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Abstract. We use relative symplectic cohomology to detect heavy sets,
with the help of index bounded contact forms. This establishes a re-
lation between two notions SH-heaviness and heaviness, which partly
answers a conjecture of Dickstein–Ganor–Polterovich–Zapolsky in the
symplectically aspherical setting.
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1. Introduction

Heavy and super-heavy sets were introduced by Entov and Polterovich in
[5]. These notions express certain aspects of symplectic rigidity of subsets in
closed symplectic manifolds, through deep relations between the quantum co-
homology and the Hamiltonian dynamics. In this article, we will use a recent
invariant, the relative symplectic cohomology by Varolgunes [19], to give a
sufficient condition for some compact sets being heavy. As an application, we
find many examples of singular Lagrangian sets that are heavy.

The relative symplectic cohomology assigns a module SHM (K; Λ0) over
the Novikov ring, and an algebra SHM (K; Λ) over the Novikov field to any
compact subset K of a closed symplectic manifold M . This assignment tells
us how the quantum cohomology ring QH(M) is distributed among compact
subsets of M . And these pieces can be glued together by a notable Mayer–
Vietoris process [19].
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This idea of distributing the quantum cohomology ring to compact
sets was further explored by Dickstein–Ganor–Polterovich–Zapolsky [4]. They
successfully combined the theory of the relative symplectic cohomology with
the theory of ideal-valued measures which was first studied by Gromov [9], to
construct a symplectic ideal-valued quasi-measure on any closed symplectic
manifold. In particular, a new notion of SH-heavy sets was defined. Com-
paring these two notions of heaviness becomes an interesting problem. They
proposed the following conjecture.

Conjecture 1.1. [Conjecture 1.52 [4]] A compact subset of a closed symplectic
manifold is heavy if and only if it is SH-heavy.

Under an index bounded condition, Dickstein–Ganor–Polterovich–Zapolsky
proved that heaviness implies SH-heaviness.

Theorem 1.2. (Corollary 1.55 [4]) If (M,ω) is symplectically aspherical and
K is a heavy contact-type region with incompressible index bounded boundary,
then K is SH-heavy.

Our first result is to prove that SH-heaviness implies heaviness, under
a similar geometric setting.

Theorem 1.3. [Corollary 4.5] Let (M,ω) be a symplectically aspherical man-
ifold and let K be an index bounded domain. If K is SH-heavy, then K is
heavy.1

Remark 1.4. We remark that our definition of the index bounded condition
is slightly different than those in Dickstein et al. [4] and Tonkonog and Varol-
gunes [18]. See (2.3).

The idea of the proof is motivated by a condition that certain smooth
Lagrangian submanifold is heavy, where the quantum cohomology and the
Lagrangian Floer theory are related by a closed-open map. See Entov and
Polterovich [5] for the monotone case and Fukaya et al. [7] for the general
case.

Theorem 1.5. [Theorem 1.6 [7]] For a closed relative spin weakly unobstructed
Lagrangian submanifold L of a symplectic manifold M . If the self Lagrangian
Floer cohomology HF (L) is non-zero, then L is heavy.

We will have an analogue of this theorem for the relative symplectic
cohomology.

Theorem 1.6. [Theorem 3.8] Let (M,ω) be a symplectically aspherical mani-
fold and let K be an index bounded domain. If SHM (K; Λ) is non-zero, then
K is heavy.

1In this article, we only talk about heaviness with respect to the unit of the quantum
cohomology.



Heavy sets and index bounded Page 3 of 22    21 

The invariant SHM (K; Λ) is a unital Λ-algebra, where the product
structure was constructed by Tonkonog–Varolgunes [18]. Here we study the
relation between its unit and certain spectral invariants. Then Theorem 1.3
can be deduced from Theorem 1.6.

Now we discuss applications of the above theorem. The relative sym-
plectic cohomology sometimes only depends on the intrinsic geometry of K,
not on the embedding of K into M . Consider an index bounded domain K in
a symplectic aspherical manifold (M,ω), then (K,ω |K) is a convex symplec-
tic manifold. One can define the classical symplectic cohomology SH(K̂; Λ),
see [20] and Sect. 5.3.2 [4]. Here K̂ is the symplectic completion of K.

Theorem 1.7. [Theorem 1.57 [4]] For K and M as above, if π1(∂K) → π1(M)
is injective, then SHM (K; Λ) is isomorphic to SH(K̂; Λ). Moreover

ker(H∗(M ; Λ) → H∗(K; Λ)) ⊂ ker(r : SHM (M ; Λ) → SHM (K; Λ)).

Hence, Theorem 1.6 and Theorem 1.7 together give many examples of
heavy sets, by only considering intrinsic properties of K.

Corollary 1.8. Let K and M be as above with π1(∂K) → π1(M) being injec-
tive. If SH(K̂; Λ) �= 0, then K is heavy in M .

Proof. This follows from Theorem 1.6 and Theorem 1.7. �

Corollary 1.9. Let K and M be as above with π1(∂K) → π1(M) being in-
jective. Then M − K is heavy in M . Particularly, K is not super-heavy in
M .

Proof. Since K is a compact domain in M , the top degree volume class of M
is always in

ker(H∗(M ; Λ) → H∗(K; Λ)).
By Theorem 1.7, it is also in

ker(r : SHM (M ; Λ) → SHM (K; Λ)).

Then using the Mayer–Vietoris property, we can show SHM (M − K; Λ) �= 0.
See Theorem 4.2 and Corollary 4.6 for more details, where we study the
heaviness of the complement of an index bounded domain. �

A sample example of the above corollary is that

Example 1.10. Let M be a symplectically aspherical manifold with dimen-
sion dimM ≥ 4 and K be a Weinstein neighborhood of a Lagrangian sphere
S, induced by the round metric. The boundary ∂K is the standard con-
tact sphere. After small perturbation, it is index bounded with respect to a
non-degenerate contact form. On the other hand, the symplectic cohomology
SH(K̂; Λ) is known to be non-zero and infinite-dimensional. Hence, the above
two Corollaries tell us that both K and M − K are heavy. We remark that
the heaviness of K also follows that S has a non-zero self Floer cohomology
since it is weakly exact. The heaviness of M − K is new. See Sect. 5 [17] for
other examples of index bounded Weinstein neighborhoods of Lagrangians.
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Next we discuss another family of examples, coming from skeleta with
respect to a divisor. For a closed symplectically aspherical manifold M and a
chosen Giroux divisor D (Definition 4.8), a suitable skeleton L in M −D was
constructed in [18]. Also see Borman et al. [2] for the skeleton in the monotone
case. Moreover they proved that SHM (Ū ; Λ) �= 0 for any neighborhood U of
L, see Theorem 1.24 [18]. Hence, we can prove the heaviness of the skeleton
L by shrinking U .

Theorem 1.11. [Corollary 4.14] For (M,ω) being symplectically aspherical
and D being a Giroux divisor in M , the Lagrangian skeleton L is a heavy
set.

One simple example of the above theorem is M being a symplectic 2-
torus and D being a finite collection of points. Then the skeleton L is a heavy
set. Particularly, for D being one point and for a suitable choice of Liouville
vector field on the complement of D, L is the union of circles and arcs. In
this case, Ishikawa [11] and Morimichi [15] already proved that L is not only
heavy but also super-heavy. Theorem 1.11 gives more examples of heavy sets,
possibly singular and in higher dimensions.

Now we give a quick sketch of the proof of Theorem 1.6. The relative
symplectic cohomology of the domain K can be computed using a family
{Gn} of increasing Hamiltonian functions which converge to zero on K and
go to infinity outside K. Given any Hamiltonian function f on M which is
slightly less than zero on K, see Fig. 1, we use continuation maps between
CF (f) and CF (Gn) to estimate the spectral number of the unit with respect
to f . By a special choice of Gn, the outputs of the continuation maps could be
orbits in K, which we call “lower orbits”, or could be outside K, which we call
“upper orbits”. One key technical procedure is a process of “ignoring upper
orbits” (Lemma 3.5) developed in McLean [14], Sun [17]. See also Borman et
al. [2] for a similar process in the monotone case, but with a different proof.
By this process, we know the output of the continuation map are lower orbits,
whose Hamiltonian value is roughly zero. Together with the index bounded
condition, we can control the action of the output of the continuation map.
This gives the desired estimate of the spectral number of the unit.

Remark 1.12. The result “SHM (K; Λ) �= 0 implies that K is heavy” is now
proved in full generality in Mak et al. [13]. Their argument uses a chain level
algebra structure of the relative symplectic cohomology which is developed
in Abouzaid et al. [1]. Hence, we feel it is still worth recording the proof of
Theorem 1.6 here, which only uses the non-Archimedean vector space struc-
ture under a more restricted geometric setting. The proofs in Mak et al.
[13] and in this article are different and independent. In the first version of
this article in arXiv, some results were claimed in the symplectic Calabi–Yau
setting without the aspherical condition. We withdraw those claims in this
article while expecting they are true. The reasons are the following. First,
its proof requires certain properties of one version of the relative symplectic
cohomology whose generators are capped orbits rather than orbits. Estab-
lishing such a theory is expected but beyond the scope of the current article.
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Figure 1. Hamiltonian functions

Second, as mentioned above, general situations can be dealt with using dif-
ferent methods. So we choose to focus on the symplectically aspherical case
here, to illustrate the usage of the geometry of index bounded domains.

2. Floer theory background

We work on a closed symplectically aspherical manifold (M,ω). This means
that

ω |π2(M)= c1(TM) |π2(M)= 0.

In this section, we briefly review the Hamiltonian Floer theory, spectral in-
variants, and relative symplectic cohomology.

2.1. Hamiltonian Floer theory

We refer to Hofer and Salamon [10] for more details on Hamiltonian Floer
theory. However, our sign conventions are the same as in Sect. 3 [19], which
will be clarified later in the context.

Given a time-dependent Hamiltonian function Ht : [0, 1] × M → R, its
Hamiltonian vector field XHt

is determined by dHt = ω(XHt
, ·). We say Ht is

non-degenerate if all its one-periodic Hamiltonian orbits are non-degenerate.
In this article, we only study the contractible one-periodic orbits. The action
of such an orbit γ is

AHt
(γ) :=

∫
γ

Ht +
∫

w

ω

where w : D2 → M is a spanning disk of γ. An orbit γ has a degree

|γ| := n + CZ(γ)
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where CZ(γ) is the Conley–Zehnder index of γ with respect to some spanning
disk. Under the symplectic aspherical condition, the assignments of action
and degree are independent of the spanning disk. If Ht is a C2-small Morse
function and γ is a critical point of Ht, then |γ| equals the Morse index of γ.

The Hamiltonian Floer chain group CF k(Ht) is the C-vector space gen-
erated by degree-k contractible one-periodic orbits of Ht. There is a Floer
differential d : CF k(Ht) → CF k+1(Ht), which makes all CF k(Ht) into a
chain complex. It is defined by counting Floer cylinders

d(x) :=
∑

|y|=|x|+1

�M(x, y)y.

We call this chain complex the Hamiltonian Floer complex, and call its ho-
mology the Hamiltonian Floer homology HF k(Ht). In this subsection, all
complexes are over C and we omit it in the notation.

Given two non-degenerate Hamiltonians H0
t ,H1

t and a suitable homo-
topy Hs

t of functions connecting them, there is a continuation map

h01 : CF k(H0
t ) → CF k(H1

t ),

which is also defined by counting certain Floer cylinders

h01(x) :=
∑

|y|=|x|
�M(x, y)y.

It is a chain map; hence, it induces a map, also written as h01, from HF k(H0
t )

to HF k(H1
t ). When the s-derivative of Hs

t is non-negative, we say it is a
monotone homotopy.

Remark 2.1. In the above definitions, we need to choose families of almost
complex structures to achieve regularity of moduli spaces of Floer cylinders.
We usually omit them in the notation and refer to Hofer and Salamon [10]
for more details.

In our convention, the Floer differential increases the action and degree
of an orbit. If the homotopy Hs

t between two Hamiltonians is monotone, then
the continuation map does not decrease the action.

Let f be a Morse function on M and let CM∗(f) be the Morse complex
of M (graded as a cohomology theory). There is a PSS map [16]

PSSHt
: CMk(f) → CF k(Ht)

defined by counting spiked disks. It induces an isomorphism between HM∗(f) ∼=
H∗(M) and HF ∗(Ht), which we call the PSS isomorphism and also write it
as PSSHt

.
The PSS map is compatible with the continuation maps. Given two

Hamiltonians H0
t ,H1

t and a homotopy between them, we have

h01 ◦ PSSH0
t

= PSSH1
t

in the homology level.
Given a non-zero class A ∈ Hk(M) and a Hamiltonian Ht, we define

the spectral invariant

c(A,Ht) := sup{AHt
(γ) | γ ∈ CF k(Ht), dγ = 0, [γ] = PSSHt

(A)}.
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In most cases, we care about the spectral invariant c(1,Ht) of the unit
1 ∈ H0(M). These spectral invariants satisfy lots of good properties. For
example, see subsect. 3.4 in [5]. Particularly, using approximation, we can
define spectral invariants for any smooth function on M . The homogenized
spectral invariant of a time-independent function is defined as

μ(1,H) := lim
k→∞

c(1, kH)
k

.

Then we have the following definition of heavy sets.

Definition 2.2. A compact subset K of M is called heavy if for any smooth
function H on M , we have μ(1,H) ≤ maxK H.

We have several remarks about this definition.

Remark 2.3. (1) Our sign conventions here make the Hamiltonian Floer
theory a cohomological theory, while in [5], it is a homological theory.
See Sect. 4.2 [12] for a comparison. Hence, our definition above is in
terms of max rather than min.

(2) Strictly speaking, the above definition should be “heavy with respect to
the unit 1”. Generally one can also talk about heaviness with respect to
other idempotent of the quantum cohomology. In this article, we only
talk about the unit.

(3) The spectral invariant has the shifting property: μ(1,H+C) = μ(1,H)+
C for any constant C. Hence, we only need to check functions which are
non-positive on K to verify the above definition.

2.2. Relative symplectic cohomology

Now we review the relative symplectic cohomology by Varolgunes [19].
The coefficient rings will be used are the Novikov ring

Λ0 =

{ ∞∑
i=0

aiT
λi | ai ∈ C, λi ∈ R≥0, λi < λi+1, lim

i→∞
λi = +∞

}

and the Novikov field

Λ =

{ ∞∑
i=0

aiT
λi | ai ∈ C, λi ∈ R, λi < λi+1, lim

i→∞
λi = +∞

}
.

Here T is a formal variable of degree zero. A valuation defined on Λ and Λ0

is

v

(
0 �=

∞∑
i=0

aiT
λi

)
:= min{λi | ai �= 0}, v(0) := +∞.

Given a non-degenerate Hamiltonian Ht, let CF k(Ht; Λ0) be the free
Λ0-module generated by degree-k contractible one-periodic orbits of Ht. We
extend the valuation from Λ0 to CF k(Ht; Λ0) as follows. For an element
x =

∑
aiγn ∈ CF k(Ht; Λ0), define

v(x) := min
i

{v(ai)}.
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That is, the valuation of an element in CF k(Ht; Λ0) is determined by its
coefficients in Λ0, independent of the orbits. The weighted Floer differential
is defined as the classical Floer differential weighted by the action difference.

dT (x) :=
∑

|y|=|x|+1

�M(x, y)yTAHt (y)−AHt (x).

We call this chain complex the weighted Hamiltonian Floer complex, and
call its homology the weighted Hamiltonian Floer homology HF k(Ht; Λ0).
Similarly, given two non-degenerate Hamiltonians H0

t ,H1
t and a monotone

homotopy Hs
t connecting them, there is a weighted continuation map

h01
T : CF k(H0

t ; Λ0) → CF k(H1
t ; Λ0),

by defining

h01
T (x) :=

∑
|y|=|x|

�M(x, y)yT
A

H1
t
(y)−A

H0
t
(x)

.

Since our homotopy is monotone, the continuation map does not decrease
the action, so above maps are well-defined over Λ0.

Now let K be a compact subset of M . Consider a sequence of non-
degenerate Hamiltonians {Hn,t} such that

(1) Hn,t ≤ Hn+1,t for all n ≥ 1.
(2) Hn,t converge to zero on K and diverge to positive infinity outside K.

Then we choose suitable families of almost complex structures and mono-
tone homotopies connecting adjacent Hn,t and Hn+1,t, to get a sequence of
Hamiltonian Floer complexes, connected by continuation maps

C := CF ∗(H1,t; Λ0) → CF ∗(H2,t; Λ0) → · · · .

We call such a sequence of complexes a Floer one-ray.
Next we use a Floer one-ray to form a new complex, called the Floer

telescope. Its underlying complex is defined as

tel∗(C) := ⊕n(CF ∗(Hn,t; Λ0) ⊕ CF ∗(Hn,t; Λ0)[1])

where CF ∗(Hn,t; Λ0)[1] means shifting the degree by one. Using the weighted
Floer differential dn

T and the weighted continuation map h
n(n+1)
T , we define

the differential δ of the telescope as follows. If xn ∈ CF k(Hn; Λ0), then

δxn = (−1)kdn
T xn ∈ CF k+1(Hn; Λ0), (2.1)

and if x′
n ∈ CF k(Hn; Λ0)[1], then

δx′
n = ((−1)kx′

n, (−1)k+1dn
T x′

n, (−1)k+1h
n(n+1)
T x′

n)

∈ CF k(Hn; Λ0) ⊕ CF k+1(Hn; Λ0)[1] ⊕ CF k(Hn+1; Λ0).
(2.2)

One can check that δ2 = 0; hence, we have a complex (tel∗(C), δ). A typical
element in tel∗(C) will be written as

x = (x1, x
′
1, x2, x

′
2, · · · ).
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Since tel∗(C) is a direct sum, there are only finitely many non-zero terms in
x. We define a valuation on tel∗(C) as

v(x) := min
i

{v(xi), v(x′
i)},

which extends the valuation on CF ∗(Hn,t; Λ0).
The completion of tel∗(C) is defined as

̂tel∗(C) := lim←−
r→+∞

tel∗(C) ⊗Λ0 (Λ0/T r · Λ0).

One can check that the differential δ extends to the completion. Moreover,
one can show that ̂tel∗(C) has a more concrete expression, see 2.4 [19]

̂tel∗(C) =

{
+∞∑
l=1

xl | xl ∈ tel∗(C), lim
l

v(xl) = +∞
}

.

That is, an element

x = (x1, x
′
1, x2, x

′
2, · · · ) ∈ Πn(CF ∗(Hn,t; Λ0) ⊕ CF ∗(Hn,t; Λ0)[1])

is in ̂tel∗(C) if and only if v(xi), v(x′
i) go to positive infinity.

Definition 2.4. The homology of the completed telescope ( ̂tel∗(C), δ) is called
the relative symplectic cohomology of K in M over Λ0, written as SHM (K; Λ0).

In Proposition 3.3.4 [19], it is shown that for different choices of al-
most complex structures, defining Hamiltonians and homotopies, the result-
ing homology groups of the completed telescopes are isomorphic. Hence,
SHM (K; Λ0) is an invariant of K and M . This invariant has lots of good
properties, notably the Mayer–Vietoris property. We list the properties that
will be used in this article, and refer to Varolgunes [19] for others.

Theorem 2.5. [Sect. 1 [19]] The invariant SHM (K; Λ0) satisfies that
(1) For compact sets K0 ⊂ K1, there is a module map

r10 : SHM (K1; Λ0) → SHM (K0; Λ0),

called the restriction map. If we have K0 ⊂ K1 ⊂ K2, then r10 ◦ r21 =
r20.

(2) SHM (M ; Λ0) ∼= H(M ; C) ⊗C Λ+, where Λ+ is the maximal ideal of Λ0.
(3) Let K1,K2 be two compact domains with disjoint boundary. Then there

is a long exact sequence

· · · → SHM (K1 ∪ K2; Λ0) → SHM (K1; Λ0) ⊕ SHM (K2; Λ0)

→ SHM (K1 ∩ K2; Λ0) → · · · .

We will also use the relative symplectic cohomology over the Novikov
field.

Definition 2.6. The relative symplectic cohomology of K in M over Λ is

SHM (K; Λ) := SHM (K; Λ0) ⊗Λ0 Λ.
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There is another definition of SHM (K; Λ) which will be frequently
used, see Remark 2.4 [18]. For a non-degenerate Hamiltonian Ht, we de-
fine CF k(Ht; Λ) to be the Λ-vector space generated by degree-k contractible
one-periodic orbits of Ht. The differential here is the weighted Floer differen-
tial. Then we use the above sequence of Hamiltonians {Hn,t} to form a Floer
one-ray

CΛ := CF ∗(H1,t; Λ) → CF ∗(H2,t; Λ) → · · ·
using weighted continuation maps. The telescope tel∗(CΛ) carries a valuation
v which is still defined by the minimum valuation as above. We can complete
tel∗(CΛ) with respect to this valuation to get ̂tel∗(CΛ). It can be shown that
H( ̂tel∗(CΛ)) is isomorphic to SHM (K; Λ). Similar to the above situation over
Λ0, the completed telescope ̂tel∗(CΛ) has a concrete expression

̂tel∗(CΛ) =

{
+∞∑
l=1

xl | xl ∈ tel∗(CΛ), lim
l

v(xl) = +∞
}

.

That is, an element

x = (x1, x
′
1, x2, x

′
2, · · · ) ∈ Πn(CF ∗(Hn,t; Λ) ⊕ CF ∗(Hn,t; Λ)[1])

is in ̂tel∗(CΛ) if and only if v(xi), v(x′
i) go to positive infinity.

In Tonkonog and Varolgunes [18], it is shown that SHM (K; Λ) is a unital
Λ-algebra and the restriction maps respect the units.

Theorem 2.7. (Subsect. 5.5 [18]) For each compact subset K of M , there is
an element eK ∈ SH0

M (K; Λ) called the unit. It satisfies the following

(1) SHM (K; Λ) = 0 if and only if eK = 0.
(2) For K0 ⊂ K1, we have r10(eK1) = eK0 .

2.3. Index bounded domains

We consider a triple (K, ∂K,α) such that

(1) K is a compact domain in M .
(2) α is a contact form on ∂K.
(3) dα = ω |∂K .
(4) The local Liouville vector field points outwards along ∂K.

Then ∂K admits a neighborhood in M that is symplectomorphic to [1−ε, 1+
ε] × ∂K, d(rα). Here r is the coordinate on [1 − ε, 1 + ε] and ∂K is identified
with {1} × ∂K. Consider a Hamiltonian function H on M which equals f(r)
on [1 − ε, 1 + ε] × ∂K. A standard computation shows that a one-periodic
orbit γ of H which is contained in [1 − ε, 1 + ε] × ∂K is a Reeb orbit of the
contact form α. If α is a non-degenerate contact form and γ is contractible
in M , we have a well-defined Conley–Zehnder index CZ(γ), with γ viewed
as a Hamiltonian orbit. Next we consider all the linear functions Hλ = λr for
some positive slope λ. And for any integer k, we set

Cλ,k := sup
γ

{∣∣∣∣∣
∫

wγ

ω

∣∣∣∣∣
}

.
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Here γ runs over all one-periodic orbits of Hλ which is contained in [1−ε, 1+
ε] × ∂K, contractible in M and with CZ(γ) = k, and wγ is a spanning disk
of γ. We say (K, ∂K,α) is index bounded if α is non-degenerate and

sup
λ≥0

{Cλ,k} < +∞ (2.3)

for every integer k. This index bounded condition plays an important tech-
nical role in some recent studies of Hamiltonian Floer theory, starting from
McLean [14]. A direct consequence is that for any given k, there is no index-k
one-periodic orbit of f(r) in [1 − ε, 1 + ε] × ∂K, if the slopes of f(r) are large
enough.

Remark 2.8. We formulate the above index bounded condition as a property
of the embedding of K, rather than an intrinsic property of the contact man-
ifold (∂K,α). And it is defined using Conley–Zehnder indices of Hamiltonian
orbits rather than Reeb orbits.

In many cases, our definition is equivalent to Definition 1.53 [4] and
Definition 1.12 [18]. For example, it is the case when π1(∂K) → π1(M) is
injective.

To compare the Conley–Zehnder indices of Hamiltonian orbits with
those of Reeb orbits, see Lemma 5.25 [14]. They differ by a universally
bounded amount.

2.4. Symplectic ideal-valued quasi-measures

Next we review the quantum cohomology ideal-valued quasi-measures defined
by Dickstein–Ganor–Polterovich–Zapolsky [4].

Let K be a compact set of a closed smooth symplectic manifold M .
Define the quantum cohomology ideal-valued quasi-measure of K

τ(K) :=
⋂

K⊂U

ker(r : SHM (M ; Λ) → SHM (M − U ; Λ)) (2.4)

where U runs over all open sets containing K. If τ(K) �= 0, then we say K
is SH-heavy. This measure τ satisfies several interesting properties [4], which
indicate its importance in symplectic topology.

3. Proofs

In this section, we prove Theorem 1.6. Let (K, ∂K,α) be an index bounded
domain in a symplectically aspherical manifold (M,ω), we fix a collar neigh-
borhood U := [1 − ε, 1 + ε] × ∂K of ∂K. Recall that we assume α is a
non-degenerate contact form, the set of periods of its Reeb orbits form a
discrete subset of R+. We write this set as Spec(α).

Definition 3.1. Given the triple (K, ∂K,α), a smooth function H : M → R

is called admissible if
(1) H has small first and second derivatives outside U such that it only has

constant one-periodic orbits outside U and they are non-degenerate.
(2) H only depends on the radial coordinate r in U . We write H = f(r) on

U .
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Figure 2. Admissible Hamiltonian in the radial coordinate

(3) H < 0 in K and f(1 + ε/3) ≥ 0.
(4) f(r) = λr on [1 + ε/3, 1 + 2ε/3] × ∂K for some positive λ /∈ Spec(α).
(5) f ′(r) /∈ Spec(α) when r ∈ [1, 1 + ε/3].
(6) f ′(r) ≥ 0 on [1 − ε, 1 + ε] × ∂K.
(7) f ′′(r) ≤ 0 on [1 + ε/3, 1 + ε] × ∂K.
(8) f ′′(r) ≥ 0 on [1 − ε, 1 + ε/3] × ∂K.

A depiction of admissible Hamiltonian is given in Fig. 2. The one-periodic
orbits of an admissible H fall into two groups: constant orbits outside U and
non-constant orbits in U . Since H = f(r) in U , the non-constant orbits are
multiples of Reeb orbits of α. For a one-periodic orbit γ of H, constant or
non-constant, the function H is constant on γ. We call this constant the
Hamiltonian value of γ.

Definition 3.2. A one-periodic orbit γ of an admissible H is called a lower
orbit if its Hamiltonian value is less than zero. Otherwise it is called an upper
orbit.

By (4) in Definition 3.1, there is no one-periodic orbits in [1 + ε/3, 1 +
2ε/3] × ∂K. Hence, the Hamiltonian value of an upper orbit of H is at least
λε/3.

An admissible function H is time-independent. Each of its non-constant
one-periodic orbit carries an S1-symmetry. We use the standard perturbation
in Cieliebak et al. [3] to break this symmetry which makes H into a non-
degenerate function Ht. The perturbations are supported in neighborhoods
of non-constant orbits of H. They can be chosen to be arbitrarily small. We
assume our perturbation satisfies that
(1) A non-constant lower orbit γ of H becomes two non-degenerate orbits

γ±, with
∫

γ±
Ht < 0.
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(2) An non-constant upper orbit β of H becomes two non-degenerate orbits
β±, with

∫
β±

Ht > λε/3.

Definition 3.3. A time-dependent admissible function Ht is one obtained
from an admissible function H using above perturbations.

For a time-dependent admissible function, it still makes sense to talk
about its lower and upper orbits by above estimates.

One can directly check the existence of a sequence of time-dependent
admissible Hamiltonians {Hn,t} such that
(1) Hn,t ≤ Hn+1,t for all n ≥ 1.
(2) Hn,t converge to zero on K and diverge to positive infinity outside K.

Hence, we can use {Hn,t} to compute SHM (K; Λ). In the following, when we
write CF (Hn,t), we mean the Floer complex over C with the classical differ-
ential d, and when we write CF (Hn,t; Λ), we mean the Floer complex over Λ
with the weighted differential dT . Continuation maps should be understood
in the same way. For any orbit γ ∈ CF (Hn,t), define

J : CF (Hn,t) ⊗C Λ → CF (Hn,t; Λ), J(γ ⊗ a) := aTAHn,t (γ)γ. (3.1)

It is a chain isomorphism. Particularly, if x ∈ CF (Hn,t) is d-exact, then x,
viewed as an element in CF (Hn,t; Λ), is dT -exact.

By the index bounded condition (2.3), there is a constant C > 0 such
that

sup
n

{∣∣∣∣∣
∫

wγ

ω

∣∣∣∣∣ | γ ∈ CF ∗(Hn,t), ∗ = 0, 1

}
< C.

Let λn be the slope of Hn,t in [1 + ε/3, 1 + 2ε/3] × ∂K, then we have that

Lemma 3.4. There exists N > 0 such that if n ≥ N , then the action of a
degree zero/one upper orbit of Hn,t is strictly larger than the action of any
degree zero/one lower orbit of Hk,t for any k.

Proof. This follows from limn λn = +∞, and two estimates
(1) If γ is a lower orbit of Hk,t, then AHk,t

(γ) < C for any k.
(2) If γ is an upper orbit of Hn,t, then AHn,t

(γ) > λnε/3 − C.
�

Choosing monotone homotopies connecting Hn,t,Hn+1,t, we can con-
sider the Floer one-ray

CΛ = CF (HN,t; Λ) → CF (HN+1,t; Λ) → · · · .

We write the continuation maps as

h
k(k+1)
T : CF 0(HN+k,t; Λ) → CF 0(HN+k+1,t; Λ).

Since SHM (K; Λ) is independent of the choice of defining Hamiltonians, we
have H( ̂tel(CΛ)) ∼= SHM (K; Λ).

Pick a closed element x ∈ CF 0(HN+k,t; Λ). It gives an element

x̃ = (0, 0 · · · , x, 0, · · · ) ∈ ̂tel(CΛ).
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That is, the element with x in the spot of CF 0(HN+k,t; Λ) and with zeroes
in other spots. One can directly check it is a closed element in the completed
telescope. Moreover, we have the following.

Lemma 3.5. If x is an upper orbit of HN+k,t, then x̃ is exact in ̂tel(CΛ).

Proof. By Lemma 3.4, h
k(k+1)
T (x) can only be a linear combination of upper

orbits of CF 0(HN+k+1,t; Λ) since continuation maps do not decrease the
action.

Then consider the element

x̂ :=
(
0, 0, · · · , 0, x, 0, h

k(k+1)
T (x), 0, h

(k+1)(k+2)
T ◦ h

k(k+1)
T (x), · · ·

)
.

More precisely, on the spot of CF 0(HN+k,t; Λ)[1] it is x, and on the spot of
CF 0(HN+k+l,t; Λ)[1], it is h

(k+l−1)(k+l)
T ◦ · · · ◦ h

k(k+1)
T (x) for l ≥ 1. On other

spots it is zero. By estimate (2) in Lemma 3.4, the valuation of h
(k+l−1)(k+l)
T ◦

· · · ◦h
k(k+1)
T (x) goes to infinity as l goes to infinity; hence, x̂ is a well-defined

element in ̂tel(CΛ). The definition of the telescope differential δ shows that
δ(−x̂) = x̃. Moreover, the valuation of −x̂ is the same as x̃. �

The above Lemma is called the process of ignoring upper orbits. Next
we discuss how heaviness can be studied by the above telescope.

Suppose that K is not heavy, then there is a function f̃ such that f̃ ≤ 0
on K and μ(1, f̃) > 0, see Remark 2.3 (3). Then we have some k > 0 such
that c(1, kf̃) > 2(1 + C) where C is the constant in Lemma 3.4. Pick a small
positive number σ and define f := kf̃ − 2σ such that f < −σ on K and
c(1, f) > 1 + C. We perturb f to get a non-degenerate ft which also satisfies
that ft < −σ on K and c(1, ft) > 1 + C.

The functions HN+k,t converge to zero on K and diverge to positive
infinity outside K. There is some N ′ such that HN+N ′,t ≥ ft. We define
Gn,t := HN+N ′+n,t for notation simplicity, see Fig. 1. Then the completion
of the telescope

G : CF (G1,t; Λ) → CF (G2,t; Λ) → · · ·
computes SHM (K; Λ). On the other hand, we have the following telescope

If : CF (ft; Λ) → CF (ft; Λ) → · · ·
where the continuation maps are identities. Pick a closed element x ∈ CF 0(ft; Λ)
and a sequence {an} ∈ Λ, v(an) → +∞. We have two well-defined closed el-
ements in the complete telescope(∑

n

anx, 0, 0, 0, · · ·
)

, (a1x, 0, a2x, 0, · · · ).

Using the telescope differential, we can check they are homologous. Consider

x̂ :=

⎛
⎝0,

∑
n≥2

anx, 0,
∑
n≥3

anx, 0, · · ·
⎞
⎠
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which is
∑

n≥k+1 anx on the spot of the k-th CF 0(ft; Λ)[1] and is zero oth-
erwise. Then we have

δ(x̂) =

(∑
n

anx, 0, 0, 0, · · ·
)

− (a1x, 0, a2x, 0, · · · ).

Next we discuss the relation between PSS maps and the restriction map.
Pick a negative Morse function g on M satisfying that
(1) It has small first and second derivative such that, viewed as a Hamil-

tonian, it has only constant one-periodic orbits.
(2) It has a unique index zero critical point τ .

Then consider gn := ang + bn for some an > 0, bn ∈ R. If we choose an, bn

carefully, we can achieve that
(1) gn satisfies the above two properties for g.
(2) gn ≤ gn+1 for all n.
(3) gn ≤ Gn,t for all n.
(4) gn converges to zero on M .

We write the Morse complex of gn as CM(gn), and the Hamiltonian complex
of gn as CF (gn), CF (gn; Λ). The unique index zero critical point of gn is
written as τn. Hence, τn is a closed element in CM0(gn) and represents
1 ∈ H(M). Pick linear monotone homotopies connecting gn, gn+1 and write

Ig : CF (g1; Λ) → CF (g2; Λ) → · · ·
as the induced telescope. Similar to the case of If , pick a sequence {an} ∈
Λ, v(an) → +∞, the element

(a1τ1, 0, a2τ2, 0, · · · ) ∈ t̂el(Ig)

is homologous to an element (bτ1, 0, 0, 0, · · · ) for some b ∈ Λ. This is because
each CF 0(gn; Λ) has a unique generator, the continuation maps are identity
maps weighted by the action differences.

Then we have three collections of maps: PSS maps

PSSgf
n : CM0(gn) → CF 0(ft), PSSgn

: CM0(gn) → CF 0(gn)

and the continuation map

hgf,n : CF 0(gn) → CF 0(ft).

By the compatibility of PSS maps and continuation maps, hgf,n ◦ PSSgn

equals PSSgf
n in the homology level. Moreover, since gn has a unique index

zero critical point, the map PSSgn
is identity in the chain level. So we get

Lemma 3.6. hgf,n(τn) is homologous to PSSgf
n (τn) in CF 0(ft).

Recall that all gn’s are negative and converge to zero on M , we have
H(t̂el(Ig)) = SHM (M ; Λ). The collection of weighted continuation maps

hgG,n
T : CF (gn; Λ) → CF (Gn,t; Λ),

together with suitable homotopies, induces a chain map

hgG
T : t̂el(Ig) → t̂el(G).
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In the homology level, it is the restriction map r : SHM (M ; Λ) → SHM (K; Λ).
Similarly, we have two other continuation maps

hgf,n
T : CF 0(gn; Λ) → CF 0(ft; Λ), hfG,n

T : CF 0(ft; Λ) → CF 0(Gn,t; Λ)

which also induce chain maps between corresponding completed telescopes.

Lemma 3.7. The three maps hgG,n
T , hgf,n

T , hfG,n
T induce well-defined chain maps

hgG
T , hgf

T , hfG
T between completed telescopes. In the homology level, we have

that
hgG

T = hfG
T ◦ hgf

T .

Proof. The maps hgG,n
T , hfG,n

T do not decrease valuation since gn ≤ Gn,t, ft ≤
Gn,t. The map hgf,n

T possibly decreases the valuation by a universal bounded
amount since ft does not depend on n and gn is uniformly bounded in n.
Hence they all induce well-defined maps between corresponding completed
telescopes. They are chain maps and hgG

T = hfG
T ◦ hgf

T in the homology level
follows from a gluing argument, similar to the proof of the functoriality of
the restriction maps, see (1) in Theorem 2.5. �

A direct corollary of this lemma is that if hgG
T = r �= 0, then hfG

T �= 0
in degree zero in the homology level. Now we use it to prove Theorem 1.6.

Theorem 3.8. Let (M,ω) be a symplectically aspherical manifold and let K
be an index bounded domain. If SHM (K; Λ) is non-zero, then K is heavy.

Proof. Suppose that K is not heavy, we have the above functions ft, gn, Gn,t.
Let y = (y1, y

′
1, y2, y

′
2, · · · ) be a closed degree zero element in t̂el(Ig),

then it is of the form

(a1τ1, 0, a2τ2, 0, · · · ) ∈ t̂el(Ig)

with v(an) going to infinity. By the above discussion, it is homologous to
x = (bτ1, 0, 0, 0, · · · ) for some b ∈ Λ.

Since c(1, ft) > 1 + C, there is a closed element γ ∈ CF 0(ft) which
represents PSSgf

1 (τ1) with action greater than 1+C. By Lemma 3.6, we have
that γ is homologous to hgf,1(τ1) in CF 0(ft). Hence, J(γ) is homologous to
J ◦ hgf,1(τ1) = hgf,1

T ◦ J(τ1) in CF 0(ft; Λ), see (3.1). This implies that

(J(γ), 0, 0, 0, · · · ) and (hgf,1
T (J(τ1)), 0, 0, 0, · · · )

= (TAg1 (τ1)hgf,1
T (τ1), 0, 0, 0, · · · )

are homologous in ̂tel(If ). On the other hand,

hgf
T (x) = (bhgf,1

T (τ1), 0, 0, 0, · · · ).
Hence, b−1TAg1 (τ1)hgf

T (x) is homologous to (J(γ), 0, 0, 0, · · · ) in ̂tel(If ).
Note that

hfG
T ((J(γ), 0, 0, 0, · · · )) = (hfG,1

T (J(γ)), 0, 0, 0, · · · ).
However, since the action of γ is larger than 1+C and hfG,1 does not decrease
valuation, the geometric underlying orbits of hfG,1

T (γ) is a linear combination
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of upper orbits of G1,t. By Lemma 3.5, it is exact in t̂el(G). Finally we get
the following relations in the chain level

r(y) ∼ r(x)

∼ hfG
T ◦ hgf

T (x)

∼ hfG
T (bT−Ag1 (τ1)((J(γ), 0, 0, 0, · · · )))

= bT−Ag1 (τ1)(hfG,1
T (J(γ)), 0, 0, 0, · · · )

where ∼ means the homologous relation. It shows that for any closed degree
zero element y in t̂el(Ig), its image r(y) under the restriction map is homolo-
gous to an exact element in t̂el(G). Therefore, r is zero in the homology level,
a contradiction to SHM (K; Λ) �= 0. �

4. Applications

First, we have an application on the heaviness of the complement of certain
index bounded domains. Let (M,ω) be a symplectically aspherical manifold
and let K be an index bounded domain. Define N := M − K, which is also
a compact domain with boundary ∂N = ∂K. In this case, the local Liouville
vector points inward along ∂N .

Fix a neighborhood of ∂N in M that is symplectomorphic to ([1−δ, 1+
δ] × ∂N, d(rα)). Here r is the coordinate on [1 − δ, 1 + δ], the vector field
∂r points inward along ∂N , and ∂N is identified with {1} × ∂N . Consider a
Hamiltonian function H−λ on M which equals f(r) = −λr on [1 − δ, 1 + δ] ×
∂N , with some negative slope −λ. For any integer k we set

C ′
λ,k := sup

γ′

{∣∣∣∣∣
∫

w′
γ

ω

∣∣∣∣∣
}

.

Here γ′ runs over all one-periodic orbits of H−λ which is contained in [1 −
δ, 1+δ]×∂N , contractible in M and with CZ(γ′) = k, and wγ′ is a spanning
disk of γ′. Then we observe that

Lemma 4.1. If (K, ∂K,α) is an index bounded domain and π1(∂K) → π1(M)
is injective, then

sup
λ≥0

{C ′
λ,k} < +∞

for every integer k.

Proof. Since π1(∂K) → π1(M) is injective, for any γ′ as above we can com-
pute

∫
w′

γ
ω and the index of γ′ with respect to a spanning disk in ∂K. Any

such γ′ is the reverse of some one-periodic orbit γ of Hλ = λr, λ > 0. The
indices of γ, γ′ are related by a minus sign plus a universal bounded error.
Hence, the estimate of C ′

λ,k follows from the index bounded condition (2.3)
for Cλ,k. �

Then we can repeat all the arguments in the previous section for N .
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Theorem 4.2. Let (M,ω) be a symplectically aspherical manifold and let K
be an index bounded domain, with π1(∂K) → π1(M) being injective. If SHM

(N ; Λ) �= 0, then N is heavy.

Proof. Similar to Gn,t in Theorem 3.8, we construct Hamiltonians G′
n,t to

compute SHM (K; Λ). They will have negative slopes with respect to r in the
neck region. They satisfy an index-action relation as in Lemma 4.1. Then
Lemma 3.4 and Lemma 3.5 work in the same way. The construction of gn is
unchanged. �

The following interpolation theorem [14,18] between index bounded do-
mains brings us more applications.

Theorem 4.3. [Proposition 1.13 [18]] Let M be a closed symplectic manifold
with c1(TM) = 0, and K be an index bounded domain. For a neck region
∂K × [1 − δ, 1 + δ] induced by the Liouville flow of the index bounded contact
form, the restriction map

r : SHM (K ∪ (∂K × [1 − δ, 1 + δ]); Λ) → SHM (K; Λ)

is an isomorphism whenever δ > 0 is defined.

This interpolation theorem allows us to relate the SH-heaviness with
heaviness.

Lemma 4.4. Let (M,ω) be a closed symplectic manifold with c1(TM) = 0
and K being an index bounded domain, if K is SH-heavy then SHM (K) �= 0.

Proof. Define K1+δ := K ∪ (∂K × [1 − δ, 1 + δ]). The tubular neighborhood
[1− δ, 1+ δ]×∂K of ∂K gives a sequence of open sets Ko

1+δ as the interior of
K1+δ, parameterized by δ. Then the quantum measure τ(K) can be computed
as

τ(K) =
⋂
δ>0

ker(r : QH(M ; Λ) → SHM (M − Ko
1+δ; Λ)).

Suppose that K is SH-heavy, which means that τ(K) �= 0, we will show
that SHM (K; Λ) �= 0. By the interpolation theorem, we know that

SHM (K; Λ) ∼= SHM (K1+δ′ ; Λ), ∀ − δ < δ′ < δ.

Pick 0 < δ1 < δ2 < δ and suppose that, on the contrary, SHM (K; Λ) = 0.
Then we have that SHM (K1+δ2 ; Λ) = 0. By the Mayer–Vietoris property for
relative symplectic cohomology, we have that r : QH(M ; Λ) → SHM (M −
Ko

1+δ1
; Λ) is an isomorphism, which means that τ(K) = 0, contradiction. �

Combining this lemma with Theorem 3.8, we get the following corollary.

Corollary 4.5. For (M,ω) being symplectically aspherical and K being an in-
dex bounded domain, if K is SH-heavy, then K is heavy.

Proof. If K is SH-heavy, then SHM (K; Λ) �= 0 by the above lemma. Applying
Theorem 3.8, we complete the proof. �

Similar to the proof in Lemma 4.4, we can prove that
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Corollary 4.6. For (M,ω) being symplectically aspherical and K being an in-
dex bounded domain with π1(∂K) → π1(M) being injective, then M − K is
heavy. Particularly, K is not super-heavy.

Proof. We use the notation in Lemma 4.4. Apply Theorem 1.7 to K1+δ, the
volume class of M is in

ker(H(M ; Λ) → H(K1+δ; Λ)) ⊂ ker(r : SHM (M ; Λ) → SHM (K1+δ; Λ)).

Then apply the Mayer–Vietoris sequence to the pair of K1+δ and M − K, we
get that SHM (M − K; Λ) �= 0.

By the interpolation invariance, we can also show M − K1+δ is heavy.
This shows that K is not super-heavy, since a heavy set intersects any super-
heavy set. �

Next we move to a family of examples, which are the skeleta of symplec-
tically aspherical manifolds, relative to simple crossings symplectic divisors.
We refer the readers to Farajzadeh Tehrani et al. [6], McLean [14] for details
on the theory of simple crossings symplectic divisors.

Definition 4.7. [Definition 2.1 [6]] Let (M,ω) be a closed symplectic manifold.
A simple crossings symplectic divisor in (M,ω) is a finite transverse collection
of {Vi}i∈S of closed submanifolds of M of codimension 2, such that VI is a
symplectic submanifold of (M,ω) for any I ⊂ S and the intersection and
ω-orientations of VI agree.

Definition 4.8. [Definition 1.19 [18]] A Giroux divisor V = ∪i∈SVi is a simple
crossings symplectic divisor in (M,ω) such that there exist integers wi > 0,
a real number c > 0 and∑

i

wiPD[Vi] = c[ω] ∈ H2(M).

Below is a structural result about complements of Giroux divisors.

Proposition 4.9. [Proposition 1.20 [18]] Let V be a Giroux divisor in a sym-
plectic manifold (M,ω) with c1(TM) = 0. Then there exists a Liouville do-
main W ⊂ M − V such that
(1) The closure of M − W is stably displaceable.
(2) The closure of M − W deformation retracts to V .
(3) W is an index bounded domain.

Definition 4.10. Let V be a Giroux divisor in a closed symplectically aspher-
ical manifold (M,ω). Given a Liouville domain W satisfying Proposition 4.9.
The image Wt of W under the time-t reverse Liouville flow is a Liouville
subdomain of W . The skeleton LW of W is defined as LW = ∩t∈R≥0Wt. It is
a compact subset of M where the symplectic form vanishes.

As the definition indicates, for a given Giroux divisor, there may be
different Liouville domains satisfying Proposition 4.9. Hence, we might have
skeleta which are set-theoretically different. But they all have some symplectic
rigidity properties.
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Theorem 4.11. [Theorem 1.24 [18]] For any t ∈ R≥0, there is an isomorphism

QH(M ; Λ) → SHM (Wt; Λ).
Note that Wt is an index bounded domain since it is the image of W

under the reverse Liouville flow. Then this theorem combined with Theorem
3.8 gives that
Corollary 4.12. All Wt’s are heavy.
Remark 4.13. The language of stable stems tells that W0 = W is heavy
since its complement is stably displaceable, see Subsect. 1.2 [5]. Here the
interpolation theorem actually shows that all Wt’s are heavy, which displays
the power of the relative symplectic cohomology.
Corollary 4.14. The skeleton LW is heavy.
Proof. Suppose that LW is not heavy, then there is a Hamiltonian function F
on M with μ(1, F ) > maxLW

F . Since LW is compact, the sets Wt converge
to LW in a uniform C0-sense, and there exists t > 0 such that

μ(1, F ) > max
Wt

F ≥ max
LW

F

which contradicts that Wt is heavy. �
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