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L∞(Ω) a priori estimates for subcritical
semilinear elliptic equations with a Carathéodory
non-linearity

Rosa Pardo

Abstract. We consider a semilinear boundary value problem −Δu =
f(x, u), in Ω, with Dirichlet boundary conditions, where Ω ⊂ R

N with
N > 2, is a bounded smooth domain, and f is a Carathéodory func-
tion, superlinear and subcritical at infinity. We provide L∞(Ω) a pri-

ori estimates for weak solutions in terms of their L2∗
(Ω)-norm, where

2∗ = 2N
N−2

is the critical Sobolev exponent. In particular, our re-

sults also apply to f(x, s) = a(x) |s|2
∗
N/r

−2
s[

log(e+|s|)
]β , where a ∈ Lr(Ω) with

N/2 < r ≤ ∞, and 2∗
N/r := 2∗ (

1 − 1
r

)
. Assume N/2 < r ≤ N . We show

that for any ε > 0 there exists a constant Cε > 0 such that for any
solution u ∈ H1

0 (Ω), the following holds:

[
log

(
e + ‖u‖∞

)]β

≤ Cε

(
1 + ‖u‖2∗

) (2∗
N/r−2)(1+ε)

.

To establish our results, we do not assume any restrictions on the sign
of the solutions, or on the non-linearity. Our approach is based on
Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation in-
equalities. Finally, we state sufficient conditions for having H1

0 (Ω) uni-
form a priori bounds for non-negative solutions, so finally we provide
suficient conditions for having L∞(Ω) uniform a priori bounds, which
holds roughly speaking for superlinear and subcritical non-linearities.
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1. Introduction

Let us consider the following semilinear boundary value problem:

− Δu = f(x, u), in Ω, u = 0, on ∂Ω, (1.1)

where Ω ⊂ R
N , N > 2, is a bounded, connected, open subset with C2 bound-

ary ∂Ω, and the non-linearity f : Ω×R → R is a Carathéodory function (that
is, the mapping f(·, s) is measurable for all s ∈ R, and the mapping f(x, ·) is
continuous for almost all x ∈ Ω), that is subcritical (see Definition 1.1).

We analyze the effect of the smoothness of the non-linearity f = f(x, ·)
on the L∞(Ω) a priori estimates of weak solutions to (1.1). Degree theory
combined with a priori bounds in the sup-norm of solutions of parametrized
versions of (1.1), is a very classical topic in elliptic equations, posed by Leray
and Schauder in [18]. It provides a great deal of information about existence
of solutions and the structure of the solution set. This study is usually focused
on positive classical solutions, see the classical references of de Figueiredo–
Lions–Nussbaum, and of Gidas–Spruck [11,14], see also [7,8].

A natural question concerning the class of solutions is the following one:

(Q1) can those L∞(Ω) estimates be extended to a bigger class of solutions, in
particular to weak solutions (with possibly sign changing solutions)?.
Another question concerning the class of non-linearities, can be stated
as follows:

(Q2) can those estimates be extended to a bigger class of non-linearities, in
particular to non-smooth non-linearities (with possibly sign changing
weights)?.

In this paper, we provide sufficient conditions guarantying uniform L∞(Ω) a
priori estimates for any u ∈ H1

0 (Ω) weak solution to (1.1), in terms of their
L2∗

(Ω) bounds, in the class of Carathéodory generalized subcritical problems.
In this class, we state that any set of weak solutions uniformly L2∗

(Ω) a
priori bounded is universally L∞(Ω) a priori bounded. Our theorems allow
sign changing weights, and singular weights, and also apply to sign changing
solutions.

Problem (1.1) with f(x, s) = |x|−μ|s|p−1s, μ > 0, p > 1 is known
as Hardy’s problem, due to its relation with the Hardy-Sobolev inequality.
The Caffarelli–Kohn–Nirenberg interpolation inequality for radial singular
weights [4], states that whenever 0 ≤ μ ≤ 2,

2∗
μ :=

2(N − μ)
N − 2

, (1.2)

is the critical exponent of the Hardy–Sobolev embedding H1
0 (Ω) ↪→ L2∗

μ(Ω,
|x|−μ) . Using variational methods, one obtains the existence of a nontrivial
solution to (1.1) in H1

0 (Ω) whenever 1 < p < 2∗
μ − 1. For the case 0 < μ < 2,

using a Pohozaev type identity, we have that for p ≥ 2∗
μ−1 there is no solution

to Hardy’s problem in star-shaped domains with respect to the origin. But,
there exist positive solutions for the problem with p = 2∗

μ − 1 depending on
the geometry of the domain Ω, see [16] and [5].



Vol. 25 (2023) L∞(Ω) a priori estimates for subcritical Page 3 of 22 44

If μ ≥ 2, it is known that Hardy’s problem has no positive solution in
any domain Ω containing the origin, see [13], [1, Lemma 6.2], [12].

Usually the term subcritical non-linearity is reserved for power like non-
linearities. We expand this concept in this paper below. Let

2∗
N/r :=

2∗

r′ = 2∗
(

1 − 1
r

)
, (1.3)

where r′ is the conjugate exponent of r, 1/r + 1/r′ = 1.

Definition 1.1. A non-linearity f : Ω × R → R is subcritical if it satisfies one
the two following hypothesis:
(H0)

|f(x, s)| ≤ |a(x)| f̃(s) (1.4)

where a ∈ Lr(Ω) with N/2 < r ≤ ∞, and f̃ : R → [0,+∞) is continuous and
satisfies

lim
|s|→∞

f̃(s)
|s|2∗

N/r−1
= 0, (1.5)

(H0)’
|f(x, s)| ≤ |x|−μ f̃(s), (1.6)

where μ ∈ (0, 2), and f̃ : R → [0,+∞) is continuous and satisfies

lim
|s|→∞

f̃(s)
|s|2∗

μ−1 = 0. (1.7)

Remark 1.2. Obviously |a(x)| f̃(s) ≤ |a(x)| (1 + f̃(s)), and we can always
redefine f̃ in order to satisfy f̃(s) > 0 for |s| > 0.

Moreover, f̃ : R → [0,+∞) from (H0) or (H0)’ satisfies the following
hypothesis:
(H1) there exists a constant c0 > 0 such that

lim sup
s→+∞

max[−s,s] f̃

max
{
f̃(−s), f̃(s)

} ≤ c0. (1.8)

Throughout the paper, we will assume either (H0) and (H1) or (H0)’
and (H1).

Remark 1.3. 1. Observe that in particular, if f̃(s) is monotone, then (H1)
is obviously satisfied with c0 = 1.

2. Thanks to Sobolev embeddings, for any u ∈ H1
0 (Ω),

f̃(u) ∈ L
2∗

2∗
N/r

−1 (Ω) with
2∗

N/r − 1

2∗ =
1
2

+
1
N

− 1
r
,

and f(·, u) ∈ L
2N

N+2 (Ω).

3. Again, by Sobolev embeddings, for any u ∈ H1
0 (Ω),

f̃(u) ∈ L
2∗

2∗
μ−1 (Ω) with

2∗
μ − 1
2∗ =

1
2

+
1
N

− μ

N
.
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If a(x) = |x|−μ, then a ∈ Lp(Ω) for any p < N/μ, hence f(·, u) ∈ Lp(Ω)
for any p < 2N

N+2 . From the sharp Caffarelli–Kohn–Nirenberg inter-
polation inequality for singular weights, in the particular case where
α = β = 0, p = 2, q = 2∗ (see [4], see also Theorem A.1 and Corol-
lary A.2), there exists a constant C > 0 such that

∥
∥ |x|−γ u

∥
∥

t
≤ C‖∇u‖2, where

1
t

− γ

N
=

1
2

− 1
N

, and 0 ≤ γ ≤ 1.

It can be checked that if u ∈ H1
0 (Ω), then f(·, u) ∈ L

2N
N+2 (Ω) for any μ ≤

1+2/N (see Corollary A.2.(ii.a), (A.15)). Also, if u ∈ W 1,p(Ω), with p >

2, then f(·, u) ∈ L
2N

N+2 (Ω) for any μ ∈ (0, 2) (see Corollary A.2.(iii.a),
(A.19)).

Definition 1.4. By a weak solution of (1.1) we mean a function u ∈ H1
0 (Ω)

such that f(·, u) ∈ L
2N

N+2 (Ω), and
∫

Ω

∇u∇ϕ =
∫

Ω

f(x, u)ϕ, ∀ϕ ∈ H1
0 (Ω).

Throughout the paper, by a solution we will refer to this weak solution.
This definition of solution is tied to question (Q1). By an estimate of Brezis-
Kato [3], based on Moser’s iteration technique [21], and elliptic regularity, we
will state sufficient conditions guarantying that any weak solution to (1.1)
with a Carathéodory subcritical non-linearity is a continuous function, and
in fact it is a strong solution, see Lemma 2.1 and Lemma 3.1.

Our definition of a subcritical non-linearity includes functions such as

f (1)(x, s) :=
a(x)|s|2∗

N/r−2s
[
log(e + |s|)]α , or f (2)(x, s) :=

|x|−μ|s|2∗
μ−2s

[
log

[
e + log(1 + |s|)]

]α ,

for any α > 0, and either any a ∈ Lr(Ω), with N/2 < r ≤ ∞, or any
μ ∈ (0, 2). These non-linearities exemplify question (Q2).

One of the main results, Theorem 1.5, applied to f(x, s) = f (1)(x, s)
with a ∈ Lr(Ω) for r ∈ (N/2, N ], implies that for any ε > 0 there exists a
constant C > 0 depending only on ε, Ω, r and N such that for any u ∈ H1

0 (Ω)
solution to (1.1), the following holds:

[
log

(
e + ‖u‖∞

)]α

≤ C‖a‖ 1+ε
r

(
1 + ‖u‖2∗

) (2∗
N/r−2)(1+ε)

,

where C is independent of the solution u.
Related results concerning f (1)(x, s) with r = ∞ can be found in [10]

for the p-Laplacian case, in [9] analyzing what happen when α → 0, in [19]
for systems, in [25] for the radial case, and in [23,24] for a summary.

To state our main results, for a non-linearity f satisfying (H0), define

h(s) = hN/r(s) :=
|s|2∗

N/r−1

max
{
f̃(−s), f̃(s)

} , for |s| > 0, (1.9)
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(see Remark 1.2). And for a non-linearity f satisfying (H0)’, define

h(s) = hμ(s) :=
|s|2∗

μ−1

max
{
f̃(−s), f̃(s)

} , for |s| > 0. (1.10)

By sub-criticality, (see (1.5) or (1.7) respectively),

h(s) → ∞ as |s| → ∞. (1.11)

Let u be a solution to (1.1). We estimate h
(‖u‖∞

)
, in terms of its L2∗

(Ω)-
norm. This result is robust, and holds for solutions and non-linearities without
any sign restriction.

Our first main result is the following theorem.

Theorem 1.5. Assume that f : Ω × R → R is a Carathéodory function satis-
fying (H0)-(H1).

Then, for any u ∈ H1
0 (Ω) weak solution to (1.1), the following holds:

(i) either there exists a constant C > 0 such that ‖u‖∞ ≤ C, where C is
independent of the solution u,

(ii) either, for any ε > 0 there exists a constant C > 0 such that

h
(‖u‖∞

) ≤ C‖a‖ A+ε
r

(
1 + ‖u‖2∗

) (2∗
N/r−2)(A+ε)

,

where h is defined by (1.9),

A :=

⎧
⎨

⎩

1, if r ≤ N,

1 +
2
N

− 2
r
, if r > N,

(1.12)

and C depends only on ε, c0 (defined in (1.8)), r, N , and Ω, and it is
independent of the solution u.

Our second main result is the following theorem.

Theorem 1.6. Assume that f : Ω × R → R is a Carathéodory function satis-
fying (H0)’ and (H1). Assume also that one of the following two conditions
hold
(a) Either μ ≤ 4/N ;
(b) either u ∈ W 1,p0(Ω) with p0 > 2.

Then, for any u ∈ H1
0 (Ω) solution to (1.1), the following holds:

(i) either there exists a constant C > 0 such that ‖u‖∞ ≤ C, where C is
independent of the solution u,

(ii) either, for any ε > 0 there exists a constant C > 0 such that

h
(‖u‖∞

) ≤ Cε

(
1 + ‖u‖2∗

) (2∗
μ−2)(B+ε)

,

where h is defined by (1.10),

B :=

⎧
⎨

⎩
1 +

2
N

− 2μ

N
, if μ ∈ (0, 1),

1, if μ ∈ [1, 2),
(1.13)

and C depends only on ε, c0 (defined in (1.8)), μ, N , and Ω, and it is
independent of the solution u.
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As an immediate consequence, as soon as we have a universal a priori
L2∗

(Ω)- norm for weak solutions in H1
0 (Ω), then solutions are a priori uni-

versally bounded in the L∞(Ω)- norm. Our third main result is the following
theorem.

Theorem 1.7. (L∞ uniform a priori bound) Assume that f : Ω × R → R is
a Carathéodory function satisfying either hypothesis of Theorem 1.5, either
hypothesis of Theorem 1.6. Assume also that there exists constants Ki > 0,
i = 1, 2, and q > 2 such that

(H2) f(x, s)s ≥ K1 |s|q − K2 for a.e x ∈ Ω, for all s ∈ R.

Then, there exists a constant C > 0 such that for every non-negative
weak solution u of (1.1),

‖u‖L∞(Ω) ≤ C

where C depends only on N and Ω, but it is independent of the solution u.

As far as we know, our definition of weak solution is the optimal one
for the purpose of L∞(Ω) a priori bounds. There are more singular solutions
which are unbounded in L∞(Ω), which we briefly discuss below. We will say
that a function u is an L1(Ω)-weak solution to (1.1) if

u ∈ L1(Ω), f(·, u) δΩ ∈ L1(Ω)

where δΩ(x) := dist(x, ∂Ω) is the distance function with respect to the bound-
ary, and

∫

Ω

(
uΔϕ + f(x, u)ϕ

)
dx = 0, for all ϕ ∈ C2(Ω), ϕ

∣
∣
∂Ω

= 0.

Joseph and Lundgren in [17] shows that those L∞(Ω) a priori esti-
mates are not applicable for L1(Ω)- weak solutions, or for super-critical non-
linearities.

They posed the study of singular solutions. Working on non-linearities
such as f(s) := es or f(s) := (1 + s)p, they consider the following BVP
depending on a multiplicative parameter λ ∈ R,

− Δu = λf(u), in Ω, u = 0, on ∂Ω, (1.14)

and look for classical radial positive solutions in the unit ball B1. They obtain
singular solutions as limit of classical solutions.
In particular, they obtain the explicit weak solution

u∗
1(x) := log

1
|x|2 , u∗

1 ∈ H1
0 (B1),

to (1.14), when N > 2, λ = 2(N − 2), and f(s) := es, see [17, p. 262].
They also found the explicit L1(Ω)-weak solution

u∗
2(x) :=

(
1
|x|

) 2
p−1

− 1, with p >
N

N − 2
, N > 2, u∗

2 ∈ W
1, N

N−1
0 (B1),

to (1.14), where f(s) := (1+s)p, and λ = 2
p−1

(
N − 2p

p−1

)
> 0, see [17, (III.a)].

It holds that u∗
2 ∈ H1

0 (B1) only when p > 2∗ − 1. So, in the subcritical range
u∗

2 is a singular L1(Ω)-weak solution to (1.14), not in H1(Ω).
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Let us focus on BVP with radial singular weights,

− Δu = λ|x|−μ(1 + u)p, in Ω, u = 0, on ∂Ω, (1.15)

with N > 2, μ < 2 and p > 1. It can be checked that

u∗
3(x) :=

(
1
|x|

) 2−μ
p−1

− 1, with p >
N − μ

N − 2
, u∗

3 ∈ W
1, N

N−1
0 (B1),

and u∗
3 is an L1(Ω)-weak solution to (1.15), for λ = 2−μ

p−1

(
N − 2 − 2−μ

p−1

)
> 0.

It also holds that u∗
3 ∈ H1

0 (B1) only when p > 2∗
μ − 1. So, in the subcritical

range u∗
3 is a singular L1(Ω)-weak solution to (1.15), not in H1(Ω).

Above examples of radially symmetric singular solutions to BVP’s on
spherical domains, solve either super-critical problems (u∗

1) or are L1(Ω)-weak
solutions not in H1

0 (Ω) (u∗
2 and u∗

3). Consequently, we restrict our study for
u ∈ H1

0 (Ω) weak solutions to (1.1), in the class of generalized subcritical
problems. It is natural to ask for uniform L∞(Ω) a priori estimates over non
power non-linearities in non-spherical domains.

This paper is organized in the following way. In Sect. 2, using Gagliardo
–Nirenberg inequality, we prove Theorem 1.5. In Sect. 3, we prove Theo-
rem 1.6. It needs the Caffarelli–Kohn–Nirenberg inequality, which is written
in Appendix A, by the sake of completeness. In Sect. 4, we prove Theorem 1.7.

2. Estimates of the L∞(Ω)-norm of the solutions with
Carathéodory non-linearities

In this section, assuming that f satisfy the subcritical growth condition (H0),
we prove Theorem 1.5.

We first collect a regularity Lemma for any weak solution to (1.1) with
a non-linearity of polynomial critical growth.

Lemma 2.1. (Improved regularity) Assume that u ∈ H1
0 (Ω) weakly solves

(1.1) for a Carathéodory non-linearity f : Ω×R → R with polynomial critical
growth

|f(x, s)| ≤ |a(x)|(1 + |s|2∗
N/r−1), with a ∈ Lr(Ω), N/2 < r ≤ ∞. (2.1)

Then, the following hold:

(i) If r < N, then u ∈ Cν(Ω) ∩ W 2,r(Ω) for ν = 2 − N
r ∈ (0, 1).

(ii) If r = N, then u ∈ Cν(Ω) ∩ W 2,r(Ω) for any ν < 1.
(iii) If N < r < ∞, then u ∈ C1,ν(Ω) ∩ W 2,r(Ω) for ν = 1 − N

r ∈ (0, 1).
(iv) If r = +∞, then u ∈ C1,ν(Ω) ∩ W 2,p(Ω) for any ν < 1 and any p < ∞.

Proof. Let u ∈ H1
0 (Ω) be a solution to (1.1). Since an estimate of Brezis-Kato

[3], if
|f(x, u)| ≤ b(x)(1 + |u|), with 0 ≤ b ∈ LN/2(Ω), (2.2)

then, u ∈ Lq(Ω) for any q < ∞ (see [26, Lemma B.3]).
Assume that f satisfies (2.1), then assumption (2.2) is satisfied with



44 Page 8 of 22 R. Pardo JFPTA

b(x) =
|a(x)|(1 + |u|2∗

N/r−1)
1 + |u| ≤ C |a(x)|(1 + |u|2∗

N/r−2) ∈ LN/2(Ω),

using first that 2∗
N/r > 2 for r > N/2, and next the Hölder inequality.

Consequently, u ∈ Lq(Ω) for any q < ∞. The growth condition for f
(see (2.1)), implies that −Δu = f(x, u) ∈ Lp(Ω) for any p < r. Thus, by the
Calderon-Zygmund inequality (see [15, Theorem 9.14]), u ∈ W 2,p(Ω), for any
p ∈ (1, r).

(i) Assume r < N. Choosing any p ∈ (N/2, r), by Sobolev embeddings,
u ∈ W 1,p∗

(Ω), where 1
p∗ := 1

p − 1
N < 1

N . Since p∗ > N, u ∈ Cν(Ω)
for ν = 2 − N

p . Now, from elliptic regularity u ∈ Cν0(Ω) ∩ W 2,r(Ω) for
ν0 = 2 − N

r .
(ii) Assume r = N. Choosing any p ∈ (N/2, N), and reasoning as in (i),

u ∈ W 1,p∗
(Ω), where 1

p∗ := 1
p − 1

N < 1
N . Also u ∈ Cν(Ω) for any ν < 1.

Now, from elliptic regularity u ∈ Cν(Ω) ∩ W 2,r(Ω) for any ν < 1.
(iii) Assume r > N. Choosing any p ∈ (N, r), and reasoning as above, u ∈

C1,ν0(Ω) ∩ W 2,r(Ω) for ν0 = 1 − N
r .

(iv) Assume r = +∞. Since elliptic regularity and Sobolev embeddings,
u ∈ C1,ν(Ω) ∩ W 2,p(Ω) for any ν < 1 and any p < ∞.

�

2.1. Proof of Theorem 1.5

The arguments of the proof use Gagliardo–Nirenberg interpolation inequality
(see [22]), and are inspired in the equivalence between uniform L2∗

(Ω) a priori
bounds and uniform L∞(Ω) a priori bounds for solutions to subcritical elliptic
equations, see [6, Theorem 1.2] for the semilinear case and f = f(u), and [20,
Theorem 1.3] for the p-Laplacian case and f = f(x, u).

We first use elliptic regularity and Sobolev embeddings, and next, we
invoke the Gagliardo–Nirenberg interpolation inequality (see [22]).

From now on, C denotes several constants that may change from line
to line, and are independent of u.

Proof of Theorem 1.5. Let {uk} ⊂ H1
0 (Ω) be any sequence of weak solutions

to (1.1). Since Lemma 2.1, in fact {uk} ⊂ H1
0 (Ω) ∩ L∞(Ω).

If ‖uk‖∞ ≤ C, then (i) holds.
Now, we argue on the contrary, assuming that there exists a sequence

‖uk‖∞ → +∞ as k → ∞.
We split the proof in two steps. First, we write an W 2,q(Ω) estimate

for q ∈ (
N/2,min{r,N}), then through Sobolev embeddings we get a W 1,q∗

estimate with 1/q∗ = 1/q − 1/N < 1/N. Secondly, we invoke the Gagliardo–
Nirenberg interpolation inequality for the L∞(Ω)-norm in terms of its W 1,q∗

-
norm and its L2∗

(Ω)-norm.
Step 1. W 2,q(Ω) estimates for q ∈ (

N/2,min{r,N}).
Let us denote by

Mk := max
{

f̃
( − ‖uk‖∞

)
, f̃

(‖uk‖∞
)} ≥ (2c0)−1 max

[−‖uk‖∞,‖uk‖∞]
f̃ , (2.3)
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where the inequality holds by hypothesis (H1), see (1.8).
Let us take q in the interval (N/2, N) ∩ (N/2, r). Growth hypothesis

(H0) (see (1.4)), hypothesis (H1) (see (1.8)), and Hölder inequality, yield the
following:

∫

Ω

∣
∣f

(
x, uk(x)

)∣∣q dx

≤
∫

Ω

|a(x)|q
(
f̃
(
uk(x)

))q

dx

=
∫

Ω

|a(x)|q
(
f̃
(
uk(x)

))t (
f̃
(
uk(x)

))q−t

dx

≤ C

[∫

Ω

|a(x)|q
(
f̃
(
uk(x)

))t

dx

]
M q−t

k

≤ C

(∫

Ω

|a(x)|qs dx

) 1
s

(∫

Ω

(
f̃
(
uk(x)

))ts′

dx

) 1
s′

M q−t
k

≤ C‖a‖q
r

(
‖f̃(uk)‖ 2∗

2∗
N/r

−1

)t

M q−t
k ,

where 1
s + 1

s′ = 1, qs = r, C = (2c0) q−t (for c0 defined in (1.8)), and
ts′ = 2∗

2∗
N/r−1 , so

t :=
2∗

2∗
N/r − 1

(
1 − q

r

)
< q (2.4)

⇐⇒ 1
q

− 1
r

<
2∗

N/r − 1

2∗ = 1 − 1
r

− 1
2

+
1
N

⇐⇒ 1
q

<
1
2

+
1
N

⇐⇒ q >
2N

N + 2
�

since q > N/2 > 2N
N+2 .

Now, elliptic regularity and Sobolev embedding imply that

‖uk‖W 1,q∗ (Ω) ≤ C ‖a‖r

(
‖f̃(uk)‖ 2∗

2∗
N/r

−1

) t
q

M
1− t

q

k ,

where 1/q∗ = 1/q − 1/N , and C = C(c0, r,N, q, |Ω|) and it is independent of
u. Observe that since q > N/2, then q∗ > N.

Step 2. Gagliardo–Nirenberg interpolation inequality.
Thanks to the Gagliardo–Nirenberg interpolation inequality, there exists a
constant C = C(N, q, |Ω|) such that

‖uk‖∞ ≤ C‖∇uk‖σ
q∗ ‖uk‖1−σ

2∗

where
1 − σ

2∗ = σ

(
2
N

− 1
q

)
. (2.5)

Hence,

‖uk‖∞ ≤ C

[
‖a‖r

(
‖f̃(uk)‖ 2∗

2∗
N/r

−1

) t
q

M
1− t

q

k

]σ

‖uk‖1−σ
2∗ , (2.6)
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where C = C(c0, r,N, q, |Ω|).
From definition of Mk (see (2.3)), and definition of h (see (1.9)), we

deduce that

Mk =
‖uk‖ 2∗

N/r−1
∞

h
(‖uk‖∞

) .

From (2.5),

1
σ

= 1 + 2∗
(

2
N

− 1
q

)
= 2∗ − 1 − 2∗

q
= 2∗

N/q − 1. (2.7)

Moreover, since definition of t (see (2.4)), and definition of 2∗
N/r (see (1.3)

1 − t

q
=

2∗ (
1 − 1

r

) − 1 − 2∗
(

1
q − 1

r

)

2∗
N/r − 1

=
2∗

N/q − 1

2∗
N/r − 1

, (2.8)

which, joint with (2.7), yield

σ

[
1 − t

q

]
(2∗

N/r − 1) = 1.

Now, (2.6) can be rewritten as

h
(‖uk‖∞

) (1− t
q )σ ≤ C

[
‖a‖r

(
‖f̃(uk)‖ 2∗

2∗
N/r

−1

) t
q

]σ

‖uk‖1−σ
2∗ ,

or equivalently

h
(‖uk‖∞

) ≤ C‖a‖ θ
r

(
‖f̃(uk)‖ 2∗

2∗
N/r

−1

)θ−1

‖uk‖ ϑ
2∗ ,

where

θ := (1 − t/q)−1 =
2∗

N/r − 1

2∗
N/q − 1

, (2.9)

ϑ :=
1 − σ

σ
(1 − t/q)−1 = θ (2∗

N/q − 2), (2.10)

see (2.8) and (2.5). Observe that since q < r, then θ > 1. Moreover, since
(2.10) and (2.9),

θ + ϑ = θ(2∗
N/q − 1) = 2∗

N/r − 1. (2.11)

Furthermore, from sub-criticality, see (1.5)
∫

Ω

|f̃(uk)|
2∗

2∗
N/r

−1 ≤ C

(
1 +

∫

Ω

|uk|2∗
dx

)
,

so
‖f̃(uk)‖ 2∗

2∗
N/r

−1
≤ C

(
1 + ‖uk‖2∗

N/r−1

2∗

)
.

Consequently,
h
(‖uk‖∞

) ≤ C‖a‖ θ
r

(
1 + ‖uk‖Θ

2∗

)
,

with

Θ := (2∗
N/r − 1)(θ − 1) + ϑ = (2∗

N/r − 2)θ,

where we have used (2.11).
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Fixed N > 2 and r > N/2, the function q → θ = θ(q) for q ∈(
N/2,min{r,N}), is decreasing, so

inf
q∈(N/2,min{r,N})

θ(q) = θ
(
min{r,N}) = A

:=

{
1, if r ≤ N,

1 + 2
N − 2

r , if r > N.

Finally, and since the infimum is not attained in
(
N/2,min{r,N}), for any

ε > 0, there exists a constant C > 0 such that

h
(‖uk‖∞

) ≤ C ‖a‖ A+ε
r

(
1 + ‖uk‖ (2∗

N/r−2)(A+ε)

2∗

)
,

where A is defined by (1.12), and C = C(ε, c0, r,N, |Ω|), ending the proof.

�

2.2. L∞(Ω) a priori bounds of the solutions

As as immediate corollary of Theorem 1.5, we prove that any sequence of
solutions in H1

0 (Ω), uniformly bounded in the L2∗
(Ω)-norm, is also uniformly

bounded in the L∞(Ω)-norm.

Corollary 2.2. Let f : Ω × R → R be a Carathéodory function satisfying
(H0)–(H1).

Let {uk} ⊂ H1
0 (Ω) be any sequence of solutions to (1.1) such that there

exists a constant C0 > 0 satisfying

‖uk‖2∗ ≤ C0.

Then, there exists a constant C > 0 such that

‖uk‖∞ ≤ C. (2.12)

Proof. We reason by contradiction, assuming that (2.12) does not hold. So,
at least for a subsequence again denoted as uk, ‖uk‖∞ → ∞ as k → ∞. Now,
part (ii) of the Theorem 1.5 implies that

h
(‖uk‖∞

) ≤ C. (2.13)

From hypothesis (H0) (see in particular (1.11)), for any ε > 0 there exists
s1 > 0 such that h(s) ≥ 1/ε for any s ≥ s1, and so h

(‖uk‖∞
) ≥ 1/ε for any

k big enough. This contradicts (2.13), ending the proof. �

We next state a straightforward corollary, assuming that the non-linearity
f̃ : R → (0,+∞) satisfies also the following hypothesis:

(H1)’ there exists a constant c0 > 0 such that1

sup
s>0

max[−s,s] f̃

max
{
f̃(−s), f̃(s)

} ≤ c0.

1In particular, if f̃(s) is monotone, then (H1)’ is satisfied with c0 = 1.
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Corollary 2.3. Assume that f : Ω ×R → R is a Carathéodory function satis-
fying (H0) and (H1)’.

Then, for any u ∈ H1
0 (Ω) weak solution to (1.1), the following holds:

for any ε > 0 there exists a constant C > 0 such that

h
(‖u‖∞

) ≤ C‖a‖ A+ε
r

(
1 + ‖u‖2∗

) (2∗
N/r−2)(A+ε)

,

where h is defined by (1.9), A is defined by (1.12), C = C(c0, r,N, ε, |Ω|),
and C is independent of the solution u.

Since hypothesis (H1)’, for any sequence {uk} ⊂ H1
0 (Ω) of weak solu-

tions to (1.1),

Mk := max
{

f̃
( − ‖uk‖∞

)
, f̃

(‖uk‖∞
)} ≥ (2c0)−1 max

[−‖uk‖∞,‖uk‖∞]
f̃ .

The proof can be achieved just reproducing Step 1 and Step 2 of the proof
of Theorem 1.5, which now hold for any any sequence of weak solutions to
(1.1).

3. Estimates of the L∞(Ω)-norm of the solutions with radial
singular weights

In this section, assuming that 0 ∈ Ω and that f satisfies (H0)’ and (H1), we
prove Theorem 1.6.

First, we also collect a regularity Lemma for any weak solution to
(1.1) with f̃(s) of polynomial critical growth, according to Caffarelli–Kohn–
Nirenberg inequality.

Lemma 3.1. (Improved regularity) Assume that u ∈ H1
0 (Ω) weakly solves

(1.1) for a Carathéodory non-linearity f : Ω×R → R with polynomial critical
growth

|f(x, s)| ≤ |x|−μ
(
1 + |s|2∗

μ−1
)
, with μ ∈ (0, 2). (3.1)

Assume also that one of the following two conditions hold:

(a) Either μ ≤ 4/N ;
(b) either u ∈ W 1,p0(Ω) with p0 > 2.

Then, u ∈ L∞(Ω).
Moreover, the following hold:

(i) If μ < 1, then u ∈ C1,ν(Ω) ∩ W 2,p(Ω) for any p < N/μ, and any
ν < 1 − μ.

(ii) If μ = 1, then u ∈ Cν(Ω) ∩ W 2,p(Ω) for any p < N , and ν < 1.
(iii.a) Assume (a), and that N = 3. If 1 < μ ≤ 4/N, then u ∈ Cν(Ω) ∩

W 2,p(Ω) for any p < N/μ, and ν < 2 − μ.
(iii.b) Assume (b). If 1 < μ < 2, then u ∈ Cν(Ω)∩W 2,p(Ω) for any p < N/μ,

and ν < 2 − μ.
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Proof. Let u ∈ H1
0 (Ω) be a solution to (1.1). We reason as in Lemma 2.1.

Assume either that (a) or (b) hold.
If f satisfies (3.1), then Caffarelli–Kohn–Nirenberg interpolation in-

equality (see [4], and Theorem A.1) implies that assumption (2.2) is satisfied
with

b(x) =
|x|−μ(1 + |u|2∗

μ−1)
1 + |u| ≤ C|x|−μ(1 + |u|2∗

μ−2) ∈ L
N
2 (Ω). (3.2)

Observe that 2∗
μ > 2 for μ ∈ (0, 2). Indeed, in case (a), condition (3.2) hold,

see Corollary A.2(ii.b), (A.16); in case (b), condition (3.2) also hold, see
Corollary A.2.(iii.b), (A.20)).

Consequently, u ∈ Lq(Ω) for any q < ∞. The growth condition for f (see
(1.6)–(1.7)), implies that −Δu = f(x, u) ∈ Lp(Ω) for any p < N/μ. Thus,
by the Calderon–Zygmund inequality (see [15, Theorem 9.14]), u ∈ W 2,p(Ω),
for any p < N/μ. Now, choosing p ∈ (N/2, N/μ), we get that u ∈ L∞(Ω).

(i) Assume μ < 1. Choosing any p ∈ (N,N/μ), by elliptic regularity,
u ∈ W 2,p(Ω), with p > N. Then u ∈ C1,ν(Ω) for ν = 1 − N

p , and
finally, u ∈ C1,ν(Ω) ∩ W 2,p(Ω) for any p < N/μ, and any ν < 1 − μ.

(ii) Assume μ = 1. Choosing any p ∈ (N/2, N), by elliptic regularity and
Sobolev embeddings, u ∈ W 1,p∗

(Ω), where 1
p∗ := 1

p − 1
N < 1

N . Also
u ∈ Cν(Ω) for any ν < 1. Finally u ∈ Cν(Ω)∩W 2,p(Ω) for any p < N ,
and ν < 1.

(iii.a) Assume N = 3, and 1 < μ ≤ 4/N . Choosing any p ∈ (N/2, N/μ),
and reasoning as above, u ∈ W 1,p∗

(Ω), where 1
p∗ := 1

p − 1
N < 1

N . Also
u ∈ Cν(Ω) for ν = 2 − N/p < 2 − μ. Finally u ∈ Cν(Ω) ∩ W 2,p(Ω) for
any p < N/μ, and ν < 2 − μ.

(iii.b) Assume (b). Reasoning as in case (iii.a), we reach the conclusion.
�

3.1. Estimates of the L∞(Ω)-norm of the solutions

Remark 3.2. Under condition (a), the definition of B, (1.13), can be rewritten

B :=

⎧
⎨

⎩
1 +

2
N

− 2μ

N
, if μ ∈ (0, 1) ∩ (0, 4/N ],

1, if N = 3, 4 and μ ∈ [1, 4/N ],

3.2. Proof of Theorem 1.6

Since Lemma 3.1, assuming either (a) or (b), a solution u ∈ H1
0 (Ω) to (1.1)

is in L∞(Ω). In the proof of Theorem 1.6, we will not distinguish if we are
assuming condition (a) or (b).

Proof of Theorem 1.6. Let {uk} ⊂ H1
0 (Ω) be any sequence of solutions to

(1.1). Since Lemma 3.1, {uk} ⊂ H1
0 (Ω) ∩ L∞(Ω). If ‖uk‖∞ ≤ C, then (i)

holds.
Now, we argue on the contrary, assuming that there exists a sequence

{uk} ⊂ H1
0 (Ω) of solutions to (1.1), such that ‖uk‖∞ → +∞ as k → ∞. By

Morrey’s Theorem (see [2, Theorem 9.12]), observe that also

‖∇uk‖p → +∞ as k → ∞, (3.3)
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for any p > N .
Step 1. W 2,q(Ω) estimates for q ∈ (

N/2,min{N,N/μ}).
As in the proof of Theorem (1.5), let us denote by

Mk := max
{

f̃
( − ‖uk‖∞

)
, f̃

(‖uk‖∞
)} ≥ (c0/2)−1 max

[−‖uk‖∞,‖uk‖∞]
f̃ , (3.4)

where the inequality is due to hypothesis (H1), see (1.8).
Let us take q in the interval (N/2, N) ∩ (N/2, N/μ). Using growth hy-

pothesis (H0)’(see (1.6)), hypothesis (H1) (see (1.8)), and Hölder inequality,
we deduce

∫

Ω

∣
∣f

(
x, uk(x)

)∣∣q dx

≤
∫

Ω

|x|−μq
(
f̃
(
uk(x)

))q

dx

=
∫

Ω

|x|−μq
(
f̃
(
uk(x)

)) t
2∗

μ−1
(
f̃
(
uk(x)

))q− t
2∗

μ−1
dx

≤ C

[∫

Ω

|x|−μq
(
1 + uk(x)t

)
dx

]
M

q− t
2∗

μ−1

k

≤ C
(
1 +

∥
∥ |x|−γ uk

∥
∥ t

t

)
M

q− t
2∗

μ−1

k ,

where γ = μq
t , t ∈ (

0, q
(
2∗

μ − 1
))

, C = (2c0)
q− t

2∗
μ−1 (for c0 defined in (1.8)),

and where Mk is defined by (3.4).
Combining now elliptic regularity with Sobolev embedding, we have

that

‖∇uk‖q∗ ≤ C
(
1 +

∥
∥ |x|−γ uk

∥
∥ t

t

) 1
q

M
1− t

q(2∗
μ−1)

k , (3.5)

where 1/q∗ = 1/q−1/N (since q > N/2, then q∗ > N), and C = C(N, q, |Ω|).
Step 2. Caffarelli–Kohn–Nirenberg interpolation inequality.

Since the Caffarelli–Kohn–Nirenberg interpolation inequality for singular weights
(see [4], and also Theorem A.1, and Corollary A.2), there exists a constant
C > 0 depending on the parameters N, q, μ, and t, such that

∥
∥ |x|−γ uk

∥
∥

t
≤ C‖∇uk‖θ

q∗ ‖uk‖1−θ
2∗ , (3.6)

where
1
t

− μq

Nt
= −θ

(
2
N

− 1
q

)
+ (1 − θ)

1
2∗ , with θ ∈ (0, 1], (3.7)

see (A.9)–(A.10).
Substituting now (3.6) into (3.5), we can write

‖∇uk‖q∗ ≤ C
(
1 + ‖∇uk‖θt

q∗ ‖uk‖(1−θ)t
2∗

) 1
q

M
1− t

q(2∗
μ−1)

k ,

now, dividing by ‖∇uk‖θt/q
q∗ and using (3.3) we obtain

‖∇uk‖1−θt/q
q∗ ≤ C

(
1 + ‖uk‖

(1−θ)t
q

2∗

)
M

1− t
q(2∗

μ−1)

k .
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Let us check that

1 − θ
t

q
> 0 for any t < q

(
2∗

μ − 1
)
. (3.8)

Indeed, observe first that (3.7) is equivalent to

θ =
1
2∗ − 1

t + μq
Nt

1
2 + 1

N − 1
q

, (3.9)

moreover, from (3.9)

θ
t

q
=

1
q

(
t
2∗ − 1

)
+ μ

N
1
2 + 1

N − 1
q

, (3.10)

consequently,

θ
t

q
< 1 ⇐⇒ 1

q

(
t

2∗ − 1
)

+
μ

N
<

1
2

+
1
N

− 1
q

⇐⇒ 1
q

t

2∗ <
1
2

+
1
N

− μ

N
± 1

⇐⇒ t

q
< 2∗

(
1 − μ

N

)
− 2∗

(
1
2

− 1
N

)
= 2∗

μ − 1

⇐⇒ t < q
(
2∗

μ − 1
)
,

so (3.8) holds.
Consequently,

‖∇uk‖q∗ ≤ C
(
1 + ‖uk‖

(1−θ)t
q−θt

2∗

)
M

(
1− t

q(2∗
μ−1)

)
(1−θt/q)−1

k . (3.11)

Step 3. Gagliardo–Nirenberg interpolation inequality.
Thanks to the Gagliardo–Nirenberg interpolation inequality (see [22]), there
exists a constant C = C(N, q, |Ω|) such that

‖uk‖∞ ≤ C‖∇uk‖σ
q∗ ‖uk‖1−σ

2∗ , (3.12)

where
1 − σ

2∗ = σ

(
2
N

− 1
q

)
. (3.13)

Hence, substituting (3.11) into (3.12), we deduce

‖uk‖∞ ≤ C
(
1 + ‖uk‖ σ (1−θ)t

q−θt +1−σ

2∗

)
M

σ
(
1− t

q(2∗
μ−1)

)
(1−θt/q)−1

k . (3.14)

From definition of Mk (see (2.3)) and of h (see (1.10)), we obtain

Mk =
‖uk‖2∗

μ−1
∞

h
(‖uk‖∞

) . (3.15)

From (3.13),
1
σ

= 1 + 2∗
(

2
N

− 1
q

)
= 2∗

N/q − 1. (3.16)
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From (3.10), we deduce

1 − θ
t

q
=

1
2 + 1

N − t
2∗q − μ

N ± 1
1
2 + 1

N − 1
q

=

(
1 − μ

N

) − 1
2∗ − t

2∗q
1
2 + 1

N − 1
q

=
2∗

μ − 1 − t
q

2∗
N/q − 1

, (3.17)

where we have used that, by definition of 2∗
μ (see (1.2)), 2∗

μ

2∗ = 1 − μ
N .

Moreover, since (3.17),
(

1 − t

q(2∗
μ − 1)

)
(
2∗

μ − 1
) 1
(1 − θt/q)

=
(

2∗
μ − 1 − t

q

)
1

(1 − θt/q)
= 2∗

N/q − 1. (3.18)

Taking into account (3.16) and (3.18), we obtain

σ
(
1 − t

q(2∗
μ − 1)

)(
2∗

μ − 1
)
(1 − θt/q)−1 = 1. (3.19)

Consequently, since (3.15), and (3.19), we can rewrite (3.14) in the following
way:

h
(‖uk‖∞

) 1
2∗

μ−1 ≤ C
(
1 + ‖uk‖ σ (1−θ)t/q

1−θt/q +1−σ

2∗

)
,

or equivalently
h
(‖uk‖∞

) ≤ C
(
1 + ‖uk‖ Θ

2∗

)
,

where

Θ :=
(
2∗

μ − 1
)
[
1 + σ

t/q − 1
1 − θt/q

]
.

Since (3.19), σ(1 − θt/q)−1 = (2∗
μ − 1 − t

q )−1, and substituting it into
the above equation, we obtain

Θ =
(
2∗

μ − 1
)
(

2∗
μ − 2

2∗
μ − 1 − t

q

)

.

Fixed N > 2 and μ ∈ (0, 2), the function (t, q) → Θ = Θ(t, q) for (t, q) ∈(
0, q(2∗

μ − 1)
) × (

N/2,min{N,N/μ}), is increasing in t and decreasing in q.
For μ ∈ [1, 2), min{N,N/μ} = N/μ. If qk → N/μ, Eq. (3.7) with q = qk,

θ = θk < 1 and an arbitrary t ∈ (
0, (2∗

μ −1)N/μ
)

fixed, yields θk → 1
2∗

μ−1 < 1
(since μ < 2). Hence, when μ ∈ [1, 2),

inf
t∈

(
0,(2∗

μ−1) N
μ

)
, q∈

(
N
2 , N

μ

) Θ(t, q) = Θ
(

0,
N

μ

)
= 2∗

μ − 2.

On the other hand, for μ ∈ (0, 1), min{N,N/μ} = N . If qk → N,

equation (3.7) with q = qk, θ = θk > 0 and t fixed, yields θk → 2
2∗ − 2(1−μ)

t ≥
0, so t ≥ 2∗(1 − μ). Hence, when μ ∈ (0, 1),
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inf
t∈[2∗(1−μ),(2∗

μ−1)N), q∈
(

N
2 ,N

) Θ(t, q) = Θ(2∗(1 − μ), N) = (2∗
μ − 2)B,

where B is defined by (1.13).
Since the infimum is not attained, for any ε > 0, there exists a constant

C = C(ε, c0, μ,N,Ω) such that

h
(‖uk‖∞

) ≤ C
(
1 + ‖uk‖ (2∗

μ−2)(B+ε)

2∗

)
,

which ends the proof. �

4. Uniform L∞ a priori estimates

Proof of Theorem 1.7. We will show ‖u‖H1
0 (Ω) ≤ C, where C is independent

of u, once achieved, either Theorem 1.5, either Theorem 1.6 will finished the
proof.
We prove it by contradiction. Suppose there exists a sequence {uk} of non-
negative weak solutions of (1.1) such that ‖uk‖H1

0 (Ω) → ∞ as k → ∞. Let

Uk :=
uk

‖uk‖H1
0 (Ω)

. Then, by the reflexivity of H1
0 (Ω), Uk ⇀ U in H1

0 (Ω) up

to a subsequence. By the compactness of the trace operator, Uk → U in
Lp+1(Ω).
Step 1: U = 0 a.e. on Ω.
Since uk is a weak solution of (1.1), we have

∫

Ω

∇uk∇ψ =
∫

Ω

f(x, uk)ψ for all ψ ∈ H1
0 (Ω) . (4.1)

Then dividing both sides of (4.1) by ‖uk‖H1
0 (Ω), we have

∫

Ω

∇Uk∇ψ =
∫

Ω

f(x, uk)
‖uk‖H1

0 (Ω)

ψ for all ψ ∈ H1
0 (Ω) . (4.2)

Taking ψ = Uk as a test function, we have

1 =
∫

Ω

|∇Uk|2 =
∫

Ω

f(x, uk)
‖uk‖H1

0 (Ω)

Uk, (4.3)

which implies
∫

Ω

f
(
x, uk

)

‖uk‖q
H1

0 (Ω)

uk =
∫

Ω

f
(
x, uk

)

‖uk‖q−1
H1

0 (Ω)

Uk =
1

‖uk‖q−2
H1

0 (Ω)

→ 0 as k → ∞ ,

since q > 2. Therefore,

K1‖Uk‖q
Lq(∂Ω) − K2

|∂Ω|
‖uk‖q

H1
0 (Ω)

≤
∫

Ω

f(x, uk)
‖uk‖q

H1
0 (Ω)

uk → 0 as k → ∞ ,

so ‖Uk‖Lq(∂Ω) → 0. Since Uk → U in Ls(Ω) for all s < 2∗, we have that
U = 0 a.e. on Ω.
Step 2: A contradiction.

Since

Uk ⇀ 0 in H1
0 (Ω),
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it follows from (4.2) that for all ψ ∈ H1
0 (Ω)

lim
k→∞

∫

Ω

f(x, uk)
‖uk‖H1

0 (Ω)

ψ =
∫

Ω

∇U∇ψ = 0 . (4.4)

Let gk := f(x,uk)
‖uk‖

H1
0(Ω)

, by sub-criticality and Lemma 2.1, {gk}k ⊂ L∞(Ω).

Fix q < 2∗. Since (4.4),
∫
Ω

gkψ → 0, for any ψ ∈ Lq(Ω) (due to H1
0 (Ω) is

dense in Lq(Ω)). Let xk := Uk → 0 in Lq(Ω). By Brezis [2, Prop. 3.13 (i) and
(iv)], 〈gk, xk〉 → 0, that is,

lim
k→∞

∫

Ω

f(x, uk)
‖uk‖H1

0 (Ω)

Uk = 0

a contradiction to (4.3). Hence, the conclusion of Theorem 1.7 holds, com-
pleting the proof. �

Acknowledgements

The author was partially supported by Grant MTM2019-75465, MICINN,
Spain and Grupo de Investigación CADEDIF 920894, UCM.

Funding Information Open Access funding provided thanks to the CRUE-
CSIC agreement with Springer Nature.

Data Availability Statement Data sharing not applicable to this article as no
datasets were generated or analyzed during the current study.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Appendix A. The Caffarelli–Kohn–Nirenberg interpolation
inequality

Theorem A.1. Let p, q, t, α, β, σ and θ be fixed real numbers (parameters) sat-
isfying

p, q ≥ 1, t > 0, 0 ≤ θ ≤ 1, (A.1)
1
p

+
α

N
,

1
q

+
β

N
,

1
t

− γ

N
> 0, (A.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol. 25 (2023) L∞(Ω) a priori estimates for subcritical Page 19 of 22 44

where
γ = −[

θσ + (1 − θ)β
]
. (A.3)

Then, there exists a positive constant C > 0 such that for all u ∈
C∞

c (RN ):
∥
∥|x|−γu

∥
∥

Lt(RN )
≤ C

∥
∥|x|α |∇u|∥∥ θ

Lp(RN )

∥
∥|x|βu

∥
∥ 1−θ

Lq(RN )
, (A.4)

where
1
t

− γ

N
= θ

(
1
p

+
α − 1

N

)
+ (1 − θ)

(
1
q

+
β

N

)
, (A.5)

0 ≤ α − σ if θ > 0, (A.6)

and
α − σ ≤ 1 if θ > 0 and

1
p

+
α − 1

N
=

1
t

− γ

N
. (A.7)

Moreover, on any compact set in parameter space in which (A.1), (A.2),
(A.5) and 0 ≤ α − σ ≤ 1 hold, the constant C is bounded.

See [4] for a proof.

Corollary A.2. Suppose that Ω ⊂ R
N is of class C1 with ∂Ω bounded. Let

p, q, t, σ, θ be fixed real parameters satisfying (A.1)–(A.3) particularized for
α = β = 0. Specifically,

1 ≤ p, q < ∞, and
1
t

>
γ

N
where γ = (−σ)θ. (A.8)

Then,
(i) there exists a positive constant C = C(Ω, N, p, q, t, σ, θ) such that for

all u ∈ W 1,p(Ω) ∩ Lq(Ω):
∥
∥|x|−γu

∥
∥

Lt(Ω)
≤ C

∥
∥∇u

∥
∥ θ

Lp(Ω)

∥
∥u

∥
∥ 1−θ

Lq(Ω)
, (A.9)

where
1
t

− γ

N
= θ

(
1
p

− 1
N

)
+ (1 − θ)

1
q
, (A.10)

σ ≤ 0 if θ > 0, (A.11)

and
σ ≥ −1 if θ > 0 and

1
p

− 1
N

=
1
t

− γ

N
. (A.12)

(ii) Moreover, if p = 2, q = 2∗, and σ < 0 (so γ > 0), there exists a
positive constant C = C(Ω, N, t, σ, θ) such that for all u ∈ H1(Ω):

∥
∥|x|−γu

∥
∥

Lt(Ω)
≤ C

∥
∥∇u

∥
∥

L2(Ω)
(A.13)

where
1
t

− γ

N
=

1
2

− 1
N

, and 0 < γ ≤ 1. (A.14)

In particular, for all u ∈ H1(Ω)

(ii.a) f(x, u) ≤ C
(
1 + |x|−μ|u|2∗

μ−1
) ∈ L

2N
N+2 (Ω), if μ ≤ 1 +

2
N

, (A.15)
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and

(ii.b) |x|−μ|u|2∗
μ−2 ∈ L

N
2 (Ω), if μ ≤ 4/N. (A.16)

(iii) Besides, for all u ∈ W 1,p(Ω) with 2 < p < ∞:
∥
∥|x|−γu

∥
∥

Lt(Ω)
≤ C

∥
∥∇u

∥
∥

Lp(Ω)
, (A.17)

where
1
t

− γ

N
=

1
p

− 1
N

. (A.18)

In particular, for all u ∈ W 1,p(Ω) with 2 < p < ∞,

(iii.a) f(x, u) ≤ C
(
1 + |x|−μ|u|2∗

μ−1
) ∈ L

2N
N+2 (Ω), (A.19)

and

(iii.b) |x|−μ|u|2∗
μ−2 ∈ L

N
2 (Ω). (A.20)

Proof. (i) The proof can be obtained using that C∞
c (RN ) is dense in

Lp(RN ) for any 1 ≤ p < ∞, and the extension operator, P : W 1,p(Ω) →
W 1,p(RN ), see [2, Theorem 9.7]. Moreover, (A.9)–(A.12) are a partic-
ular case of (A.4)–(A.7) for α = β = 0.

(ii) Assume now p = 2, q = 2∗, and σ < 0, then (A.13)–(A.14) are a
particular case of (A.9)–(A.10) for θ = 1. Moreover, (A.8), and (A.6)–
(A.7) imply

0 < (−σ) ≤ 1, so 0 < γ ≤ 1.

(ii.a) Indeed, choosing t = (2∗
μ − 1) 2N

N+2 , θ = 1, and σ = − μ
2∗

μ−1 , we deduce
from (A.8) that γ = μ

2∗
μ−1 , hence

1
t

− γ

N
=

1
2

− 1
N

,

and

γ ≤ 1 ⇐⇒ μ ≤ 1 +
2
N

.

Consequently, (A.15) holds.
(ii.b) Choosing now t = (2∗

μ − 2)N
2 , θ = 1, and σ = − μ

2∗
μ−2 , we deduce from

(A.8) that γ = μ
2∗

μ−2 , then

1
t

− γ

N
=

1
2

− 1
N

,

and
γ ≤ 1 ⇐⇒ μ ≤ 4/N.

Hence, (A.16) holds.
(iii) Assume finally 2 < p < ∞, then (A.17)–(A.18) are a particular case

of (A.9)–(A.10).
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(iii.a) Indeed, choosing t = (2∗
μ − 1) 2N

N+2 , θ = 1, and σ = − μ
2∗

μ−1 , we deduce
from (A.8) that γ = μ

2∗
μ−1 , hence

1
t

− γ

N
=

1
2

− 1
N

<
1
p

− 1
N

,

so (A.12) do not apply.
(iii.b) Choosing now t = (2∗

μ − 2)N
2 , θ = 1, and σ = − μ

2∗
μ−2 , we deduce from

(A.8) that γ = μ
2∗

μ−2 , so 1
t − γ

N = 1
2 − 1

N < 1
p − 1

N , and (A.12) do not
apply.

�
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