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Restrictive Lipschitz continuity, basis
property of a real sequence, and fixed-point
principle in metrically convex spaces

Janusz Matkowski

Abstract. A mapping T of a metric space (X, d) into a metric space
(Y, ρ) is called restrictive Lipschitz if there exist: a positive decreasing
to zero sequence (tn : n ∈ N) and a nonnegative sequence (Ln : n ∈ N) ,
with L := lim infn→∞ Ln < ∞, such that for all x, y ∈ X, n ∈ N

d (x, y) = tn =⇒ ρ (Tx, Ty) ≤ Lntn.

Using a basis property of the sequence (tn : n ∈ N) (Lemma 1), we prove
that if T is a continuous and restrictive Lipschitz mapping of a complete
metrically convex space (X, d) into a metric space (Y, ρ) , then T is
Lipschitz continuous with the constant L, that is

ρ (Tx, Ty) ≤ Ld (x, y) , x, y ∈ X,

and, in the case when the set {n ∈ N : Ln < L} is infinite, even essen-
tially more, namely

ρ (Tx, Ty) ≤ Lα (d (x, y)) , x, y ∈ X,

where the function α : [0, ∞) → [0, ∞) is continuous, increasing, concave
(so subadditive) and such that α (t) < t for all t > 0. This result leads
to the following fixed-point principle: Every continuous selfmapping T
of a nonempty metrically convex complete metric space (X, d) that is
restrictive Lipschitz with a sequence (Ln : n ∈ N) , such that 0 ≤ Ln <
1 (n ∈ N) and lim infn→∞ Ln ≤ 1, has a unique fixed point, and either
it is a Banach contraction, or there is an increasing concave function
α : [0, ∞) → [0, ∞), such that α (t) < t for t > 0 and

d (Tx, Ty) ≤ α (d (x, y)) , x, y ∈ X.

Some applications of these results to the theory of iterative functional
equations are proposed.
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1. Introduction

In this paper, we show that, under some general conditions, the Lipschitz
continuity of a mapping as well as its nonlinear version, important for instance
in fixed-point theory, are implied by much weaker ones.

We say that a mapping T of a metric space (X, d) into a metric space
(Y, ρ) is restrictive Lipschitz if there exist: a positive decreasing to zero
sequence (tn : n ∈ N) and a nonnegative sequence (Ln : n ∈ N) , with L :=
lim infn→∞ Ln < ∞, such that for all x, y ∈ X, n ∈ N, the implication

d (x, y) = tn =⇒ ρ (Tx, Ty) ≤ Lntn

holds true.
In view of our main result (Theorem 1, Sect. 5), if a continuous mapping

T of a complete metrically convex metric space (X, d) into a metric space
(Y, ρ) is restrictive Lipschitz, then T is L-Lipschiz, that is

ρ (Tx, Ty) ≤ Ld (x, y) , x, y ∈ X,

(see [15] where it is assumed that X is a convex subset of a normed space
and Y is a normed space) and, in the case when the set {n ∈ N : Ln < L} is
infinite, even more, that

ρ (Tx, Ty) ≤ Lα (d (x, y)) , x, y ∈ X,

where the function α : [0,∞) → [0,∞) is continuous, increasing, concave (so
subadditive) and such that

α (t) < t, t > 0.

The assumption of the continuity of T can be omitted by a strengthening
of the restricted Lipschitz continuity (Theorem 2).

In the proof of this result, besides the metrical convexity and some prop-
erties of subadditive functions (Sect. 4), the key technical role is played by
the following base type result: if (tn : n ∈ N) is a strictly decreasing sequence
of real numbers and limn→∞ tn = 0, then every positive real number t can
be represented in the unique way in the form

t =
∞∑

n=1

kn (t) tn,

where (kn (t) : n ∈ N) is a sequence of nonnegative integers (Lemma 1 in
Sect. 2).

In Sect. 6, we show that Theorem 1 leads to the following: every contin-
uous selfmapping T of a nonempty metrically convex complete metric space
(X, d) , satisfying rather modest restrictive Lipschitz conditions with a se-
quence (Ln : n ∈ N) , such that 0 ≤ Ln < 1 (n ∈ N) and limn→∞ Ln ≤ 1,
not only has a unique fixed-point, but either it must be a Banach contraction
or there is an increasing concave function α : [0,∞) → [0,∞), α (t) < t for
t > 0, such that

d (Tx, Ty) ≤ α (d (x, y)) , x, y ∈ X,

i.e., T must be a regular nonlinear α-contraction with a concave function
α. This result unifies the Banach principle and its nonlinear generalizations.
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In particular, it implies that, in metrically convex space, every nonlinear
contraction is a nonlinear contraction with a concave function. This fact
improves the relevant result of Boyd and Wong (Th. 2 in [2]).

In Sect. 7, we present some applications (Theorems 5, 6). The advan-
tages of the convexity of α in Theorem 3 are illustrated by Theorem 6.

2. Decreasing zero sequence is a basis in the set of real
positive numbers

The following result plays the crucial role in the proof of the main result.

Lemma 1. Let (tn : n ∈ N) be an arbitrary sequence of strictly decreasing real
numbers, such that

lim
n→∞ tn = 0. (1)

Then,
(I) for every t ≥ 0 the sequence (kn (t) : n ∈ N) of nonnegative integers,

such that

k1 (t) t1 ≤ t < (k1 (t) + 1) t1, (2)

kn (t) tn ≤ t −
n−1∑

i=1

ki (t) ti < (kn (t) + 1) tn, n ∈ N, n ≥ 2, (3)

exists, is unique and the following holds true:

t =
∞∑

n=1

kn (t) tn, (4)

for every n ∈ N

kn (tm) =
{

1 if m = n
0 if m �= n

, m ∈ N,

for every m ∈ N, and for every t

0 ≤ t < tm =⇒ t =
∞∑

n=m+1

kn (t) tn, (5)

for every m ∈ N, and for every t

tm+1 < t < tm =⇒ km+1 (t) ≥ 1; (6)

(II) for every L and for every sequence (Ln) of real numbers, such that

0 < Ln < L < ∞, n ∈ N, (7)

the function γ : [0,∞) → [0,∞)

γ (t) :=
1
L

∞∑

n=1

Lnkn (t) tn, t ≥ 0, (8)

is correctly defined and has the following properties:

0 < γ (t) < t, t > 0, γ (0) = 0, (9)
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and

lim sup
s→t

γ (s) < t, t > 0. (10)

Proof. (I) Take an arbitrary t ≥ 0. The existence and uniqueness of a non-
negative integer satisfying (2) is obvious. Suppose we have already chosen
nonnegative integers k1 (t) , . . . , kn−1 (t), such that

kn−1 (t) tn−1 ≤ t −
n−2∑

i=1

ki (t) ti < (kn−1 (t) + 1) tn−1,

for some n ∈ N, n ≥ 2. Then, there is a unique nonnegative integer kn (t),
such that (3) holds, and the correctness of the construction of the sequence
(kn (t) : n ∈ N) follows from the induction. From (2) and (3), we have

0 ≤ t −
n∑

i=1

ki (t) ti < tn, n ∈ N,

which together with (1) implies (4). The remaining properties of (I) are ob-
vious.

(II) The correctness of the definition of the function (8) follows from
(4) and the boundedness of the sequence (Ln).

To show (9) take an arbitrary t > 0. If t ≥ t1, then t ∈ [
k1 (t) t1,

(
k1 (t)+

1
)
t1

)
, and by (8), we have

γ (t) =
1
L

∞∑

n=1

Lnkn (t) tn <
1
L

∞∑

n=1

Lkn (t) tn =
∞∑

n=1

kn (t) tn = t.

If 0 < t < t1, then there is a unique m ∈ N, such that tm+1 ≤ t < tm. By (5),
we have k1 (t) = . . . = km (t) = 0. Now, (8), inequalities (7) and (5) imply
that

γ (t) =
1
L

∞∑

n=m+1

Lnkn (t) tn <

∞∑

n=m+1

kn (t) tn = t,

which shows that γ (t) < t for all t > 0. Since, obviously, γ (t) > 0 for all
t > 0 and γ (0) = 0, inequalities (9) are proved.

To prove (10) take an arbitrary t > 0. Then, either t ≥ t1 or there is a
unique m ∈ N, such that

tm+1 ≤ t < tm.

Assume that the first case holds, i.e., that t ≥ t1. Then, t ∈ [
k1 (t) t1,

(
k1 (t)+

1
)
t1

)
and, clearly, for all s ∈ [k1 (t) t1, (k1 (t) + 1) t1) we have k1 (s) = k1 (t) >

0. Hence, making use of (4), (8) and (7), we have

Ls − Lγ (s) =
∞∑

n=1

(L − Ln) kn (s) tn ≥ (L − L1) k1 (s) t1 = (L − L1) k1 (t) t1

for all s ∈ [k1 (t) t1, (k1 (t) + 1) t1) . If t > k1 (t) t1, it implies that

Lt − lim sup
s→t

Lγ (s) = lim inf
s→t

(Ls − Lγ (s)) > 0,
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which shows that inequality (10) holds true. If t = k1 (t) t1, we have

lim sup
s→t+

γ (s) < Lt,

and the above inequality implies that

Lt − lim sup
s→t+

Lγ (s) = lim inf
s→t

(Ls − Lγ (s)) > 0,

so we have

lim sup
s→t+

γ (s) < t.

In view of (5) and (6) of part (I), for all s ∈ (t2, t1) and close enough to t1,
we have

Ls − Lγ (s) =
∞∑

n=2

(L − Ln) kn (s) tn ≥ (L − L2) k2 (s) t2 ≥ (L − L2) t2 > 0,

whence

Lt − lim sup
s→t−

Lγ (s) = lim inf
s→t− (Ls − Lγ (s)) > 0,

that is

lim sup
s→t−

γ (s) < t.

This shows that inequality (10) holds true if t = k (t) t1.
Now, assume that tm+1 ≤ t < tm. In view of (5) of part (I), for s ∈

[tm+1, tm), we have

Ls − Lγ (s) =
∞∑

n=m+1

(L − Ln) kn (s) tn.

Treating tm+1 as t1 in the previous reasoning and arguing similarly, we con-
clude that (10) holds true for all t ∈ [tm+1, tm) . This completes the proof. �

Thus, every positive and strictly decreasing to zero sequence of real num-
bers forms a basis in the cone of positive numbers (0,∞), which means that
every t > 0 can be uniquely represented in the form (4) where (kn (t) : n ∈ N)
is a unique sequence of nonnegative integer coefficients satisfying conditions
(2) and (3).

Remark 1. The uniqueness of the sequence (kn (t) : n ∈ N) for every t, equal-
ity

∑∞
n=1 kn (tn) tn = tn imply that kn (tn) = 1 and km (tn) = 0 for all

m �= n, whence

Lγ (tn) = Ln, n ∈ N.
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3. Metrically convex space and a lemma

A metric space (X, d) is said to be metrically convex (or Menger convex ),
if, for all x, y ∈ X, x �= y, there is a point z ∈ X, x �= z �= y, such that

d (x, y) = d (x, z) + d (z, y)

([1,6]). Clearly, every convex subset of a normed (or paranormed) space [13]
is metrically convex.

If (X, d) is a complete metrically convex metric space, then the set
I := {d (x, y) : x, y ∈ X} is an interval of the form

I = [0, a) or I = [0, a] where a := sup {d (x, y) : x, y ∈ X} .

Moreover, in view of Menger’s lemma (see Blumenthal [1], p. 41), for
any α, 0 ≤ α ≤ 1, and any x, y ∈ X, there exists z ∈ X, such that

d (x, z) = αd (x, y) , d (z, y) = (1 − α) d (x, y) .

Hence, by induction, for any system of nonnegative numbers α1, . . . , αk+1

satisfying α1 + · · ·+αk+1 = 1, and x, y ∈ X, there exist x1, . . . , xk ∈ X, such
that

d (x, x1) = α1d (x, y) , d (x1, x2) = α2d (x, y) , . . . , d (xk−1, xk) = αkd (x, y) ,
d (xk, y) = αk+1d (x, y) .

This implies the following.

Lemma 2. If (X, d) is a complete metrically convex space, then for every
x, y ∈ X, x �= y, for every t ∈ (0, d (x, y)) , there are a unique k ∈ N satisfying
the inequality

kt ≤ d (x, y) < (k + 1) t,

and x1, . . . , xk ∈ X, such that

d (x, x1) = t, d (x1, x2) = · · · = d (xk−1, xk) = t, d (xk, y) < t;

moreover, setting x0 := x, we have
k∑

i=1

d (xi−1, xi) + d (xk, y) = d (x, y) .

Proof. Take arbitrary x, y ∈ X, x �= y, and t ∈ (0, d (x, y)). There is a unique
k ∈ N, such that kt ≤ d (x, y) < (k + 1) t. The numbers

α1 = · · · = αk :=
t

d (x, y)
, αk+1 := 1 − kt

d (x, y)
are nonnegative and α1 + · · · + αk+1 = 1. Thus, by the above consequence of
the Menger lemma, there exist x1, . . . , xk ∈ X, such that

d (x, x1) = t, d (x1, x2) = · · · = d (xk−1, xk) = t, d (xk, y) = (d (x, y) − kt) < t.

Setting x0 := x, we hence get
k∑

i=1

d (xi−1, xi) + d (xk, y) =
k∑

i=1

t + (d (x, y) − kt) = d (x, y) ,

which completes the proof. �
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Remark 2. The assumption of the completeness of the space (X, d) can be
omitted, if it is a convex subset of a normed space.

4. Some properties of subadditive functions

Lemma 3. If a function λ : [0,∞) → [0,∞) is continuous at 0 with λ (0) = 0,
and λ is subadditive, that is

λ (s + t) ≤ λ (s) + λ (t) , s, t ≥ 0,

then
(i) [19] (see also [7], Th.7.8.3) for every t > 0, there exist the one-

sided limits λ (t+) := limr→t+ λ (r) , λ (t−) := limr→t− λ (r) satisfying the
inequality

λ (t+) ≤ λ (t) ≤ λ (t−) ;

(ii) [19] (see also [7], Th. 7.6.1, [12], Lemma 3)

lim
t→0+

λ (t)
t

= sup
{

λ (u)
u

: u > 0
}

, lim
t→∞

λ (t)
t

= inf
{

λ (u)
u

: u > 0
}

;

(iii) the function φ : [0,∞) → [0,∞) defined by

φ (t) := sup {λ (s) : s ∈ [0, t]} , t ≥ 0,

(the smallest increasing function bounding φ from above) is increasing, con-
tinuous, and subadditive.

Proof. (iii) Take s, t ≥ 0 and an arbitrary w ∈ [0, s + t] . Choosing u ∈ [0, s]
and v ∈ [0, t], such that w = u + v, by the subadditivity of λ, and the
definition of φ, we have

λ (w) = λ (u + v) ≤ λ (u) + λ (v) ≤ φ (s) + φ (t) ,

whence by the definition of φ

φ (s + t) ≤ φ (s) + φ (t) , s, t ≥ 0.

Since φ is continuous at 0 and φ (0) = 0, in view of (i), we get

φ (t+) ≤ φ (t) ≤ φ (t−) , t > 0.

Now, the increasing monotonicity of φ implies that

φ (t+) = φ (t) = φ (t−) , t > 0,

so φ is continuous in [0,∞) . �

Remark 3. A function λ : (0,∞) → R is subadditive if “it is concave at the
point 0”, i.e., if the function

(0,∞) 	 t 
−→ λ (t)
t

is decreasing.

A function λ : [0,∞) → R is subadditive if it is concave at the point 0 and
λ (0) ≥ 0.

For some results involving more general linear inequalities than subad-
ditivity, see Pycia [16]).
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Lemma 4. If φ : [0,∞) → [0,∞) is subadditive, φ (0) = 0, φ (t) < t for every
t > 0 , and

φ (t−) < t, t > 0,

then there is an increasing concave function α : [0,∞) → [0,∞), such that
for every t > 0

φ (t) ≤ α (t) < t.

Proof. By the subadditivity of φ, the inequality φ (t−) < t for all t > 0, and
from Lemma 3(i), we have

lim sup
u→t

φ (u) < t, t > 0.

Put

F := cl
{

(t, u) ∈ [0,∞)2 : 0 ≤ u ≤ φ (t)
}

and define a function α : [0,∞) → [0,∞) by the formula

α (t) := max {u : (t, u) ∈ convF} ,

where convF stands for the convex hull of the set F.
Take arbitrary t1, t2 ∈ (0,∞), κ ∈ [0, 1] and choose u1, u2 ∈ [0,∞), such

that (t1, u1) , (t2, u2) ∈ convF . Then

(κt1 + (1 − κ) t2, κt1 + (1 − κ) u2) ∈ convF

and by the definition of α

α (κt1 + (1 − κ) t2) ≥ κu1 + (1 − κ)u2,

whence, passing to supremum, we get

α (κt1 + (1 − κ) t2) ≥ κα (t1) + (1 − κ) α (t2) ,

which shows that α is concave. The concavity of α together with its nonneg-
ativity and α (0+) = 0 imply that α is increasing.

Since φ(t)
t < 1 for every t > 0, by Lemma 3(ii), we have

lim
t→∞

φ (t)
t

< 1,

it follows that there is a > 0, such that α (t) < t for all t > a.
Of course, we have α (t) ≤ t for t ∈ [0, a] . To show that α (t) < t

for t ∈ (0, a], assume, for the contrary, that α (t0) = t0 for some t0 ∈
(0, a]. Thus, the point (t0, t0) belongs to the convex hull of the set F ∩
{(t.u) : t ∈ [0, a] , 0 ≤ u ≤ t}. In view of Caratheodory’s theorem ( [10], Cor.
17.4.2, p. 433), there is a two-dimensional simplex S ⊂ convF with vertices
in the set F , such that (t0, t0) ∈ S. Since (t0, t0) belongs to the boundary of
S , it follows that for some κ ∈ [0, 1] :

(t0, t0) = κ (t1, u1) + (1 − τ) (t2, u2) ,

where (t1, u1) ∈ F and (t2, u2) ∈ F are two of the vertices of S. Hence

t0 = κt1 + (1 − τ) t2 < κu1 + (1 − τ) u2 = t0,

that is, t0 < t0, and this contradiction completes the proof. �
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5. Main result on the restrictive Lipschitz mappings

The key result of this paper reads as follows.

Theorem 1. Let (X, d) be a complete metrically convex metric space, and
(Y, ρ) a metric space. Suppose that T : X → Y is a continuous and Lipschitz
restrictive mapping, i.e., there are: a positive strictly decreasing sequence of
real numbers (tn : n ∈ N)

lim
n→∞ tn = 0;

and a sequence (Ln : n ∈ N) of nonnegative real numbers with

L := lim inf
n→∞ Ln < ∞,

such that for every n ∈ N and for all x, y ∈ X

d (x, y) = tn =⇒ ρ (Tx, Ty) ≤ Lnd (x, y) . (11)

Then

ρ (Tx, Ty) ≤ Ld (x, y) , x, y ∈ X;

moreover, if the set {n ∈ N : Ln < L} is infinite, then

ρ (Tx, Ty) ≤ Lα (d (x, y)) , x, y ∈ X, (12)

for an increasing concave function α : [0,∞) → [0,∞), such that

α (t) < t, t > 0.

Proof. Choosing, if necessary, a subsequence of the sequence ((tn, Ln) : n ∈ N),
we can assume, without any loss of generality, that (Ln : n ∈ N) is monotonic
and

L = lim
n→∞ Ln.

Take arbitrary x, y ∈ X, x �= y. For every n ∈ N, there is a unique kn

∈ N∪ {0}, such that

kntn ≤ d (x, y) < (kn + 1) tn.

In view of Lemma 2, for every n ∈ N, there is a sequence of n points
x0,n,x1,n, . . . , xkn,n in X, such that

x0,n = x, d (xi−1,n, xi,n) = tn for i = 1, . . . , kn,

and

d (xkn
,n , y) < tn. (13)

From (11), we have

ρ (Txi−1,n, Txi,n ) ≤ Lntn, i = 1, . . . , kn. (14)

Hence, by the triangle inequality
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ρ (Tx, Ty) ≤
kn−1∑

i=0

ρ (Txi−1,n, Txi,n ) + ρ (Txkn,n, T y)

≤
kn−1∑

i=0

Lntn + ρ (Txkn,n, T y)

= Lnkntn + ρ (Txkn,n, T y)
≤ Lnd (x, y) + ρ (Txkn,n, T y) .

Letting n → ∞ in the resulting inequality, taking into account the continuity
of T and the relation

lim
n→∞ xkn

,n = y

following from (13), and (14), we conclude that:

ρ (Tx, Ty) ≤ Ld (x, y) ,

which proves the first result.
To prove the “moreover” result, note first that the condition that the

set {n ∈ N : Ln < L} is infinite implies that the sequence {Ln : n ∈ N} is
strictly increasing. By Lemma 1, for every t ≥ 0, equality (4) holds, where
(kn (t)) is a unique sequence of nonnegative integers satisfying conditions (2)
and (3). The boundedness of the sequence (Ln) implies that the function
γ : [0,∞) → [0,∞) given by (8) is well defined and, as Ln < L for all n ∈ N,
we have

γ (t) < t, t > 0.

To prove (12), take arbitrary x, y ∈ X, x �= y, and put

t = d (x, y) .

The metrical convexity of X, Lemma 2, and the continuity of the metric d ,
imply that in the metrical segment of endpoints x, y, there is a sequence of
points (xn : n = 0, 1, 2, . . .), such that

x0 = x, d (xn−1, xn) = kn (t) tn for n ∈ N, y = lim
n→∞ xn,

and, for every n ∈ N, there is a finite sequence (yn,0, yn,1, . . . , yn,kn
) of points

in the metrical segment of the endpoints xn−1, xn, such that

yn,0 = xn−1, d (yn,j−1, yn,j) = tn for j = 1, . . . , kn (t) , yn,kn(t) = xn.

Applying in turn, the continuity of T , the definition of the sequence (xn),
the equality y = limn→∞ xn, the triangle inequality, the definition, and the
properties of the sequence (yn,0, yn,1, . . . , yn,kn

), the assumed implication (5),
the definition of the function γ, and the equality t = d (x, y), we get

ρ (Tx, Ty) = lim
n→∞ ρ (Tx0, Txn) ≤ lim

n→∞

n∑

m=1

ρ (Txm−1, Txm)

=
∞∑

n=1

ρ (Txn−1, Txn) ≤
∞∑

n=1

kn(t)∑

j=1

ρ (Tyn,j−1, T yn,j)
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≤
∞∑

n=1

kn(t)∑

j=1

Lntn =
∞∑

n=1

kn (t) Lntn = Lγ (t)

= Lγ (d (x, y)) .

Since γ (0) = 0, we hence obtain

ρ (Tx, Ty) ≤ Lγ (d (x, y)) , x, y ∈ X.

Now, consider the best upper estimation of the function X2 	 (x, y) 
−→
1
Lρ (Tx, Ty) with respect to the metric d, i.e., the function λ : [0,∞) → [0,∞)
defined by

λ (t) :=
{

sup
{

1
Lρ (Tx, Ty) : d (x, y) = t; x, y ∈ X

}
if t ∈ I

0 if t ∈ [0,∞) \I
,

(the interval I is defined in Lemma 2).
Take s, t ∈ I and x, y, z ∈ X such that s = d (x, z), t = d (z, y) . Then,

by the triangle inequality and the definition of λ

ρ (Tx, Ty) ≤ ρ (Tx, Tz) + ρ (Tz, Ty) ≤ Lλ (s) + Lλ (t) ,

whence Lλ (s + t) ≤ Lλ (s) + Lλ (t) . The definition of λ (t) for t ∈ [0,∞) \I
implies

λ (s + t) ≤ λ (s) + λ (t) , s, t ∈ [0,∞) ,

i.e., λ is subadditive in [0,∞).
Since λ (0) = 0 and

0 ≤ λ (t) ≤ γ (t) < t, t > 0,

the function λ is (right) continuous at 0. Hence, applying Lemma 4, we con-
clude that there is a concave increasing function α : [0,∞) → [0,∞), such
that

0 ≤ λ (t) ≤ α (t) < t, t ≥ 0,

which completes the proof. �

The following fact is noteworthy:

Remark 4. Replacing in Theorem 1 the sequence ((tn, Ln) : n ∈ N) by its
arbitrary subsequence gives the same first thesis—thus, the first result does
not depend on the choice of a subsequence. The situation changes radically
in the case of the “moreover” result: it can happen if and only if there is a
strictly increasing subsequence of (Ln : n ∈ N) . Therefore, without any loss
of generality, we can assume that the sequence (Ln : n ∈ N) is monotonic.

Remark 5. In the above result, for a mapping T and a sequence (tn), one
could choose the sequence (Ln) as follows:

Ln := sup
{

ρ (Tx, Ty)
d (x, y)

: x, y ∈ X, d (x, y) = tn

}
, n ∈ N.

The following result allows us to avoid the assumption of the continuity
of the mapping T .
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Theorem 2. Let (X, d) be a complete metric space that is metrically convex
and let (Y, ρ) be a metric space. Suppose that a mapping T : X → Y and a
real function β : (0,∞) → [0,∞) are such that

ρ (Tx, Ty) ≤ β (d (x, y)) , x, y ∈ X, x �= y. (15)

If

lim sup
t→0+

β (t)
t

< ∞,

then T is Lipschitz continuous, that is

ρ (Tx, Ty) ≤ Ld (x, y) , x, y ∈ X,

where

L := lim inf
t→0+

β (t)
t

.

Proof. The continuity of T follows from the inequality lim supt→0+
β(t)

t < ∞
and from (15). It is easy to verify that the remaining assumptions of the first
part of Theorem 1 are satisfied. �

6. Fixed-point theorems, consequences, and remarks

The following result generalizes the Banach fixed-point principle in metrically
convex spaces:

Theorem 3. Let (X, d) be a nonempty complete metrically convex metric space
and T : X → X be a continuous mapping, such that there are: a positive de-
creasing sequence (tn : n ∈ N) with limn→∞ tn = 0, and a sequence of real
numbers (Ln : n ∈ N), such that

Ln < 1, n ∈ N,

and for all n ∈ N and x, y ∈ X

d (x, y) = tn =⇒ d (Tx, Ty) ≤ Lnd (x, y) .

Then, T has a unique fixed-point. Moreover:
(i) if

L := lim inf
n→∞ Ln < 1,

then T is a (linear) Banach contraction with the constant L, that is

d (Tx, Ty) ≤ Ld (x, y) , x, y ∈ X;

(ii) if L = 1, then there is an increasing concave function α : [0,∞) →
[0,∞)

α (t) < t, t > 0; α′ (0) = 1,
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such that

d (Tx, Ty) ≤ α (d (x, y)) , x, y ∈ X,

Proof. Assume Y = X and ρ = d in Theorem 1.
If L < 1, we get d (Tx, Ty) ≤ Ld (x, y) for all x, y ∈ X, so T is a Banach

contraction.
If L = 1 then, by the inequality Ln < 1 for all n ∈ N, the set

{
n ∈

N : Ln < 1
}

is infinite. Consequently, T is a nonlinear α-contraction with an
increasing concave function α. Since limn→∞ αn (t) = 0 for every t > 0, where
αn is the nth iterate of α, the existence and uniqueness of the fixed-point of
T follows from Th. 1.2 in [14] (see also [11] and [6] p. 15). This completes the
proof. �

Let us note the following important result in applications.

Remark 6. Assume that the conditions of Theorem 3 are satisfied and denote
by u ∈ X a unique fixed point of T . Then, the sequence of the iterates
(Tn : n ∈ N) of the mapping T converges (uniformly on bounded subsets of
X) to the constant mapping X 	 x → u. Moreover:

(i) if L < 1, then

d (Tnx, u) ≤ Ln

1 − L
d (Tx, x) , x ∈ X, n ∈ N;

(ii) if L = 1, then

d (Tnx, u) ≤ αn (d (x, u)) , x ∈ X, n ∈ N,

where (αn : n ∈ N) is a sequence of iterates of the function α, and

lim
n→∞ αn (t) = 0, t > 0.

Remark 7. In Theorem 3, without any loss of generality, the sequence
(
Ln :

n ∈ N
)

can be assumed to be monotonic; moreover, the case (i) holds if
(Ln : n ∈ N) is increasing, and (ii) holds if (Ln : n ∈ N) is strictly increasing.

Hence, using the monotonic sequences (Ln : n ∈ N) , we easily obtain
the following two corollaries.

Corollary 1. Let (X, d) be a complete metrically convex metric space and
T : X → X be a continuous mapping. The following two conditions are
equivalent:

(i) T is restrictive Lipschitz with a decreasing sequence (Ln : n ∈ N),
such that L = limn→∞ Ln < 1;

(ii) T is a Banach contraction with the constant L.

Corollary 2. Let (X, d) be a complete metrically convex metric space and
T : X → X be a continuous mapping. The following two conditions are
equivalent:

(i) T is restrictive Lipschitz with a strictly increasing sequence
(
Ln :

n ∈ N
)
, such that L = limn→∞ Ln = 1;
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(ii) T is a nonlinear contraction with an increasing concave function α,
such that α (t) < t for all t > 0 and

α′ (0+) = 1.

Remark 8. An example of a nonlinear contraction of a complete metric fol-
lowing Remark 1 in [2] shows that the metrical convexity of the metric space
(X, d) is essential for the existence of concave α in the above result.

A mapping T : X → X is called a strict contraction, if d (Tx, Ty) <
d (x, y) for all x, y ∈ X, x �= y. The following is consequence of Theorem 1:

Remark 9. A continuous selfmapping T of a complete metrically convex met-
ric space (X, d) is a strict contraction if and only if there is a positive zero
sequence (tn : n ∈ N), such that for all x, y ∈ X

d (x, y) = tn =⇒ d (Tx, Ty) < d (x, y) .

In Theorem 3, the mapping T is assumed to be continuous. The following
result allows us to avoid this condition.

Theorem 4. Let (X, d) be a nonempty complete metrically convex space, T a
selfmapping of X, and β : (0,∞) → [0,∞) a function, such that

lim sup
t→0+

β (t)
t

< ∞, lim inf
t→0+

β (t)
t

= 1,

and 0 is an accumulation point of the set {t > 0 : β (t) < t}.
If

ρ (Tx, Ty) ≤ β (d (x, y)) , x, y ∈ X, x �= y,

then T has a unique fixed point, and the theses of results (i)–(ii) of Theorem 2
hold true.

Proof. Theorem 2 implies the continuity of T . The remaining assumptions of
Theorem 3 are easy to verify. �

This theorem improves the result of Boyd and Wong (see [2], Th. 2).

Remark 10. If the sequence (Ln : n ∈ N) is such that lim infn→∞ Ln = 1, but
the set {n ∈ N : Ln < 1} is finite, then in view of Theorem 1

d (Tx, Ty) ≤ d (x, y) , x, y ∈ X,

that is, T is nonexpansive. The metrical convexity of the space X is not a
sufficient condition to guarantee the existence of a fixed-point of the mapping
T .

The situation dramatically changes if the metrical convex space X is
replaced by a bounded closed convex subset of a uniformly convex Banach
space (Browder [3], Göhde [4] , Kirk [8]; see also Reich [17,18] and Section 5
of the book by Goebel and Reich [5]).



Restrictive Lipschitz continuity, basis property of a real sequence Page 15 of 19    17 

7. Some applications

In this section, we apply the main result in the theory of iterative functional
equations (see for instance Kuczma [9]).

Let C ([0, 1]) be the Banach space of continuous functions ϕ : [0, 1] → R

with the norm

‖ϕ‖ = max {|ϕ (u)| : u ∈ [0, 1]} .

Theorem 5. Let the functions h : R → R, g : [0, 1] → R and f : [0, 1] →
[0, 1] be continuous. Assume that there exist: a positive decreasing to zero
sequence {tn : n ∈ N} and a nonnegative sequence (Ln : n ∈ N) , with L :=
lim infn→∞ Ln < ∞, such that for all u, v ∈ R, n ∈ N

|u − v| = tn =⇒ |h (u) − h (v)| ≤ Lntn.

If L < 1 or L = 1 and there is a strictly increasing subsequence of (Ln : n ∈ N)
such that limn→∞ Ln = 1, the functional equation

ϕ = h ◦ ϕ ◦ f + g

has a unique continuous solution ϕ ∈ C ([0, 1]);
moreover, for every ϕ0 ∈ C ([0, 1]) , the sequence (ϕn : n ∈ N0) defined

by

ϕn+1 := h ◦ ϕn ◦ f + g, n ∈ N0,

converges uniformly to ϕ.

Proof. Clearly, the mapping T given by

T (ϕ) := h ◦ ϕ ◦ f + g, ϕ ∈ C ([0, 1] ,R)

maps C ([0, 1] ,R) into itself.
Since the interval [0, 1] as well as R, with the Euclidean distances, are

complete metrically convex metric spaces, in view of Theorem 1, we have
either

|h (u) − h (v)| ≤ L |h (u) − h (v)| , u, v ∈ [0, 1] ,

with 0 ≤ L < 1, or

|h (u) − h (v)| ≤ α (|h (u) − h (v)|) , u, v ∈ [0, 1] ,

where α : [0,∞) → [0,∞) is strictly increasing continuous function, such that
α (t) < t for every t > 0.

In the first case, taking into account that f is a continuous selfmapping
of [0, 1], for all ϕ1, ϕ2 ∈ C ([0, 1] ,R) , we have

‖T (ϕ1) − T (ϕ2)‖ = max
u∈[0,1]

|h (ϕ1 (f (u))) − h (ϕ1 (f (u)))|
≤ L max

u∈[0,1]
|ϕ1 (f (u)) − ϕ1 (f (u))|

≤ L max
u∈[0,1]

|ϕ1 (u) − ϕ1 (u)| = L ‖ϕ1 − ϕ2‖ ,

so T is a contraction mapping of C ([0, 1] ,R), and the result follows from the
Banach principle.
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In the second case, similarly, using the increasing monotonicity and
continuity of α, we have

‖T (ϕ1) − T (ϕ2)‖
= max

u∈[0,1]
|h (ϕ1 (f (u))) − h (ϕ1 (f (u)))| ≤ max

u∈[0,1]
α (|ϕ1 (f (u)) − ϕ1 (f (u))|)

≤ max
u∈[0,1]

α (|ϕ1 (u) − ϕ1 (u)|) = α (‖ϕ1 − ϕ2‖)

for all ϕ1, ϕ2 ∈ C ([0, 1] ,R) , and the result follows from Theorem 3. �

Let L1 ([0, 1]) be the Banach space of Lebesgue integrable continuous
functions ϕ : [0, 1] → R with the norm

‖ϕ‖ =
∫

[0,1]

|ϕ (u)| du.

Theorem 6. Let h : R → R be continuous, let g ∈ L1 ([0, 1]), and f : [0, 1] →
[0, 1] be continuously differentiable and such that f ′ > 0 in [0, 1].

Assume that there exist: a positive decreasing to zero sequence {tn : n ∈ N}
and a nonnegative sequence (Ln : n ∈ N) , with L := lim infn→∞ Ln < ∞,
such that for all u, v ∈ R, n ∈ N

|u − v| = tn =⇒ |h (u) − h (v)| ≤ Lntn.

If L < inf {f ′ (u) : u ∈ [0, 1]} , or L = inf {f ′ (u) : u ∈ [0, 1]} and there is a
strictly increasing subsequence of (Ln : n ∈ N) such that limn→∞ Ln = 1, the
functional equation

ϕ = h ◦ ϕ ◦ f + g

has a unique solution ϕ ∈ L1 ([0, 1]);
moreover, for every ϕ0 ∈ L1 ([0, 1]) , the sequence (ϕn : n ∈ N0) defined

by

ϕn+1 := h ◦ ϕn ◦ f + g, n ∈ N0,

converges in the L1 ([0, 1])-norm to ϕ.

Proof. Similarly as in the proof of the previous result, we have either (the
first case)

|h (u) − h (v)| ≤ L |h (u) − h (v)| , u, v ∈ [0, 1] ,

with 0 ≤ L < 1, or (the second case)

|h (u) − h (v)| ≤ α (|h (u) − h (v)|) , u, v ∈ [0, 1] ,

where α : [0,∞) → [0,∞) is a strictly increasing continuous function, such
that α (t) < t for every t > 0.

The mapping T given by

T (ϕ) := h ◦ ϕ ◦ f + g, ϕ ∈ L1 ([0, 1]) ,

maps C ([0, 1] ,R) into itself.
Note that, for every ϕ ∈ L1 ([0, 1]), the function T (ϕ) is measurable,

and
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∫

[0,1]

|T (ϕ) (u)| du ≤
∫

[0,1]

|h (ϕ (f (u)))| du +
∫

[0,1]

|g (u)| du

≤ L

∫

[0,1]

|ϕ (f (u))| du + L |h (0)| +
∫

[0,1]

|g (u)| du

=
L

inf f ′

∫

f([0,1])

|ϕ (u)| du + L |h (0)| +
∫

[0,1]

|g (u)| du

≤ L

inf f ′ ‖ϕ‖ + L |h (0)| + ‖g‖ < ∞,

so T maps L1 ([0, 1]) into itself.
In the first case, for all ϕ1, ϕ2 ∈ L1 ([0, 1]) , we have

‖T (ϕ1) − T (ϕ2)‖ =
∫

[0,1]

|h (ϕ1 (f (u))) − h (ϕ1 (f (u)))|

≤ L

∫

[0,1]

|ϕ1 (f (u)) − ϕ1 (f (u))| du

≤ L

inf f ′

∫

f([0,1])

|ϕ1 (u) − ϕ1 (u)| du

≤ L ‖ϕ1 − ϕ2‖ ,

so T is a contraction mapping of L1 ([0, 1]), and the result follows from the
Banach principle.

In the second case, using the Jensen inequality for the concave function
α, we have

‖T (ϕ1) − T (ϕ2)‖ =
∫

[0,1]

|h (ϕ1 (f (u))) − h (ϕ1 (f (u)))| du

≤
∫

[0,1]

α (|ϕ1 (f (u)) − ϕ1 (f (u))|) du

≤ 1
inf f ′

∫

f([0,1])

α (|ϕ1 (u) − ϕ1 (u)|) du

≤ 1
inf f ′ α

(∫

f([0,1])

|ϕ1 (u) − ϕ1 (u)| du

)
≤ α (‖ϕ1 − ϕ2‖)

for all ϕ1, ϕ2 ∈ L1 ([0, 1]) , and the result follows from Theorem 3. �
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jugacy and a generalization of Hö lder’s and Minkowski’s inequalities. Aequ.
Math. 40, 168–180 (1990)

[13] Matkowski, J.: Lp-like paranorms, selected topics in functional equations and
iteration theory (Graz, 1991). In: Grazer Math. Ber., vol. 316, pp. 103–138.
Karl-Franzens-Univ. Graz, Graz (1992)

[14] Matkowski, J.: Integrable solutions of functional equations, Dissertationes
Math., (Rozprawy Mat.) vol. 127, pp. 68 (1975)

[15] Matkowski, J.: A refinement of the Browder–Gö hde–Kirk fixed point theorem
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Poland
e-mail: J.Matkowski@wmie.uz.zgora.pl

Accepted: March 13, 2024.


	Restrictive Lipschitz continuity, basis  property of a real sequence, and fixed-point  principle in metrically convex spaces
	Abstract
	1. Introduction
	2.  Decreasing zero sequence is a basis in the set of real positive numbers
	3. Metrically convex space and a lemma
	4. Some properties of subadditive functions
	5. Main result on the restrictive Lipschitz mappings
	6. Fixed-point theorems, consequences, and remarks
	7. Some applications
	Acknowledgements
	References


