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Abstract. This work is devoted to the study of singular strongly non-
linear integro-differential equations of the type

(Φ(k(t)v′(t)))′ = f

(
t,

∫ t

0

v(s) ds, v(t), v′(t)
)

, a.e. on R
+
0 := [0, +∞[,

where f is a Carathéodory function, Φ is a strictly increasing homeo-
morphism, and k is a non-negative integrable function, which is allowed
to vanish on a set of zero Lebesgue measure, such that 1/k ∈ Lp

loc(R
+
0 )

for a certain p > 1. By considering a suitable set of assumptions, in-
cluding a Nagumo–Wintner growth condition, we prove existence and
non-existence results for boundary value problems associated with the
non-linear integro-differential equation of our interest in the sub-critical
regime on the real half line.

Mathematics Subject Classification. 34B16, 34B40, 34L30, 34C37.

Keywords. BVPs on unbounded interval, Φ-Laplace operator, non-linear
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1. Introduction

The focus of this work is to prove existence and non-existence results (in a
sense that we specify later on) for boundary value problems (in short: BVPs)
associated with a strongly non-linear, non-autonomous ordinary differential
equation involving the Φ-Laplacian operator in R on the half line R

+
0 . In

particular, we study the following BVP:⎧⎪⎨
⎪⎩

(Φ(k(t)v′(t)))′ = f
(
t,
∫ t

0
v(s) ds, v(t), v′(t)

)
, a.e. on R

+
0 ,

v(0) = b, v(+∞) = c,

(1)

where b, c ∈ R and v(+∞) = c is a short-hand notation for v(t) → c as
t → +∞, under the following structural assumptions.
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(A1) Φ : R → R is a strictly increasing homeomorphism, such that Φ(0) = 0
and

lim inf
z→0+

Φ(z)
zρ

> 0 for some ρ > 0.

(A2) k : R+
0 → R is a measurable function and there exists a certain p > 1,

such that
1
k

∈ Lp
loc(R

+
0 ), and k > 0 a.e. in R

+
0 .

(A3) f : R+
0 × R

3 → R is a Carathéodory function.

1.1. Motivation and background

From the applications point of view, integro-differential equations arise in
various research fields to model non-local phenomena in time and they natu-
rally describe various types of dynamical systems, from population dynamics
to visco-elastic fluids; see [27] and references therein. Indeed, both Lotka–
Volterra and Fredholm type models belong to this class; see for instance
[22,26].

On the other hand, the Φ-Laplacian operator considered in assumption
(A1) is a generalization of the classical r-Laplacian operator defined as Φ(z) =
z|z|r−2, with r > 1. Hence, singular strongly non-linear BVPs of type (1) find
many applications in non-Newtonian fluid theory, diffusion flow in porous
media, non-linear elasticity and theory of capillary surfaces; see for instance
[9,16,20]. In view of this, literature presents many contributions studying
second-order differential equations without integral dependence on the right-
hand side of the type

(Φ(k(t)v′(t)))′ = f (t, v(t), v′(t))

under various assumptions for Φ and f , alongside with different types of
boundary conditions; see for instance [4–8,10,11,13,21,24,30].

Additionally, the a.e. strict positivity assumption introduced in (A2) for
the term k can equivalently be written as

|
{
t ∈ R

+
0 : k(t) = 0

}
| = 0,

where |A| denotes the Lebesgue measure of the set A. Then, it directly follows
that the ODE associated with the boundary value problem (1):

(Φ(k(t)v′(t)))′ = f

(
t,

∫ t

0

v(s) ds, v(t), v′(t)
)

(2)

may be singular. This fact combined with the assumption 1/k ∈ Lp
loc(R

+
0 ),

for some p > 1, implies that it is natural to look for solutions of (1) in
W 1,p

loc (R+
0 ). Hence, the problem we study is a non-linear non-local possibly

singular second-order integro-differential equation, which can remarkably be
employed to describe non-local phenomena in time also presenting a non-
linear and possibly singular behavior in the diffusion.

Furthermore, our analysis includes the study of the existence of het-
eroclinic solutions for integro-differential ODEs of the form (2), which are
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obtained by considering (1) with b �= c. These solutions find many applica-
tions to the study of biological, physical, and chemical models, since they
represent a phase transition process in which the system transits from an
unstable equilibrium to a stable one. For this reason, heteroclinic solutions
are also referred to as transitional solutions, and for further information on
this subject, we refer to [23,25] and the references therein.

It is now clear that model (1) is a generalization of the existing literature,
and we point out that by performing the change of variables u(t) =

∫ t

0
v(s) ds,

see (9), our results apply to a third-order ordinary differential equation, see
(10), which finds many applications in fluid dynamics as a generalization
of the Blasius problem, which models the flat plate problem in boundary
layer theory for viscous fluids, see [14]. We remark that third-order ODEs of
type (10) are studied under various assumptions and boundary conditions.
We refer the interested reader to [1,2,15,18,19,28,29], and the references
therein.

Finally, among future possible development of the present analysis, we
recall the study of (1) in the singular case, i.e., when I, J ⊂ R are bounded
open intervals and the map Φ : I → J is a strictly increasing homeomorphism.
In this case, the model operator we consider is the relativistic operator

Φ(s) =
s√

1 − s2
, s ∈ (−1, 1).

Furthermore, one can also consider the non-surjective case, i.e., when J ⊂ R

is a bounded open interval and the map Φ : R → J is a strictly increasing
homeomorphism and for which the toy model is the mean curvature operator

Φ(s) =
s√

1 + s2
, s ∈ R.

For further information on these subjects, we refer the reader to [3,12,17].

1.2. Plan of the paper

This work is organized as follows. In Sect. 2, we present an existence re-
sult for problem (1) (see Theorem 2.4) and we provide the reader with a
scheme of the proof of our statement. This proof is split into two steps,
which are later on separately analyzed in Sects. 3 and 4, respectively. Sec-
tion 5 is devoted to the proof of a non-existence result (see Theorem 5.1)
allowing us to discuss the optimality of assumptions considered in Sect. 2.
Finally, in Sect. 6 we provide some explicit criteria to prove the existence
and the non-existence of a solution when the right-hand side is either in
the separate variables case f(t, x, y, z) = a(t)b(x)c(y)d(z), or in the coupled
case f(t, x, y, z) = g(t, x, y)h(x, y, z), and the Φ-Laplace operator is either
the p-Laplace operator, or a general Φ-Laplace operator governed by an odd
function.
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2. Existence result

This section is devoted to the proof of an existence result regarding problem
(1). Given our assumptions, we look for solutions, lower solutions and upper
solutions to (2) of the following type.

Definition 2.1. A continuous function v : R+
0 → R is a solution to (2) if

1. v ∈ W 1,p
loc (R+

0 ) and Φ ◦ (kv′) ∈ W 1,1
loc (R+

0 );

2. (Φ(k(t)v′(t)))′ = f
(
t,
∫ t

0
v(s) ds, v(t), v′(t)

)
for a.e. t ∈ R

+
0 .

Definition 2.2. A bounded continuous function α : R+
0 → R is a lower solu-

tion to (2) if

1. α ∈ W 1,p
loc (R+

0 ) and Φ ◦ (kα′) ∈ W 1,1
loc (R+

0 );

2. (Φ(k(t)α′(t)))′ ≥ f
(
t,
∫ t

0
α(s) ds, α(t), α′(t)

)
for a.e. t ∈ R

+
0 .

A bounded continuous function β : R+
0 → R is an upper solution to (2) if

1. β ∈ W 1,p
loc (R+

0 ) and Φ ◦ (kβ′) ∈ W 1,1
loc (R+

0 );

2. (Φ(k(t)β′(t)))′ ≤ f
(
t,
∫ t

0
β(s) ds, β(t), β′(t)

)
for a.e. t ∈ R

+
0 .

Remark 2.3. Considering point 1. of Definition 2.1 together with the fact
that Φ is a strictly increasing homeomorphism by (A1), we infer there exists
a unique Kv ∈ C(R+

0 ,R), such that

Kv(t) = k(t)v′(t) for a.e. t ∈ R
+
0 .

An analogous observation holds true for lower and upper solutions.

In addition to previously introduced structural assumptions (A1), (A2)
and (A3), from now on, we consider also the following ones describing the
behavior of the right-hand side f :

(B1) There exist a well-ordered pair α, β of lower and upper solutions to (1),
respectively, in the sense that α(t) ≤ β(t) for every t ∈ R

+
0 . Moreover,

there exists T0 > 0, such that

β is increasing on [T0,+∞) and lim
t→+∞

β(t) := c ∈ R.

(B2) The function f : R+
0 ×R

3 → R is decreasing in the x variable, i.e., such
that

f(t, x1, y, z) ≥ f(t, x2, y, z)

for every t ∈ R
+
0 and every x1, x2, y, z ∈ R, with x1 ≤ x2.

(B3) There exist a constant H > 0, a non-negative function ν ∈ Lq([0, T0]),
with 1 < q ≤ ∞, a non-negative function � ∈ L1([0, T0]), and a measur-
able function ψ : (0,+∞) → (0,+∞) satisfying

1
ψ

∈ L1
loc(0, +∞) and

∫ ∞
1

ψ(s)
ds = +∞, (3)
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such that

|f(t, x, y, z)| ≤ ψ (|Φ(k(t)z)|)
(

�(t) + ν(t)|z|
q−1

q

)
a.e. on [0, T0]

for every x, y ∈ R such that x ∈
[

t

∫
0

α(s) ds,
t

∫
0

β(s) ds

]
, y ∈ [α(t), β(t)]

and every z ∈ Rwith |z| ≥ H, where (q − 1)/q = 1 if q = +∞. (4)

(B4) There exists θ > 1, such that for every fixed L > 0, there exists a non-
negative function ηL ∈ L1(R+

0 ) and a function KL ∈ W 1,1
loc (R+

0 ), null on
J := [0, T0] and strictly increasing on [T0,+∞), such that

(∗)
∞
∫

T0+1

1

k(t)
KL(t)

− 1
ρ(θ−1) dt < ∞; (5)

(∗) f(t, x, y, z(t)) ≤ −K
′
L(t)|Φ(k(t)z)|θ for a.e. t ≥ T0,

for every x, y ∈ R such that x ∈
[

t

∫
0

α(s) ds,
t

∫
0

β(s) ds

]
and y ∈ [α(t), β(t)]

and every z ∈ R such that |z| ≤ NL(t)/k(t), where

NL(t) := Φ−1{(Φ(L)1−θ + (θ − 1)KL(t))
1

1−θ }; (6)

(∗) |f(t, x, y, z(t))| ≤ ηL(t) for a.e. t ∈ R
+
0 ,

for every x, y ∈ R such that x ∈
[

t

∫
0

α(s) ds,
t

∫
0

β(s) ds

]
and y ∈ [α(t), β(t)]

and every z ∈ R such that |z| ≤ (NL(t)/k(t)) + |α′(t)| + |β′(t)|. (7)

Assumptions (B1), (B2), (B3) are rather technical, but very general and
widely established in the existing literature for strongly non-linear boundary
value problems of the form (1); see for instance [4]. In particular, assumption
(B1) allows us to derive a priori bounds on the L∞ norm of any solution
to (2). Assumption (B2) is required to deal with the integral dependence of
f , and its technical importance will be later on clarified in Sect. 3. Finally,
assumption (B3) is the renowned Nagumo–Wintner type growth condition,
that in combination with assumption (B4) is responsible of the control of
the solution in the sub-critical regime. Regarding the last assumption, we
also recall that NL/k ∈ L1([0,+∞[), because by (5) and (A2), the following
estimate holds:

∞∫
0

NL(t)
k(t)

dt ≤ c

⎛
⎝

T∫
0

1
k(t)

dt +

∞∫
T

1
k(t)

KL(t)− 1
ρ(θ−1) dt

⎞
⎠ , (8)

for every T > T0 arbitrarily fixed; see [6, Remark 3.7].

Theorem 2.4. Let (A1), (A2), (A3) and (B1), (B2), (B3), (B4) hold. Then,
for every b, c ∈ R, such that α(0) ≤ b ≤ β(0) and α(+∞) ≤ c ≤ β(+∞)
problem (1) admits a continuous solution v ∈ W 1,p

loc (R+
0 ), such that

α(t) ≤ v(t) ≤ β(t) ∀t ∈ R
+
0 .

Remark 2.5. When b < c, Theorem 2.4 implies the existence of a heteroclinic
solution for (2) on the half line. Hence, our result is an extension of [6,23]
to the case of singular non-linear integro-differential ODEs of second order.
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Furthermore, it is possible to extend it to heteroclinic solutions on R by
following the method proposed in [8,23].

Remark 2.6. An analogous statement holds true for a BVP associated with a
singular strongly non-linear third-order differential equation of the form (10).
Indeed, as more precisely stated in Sect. 2.1, the proof of Theorem 2.4 directly
follows from an existence result for the third-order boundary value problem
(see Theorem 2.9) associated with (2) via a suitable change of variables (see
(9)).

2.1. Scheme of the proof

The proof of our existence result is based on four main ingredients: a suitable
change of variables, the lower and upper solutions method, a fixed point
theorem, and a limiting procedure.

First of all, starting from problem (1), we introduce an auxiliary BVP,
see (10), involving a singular strongly non-linear third-order differential equa-
tion. Indeed, if we consider a solution v to (1), then the function

u(t) =
∫ t

0

v(s) ds (9)

is C1(R+
0 ,R), belongs to W 2,p

loc (R+
0 ) and is a solution to the equivalent BVP{

(Φ(k(t)u′′(t)))′ = f(t, u(t), u′(t), u′′(t)) a.a. t ∈ R
+
0 ,

u′(0) = b, u′(+∞) = c, u(0) = 0.
(10)

In particular, u is a solution to the third-order ODE

(Φ(k(t)u′′(t)))′ = f(t, u(t), u′(t), u′′(t)) (11)

in the sense of the following definition.

Definition 2.7. A function u ∈ C1(R+
0 ,R) is a solution to (10) if

1. u ∈ W 2,p
loc (R+

0 ) and Φ ◦ (ku′′) ∈ W 1,1
loc (R+

0 );
2. (Φ(k(t)u′′(t)))′ = f(t, u(t), u′(t), u′′(t)) for a.e. t ∈ R

+
0 .

Then, as observed in Remark 2.3, there exists a unique Ku ∈ C(R+
0 ,R), such

that
Ku(t) = k(t)u′′(t) for a.e. t ∈ R

+
0 .

Furthermore, if we consider α and β a well-ordered pair of bounded lower and
upper solutions of (2), whose existence is ensured by (B1), we are allowed to
define

α̃(t) =
∫ t

0

α(τ) dτ and β̃(t) =
∫ t

0

β(τ) dτ. (12)

Notice that, by definition, α̃(0) = β̃(0) = 0. Moreover, functions α̃ and β̃ are
lower and upper solutions to (11), respectively, in the following sense.

Definition 2.8. A Lipschitz function α̃ ∈ C1(R+
0 ,R) is a lower solution to (11)

if
1. α̃ ∈ W 2,p

loc (R+
0 ) and Φ ◦ (kα̃′′) ∈ W 1,1

loc (R+
0 );
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2. (Φ(k(t)α̃′′(t)))′ ≥ f(t, α̃, α̃′(t), α̃′′(t)) for a.e. t ∈ R
+
0 .

A Lipschitz function β̃ ∈ C1(R+
0 ,R) is an upper solution to (11) if

1. β̃ ∈ W 2,p
loc (R+

0 ) and Φ ◦ (kβ̃′′) ∈ W 1,1
loc (R+

0 );
2. (Φ(k(t)β̃′′(t)))′ ≤ f(t, β̃(t), β̃′(t), β̃′′(t)) for a.e. t ∈ R

+
0 .

Hence, considering our previous observations together with the change
of variables (9), proving the existence of a solution to (1) is equivalent to
prove the existence of a solution to (10). For this reason, proof of Theorem 2.4
boils down to prove the following result, where every assumption (Bi), with
i = 1, 2, 3, 4, needs to be understood according to the change of variables
introduced in (9).

Theorem 2.9. Let (A1), (A2), (A3) and (B1), (B2), (B3), (B4) hold. Then,
for every b, c ∈ R, such that α̃′(0) ≤ b ≤ β̃′(0) and α̃′(+∞) ≤ c ≤ β̃′(+∞)
problem (10) admits a continuous solution u ∈ W 2,p

loc (R+
0 ), such that

α̃(t) ≤ u(t) ≤ β̃(t) and α̃′(t) ≤ u′(t) ≤ β̃′(t) ∀t ∈ R
+
0 .

It is worth noting this theorem has an importance of its own given the
useful physical applications of problem (10) that we already mentioned in
the introduction of this work; see [14]. As far as we are concerned with its
proof, it mainly consists of two steps, that for the sake of readability, we will
exploit in forthcoming Sect. 3 and Sect. 4, respectively.
Step 1. For every n ∈ N, n > T0, we prove there exists a solution un on the
compact interval In := [0, n] to the auxiliary problem⎧⎨

⎩
(Φ(k(t)u′′

n(t)))′ = f(t, un(t), u′
n(t), u′′

n(t)), a.e. on In

u′
n(0) = b, u′

n(n) = β̃(n), un(0) = 0,
(13)

where β̃(n) is the supersolution β̃ introduced in (12) computed at t = n.
Step 2. Once the first step is established, we denote by un the solution to
(13) for a fixed n ∈ N. Then, we show the sequence {un}n∈N converges up to
a subsequence to a continuous function u ∈ W 2,p

loc (R+
0 ), which is a solution to

(10) in the sense of Definition 2.1.

3. Step 1: solvability on compact intervals

Throughout this section, we assume (A1), (A2), (A3) and (B1), (B2), (B3),
(B4) hold, where every (Bi), with i = 1, 2, 3, 4, needs to be understood ac-
cording to the change of variables introduced in (9). Moreover, we recall that
J := [0, T0], where T0 is the parameter introduced in (B1). Then, for every
fixed n ∈ N, with n > T0, our aim is to prove the existence of a solution to
(13).

To do this, we recall an useful result proved in [1, Theorem 3.1], that is
a fundamental ingredient for the proof of the existence of a solution to (13).
From now on, for the sake of brevity, we denote

W0(In) : =
{
u ∈ W 2,p(In) : u(0) = 0

}
,
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and we observe every solution u defined through the change of variables (9)
belongs to the space W0(In). Hence, it is natural to look for solutions to (10)
in W0(In).

Theorem 3.1. (Theorem 2.2, [1]) Let (A1), (A2), (A3) hold. Moreover, let

F : W0(In) → L1(In)
u �−→ Fu

be a continuous operator and let η ∈ L1(In) be such that

|Fu(t)| ≤ η(t), a.e. on In, ∀u ∈ W0(In).

Then, for every ν1, ν2 ∈ R, there exists a solution un ∈ W0(In) to⎧⎨
⎩

(Φ(k(t)u′′(t)))′ = Fu(t) a.e. on In

u′(0) = ν1, u′(n) = ν2.

Remark 3.2. The boundary condition u(0) = 0 is hidden in the definition of
the set W0(In).

Hence, our aim is to apply this result to a truncated version of (13) to
then prove that a solution to the truncated problem is also a solution to (13).

Thus, we begin by considering the well-ordered pair α̃, β̃ of lower and
upper solutions introduced in assumption (12). Then, α̃, β̃ ∈ W0(In), for
every n ∈ N, with n > T0. Now, we let M > 0 be such that

‖α̃‖L∞(J), ‖β̃‖L∞(J), ‖α̃′‖L∞(J), ‖β̃′‖L∞(J) ≤ M.

From (A2), Φ is a strictly increasing homeomorphism. Moreover, if H > 0
is the positive constant introduce in (B3), then we introduce a real constant
N > 0, such that

Φ(N) > 0, Φ(−N) < 0, and N > max
{

H,
2M

T0

}
· ‖k‖L∞(J).

According to this choice of N , and taking (B3) into account, we fix L =
L(N,M) > N > 0, such that

min

⎧⎪⎨
⎪⎩

Φ(L)∫
Φ(N)

1
ψ

ds,

−Φ(−L)∫
−Φ(−N)

1
ψ

ds

⎫⎪⎬
⎪⎭ > ‖l‖L1(J) + ‖ν‖Lq(J) · (2M)

q−1
q , (14)

and we introduce a function γL ∈ Lp(In) (hence, γL ∈ Lp
loc(R

+
0 )), defined by

γL(t) :=
NL(t)
k(t)

. (15)

Now, we are in a position to introduce the truncating operators we will
employ to construct the truncated problem associated with (13). Given a pair
of functions ξ, ζ ∈ L1(In) satisfying the ordering relation ξ(t) ≤ ζ(t) for a.e.
t ∈ In, we introduce the truncating operator

T ξ,ζ : L1(In) → L1(In), T ξ,ζ
x (t) = max {ξ(t),min {x(t), ζ(t)}} .
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By [5, Lemma A.1], the following properties hold true:

• |T ξ,ζ
x (t) − T ξ,ζ

y (t)| ≤ |x(t) − y(t)| for every x, y ∈ L1(In);

• if ξ, ζ ∈ W 1,1(In), then T ξ,ζ
(
W 1,1(I)

)
⊆ W 1,1(In). Moreover, T ξ,ζ

is continuous from W 1,1(In) into itself (with respect to the usual norm).

In addition, for every u ∈ W 2,p(In), we denote

Du′(t) := T −γL,γL

(T α̃′,β̃′
u′ )′

(t), (16)

where γL is the function defined in (15). For further information on truncating
operators, we refer the reader to [5, Appendix A].

Then, we are in a position to introduce the truncated problem associated
to (13) for every n ∈ N , with n > T0, that is the same BVP where the right-
hand side is replaced by a truncated version of f obtained via a suitable
composition with operators T and D introduced above.

Proposition 3.3. Let (A1), (A2), (A3) and (B1), (B2), (B3), (B4) hold. Let
n ∈ N, with n > T0, be fixed. Then, the truncated problem{

(φ(k(t)u
′′
n(t))′ = Fun

(t), a.e. on In,

u′
n(0) = b, u′

n(n) = β̃(n)
(17)

admits at least a solution, where the truncated operator

F : W0(In) → L1(In),
un �−→ Fun

,

is defined by

Fun
(t) := f

(
t, T α̃,β̃

un
(t), T α̃′,β̃′

u′
n

(t),Du′
n
(t)
)

+ arctan
(
u′

n(t) − T α̃′,β̃′
u′

n
(t)
)

.

Proof. By the definition of T , for every t ∈ In and un ∈ W0(In), we get

α̃(t) ≤ T α̃,β̃
un

(t) ≤ β̃(t), α̃′(t) ≤ T α̃,β̃
un

(t) ≤ β̃′(t)

Moreover, from the definition of D (see (16)), for every un ∈ W0(In) and a.e.
t ∈ In, we have

|Du′
n
(t)| ≤ γL(t).

Hence, by assumption (B4), there exists a non-negative function ηL ∈ L1(In),
such that

|Fun
(t)| ≤

∣∣∣f (t, T α̃,β̃
un

(t), T α̃′,β̃′
u′

n
(t),Du′

n
(t)
) ∣∣∣+ π

2
≤ ηL(t) +

π

2
:= η(t) (18)

for every un ∈ W0(In) and for a.e. t ∈ In. Since ηL ∈ L1(In), also η ∈ L1(In),
and hence, we conclude Fun

∈ L1(In) for every un ∈ W0(In). Eventually, Fun

satisfies the boundedness assumption of Theorem 3.1.
Furthermore, F is continuous from W0(In) into L1(In). Given a sequence

(wm)m ∈ W0(In) converging to un ∈ W0(In) in W 2,p(In), our aim is to show
Fwm

(t) → Fun
(t) in L1(In), as m → +∞ and up to a subsequence. First, we

notice

wm → un, w′
m → u′

n in W 1,1(In), and w′′
m → u′′

n in L1(In). (19)
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Then, by [5, Lemma A.1], we have

T α̃,β̃
wm

→ T α̃,β̃
un

in W 1,1(In), and T α̃′,β̃′
w′

m
→ T α̃′,β̃′

u′
n

in W 1,1(In),

which, up to a subsequence, also implies that(
T α̃′,β̃′

w′
m

)′
→
(
T α̃′,β̃′

u′
n

)′
in L1(In).

Then (
T α̃′,β̃′

w′
m

)′
(t) →

(
T α̃′,β̃′

u′

)′
(t) for a.e. t ∈ In.

Thus, combining this convergence with [5, Lemma A.1], we have

Dwm
′(t) → Du′

n
(t) for a.e. t ∈ In. (20)

Considering the convergence relations from (19) to (20) and recalling f is a
Carathéodory function by assumption (A3), we then obtain

lim
m→+∞

Fwm
(t) = lim

m→+∞

[
f
(
t, T α̃,β̃

wm
(t), T α̃′,β̃′

w′
m

(t),Dw′
m

(t)
)

+ arctan
(
w′

m(t) − T α̃′,β̃′
w′

m
(t)
)]

= Fun
(t) for a.e. t ∈ In.

By combining this pointwise result with a standard dominated convergence
theorem based on (18), we conclude Fwm

→ Fun
in L1(In) as m → +∞,

which is the desired result.
Eventually, we are allowed to apply Theorem 3.1 to (17) proving the

existence of a solution to the auxiliary problem (17). �

We remark that if un ∈ W0(In) is a solution of the truncated problem
(17) in the sense of Definition 2.7, then there exists a unique continuous
function on In such that

Kun
(t) = k(t)u

′′
n(t) for a.e. t ∈ In. (21)

Since the solvability of the truncated problem (17) is now established,
our next aim is to show every solution to (17) is indeed a solution to (13). Our
idea is to adapt the proof of [1, Theorem 3.3] to this case, and for reader’s
convenience, we recall that J := [0, T0], see assumption (B4).

Proposition 3.4. Let (A1), (A2), (A3) and (B1), (B2), (B3), (B4) hold. Let
n ∈ N, with n > T0, be fixed. Let un ∈ W0(In) be any solution to the truncated
problem (17), then un is a solution to (13).

Proof. First of all, by arguing as in [1, Claim 1–5 of Theorem 3.1], every
solution to (17) is such that

∗ α̃′(t) ≤ u′
n(t) ≤ β̃′(t) and α̃(t) ≤ un(t) ≤ β̃(t) for every t ∈ In; (22)

∗ T α̃,β̃
un

(t) = un(t), T α̃′,β̃′
u′

n
(t) = u′

n(t), Du′
n
(t) = T −γL,γL

u′
n

(t) for every t ∈ In;

∗ |Kun
| ≤ L for every t ∈ J,where L is chosen as in (14);

∗ |u′′
n(t)| < L/k(t) for almost every t ∈ J ; (23)
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where Kun
is the function introduced in (21). Since assumption (B3) only

holds on J , we need to separately check the behavior of un on [T0, n]. Indeed,
by arguing as in [6, Proposition 3.5], we are able to prove

∗ Φ(Kun
) is decreasing on [T0, n];

∗ Kun
≥ 0 on [T0, n];

∗ if there exists t ∈ [T0, n] such that Kun
(t) = 0, then Kun

(t) = 0 for

every t ∈ [t, n];

∗ |Kun
| ≤ NL on In; (24)

∗ |u′′
n| ≤ γL almost everywhere on In,where γL is defined in (15). (25)

Then, since un is a solution to (17), it is obvious that u
′
n(0) = b and u

′
n(n) =

β(n). Moreover, by bearing in mind definitions of T and D, alongside with
the properties listed above, we infer

(
Φ
(
k(t)u

′′
n(t)

))′

= f
(
t, un(t), u

′
n(t), u

′′
n(t)

)
.

Thus, un is a solution to (13) on the compact interval In. �

4. Step 2: limit argument

Throughout this section, we assume assumptions (A1), (A2), (A3) and (B1),
(B2), (B3), (B4) are in place, alongside with the notation introduced in
Sect. 3. Our aim is to conclude the proof of Theorem 2.9 via a limit argument
that will ensure us that any sequence {un}n∈N, where un is a solution to (13)
on In for every fixed n ∈ N, with n > T0, converges to a solution u to (10).

Let T0 > 0 be fixed by assumption (B1), and for every n > T0, we
choose a solution un ∈ W0(In) to (17). Then, by Proposition 3.4, un is also
a solution to (13) on In. Additionally, (24) and (25) hold for every n ∈ N,
with n > T0, that is

∗ |Kun
| ≤ NL on In; (26)

∗ |u′′
n| ≤ NL/k = γL almost everywhere on In. (27)

Then we define the sequence {xn} ⊆ W 2,p
loc (R+

0 ) as follows: xn : R+
0 → R,

such that

xn(t) =

{
un(t), if t ∈ In;
un(n) + β̃′(n)(t − n), if t > n;

(28)

and we observe that

x′
n(t) =

{
u′

n(t), if t ∈ In;
β̃′(n), if t > n.

Our aim is to show {xn}n∈N uniformly converges (up to a subsequence) to
a solution u ∈ W 2,p

loc (R+
0 ) to (10).
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To do this, for every n > T0, we define

zn(t) := x
′′
n(t) =

{
u

′′
n(t), if t ∈ [0, n] and ∃u

′′
n(t)

0, if t > n;

and

Ψn(t) :=

{
(Φ(Kun

(t)))′
, if t ∈ In and ∃(Φ(Kun

(t)))′

0, otherwise.

Since un is a solution to (13), from (7), (22) and (27), we get

|Ψn(t)| :=

{
f (t, un(t), u′

n(t), u′′
n(t)) , a.e. on In

0, if t > n

≤ ηL(t) for a.e. t ∈ R
+
0 . (29)

As a consequence, {Ψn}n is a sequence of uniformly integrable functions in
L1(R+

0 ), since by assumption, ηL ∈ L1(R+
0 ). In addition, by (27), we have

|zn(t)| =

{
|u′′

n(t)|, if t ∈ In and ∃u
′′
n(t)

0, if t > n
≤ NL(t)

k(t)
for a.e. t ∈ R

+
0 . (30)

Since NL/k ∈ L1(R+
0 ) (see [6, Remark 3.7]), we infer {zn}n is uniformly

integrable in L1(R+
0 ).

Then, by applying the Dunford-Pettis Theorem we obtain there exist
two functions g, h ∈ L1(R+

0 ), such that

zn ⇀ g and Ψn ⇀ h in L1(R+
0 ) as n → ∞, (31)

up to a subsequence. Now, we observe that, since un solves (13), we also have
xn(0) = 0, x′

n(0) = b for every n > T0. Hence, we obtain

xn(t) := xn(0) + x′
n(0)t +

t∫
0

s∫
0

x′′
n(τ) dτ ds

n→∞−−−−→ bt +

t∫
0

s∫
0

g(τ) dτ ds =: x0(t) ∀t ∈ R
+
0 . (32)

Given its definition, x0 has the following properties:
* x0 is absolutely continuous on R

+
0 , x0(0) = 0 and x′

0(0) = b;
* x0 ∈ C1(R+

0 ,R);
* x′′

0 = g ∈ L1(R+
0 ).

Moreover, we observe that α̃(t) ≤ xn(t) = un(t) ≤ β̃(t) and α̃′(t) ≤ x′
n(t) =

u′
n(t) ≤ β̃′(t) for every n > T0 and every t ∈ In by (28) and (22). Then, it

straightforwardly follows that:

α̃(t) ≤ x0(t) ≤ β̃(t) and α̃′(t) ≤ x′
0(t) ≤ β̃′(t) for every t ∈ R

+
0 .

Since |Kun
(0)| ≤ L for every n > T0, see (23), then up to a subsequence

Kun
(0) → ν ∈ R.
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In addition, for a.e. t ∈ In, there holds

u
′′
n(t) = x

′′
n(t) and k(t)u

′′
n(t) = Kun

(t).

Then, it is possible to find a set E ⊆ R
+
0 of vanishing Lebsgue measure,

independent of n, such that

Φ(k(t)x
′′
n(t)) = Φ(Kun

(t)) = Φ(Kun
(0)) +

∫ t

0

Ψn(s) ds

for every n > T0 and every t ∈ In \ E. Now, since zΨn ⇀ h in L1(R+
0 ) by

(26) (31), Kun
(0) → ν and Φ−1 is continuous, we get

k(t)x
′′
n(t) n→∞−−−−→ Φ−1

(
Φ(ν) +

∫ t

0

h(s) ds

)
=: U(t) (33)

for every t ∈ R
+
0 \ E. By its definition, U enjoys the following properties:

* U ∈ C(R+
0 ,R) and Φ ◦ U is absolutely continuous on R

+
0 ;

* (Φ ◦ U)′ = h ∈ L1(R+
0 ).

On one hand, by (33) and (A2), we get

zn(t) = x
′′
n(t) n→∞−−−−→ U(t)

k(t)
for a.e. t ∈ R

+
0 ; (34)

on the other hand, taking in consideration (30), we are allowed to apply a
standard dominated convergence argument and prove x

′′
n → U/k in L1(R+

0 )
in norm. Consequently, since x

′′
n = zn ⇀ g in L1(R+

0 ) as n → ∞, we obtain

g(t) =
U(t)
k(t)

for a.e. t ∈ R
+
0 . (35)

Now, recalling g = x
′′
0 by (32), we get

* x
′′
0 = U/k ∈ Lp(R+

0 ), with x0 ∈ W 2,p
loc (R+

0 );
* k(t)x

′′
0 (t) = U(t) for a.e. t ∈ R

+
0 ;

* Φ ◦ (kx
′′
0 ) = Φ ◦ U ∈ W 1,1

loc (R+
0 ) and (Φ ◦ (kx

′′
0 ))′ = h.

By (35) and the L1-norm convergence in (34), we proved

x
′′
n → g = x

′′
0 in L1(R+

0 ),

and also x
′′
n(t) → g(t) = x

′′
0 (t) for a.e. t ∈ R

+
0 as n → ∞.

Hence, to complete the proof of our main result, we need to show x0 is
a solution to the differential equation associated with (10) and

lim
t→∞

x′
0(t) = lim

t→∞
β̃′(t).

First, we show x0 is a solution to (10). By taking in consideration that
un solves (13) on In and x

′′
n = u

′′
n a.e. on In, then it is possible to find a

set F ⊆ R
+
0 of vanishing Lebesgue measure, independent of n, such that for

every n > T0 and every t ∈ In\F , we have

Ψn(t) = (Φ(k(t)u′′
n(t)))′ = f(t, un(t), u′

n(t), u′′
n(t)) = f(t, xn(t), x′

n(t), x′′
n(t)).
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Since xn → x0 pointwise and f is a Caratheodory function, the above equality
implies

lim
n→∞

Ψn(t) = f(t, x0(t), x
′
0(t), x

′′
0 (t)) for every t ∈ R

+
0 \ F. (36)

Then, on account of (30), we are allowed to apply Lebesgue’s Dom-
inated Convergence Theorem obtaining Ψn(t) → f(t, x0, x

′
0, x

′′
0 ) in L1(R+

0 )
(in norm). As a consequence, by combining this with (31) and (36), we obtain

(Φ(k(t)x′′
0(t))′ = h(t) = f(t, x0(t), x

′
0(t), x

′′
0 (t)) for a.e. t ∈ R

+
0 .

From this, we conclude x0 is a solution to (10).
Finally, since x

′′
n → x

′′
0 in L1(R+

0 ) and

xn(0) = 0, x
′
n(0) = b, sup

R
+
0

|x′
n − x

′
0| ≤ ‖x′′

n − x
′′
0‖L1(R+

0 ) ∀n ∈ N,

we get x
′
n → x

′
0 uniformly on R

+
0 . An analogous reasoning leads us to the

conclusion that also xn → x0 uniformly on R
+
0 . In particular

lim
t→∞

x′
0(t) = lim

n→∞

(
lim

t→∞
x′

n(t)
)

= lim
n→∞

β̃′(n) = lim
t→∞

β̃′(t).

Hence, x0 is a solution to (10) and the proof is complete if we choose u ≡ x0.

5. Non-existence result

This section is devoted to the proof of a non-existence result for solutions to
the BVP (1). In particular, we are interested in showing the optimality of
assumption (B4) of Theorem 2.4 by proving that a non-trivial solution does
not exist when we consider the complementary assumption of (B4).

Throughout this section, we thoroughly employ the condition Φ(0) = 0
for the Φ-Laplacian operator and we consider solutions v to (1) in the sense
of Definition 2.1 that also are in W 1,p(R+

0 ). To state our result, we first
need to introduce some notation. For the sake of simplicity, see Sect. 6, given
α, β ∈ L1(R+

0 ) a pair of lower/upper solutions, we introduce four well-defined
quantities (see Definition 2.2)

ν− := inf
t∈R

+
0

t

∫
0

α(s)ds, ν+ := sup
t∈R

+
0

t

∫
0

β(s)ds. (37)

Theorem 5.1. Let (A1), (A2), (A3) and (B1), (B2), (B3), (B4) hold, with k
bounded and the following modifications for (6) of (B4). There exist θ > 1,
ρ > 0 and a function K ∈ W 1,1

loc (R+
0 ), null on [0, T0] and strictly increasing

on [T0,+∞), such that

(∗)
∞
∫

T0+1

1

k(t)
K(t)

− 1
ρ(θ−1) dt = ∞; (38)

(∗) f(t, x, y, z) ≥ −K
′
(t)|Φ(k(t)z)|θ for a.e. t ≥ T0,

for everyx ∈ [ν−, ν+] , y ∈ [b, c] and every |z| ≤ ρ. (39)
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Furthermore, Φ(0) = 0 and we assume

f(t, x, y, z) ≤ 0 for a.e. t ≥ T0,∀x, y ∈ R and ∀z ∈ R : |z| ≤ ρ. (40)

If v is a solution to (1), then v is constant in [T0,+∞).

Remark 5.2. It is possible to prove an analogous result for solutions to (10)
considering the change of variables (9). Moreover, it can also be extended
to BVPs on the real line taking in consideration slight modifications to our
assumptions along the lines of [23, Theorem 4].

Proof. Let v be a continuous function solution to (1), then by Remark 2.3,
there exists a unique Kv ∈ C(R+

0 ,R), such that Kv(t) = k(t)v′(t) for a.e.
t ∈ R

+
0 . Moreover, from now on, we denote by M ∈ R

+
0 a positive constants,

such that 0 ≤ k(t) ≤ M for every t ∈ R
+
0 .

STEP 1. Our first aim is to prove

lim
t→+∞

Kv(t) = 0.

First of all, we observe that, since v(+∞) = c and c is a finite number, it is
clear that either the limit does not exist, or it is equal to 0. Furthermore, by
definition of lim inf and lim sup, it is true that

lim inf
t→+∞

Kv(t)v′(t) ≤ 0 and lim sup
t→+∞

Kv(t)v′(t) ≥ 0.

By contradiction, let us assume the limit does not exist; hence, either the
liminf is strictly negative, or the limsup is strictly positive. Let us begin by
assuming

l := lim inf
t→+∞

Kv(t) < 0.

Then, there exists an interval [t1, t2] ⊂ [T0,+∞), such that

− ρ < Kv(t) = k(t)v′(t) < 0 for a.e. t ∈ [t1, t2],with Kv(t2) > Kv(t1). (41)

It is always possible to find such an interval, because considering our assump-
tions, if we denote by d := max{l,−ρ} and recall that by assumption l < 0
and lim supt→+∞ Kv(t) ≥ 0, then there exists an interval [t1, t2] ⊂ [T0,+∞),
such that Kv(t1) < d+ ε and Kv(t2) > −ε, with ε > 0. By choosing ε < |d|/2,
the relation is ensured.

But by virtue of (40), we deduce Φ(Kv(t)) is decreasing in [t1, t2]. Hence

Φ(Kv(t2)) ≤ Φ(Kv(t1)). (42)

Additionally, since Φ is a strictly increasing homeomorphism by assumption
(A1), we have

Kv(t2) ≤ Kv(t1). (43)

However, this is in contradiction with (41); then lim inft→+∞ Kv(t) = 0.
Analogously, if

lim sup
t→+∞

Kv(t) > 0,

then there exists an interval [t1, t2] ⊂ [T0,+∞), such that

0 ≤ Kv(t) < ρ ∀t ∈ [t1, t2], with Kv(t1) < Kv(t2).
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By reasoning similarly to (42) and (43), we reach a contradiction. Hence,
lim supt→+∞ Kv(t) = 0.
STEP 2. Thanks to STEP 1, we are allowed to introduce the number

t∗ := inf {t ≥ T0 : |Kv(τ)| < Mρ ∀τ ∈ [t,+∞)} .

Our aim is to show Kv(t) ≥ 0 for every t ≥ t∗.
By contradiction, we assume there exists t̂ ≥ t∗, such that Kv(t̂ ) < 0.

Then, by reasoning as in (42)–(43), we get
1
M

Kv(t) ≤ 1
M

Kv(t̂ ) < 0 ∀t ∈ R
+
0 , t ≥ t̂.

Diving by M and recalling the definition of Kv, we infer

v′(t) < 0 for a.e. t ≥ t̂.

This is in contradiction with the boundedness of v.
STEP 3. Now, we define the number t̃ ≥ t∗ as

t̃ := inf{t ≥ t∗ : v(τ) ≥ b for every τ ∈ [t,+∞)}.

Then, we want to prove Kv(t) = 0 for every t ≥ t̃.
To do this, we assume by contradiction there exists t̊ ≥ t̃, such that

Kv (̊t) > 0. Then, the supremum T defined as

T := sup{t ≥ t̊ : Kv(τ) > 0 for every τ ∈ [ t̊, t]} = +∞.

Indeed, if T < +∞, since by definition of t∗, we have

0 < Kv(t) < Mρ in [̊t, T ],

then by (39), it follows

(Φ(Kv(t)))′ ≥ −K ′(t)|Φ(Kv(t))|θ ∀t ∈ [̊t, T ].

Now, given our assumptions, it is not restrictive to assume Φ(Mρ) ≤ 1, and
recalling θ > 1, this implies

(Φ(Kv(t)))′ ≥ −K ′(t)Φ(Kv(t)) ∀t ∈ [̊t, T ].

Moreover, integrating both sides between t and T , recalling Φ(0) = 0 and
Kv(T ) = 0 by definition, we obtain

Φ(Kv(t)) ≤
∫ T

t

K ′(s)Φ(Kv(s)) ds ∀t ∈ (̊t, T ].

Then, by applying Gronwall’s inequality, we get

Φ(Kv(t)) ≤ 0 ∀t ∈ (̊t, T ].

Then, since Φ−1 is a strictly increasing monotone function and Φ(0) = 0, we
get

Kv(t) ≤ 0 ∀t ∈ (̊t, T ].

This is in contradiction with the definition of T and it implies T = +∞.
To conclude the proof of this step, we are left to show Kv(t) = 0 for

every t ≥ t̃ and lastly that T0 = t̊ = t∗. To do this, by (39), we have

(Φ(Kv(t)))′ ≥ −K ′(t)|Φ(Kv(t))|θ ∀t ∈ [̊t, T ].
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We divide by (Φ(Kv(t)))θ on both sides (it is well posed because Φ(0) = 0,
Φ is a strictly increasing homeomorphism, and by the first part of the proof
of this step, we know Kv(t) > 0 for every t ≥ t̊)

(Φ(Kv(t)))′

(Φ(Kv(t)))θ
≥ −K ′(t) ∀t ≥ t̊.

Integrating both sides between t̊ and t, with t̊ ≤ t, we obtain

− (Φ(Kv(t)))−(θ−1)

(θ − 1)
+

(
Φ(Kv (̊t))

)−(θ−1)

(θ − 1)

≥ −
∫ t

t̊

K ′(s) ds = −K(t) + K (̊t).

Recalling θ > 1 by assumption, by multiplying both sides by −(θ − 1), we
get

(Φ(Kv(t)))−(θ−1) ≤
(
Φ(Kv (̊t))

)−(θ−1) − (θ − 1)(−K(t) + K (̊t)).

Hence, by taking the −1/(θ − 1) power of both sides, it follows:

Φ(Kv(t)) ≥
[(

Φ(Kv (̊t))
)−(θ−1) − (θ − 1)(−K(t) + K (̊t))

]− 1
θ−1

.

Now, by elementary properties of the −1/(θ − 1) power and the fact that Φ
is strictly increasing, it follows:

Kv(t) ≥ Φ−1
(
Φ(Kv (̊t)) + ((θ − 1)(K(t)))− 1

θ−1

)
.

Then, we divide both sides of the previous inequality by k(t), which is strictly
positive except for a set E of zero measure on which is null, and we obtain
the following estimate:

Kv(t)
k(t)

≥ 1
k(t)

Φ−1
(
Φ(Kv (̊t)) + ((θ − 1)(K(t)))− 1

θ−1

)
for a.e. t ≥ t̊.

Now, integrating both sides in [̊t, T ), with T ∈ R
+
0 and T ≥ t̊ and recalling

that Kv(t) = k(t)v′(t) for a.e. t ∈ R
+
0 , we then obtain

v(T ) − v(̊t) ≥
T∫

t̊

1
k(t)

Φ−1
(
Φ(Kv (̊t)) + ((θ − 1)(KL(t)))− 1

θ−1

)
.

Now, letting T → +∞, recalling v is continuous and reasoning as in (8), we
obtain

v(+∞) − v(̊t) ≥ c

(∫ T̃

t̊

1
k(t)

dt +
∫ +∞

T̃

1
k(t)

KL(t)− 1
ρ(θ−1) dt

)
= +∞,

where T ≥ T0 is arbitrarily fixed, c is a suitable positive constant, and the
right-hand side is unbounded by (38). This is in contradiction with the bound-
edness of the left-hand side.

Therefore Kv(t) = 0 for every t ≥ t̃. Furthermore, by definition of t̃, we
conclude t̃ = t∗. Hence, Kv(t) = 0 in [t∗,+∞) and by definition of t∗ this
implies t∗ = T0. Now, recalling the definition of Kv and that k(t) > 0 for a.e.
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t ∈ R
+
0 , we infer v′(t) = 0 for a.e. t ≥ T0. The only distribution admitting

null derivative is a constant distribution, and considering that v is continuous
the statement of the theorem follows. �

6. Examples of application

In this section, we present some operative criteria to prove the existence
and non-existence of a weak solution for BVPs of type (1) under analogous
assumptions of Sect. 5 when the right-hand side f has a specific product
structure. In particular, we will focus on two different cases

f(t, x, y, z) = a(t)b(x)c(y)d(z) and f(t, x, y, z) = g(t, x, y)h(x, y, z). (44)

From now on, we will refer to the first one as the separate variables case, and
to the second one as the coupled case. As it will be clear in a short, while,
on one hand, in the separate variables case, there is a strong connection
between the asymptotic behavior at +∞ of a and the local behavior of d as
|z| → 0+. On the other hand, when dealing with the coupled case, we find an
analogous situation comparing the asymptotic behavior of h(·, x, y) and the
local behavior of g(x, y, ·).

6.1. The separate variables’ case

The aim of this subsection is to explicitly exploit our existence and non-
existence criteria for BVPs of type (1), when the Φ-Laplacian operator is the
r-Laplacian and f(t, x, y, z) is the first form presented in (44). In particular,
we are interested in analyzing the case where the asymptotic behavior of the
function a is not critical, which corresponds to an asymptotic condition of
the type

lim
t→+∞

|a(t)| t−δ = l1 ∈ (0,+∞), with δ > −1. (45)

Theorem 6.1. Let us consider problem (1) under the assumptions (A2) and
(B1), when Φ(z) = z|z|r−2 is the r-Laplacian operator, with r > 1, and k
is bounded. Let q̊ ∈ R

+ be such that 1 < q̊ < +∞ and let f(t, x, y, z) =
a(t)b(x)c(y)d(z) satisfy the following properties:

(i) a is a measurable function, such that a ∈ Lq̊
loc(R

+
0 ). Additionally, a(t) ≤

0 for every 0 ≤ t < T0 and a(t) < 0 for t ≥ T0;
(ii) b and c are positive continuous functions, with b increasing;
(iii) d is a continuous function, such that d(0) = 0 and 0 < d(z) < cd|z|1− 1

q̊

for z �= 0, where cd > 0.
Finally, if the following asymptotic relations hold:

lim
t→+∞

|a(t)| t−δ = l1 ∈ (0,+∞) and lim
|z|→0

d(z)|z|−θ̊ = l2 ∈ (0,+∞), (46)

∞∫
T0+1

1
k(t)

t−σdt < ∞ (47)
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for some δ > −1, θ̊ > r − 1, σ > 0, then problem (1) admits a (non-trivial)
solution if and only if δ ≥ −1 + σ(θ̊ − (r − 1)).

Proof. To prove the first part of this result (existence result), we need to
show assumptions of Theorem 2.4 are satisfied. First of all, we observe that
(A1) and (A3) hold true provided our choice of f and Φ, with ρ = r − 1.
Moreover, we observe that (B2) trivially holds thanks to (ii). Hence, we are
left to check whether assumptions (B3) and (B4) hold.

From now on, let us denote by M a strictly positive constant, such that
|k(t)| ≤ M for every t ∈ R+

0 . Note that, by assumption (A2), this implies
0 < k(t) ≤ M for a.e. t ∈ R

+
0 . As far as we are concerned with assumption

(B3), we introduce a constant H > 0 and a non-negative function Ψ, such
that

H > T0 and Ψ(r) = 1 ∀r ∈ R
+
0 . (48)

We note that Ψ satisfies (3) of assumption (B3). Then, by assumption (ii)
and (iii) of the present theorem, for a.e. fixed t ∈ [0, T0] for every x ∈
[∫ t

0 α(s)ds, ∫ t
0 β(s)ds] := [xα(t), xβ(t)], y ∈ [α(t), β(t)] := [yα(t), yβ(t)] and

|z| > H, we have

|f(t, x, y, z)| = |a(t)| b(x) c(y) d(z) ≤ m |a(t)| d(z) ≤ m|a(t)||z|1− 1
q̊ ,

where

m := max
{

b(x)c(y) : min
t∈J

xα(t) ≤ x ≤ max
t∈J

xβ(t),

min
t∈J

yα(t) ≤ y ≤ max
t∈J

yβ(t)
}

is a well-defined positive constant thanks to assumption (B1) and (ii). Now,
if we define a positive Lq̊

loc(R
+
0 ) function

ν(t) = m|a(t)|,

and we choose � ≡ 0, we then obtain (4) of assumption (B3) holds true with
q ≡ q̊.

Next, we focus on (B4). Since b(x), c(y) > 0 for every x and y, we
introduce a positive number

m := min

{
b(x)c(y) : inf

[T0,+∞)
xα(t) ≤ x ≤ sup

[T0,+∞)

xβ(t),

inf
t∈[T0,+∞)

yα(t) ≤ y ≤ sup
t∈[T0,+∞)

yβ(t)

}
> 0,

which is well defined thanks to assumption (B1), the properties listed in
Definition 2.2, (ii) and in this section. Therefore, by also considering that k
is bounded by assumption, we are allowed to define

μ := m c2 �2 M−θ̊ > 0,
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where c2 > 0 is a constant whose existence is ensured by the asymptotic
relation (46) for d, alongside with a non-negative function KL

KL(t) =

⎧⎪⎨
⎪⎩

0, for 0 ≤ t ≤ T0,

μ
t∫

T0

(−a(τ)) dτ for t ≥ T0,
(49)

that is well posed, because a ∈ Lq̊
loc(R

+
0 ) by (i). First of all, KL ∈ W 1,1

loc (R+
0 ).

Furthermore, it is strictly increasing for every t ≥ T0, because by its definition
and considering assumption (i), we have

K ′
L(t) = −μa(t) > 0 for t ≥ T0. (50)

Additionally, by combining (46) with (49) and (50), it additionally follows:

K ′
L(t) ≥ c1l1μtδ and KL(t) ≥ c1l1μ

δ + 1
(
tδ+1 − T δ+1

0

)
for a.e. t ≥ T0, (51)

where c1 > 0 is a suitably chosen constant. Now, let us introduce a constant
θ > 1 that we will define later on. We are choosing it in such a way that
condition (5) of (B4) is satisfied. Indeed, if we apply the definition of KL and
(51), we get

∞∫
T0+1

1

k(t)
KL(t)

− 1
(r−1)(θ−1) dt

≤
(

c1l1μ

δ + 1

)− 1
(r−1)(θ−1)

∞∫
T0+1

1

k(t)

(
tδ+1 − T δ+1

0

)− 1
(r−1)(θ−1)

dt,

which is finite if and only if

δ + 1
(r − 1)(θ − 1)

≥ σ. (52)

Next, we observe that since KL is a strictly increasing function and (52) is
in place, then

1
k(t)

KL(t)− 1
(r−1)(θ−1) −→ 0 as t → +∞.

Thus, the following asymptotic relation for its reciprocal holds:

k(t)KL(t)
1

(r−1)(θ−1) −→ +∞ as t → +∞. (53)

Hence, NL(t) → 0 as t → +∞.
Then, by applying our assumptions on b, c, and d to the right-hand side

f and considering (46), the following estimate holds:

f(t, x, y, z) = a(t)b(x)c(y)d(z) ≤ − 1

μ
mK′

L(t)|z|θ̊ = − 1

μ

mc2�2

(k(t))θ̊
K′

L(t)(k(t))θ̊|z|θ̊

≤ −K′
L(t)(k(t))θ̊|z|θ̊ = −K′

L(t)|k(t)z|(r−1)θ.

for a.e. t ≥ T0 and for every z ∈ R, such that M |z| < ρ, with ρ a small
positive number. Then, recalling that by (53) NL(t) → 0 as t → +∞, we
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have that there exists t∗ > T0, such that NL(t) ≤ ρ for every t ≥ t∗. Hence,
condition (6) of (B4) is satisfied by choosing and

θ =
θ̊

r − 1
, (54)

which is strictly greater than 1, because by assumption θ̊ > r − 1. Moreover,
if we recall that r > 1 and θ is chosen as in (54), then the previous condition
(52) is equivalent to

δ + 1

θ̊ − (r − 1)
≥ σ ⇐⇒ δ ≥ −1 + σ(θ̊ − (r − 1)).

Now, it remains to show there exists a non-negative function ηL ∈
L1(R+

0 ), such that |f(t, x, y, z)| ≤ ηL(t) for a.e. t ∈ R
+
0 (see (7)). To do

this, we define the constant

m̂ := max

{
b(x)c(y) : x ∈

[
inf

[T0,+∞)
xα(t), sup

[T0,+∞)

xβ(t)

]
,

y ∈
[

inf
t∈[T0,+∞)

yα(t), sup
t∈[T0,+∞)

yβ(t)

]}
,

that is well defined because of (ii), the properties listed in Definition 2.2
and the assumptions of this section. Then, we are able to introduce the non-
negative function

ηL(t) =

⎧⎪⎨
⎪⎩

m̂ max
z∈[−ζ,ζ]

d(z)|a(t)| if 0 ≤ t ≤ T0

m̂ cd c1 �1 M tδ
(∣∣∣NL(t)

k(t)

∣∣∣+ c
)1− 1

q̊

if t > T0,

where the constant c is a.e. bound from above of |α′| and |β′|, which are
bounded thanks to our Definition of lower/upper solution, see Definition 2.2,
assumption (B1), Remark 2.3, and ζ ∈ R

+ is a small positive number.
Now, we want to prove ηL ∈ L1(R+

0 ). By its definition, ηL is bounded
from above by a Lq̊ function in [0, T0], with q̊ > 1; see assumption (i). Fur-
thermore, if we denote by M := m̂ cd c1 �1 M , then by our assumptions and
(51), when t > T0, we get

0 < ηL(t) ≤ Mtδ

|k(t)|1− 1
q̊

(
C

1− 1
q̊

1 + ((θ − 1)KL(t))− q̊−1
q̊(θ−1)(r−1)

)

≤ Mtδ

t
σ(q̊−1)

q̊

(
C

q̊−1
q̊

1 +
(
C2(θ − 1)(tδ+1 − T δ+1

0

)− q̊−1
q̊(θ−1)(r−1)

)
,

where C1 and C2 are two suitably chosen positive constants. Therefore, there
exists an additional constant C3 > 0, such that

+∞∫
T0

ηL(t)dt ≤ C3

+∞∫
T0

tδ−( δ+1
(θ−1)(r−1)+σ)( q̊−1

q̊ )dt < ∞,
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which is finite if and only if

δ < −1 +
(

δ + 1
(θ − 1)(r − 1)

+ σ

)(
q̊ − 1

q̊

)

⇐⇒ σ(θ − 1)(r − 1)(q̊ − 1) > (δ + 1) ((θ − 1)(r − 1)q̊ − 1) ,

which is always true given our assumptions. Finally, we conclude

|f(t, x, y, z)| ≤ |a(t)|b(x)c(y)d(z) ≤ �1t
δb(x)c(y)d(z) ≤ ηL(t)

for a.e. t ∈ R
+
0 . This concludes the proof of (7), and thus, also assumption

(B4) holds.
To prove the second part of our statement (non-existence result), it is

sufficient to show given the choice of δ < −2+σ(θ̊−(r−1)), the assumptions
of Theorem 5.1 are satisfied. In particular, by choosing g(t) = �(t) for t ≤
T0, with � ∈ L1(R+

0 ), and g(t) = c∗t
δ for t > T0, we have that K(t) =

c∗
∫ t

0
g(τ) dτ for t ≥ 0 is a strictly increasing function belonging to W 1,1

loc (R+
0 )

and c∗ is a suitably chosen positive constant. Additionally

KL(t) =

T0∫
0

�(τ)dτ +

t∫
T0

c∗τ
δdτ =

T0∫
0

�(τ)dτ +
c∗

δ + 1
(tδ+1 − T δ+1

0 ).

Then, we have

∫ ∞

0

1
k(t)

⎛
⎝

T0∫
0

�(τ)dτ +
c∗

δ + 1
(tδ+1 − T δ+1

0 )

⎞
⎠

− 1
ρ(θ−1)

dt

≥ c +
c∗

δ + 1

∫ ∞

0

1
k(t)

(
tδ+1 − T δ+1

0

)− 1
ρ(θ−1) dt = ∞

when δ + 1 < σ(θ̊ − (r − 1)). �

6.2. The coupled case

In this subsection, we focus on existence and non-existence criteria for BVPs
of type (1), when Φ is the r-Laplacian, f(t, x, y, z) = g(t, x, y)h(x, y, z) and
g has a non-critical growth, i.e., its asymptotic behavior as t → +∞ is of
the type (45). It is clear that previous subsection’s results on the separate
variables case can be viewed as a corollary of the forthcoming theorems.
Nevertheless, performing our computations directly in the separate variable
case allows us to explicitly exploit the relation between the considered growth
conditions and the exponent of the r-Laplacian.

Theorem 6.2. Let us consider problem (1) under the assumptions (A2) and
(B1), when Φ(z) = z|z|r−2 is the r-Laplacian operator and k is bounded. Let
q̊ ∈ R

+ be such that 1 < q̊ < +∞.
Furthermore, we assume f(t, x, y, z) = g(t, x, y)h(x, y, z) satisfies the

following properties:
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(i) g is a Carathéodory function decreasing in x. Additionally, g(t, x, y) ≤ 0
for every 0 ≤ t < T0 and g(t, x, y, z) < 0 for t ≥ T0. Moreover, there
exists a function λ ∈ Lq̊

loc(R
+
0 ), such that

|g(t, x, y)| ≤ λ(t) for a.e. t ∈ R
+
0 , (55)

for every x, y ∈ R, such that x ∈ [ν−, ν+] and y ∈ [b, c], where ν−, ν+

were introduced in (37);
(ii) h is a positive continuous function increasing in x.

Finally, assume that there exist real constants −1 < δ1 ≤ δ2, 0 < γ1 ≤ γ2

and σ > 0, such that

δ1 + 1
γ1 − (r − 1)

≥ σ and (δ1 + 1)
γ2 − (r − 1)
γ1 − (r − 1)

(r − 1) ≥ σ + δ2,

and there exist positive constants h1, h2, k1k2 > 0 and ζ, L > 0, such that

∗
∞∫

T0+1

1
k(t)

t−σdt < ∞, (56)

∗ h1t
δ1 ≤ |g(t, x, y)| ≤ h2t

δ2 , for a.e. |t| > L, (57)

∗ k1|z|γ1 ≤ h(x, y, z) ≤ k2|z|γ2 , whenever |z| < ζ, (58)

∗ h(x, y, z) ≤ k2|z|1− 1
q̊ , whenever |z| > L, (59)

for every x, y ∈ R, such that x ∈
[
∫ t
0 α(s) ds, ∫ t

0 β(s) ds
]
and y ∈ [α(t), β(t)].

Then, problem (1) admits a solution.

Proof. As in the proof of Theorem 6.1, it is sufficient to show assumptions of
Theorem 2.4 hold true. Then, we observe: (A1) and (A3) hold true provided
our choice of f and Φ, with ρ = r − 1; (B2) trivially holds thanks to (i) and
(ii). Hence, we need to show that assumptions (B3) and (B4) are in place.

As in the proof of Theorem 6.1, from now on, let us denote by M a
strictly positive constant, such that |k(t)| ≤ M for every t ∈ R+

0 . Note that,
by assumption (A2), this implies 0 < k(t) ≤ M for a.e. t ∈ R

+
0 . As far as

we are concerned with assumption (B3), we consider a non-negative function
Ψ defined as in (48), but with H > max{T0, L}. Hence, Ψ satisfies (3) of
assumption (B3) by definition. Then, by assumption (i) and (59), for a.e.
t ∈ [0, T0] for every x ∈ [ν−, ν+], y ∈ [b, c] and |z| > H, we have

|f(t, x, y, z)| = |g(t, x, y)|h(x, y, z) ≤ λ(t)k2|z|1− 1
q̊ .

Now, if we define ν(t) = k2λ(t), that thanks to our assumptions is in Lq̊([0, T0]),
then we obtain

|f(t, x, y, z)| ≤ CΨν(t)|z|1− 1
q̊ ≤ Ψ(|z|r−1)ν(t)|z|1− 1

q̊ .

Then, if we proceed as in the proof of Theorem 6.1 and we consider � ≡ 0,
taking into consideration the contribution of the term |k(t)|r−1, we obtain
that assumption (B3) holds true with q ≡ q̊.
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Next, we focus on (B4). From now on, let us denote by F the following
set:

F :=

{
(x, y) ∈ R × R : x ∈

[
inf

t∈[T0,+∞)
xα(t), sup

t∈[T0,+∞)

xβ(t)

]
,

y ∈
[

inf
t∈[T0,+∞)

yα(t), sup
t∈[T0,+∞)

yβ(t)

]}
, (60)

which is a bounded set thanks to Definition 2.2 and assumption (B1). Since
h(x, y, z) > 0 for every x, y, and z �= 0, we denote by

mC := min
{
h(x, y, z) : (x, y) ∈ F, ζ ≤ |z| ≤ C

}
> 0,

where C > 0 and F is defined in (60). Therefore, by recalling k is bounded
by assumption, we are allowed to define

μ := mC k2 h2M
−γ1 > 0

and KL(t) =

⎧⎪⎨
⎪⎩

0, for 0 ≤ t ≤ T0,

−μ
t∫

T0

max
(x,y)∈F

g(t, x, y) dτ for t ≥ T0.

KL is well defined, because g ∈ Lp
loc(R

+
0 ) by (i) and assumption (B1) is

in place. Moreover, it is strictly increasing for every t ≥ T0. Indeed, by its
definition and (i), we have

K ′
L(t) = −μ max

(x,y)∈F
g(t, x, y) > 0 for t ≥ T0. (61)

Additionally, KL ∈ W 1,1
loc (R+

0 ) and by combining (57) with (61), it addition-
ally follows:

K ′
L(t) ≥ h1μtδ1 and KL(t) ≥ h1μ

δ1 + 1

(
tδ1+1 − T δ1+1

0

)
for a.e. t ≥ T0.

(62)

Then, the following estimate for the right-hand side holds true, when t ≥ T0

and M |z| < ζ:

f(t, x, y, z) = g(t, x, y)h(x, y, z) ≤ max
(x,y)∈F

g(t, x, y)h(x, y, z)

≤ −K ′
L(t)(k(t))γ1 |z|γ1 = −K ′

L(t)|k(t)z|(r−1)θ.

This implies that (6) of (B4) is satisfied by choosing θ = γ1
r−1 . Hence, com-

bining this with the definition of KL and (62) and by proceeding as in the
proof of Theorem 6.1, one can show (5) holds if and only if

δ1 + 1
γ1 − (r − 1)

≥ σ ⇐⇒ δ1 ≥ −1 + σ(γ1 − (r − 1)).

Eventually, if we observe lim
t→+∞

NL(t) = 0, then it is possible to find t∗ > T0,

such that

0 < NL(t) ≤ ζ for a.e. t ≥ t∗. (63)
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Hence, (6) is proved. Now, we are left with the proof of (7). Thus, we observe

|f(t, x, y, z)| ≤ |g(t, x, y)h(x, y, z)|

≤ ηL(t) :=

{
m̂λ(t) if t < t∗ by (55),
h2k2t

δ2 |z|γ2 if t ≥ t∗ by (58) and (59),

where the constant m̂ is defined as
m̂ := max {h(x, y, z) : (x, y) ∈ F, |z| < L} ,

and ηL ∈ L1. Indeed, by our assumptions and (51) and (63), we get
∞∫
0

ηL(t)dt ≤
t∗∫

0

m̂λ(t)dt +

∞∫
t∗

h2k2t
δ2 |z|γ2dt.

The first integral is finite by assumption (ii), and for the second one, it holds
∞∫

t∗

h2k2t
δ2 |z|γ2dt ≤ c

∞∫
t∗

h2k2t
δ2

k(t)γ2
|NL(t)|γ2 ,

which is finite if and only if

(δ1 + 1)
γ2 − (r − 1)
γ1 − (r − 1)

(r − 1) ≥ σ + δ2.

This is always true given our assumptions, and hence, assumption
(B4) holds. �

Theorem 6.3. Let assumptions of Theorem 6.2 be in place. If
δ1 + 1

γ1 − (r − 1)
< σ and (δ1 + 1)

γ2 − (r − 1)
γ1 − (r − 1)

(r − 1) ≥ σ + δ2,

then problem (1) does not admit any non-trivial solution.

Proof. To prove our non-existence result, it is sufficient to show that as-
sumptions of Theorem 5.1 are satisfied given our choice of parameters. In
particular, by choosing g(t) = �(t) for t ≤ T0, with � ∈ L1(R+

0 ) and g(t) =
−c∗ min

F
g(t, x, y) for t > T0, we have that KL(t) =

∫ t

0
g(τ) dτ for t ≥ 0 is a

strictly increasing function belonging to W 1,1
loc (R+

0 ). Additionally

KL(t) =

T0∫
0

�(τ)dτ −
t∫

T0

c∗ min
E

g(t, x, y)dτ ≥
T0∫
0

�(τ)dτ +
c∗

δ1 + 1
(tδ1+1 − T δ+1

0 ).

Then, we have

∫ ∞

0

1
k(t)

⎛
⎝

T0∫
0

�(τ)dτ +
c∗

δ + 1
(tδ+1 − T δ+1

0 )

⎞
⎠

− 1
ρ(θ−1)

dt

≥ c +
c∗

δ + 1

∫ ∞

0

1
k(t)

(
tδ+1 − T δ+1

0

)− 1
ρ(θ−1) dt = ∞

when δ1 + 1 < σ(γ1 − (r − 1)). �
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6.3. A class of examples: an odd Φ-Laplace operator

In this subsection, we discuss a wide class of examples to which Theorems 2.4
and 5.1 apply. More precisely, we consider (1) under the assumption (B1)
combined with the following structural ones:

(I) Φ : R → R is an odd function fulfilling assumption (A1);
(II) k : R+

0 → R is a bounded function satisfying assumption (A2). Moreover,
there exists σ > 0, such that, for a suitably chosen p > 1, it holds∫ ∞

1

1
tσk(t)p

dt < ∞;

(III) f : R+
0 × R

3 → R of the form f(t, x, y, z) = g(t, x, y)h(z);
(IV) g is a Carathéodory function. Furthermore:

(IV)a there exists a function λ ∈ L∞
loc(R

+
0 ), such that

|g(t, x, y)| ≤ λ(t) for a.e. t ∈ R
+

for every x, y ∈ R, such that x ∈
[
∫ t
0 α(s) ds, ∫ t

0 β(s) ds
]

and y ∈
[α(t), β(t)];

(IV)b there exist T0 > 0, two positive constants h1, h2 > 0 and two numbers
δ1, δ2 ∈ R, such that −1 < δ1 ≤ δ2 and

h1t
δ1 ≤ |g(t, x, y)| ≤ h2t

δ2 for a.e. t ≥ T0

for every x, y ∈ R, such that x ∈
[
∫ t
0 α(s) ds, ∫ t

0 β(s) ds
]

and
y ∈ [α(t), β(t)];

(III)c g(t, x, y) ≤ for every t ≥ T0, for every x, y ∈ R, such that x ∈[
∫ t
0 α(s) ds, ∫ t

0 β(s) ds
]

and y ∈ [α(t), β(t)];

(V) h is a continuous function enjoying the following additional properties:

(V)a h > 0 on R\{0} and g(0) = 0;
(V)b there exists ζ > 0, two positive constants k1, k2 > 0 and two numbers

γ1, γ2 > 0, such that 0 < γ1 ≤ γ2 and

k1|z|γ1 ≤ |h(z)| ≤ k2|z|γ2 for a.e. |z| ≤ ζ;

(V)c there exist H > 0 and a constant c > 0, such that, if z ∈ R and |z| ≥ H,
then the following holds true:

h(y) ≤ c|z|1− 1
q̊ for some 1 < q̊ ≤ ∞;

(V)d h is homogeneous of degree d > 0 on R, that is

b(sz) = sdb(z) for every s > 0 and every z ∈ R.

Then, it is possible to prove the following result.

Theorem 6.4. Let us consider (1) under the assumptions of this subsection.
If

δ1 + 1
γ1 + 1

≥ σρ and
γ2(δ1 + 1)

γ1 − 1
≥ σ + δ2,
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then (1) admits at least one solution. If

δ1 + 1
γ1 + 1

< σρ and
γ2(δ1 + 1)

γ1 − 1
≥ σ + δ2,

then (1) does not admits any (non-trivial) solution.

The proof of this statement boils down to show assumptions of Theo-
rems 2.4 and 5.1 are satisfied. Hence, it directly follows as in the previous
subsections provided suitable adaptations, such as the ones proposed in [6,
Section 5], and for this reason, it is not explicitly reported here.
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[26] Pouchol, C., Trélat, E.: Global stability with selection in integro-differential
Lotka–Volterra systems modelling trait-structured populations. J. Biol. Dyn.
12(1), 872–893 (2018)

[27] Singh, H., Dutta, H., Cavalcanti, M.M.: Topics in integral and integro-
differential equations. Theory and applications. In: Studies in Systems, De-
cision and Control, vol. 340(ix), 255. Springer (2021)

[28] Sun, J.-P., Li, H.-B.: Monotone positive solution of nonlinear third-order BVP
with integral boundary conditions. Bound. Value Probl. 2010, 874959 (2010)

[29] Sun, J.-P., Zhang, H.-E.: Existence of solutions to third-order m-point
boundary-value problems. Electron. J. Differ. Equ. 2008, 1–9 (2008)

[30] Tsai, L.-Y.: Periodic solutions of second order integro-differential equations.
Appl. Math. E-Notes 2, 141–146 (2002)

Francesca Anceschi
Dipartimento di Ingegneria Industriale e Scienze Matematiche
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