∫

Tt

f (z)

p(z)
p(zS, ζT )St (zT , ζT )dσ(zT )(z̄S

nS ζ
nS
S )Ss(zS, ζS)dσ(zS)

=
∫

Ts

f (zS, ζT )

p(zS, ζT )
p(zS, ζT )(z̄S

nS ζ
nS
S )Ss(zS, ζS)dσ(zS)

=
∫

Ts

f (zS, ζT )(z̄S
nS ζ

nS
S )Ss(zS, ζS)dσ(zS)

=
∑

αS≥nS

∑

αT ≥0

f̂ (αS, αT )ζ α (3.3)

which is the L2(Td) projection of f to znS
S H2(Td). (The second and fourth equalities

are algebra, the third is the reproducing property of St , and the fifth is a Fourier series
computation.)
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If we combine the observations (3.1)–(3.3) above we see that if

f ⊥ L2
μ(XT ) and f ∈ L2

μ(B)

then

f̂ (α) = 0

for αS ≥ nS , αT ≥ 0 and therefore f ∈ L2
μ(X S). So, L2

μ(B � XT ) ⊂ L2
μ(X S).

By Lemma 2.3, this proves

L2
μ(B � XT ) = L2

μ(X S � (X S ∩ XT ))

since B = X S ∪ XT . ��

4 Closed Under Shifts

The goal of this section is to prove two facts.

Proposition 4.1 With the setup of Proposition 3.2, L2
μ(X S) is closed under multipli-

cation by z j for all j /∈ S, and contains all subspaces of L2
μ(B) with this property.

Proposition 4.2 With the setup of Proposition 3.2, L2
μ(X S � (X S ∩ XT )) is closed

under multiplication by z j for all j ∈ T .

The first fact is not difficult.

Proof of Proposition 4.1 An element f ∈ L2
μ(B) is in L2

μ(X S) if and only if f̂ (α) = 0
whenever αk ≥ nk for all k ∈ S. This property is obviously unaffected by multiplying
f by variables z j for j /∈ S.

On the other hand, if f ∈ L2
μ(B), has the property that

zα f ∈ L2
μ(B)

for all α ≥ 0 satisfying α j = 0 for j ∈ S, then f must be an element of L2
μ(X S).

Otherwise, f̂ (α) �= 0 for some α ≥ 0, with αk ≥ nk for all k ∈ S. But then if we set
m = (m1, . . . , md) where

m j =
{

0 for j ∈ S

n j for j /∈ S

then zm f /∈ L2
μ(B)—a contradiction. This proves that L2

μ(X S) contains all subspaces
closed under multiplication by all z j for j /∈ S. ��
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As for Proposition 4.2, it is convenient to prove the proposition by adjoining a
variable and using results in d variables that have already been proven. Elements of
C

d+1 = C × C
d will be written as (z0, z). So, now p ∈ C[z0, z] is a polynomial

of d + 1 variables of degree at most (n0, n) with no zeros in Dd+1. The measure μ

corresponds to |p(z0, z)|−2dσ(z0, z).
Notation already defined for d variables will retain its meaning, while we will use

the following notation for certain d + 1-variable objects:

Y j = {(α0, α) ∈ Z
d+1+ : α j < n j }

YS =
⋃

j∈S

Y j for S ⊂ {0, 1, . . . , d}

We also find it convenient to use interval notation for subsets of integers (as opposed
to real numbers):

(a, b) = {k ∈ Z : a < k < b}
[a, b) = {k ∈ Z : a ≤ k < b}, etc.

We never make use of intervals of real numbers, so there should be no confusion.
Now, let S � T be a partition of {1, . . . , d}, and let T0 = T ∪ {0}. We will prove

that

L2
μ(YS � (YT0 ∩ YS))

is closed under multiplication by z0. This is enough to prove the proposition.

Proof of Proposition 4.2 For each z0 ∈ T, let dμz0(z) be the measure on T
d

dμz0(z) = 1

|p(z0, z)|2 dσ(z).

Let

�z0(z, ζ )

denote the reproducing kernel for L2
μz0

(XT � (XT ∩ X S)), and let

�z0(z, ζ )

denote the reproducing kernel for L2
μz0

(X S).
By Proposition 3.2,

(p(z0, z)p(z0, ζ ) − p̃(z0, z) p̃(z0, ζ ))Sd(z, ζ )

= �z0(z, ζ ) + �z0(z, ζ ).
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The left hand side is a trigonometric polynomial in z0 of degree at most n0, while
�z0(z, ζ ) as a function of z is the only function on the right hand side with any Fourier
support in X S \ XT . This means the coefficients of zα in �z0 for α ∈ X S \ XT are
trigonometric polynomials with respect to z0; i.e. as a function of (z0, z)

�z0(z, ζ ) ∈ L2
μ(Z × (X S ∩ XT ) ∪ [−n0, n0] × (X S \ XT ))

= L2
μ(Z × (X S ∩ XT ) ∪ [−n0, n0] × X S) (4.1)

(Perhaps it needs to be explicitly stated that �z0(z, ζ ) is actually in L2(Td+1) as a
function of (z0, z) ∈ T

d+1. See Lemma 4.3 below.)
Define for each Z = (ζ0, ζ ) ∈ D

d+1

L Z (z0, z) = L((z0, z), Z) = z̄0ζ0

1 − z̄0ζ0
�z0(z, ζ ). (4.2)

By (4.1) and (4.2),

L Z ∈ L2
μ(Z × (X S ∩ XT ) ∪ (−∞, n0) × X S).

Now, let f ∈ L2
μ(Z × X S), then for each Z = (ζ0, ζ ) ∈ D

d+1

〈 f, L Z 〉μ =
∫

T

∫

Td

f (z0, z)�z0(z, ζ )dμz0(z)
z0ζ̄0

1 − z0ζ̄0
dσ(z0) (4.3)

=
∫

T

f (z0, ζ )
z0ζ̄0

1 − z0ζ̄0
dσ(z0) (4.4)

=
−1∑

α0=−∞

∑

α≥0

f̂ (α0, α)ζ̄0
−α0

ζ α; (4.5)

the equality (4.3) is by definition, (4.4) is because �z0 is a reproducing kernel for X S

with respect to μz0 , and (4.5) is a Fourier series computation. If

f ∈ L2
μ(Z × X S) and

f ⊥ L2
μ(Z × (X S ∩ XT ) ∪ (−∞, n0) × X S)

then f ⊥ L Z and therefore the expression in (4.5) is zero which implies f ∈ L2
μ

(Z+ × X S) = L2
μ(YS). Hence, by Lemma 2.3

L2
μ(Z × X S) � L2

μ(Z × (X S ∩ XT ) ∪ (−∞, n0) × X S) (4.6)

is unchanged if we intersect all sets with YS . This proves (4.6) equals

L2
μ(YS) � L2

μ(YS ∩ YT0) (4.7)
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where we are using the facts that

(Z × X S) ∩ YS = YS

and

(Z × (X S ∩ XT ) ∪ (−∞, n0) × X S) ∩ YS

= (YS ∩ YT ) ∪ (YS ∩ Y{0})
= YS ∩ YT0 .

This proves

L2
μ(YS � (YS ∩ YT0)) ⊥ L2

μ((−∞, 0) × X S)

since (4.6) = (4.7) and since

(−∞, 0) × X S ⊂ Z × (X S ∩ XT ) ∪ (−∞, n0) × (X S \ XT ).

This is enough to show L2
μ(YS � (YS ∩ YT0)) is closed under multiplication by z0, as

follows.
Let f ∈ L2

μ(YS � (YS ∩YT0)). By Proposition 4.1, it is clear that z0 f ∈ L2
μ(YS). To

show z0 f ⊥ L2
μ(YS∩YT0), let (α0, α) ∈ YS∩YT0 . If α0 > 0 then (α0−1, α) ∈ YS∩YT0

in which case

〈z0 f, zα0
0 zα〉μ = 〈 f, zα0−1

0 zα〉μ = 0. (4.8)

If α0 = 0, then (α0 − 1, α) ∈ (−∞, 0) × X S in which case we again have (4.8)
because f ⊥ L2

μ((−∞, 0) × X S). Hence, z0 f ∈ L2
μ(YS � (YS ∩ YT0)), proving that

this subspace is closed under multiplication by z0. ��
We used the following lemma in the above proof.

Lemma 4.3 Let X ⊂ Z
d+, ζ ∈ D

d . The reproducing kernel of L2
μz0

(X), written

Kz0(X)(z, ζ ) is in L2(Td+1) as a function of (z0, z).

Proof For each α ∈ Z
d , let

Cα(z0) =
∫

Td

zα

|p(z0, z)|2 dσ(z)

and define the following (generally infinite) self-adjoint matrix indexed by X

CX (z0) = (Cα−β(z0))α,β∈X .
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The entries of CX (z0) are clearly continuous on T. Since |p| is bounded above and
below on the circle, it turns out CX (z0) is bounded above and below as an operator on
	2(X). Indeed, for (vα) ∈ 	2(X)

∑

α,β∈X

Cα−β(z0)vαv̄β =
∫

Td

| ∑α∈X vαzα|2
|p(z0, z)|2 dσ(z)

is bounded above and below by

∫

Td

∣
∣
∣
∣
∣

∑

α∈X

vαzα

∣
∣
∣
∣
∣

2

dσ(z) =
∑

α∈X

|vα|2

with constants c1 = (infTd+1 |p|)−2 and c2 = (supTd+1 |p|)−2, respectively.
Let

Bα,β(z0) = (CX (z0))
−1
α,β

be the (α, β) entry of the inverse of CX (z0). The reproducing kernel Kz0(X)(z, ζ ) can
be given explicitly as

Kz0(X)(z, ζ ) =
∑

α,β∈X

Bβ,α(z0)z
α(ζ̄ )β .

The proof of this fact is a direct computation; if γ ∈ X , then

〈

zγ
∑

α,β∈X

Bβ,α(z0)z
α(ζ̄ )β

〉

μz0

=
∑

α,β∈X

Cγ−α(z0)Bα,β(z0)ζ
β = ζ γ .

Since CX (z0) is bounded above and below,

∑

α∈X

⎛

⎝
∑

β∈X

Bα,β(z0)(ζ̄ )β

⎞

⎠ zα

is in L2(Td+1) as a function of (z0, z) for each ζ ∈ D
d . ��

5 Proof of Theorem 1.5

So far we have shown (in Proposition 3.2)

L2
μ(B) = L2

μ(XT ) ⊕ L2
μ(X S � (X S ∩ XT ))
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for each partition S � T = {1, . . . , d}. In addition, L2
μ(X S) and L2

μ(X S � (X S ∩ XT ))

are closed under multiplication by all variables z j for j ∈ T and L2
μ(X S) is maximal

among subspaces with this property (Propositions 4.1 and 4.2).
Theorem 1.5 now reduces to bookkeeping and facts about reproducing kernels.

Namely, a kernel is a P-kernel if it is the reproducing kernel for a closed subspace of
L2

μ(B) (Lemma 7.5). For a non-empty S ⊂ {1, . . . , d}, set T = {1, . . . , d} \ S and let

• KS be the reproducing kernel for L2
μ(XT ) and

• L S be the reproducing kernel for L2
μ(XT � (X S ∩ XT ))

(these definitions look like S and T have been mistakenly switched but they have
not). Both KS and L S are S-contractive P-kernels by Lemma 7.7 and Propositions 4.1
and 4.2.

By Proposition 3.2 we have

P = KS + LT .

To prove the maximality property of KS , suppose P ≥ K ≥ 0 for some
S-contractive kernel K . By Lemmas 7.2 and 7.6 below, zα Kζ ∈ L2

μ(B) for all ζ ∈ D
d

and all α ≥ 0 satisfying α j = 0 for j /∈ S. By Proposition 4.1, Kζ ∈ L2
μ(XT ) and

therefore by Lemma 7.4, KS must dominate K :

KS ≥ K .

This completes the proof of Theorem 1.5.

6 Proof of Theorem 1.3

We have already proven the theorem for rational inner functions which are regular on
Dd , since such functions can always be represented by f = p̃/p where p ∈ C[z] with
no zeros on Dd . Namely, we have by Theorem 1.5

1 − f (z) f (ζ )
∏d

j=1(1 − z j ζ̄ j )
= KS(z, ζ )

p(z)p(ζ )
+ LT (z, z)

p(z)p(ζ )
.

Let us agree to absorb the denominators into the definitions of KS and LT so that we
really have the formula

1 − f (z) f (ζ )
∏d

j=1(1 − z j ζ̄ j )
= KS(z, ζ ) + LT (z, ζ ).

By Theorem 1.5, KS + LT = KT + L S and by maximality of KS, KT among S and
T -contractive P-kernels, respectively, we have

KS − L S = KT − LT ≥ 0
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and

KS ≥ KS′ for S ⊂ S′.

To prove the theorem for a general holomorphic function f : D
d → D, we use

a theorem of Rudin [5, Theorem 5.5.1] which says that such f can be approximated
uniformly on compact subsets of D

d by rational inner functions, regular on Dd . So,
say fk → f uniformly on compacta, with each fk rational, inner, and continuous up
to Dd . We have corresponding decompositions:

1 − fk(z) fk(ζ )
∏d

j=1(1 − z j ζ̄ j )
= K (k)

S (z, ζ ) + L(k)
T (z, ζ ).

Since

|K (k)
S (z, ζ )|2 ≤ K (k)

S (z, z)K (k)
S (ζ, ζ ) ≤ 1

∏d
j=1(1 − |z j |2)(1 − |ζ j |2)

(with L(k)
T satisfying a similar estimate), we see that the K (k)

S ’s and L(k)
T ’s are holomor-

phic on D
d ×D

d and locally uniformly bounded and hence they are in a normal family.
Taking subsequences, we may assume K (k)

S converges to some KS and L(k)
T converges

to some LT locally uniformly. Positive semi-definiteness, S and T contractivity, and
the identities/inequalities

KS − L S = KT − LT ≥ 0

KS ≥ K ′
S for S ⊂ S′

are all preserved under such limits.
Therefore we conclude that

1 − f (z) f (ζ )
∏d

j=1(1 − z j ζ̄ j )
= KS(z, ζ ) + LT (z, ζ )

is a valid decomposition.

Appendix: Reproducing Kernels

We record a number of facts about reproducing kernels which we used above. We are
sketchy since much of this is well-known. For general references see [2,3]. As before,
P is the reproducing kernel for L2

μ(B), where dμ = |p|−2dσ and B = {α ∈ Z
d+ :

α � n}. (The details of μ and B are by no means essential for what follows.)
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Lemma 7.1 ([3, Theorem 2.2]) A function f : D
d → C is in a reproducing kernel

Hilbert function space H on D
d with kernel K if and only if

K (z, ζ ) ≥ ε f (z) f (ζ )

for some ε > 0. The largest possible ε is equal to || f ||−2.

Lemma 7.2 Let K be a positive semi-definite kernel on D
d , and let f be a finite linear

combination of functions of the form Kη(z) := K (z, η). Then, there is an ε > 0 such
that

K (z, ζ ) ≥ ε f (z) f (ζ ).

In the case of a single kernel function we can say

K (z, ζ ) ≥ εKη(z)Kη(ζ )

if and only if 1 ≥ εK (η, η).

Proof Follows from Lemma 7.1. ��
Lemma 7.3 A positive semi-definite kernel K satisfying P ≥ K is a P-kernel (as in
Definition 1.4) if and only if for every function f : D

d → C

K (z, ζ ) ≥ ε f (z) f (ζ )

implies

K (z, ζ ) ≥ f (z) f (ζ )

|| f ||2μ

in which case we necessarily have || f ||−2
μ ≥ ε. In particular, K (ζ, ζ ) = ||Kζ ||2μ holds

for all ζ ∈ D
d whenever K is a P-kernel. (Here Kζ (z) = K (z, ζ ).)

Proof Follows from the definition of a P-kernel and Lemma 7.1. ��
Lemma 7.4 Suppose P ≥ K ≥ 0. Let H = ∨{Kζ : ζ ∈ D

d} be the closed span in
L2

μ(B) of the functions Kζ (z) = K (z, ζ ), and let L be the reproducing kernel for H.
Then, L ≥ K .

Proof This essentially follows from Corollary 2.6 of [3]. ��
Lemma 7.5 If K is a reproducing kernel for a closed subspace of L2

μ(B), then K is
a P-kernel.

Proof This follows from Lemmas 7.1 and 7.3 and the fact that the norm on a subspace
is the same as the norm in the original space. ��
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Lemma 7.6 If a kernel K with P ≥ K is z j -contractive, then

K (z, ζ ) ≥ ε f (z) f (ζ )

implies f, z j f ∈ L2
μ(B).

Proof By assumption, (1 − z j ζ̄ j )K (z, ζ ) ≥ 0 and therefore

P(z, ζ ) ≥ K (z, ζ ) ≥ z j ζ̄ j K (z, ζ ) ≥ εz j ζ̄ j f (z) f (ζ )

which shows z j f ∈ L2
μ(B) (see Lemma 7.1). ��

Lemma 7.7 If H is a closed subspace of L2
μ(B) and H is closed under multiplication

by z j , then the reproducing kernel for H is z j -contractive.

See for example Corollary 2.37 of [2].
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