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Abstract. The aim of this paper is to study global bifurcations of non-
constant solutions of some nonlinear elliptic systems, namely the system
on a sphere and the Neumann problem on a ball. We study the bifur-
cation phenomenon from families of constant solutions given by critical
points of the potentials. Considering this problem in the presence of
additional symmetries of a compact Lie group, we study orbits of so-
lutions and, in particular, we do not require the critical points to be
isolated. Moreover, we allow the considered orbits of critical points to
be degenerate. To prove the bifurcation, we compute the index of an
isolated degenerate critical orbit in an abstract situation. This index is
given in terms of the degree for equivariant gradient maps.
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1. Introduction

The aim of this article is to study global bifurcations of solutions of two kinds
of nonlinear systems of elliptic equations: the system on a sphere

− Δu = ∇uF (u, λ) on SN−1 (1.1)

and the Neumann problem on a ball{
−�u = ∇uF (u, λ) in BN

∂u
∂ν = 0 on SN−1,

(1.2)

with a potential F satisfying some additional assumptions given in Sect. 3
(the conditions (B1)–(B6)).

The global bifurcation problem concerns finding connected sets of solu-
tions of some equations, emanating from a known family of so-called trivial
solutions. One of the most famous results on this topic is the Rabinowitz
alternative, see [32,33]. This result gives conditions to an occurrence of the
phenomenon of global bifurcation and describes the basic structure of the
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emanating sets of solutions. It has been proved with the use of the Leray–
Schauder degree. It is worth pointing out that the proof relies on the prop-
erties of the degree, not its exact definition. Therefore, similar results can be
obtained with the use of other degree theories satisfying analogous proper-
ties, in particular the property of generalised homotopy invariance (or otopy
invariance), see for example [2,16,21,28,34].

Rabinowitz’s result and its later generalisations deal with an equation
of the type T (u, λ) = 0 having a family of trivial solutions of the form {u0}×
R. Such a situation appears naturally if the variational method of studying
differential equations is applied, i.e., solutions of the differential equation
are associated with critical points of some functional, defined on a suitable
Hilbert space. Then, the family of trivial solutions often consists of known
constant functions, and the bifurcation of non-constant solutions from this
family is studied.

In such an approach, one uses some topological invariant (for instance
a degree theory) and computes its values on some given levels λ̂ ∈ R. To that
end, it is required that, for some of these levels, the point u0 is isolated in
the set of solutions of the equation T (u, λ̂) = 0, with fixed λ̂. However, if one
considers a symmetric case, i.e., assumes that T is G-equivariant, where G is
a compact Lie group, the situation is more complicated. If u0 is a solution,
all points from its orbit also solve the equation. Therefore, if the group has
a positive dimension, it can happen that u0 is not isolated at any level λ̂.

Symmetries in differential problems come naturally from applications, in
particular from mathematical physics. That is one of the reasons why elliptic
systems with different kinds of symmetries are presently studied by many
mathematicians, see for example [1,3,23,24,26,27]. In these articles, various
methods have been applied: variational and non-variational.

A symmetric situation is also considered in this paper. Namely, systems
(1.1) and (1.2) are defined on SO(N)-symmetric domains and we assume
additionally that their potentials are Γ-invariant for Γ being a compact Lie
group. We study these problems using variational methods, investigating as-
sociated functionals. These functionals are G = Γ × SO(N)-invariant, i.e.,
they inherit both kinds of symmetries of the problems. The family of trivial
solutions is, therefore, of the form G(u0)×R, and we study global bifurcations
from orbits of critical points (called critical orbits).

Methods of studying bifurcations from critical orbits have been devel-
oped recently, mainly by Pérez-Chavela, Rybicki, Strzelecki and the authors
of this article, see [15,18–20,30,31]. In [30] and [31], the authors have given
formulas for an equivariant Conley index, allowing to study local bifurcation
problems in the presence of orbits of solutions. These formulas, combined
with the relation of the index with the equivariant degree theory, have been
applied in [15] to obtain global bifurcations of solutions in Neumann problems
on a ball. In [19], a different approach has been proposed to study global bi-
furcations with a use of an equivariant degree at a neighbourhood of an orbit.
Elliptic systems on symmetric domains have been studied as an application
of these results. These methods have been also used to study the existence
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of unbounded connected sets of solutions of systems on a sphere, see [20]. In
the papers mentioned above, it has been assumed that the isotropy groups
of the critical points of the potentials are trivial. However, the case without
this assumption has also been considered, see [18].

As far as we know, these are the only articles about elliptic systems
where it has not been required that the critical points of the potentials are
isolated. In all of these papers, it has been assumed that the family of trivial
solutions is given by critical orbits of the potentials of the systems, requiring
additionally that these critical orbits are non-degenerate.

In this article, we consider a more general situation, allowing degener-
acy of critical orbits. To investigate the global bifurcation problem in this
situation, we apply an equivariant generalisation of the Rabinowitz alterna-
tive (see Theorem 4.7) obtained by an application of the equivariant degree.
We also apply Dancer’s result proposed in [6] and its generalisation from [11]
called the splitting lemma (see Lemma 4.8). This lemma allows to separate
the non-degenerate and degenerate parts of the problems and, under some
standard assumptions, it allows to reduce comparing the degrees to com-
paring its non-degenerate parts. In that way, we obtain global bifurcations
of solutions of the system on a sphere (Theorem 3.7) and on a ball (Theo-
rem 3.8). These theorems are the main results of our paper.

These two results are of different types. This is a consequence of the
differences between the spectral behaviours of the Laplacians on their do-
mains. In the case of the system on a sphere, the only radial solutions are
the constant ones. From this, we can conclude a necessary condition for a
bifurcation, see Lemma 3.5. This allows to indicate the exact levels of global
bifurcations of solutions of system (1.1) in Theorem 3.7. In the case of a ball,
there are nonconstant radial solutions, and therefore, the reasoning from the
proof of Lemma 3.5 cannot be applied to obtain its counterpart for system
(1.2). Hence, the bifurcation result given in Theorem 3.8 does not provide
such a precise indication and it is formulated in a different way, namely there
is given only an approximate location of the bifurcation.

We emphasise that, as far as we know, the bifurcation problem in the
degenerate situation in elliptic systems has not been investigated yet, even
in the case of critical sets consisting of isolated points.

Our main tool to obtain the bifurcation results is the equivariant degree.
We define an index of an isolated critical orbit to be the degree on some
neighbourhood of this orbit. To obtain the results for the differential systems,
we have developed the methods of computing this index, generalising the
methods from [19]. In Theorem 2.4, we have obtained a connection between
the index of an orbit with the index of an isolated point from the space normal
to this orbit. Using this result, in the case of admissible pairs of groups, we
have simplified the comparison of the indices of orbits by reducing it to the
comparison of the indices of the critical points, see Corollary 2.5.

The abstract results described above are proved in Sect. 2, while Sect. 3
is devoted to study elliptic systems (1.1) and (1.2). At the end of the paper,
for the convenience of the reader, we recall some relevant material in the
appendix.
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2. Degree of a critical orbit

In this section, we introduce the topological method that we use to prove
the bifurcation, i.e., a method of computing the index of an isolated critical
orbit. We allow the case when such an orbit is degenerate. The index is
defined in terms of a degree for equivariant gradient maps, computed in some
neighbourhood of the orbit. Note that we recall the notion of the degree in the
appendix. Since the bifurcation phenomenon occurs when the index changes,
our aim is to formulate results which allow to compare the degrees.

Let G be a compact Lie group, V be a finite-dimensional orthogonal
G-representation and φ ∈ C2(V, R) be a G-invariant function. Fix v0 ∈
(∇φ)−1(0) and consider the orbit G(v0) of v0. It is known that G-invariance
of φ implies G-equivariance of ∇φ, hence G(v0) ⊂ (∇φ)−1(0). Assume that
this orbit is isolated in such a set. Therefore, we can choose a G-invariant
open set Ω ⊂ V such that (∇φ)−1(0) ∩ cl(Ω) = G(v0), which implies that
φ is Ω-admissible. Moreover, without loss of generality, we can assume that
Ω = G · Bε(v0, W), where W = T⊥

v0
G(v0) is the space normal to the orbit

G(v0) at v0, Bε(v0, W) is the open ball in W of radius ε, centred at v0, and
ε is given by the slice theorem (see Theorem 4.1).

Under the above assumptions, the degree ∇G-deg(∇φ,Ω) is well-defined,
and our aim is to obtain conditions simplifying the comparison of the degrees
of such form. The result of this kind has been given in [19]. However, it can
be applied only in the case when critical orbits of φ are non-degenerate. In
this section, we allow the situation when G(v0) is degenerate.

In this case to compute the degree, we use the fact that it can be given as
the degree of an associated Ω-Morse function, see Lemma 4.4. More precisely,
this lemma implies the existence of a G-invariant open set Ω0 ⊂ Ω and a
G-invariant Ω-Morse function φ̂, which coincide with φ outside the set Ω0.
Therefore, φ̂ and φ are Ω-homotopic, so the homotopy invariance of the degree
implies that

∇G-deg(∇φ,Ω) = ∇G-deg(∇φ̂,Ω). (2.1)

Since φ̂ is an Ω-Morse function, it has a finite number of critical orbits
in Ω. In the next lemma, we show that the isotropy groups of elements of
critical orbits of φ̂ are related to the isotropy group of v0. Recall that by Gv0

we denote the isotropy group of v0 and put H = Gv0 . It is known that W is
an orthogonal representation of H. With the above notation, there holds the
following result:

Lemma 2.1. If v ∈ (∇φ̂)−1(0) ∩ Ω, then Gv is conjugate to a subgroup of H.

Proof. Fix v ∈ (∇φ̂)−1(0) ∩ Ω. Then, since Ω = G · Bε(v0, W), there exist
g ∈ G and w ∈ Bε(v0, W) such that v = gw. From Theorem 4.1, it follows
that gw = θ([g, w]), where θ is a G-diffeomorphism. Hence, Ggw = G[g,w]. To
finish the proof, we use the fact that G[g,w] = gHwg−1 (see Lemma 4.16 of
[25]). Obviously, Hw ⊂ H. �

With functions φ and φ̂, we consider their restrictions to the space W.
Consider an H-invariant function ψ : W → R given by ψ = φ|W. From the
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definitions of ψ and Ω, it follows that (∇ψ)−1(0) ∩ cl(Bε(v0, W)) = H(v0) =
{v0}, and therefore, ψ is a Bε(v0, W)-admissible function.

In a similar way, consider an H-invariant function ψ̂ : W → R given by
ψ̂ = φ̂|W. In the following, we will show that ψ̂ is an H-invariant Bε(v0, W)-
Morse function associated with ψ. First of all note that from the definitions
of ψ̂ and ψ it follows that ψ̂(w) = ψ(w) for every w /∈ Ω0 ∩ W.

Denote by G(v1), . . . , G(vq) the set of all the critical orbits of φ̂ in Ω.
In the next lemma, we show that all critical orbits of ψ̂ in Bε(v0, W) can be
obtained from this set.

Lemma 2.2. There exist w1, . . . , wq ∈ Bε(v0, W) such that G(vi) ∩ W =
H(wi), for i = 1, . . . , q, and (∇ψ̂)−1(0) ∩ Bε(v0, W) = H(w1) ∪ . . . ∪ H(wq).

Proof. Fix i ∈ {1, . . . , q} and observe that from the definition of Ω there
exist g ∈ G,wi ∈ Bε(v0, W) such that vi = gwi. Therefore, wi ∈ G(vi) ∩ W

and hence H(wi) ⊂ G(vi) ∩ W. To prove the opposite inclusion, assume that
g̃vi ∈ W for some g̃ ∈ G. This implies that g̃vi ∈ Ω ∩ W = Bε(v0, W). On the
other hand, taking again g ∈ G and wi ∈ W such that vi = gwi we obtain
that g̃gwi ∈ Bε(v0, W). By Theorem 4.2, this implies that g̃g ∈ H. Hence,
G(vi) ∩ W = H(wi).

To prove that H(w1)∪ · · · ∪H(wq) ⊂ (∇ψ̂)−1(0)∩Bε(v0, W) note that,
by the orthogonality of W as an H-representation, if wi ∈ Bε(v0, W), then
H(wi) ⊂ Bε(v0, W) and, since hwi ∈ G(vi) for every h ∈ H, ∇ψ̂(hwi) =
∇φ̂(hwi) = 0. Therefore, H(wi) ⊂ (∇ψ̂)−1(0) ∩ Bε(v0, W) for every i =
1, . . . , q.

To finish the proof, note that if w ∈ (∇ψ̂)−1(0) ∩ Bε(v0, W), then ob-
viously w ∈ (∇φ̂)−1(0). In particular, for some i = 1, . . . , q, w ∈ G(wi) ∩
Bε(v0, W), which is equal to H(wi). Therefore, (∇ψ̂)−1(0) ∩ Bε(v0, W) ⊂
H(w1) ∪ . . . ∪ H(wq). �

In the following lemma, we prove that all the critical orbits of ψ̂ in
Bε(v0, W) are non-degenerate.

Lemma 2.3. Let H(w1), . . . , H(wq) be the orbits obtained in the previous
lemma. Then, for every i = 1, . . . , q, the orbit H(wi) is a non-degenerate
critical orbit of ψ̂.

Proof. Suppose that the orbit H(wi) is a degenerate critical orbit of ψ̂,
i.e., ker∇2ψ̂(wi) = Twi

H(wi) ⊕ Ui, where Ui is a linear space such that
dim Ui > 0. Then, since Tv0G(v0) ⊕ Twi

H(wi) = Twi
G(wi), we obtain

ker ∇2φ̂(wi) = Tv0G(v0) ⊕ ker ∇2ψ̂(wi) = Tv0G(v0) ⊕ Twi
H(wi) ⊕ Ui

= Twi
G(wi) ⊕ Ui,

which contradicts non-degeneracy of G(wi) as a critical orbit of φ̂. �

Therefore, we have proved that ψ̂ is an H-invariant Bε(v0, W)-Morse
function associated with ψ. Hence,

∇H -deg(∇ψ,Bε(v0, W)) = ∇H -deg(∇ψ̂, Bε(v0, W)). (2.2)
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From Eqs. (2.1) and (2.2), we see that in order to obtain a connec-
tion between equivariant degrees of ∇φ and ∇ψ we need to establish such a
connection between ∇φ̂ and ∇ψ̂.

Such a result has been given in [19] (as a part of the proof of Theorem
2.6). Note that we can apply this result, since φ̂ is the G-extension of ψ̂, given
by φ̂(gw) = ψ̂(w) for w ∈ W, g ∈ G. From the slice theorem, it follows that
the G-extension to the space G · Bε(v0, W) is unique, see Theorem 4.3.

Theorem 2.4. Let φ̂, ψ̂ and Ω be defined as above. Denote by (Hi0)H , (Hi1)H ,
. . . , (His

)H all possible conjugacy classes of the groups Hw1 , . . . , Hwq
in H

and let m1, . . . , ms be such that

∇H-deg(∇ψ̂, Bε(v0, W)) =
s∑

j=1

mj · χH(H/H+
ij

) ∈ U(H).

Then,

∇G-deg(∇φ̂,Ω) =
∑

(K)G∈sub[G]

n(K) · χG(G/K+) ∈ U(G),

where

n(K) =
∑

(Hwi
)G=(K)G

mj

and sub[G] is the set of conjugacy classes of closed subgroups of G.

Now we turn our attention to the problem of comparing degrees. Con-
sider two G-invariant functions φ1, φ2 ∈ C2(V, R) with critical orbits G(vi)
isolated in (∇φi)−1(0) for i = 1, 2. Suppose that Gv1 = Gv2 = H. In the corol-
lary below we study the special case when (G,H) is an admissible pair. The
concept of an admissible pair has been introduced in [30]. The pair (G,H),
where H is a subgroup of G, is called admissible, if the following condition
is satisfied: for any subgroups H1,H2 of H if H1 and H2 are not conjugate
in H, then they are not conjugate in G. It is worth pointing out that in
the considered applications to elliptic systems the admissibility assumption
is satisfied in a natural way.

Corollary 2.5. Consider G-invariant functions φi ∈ C2(V, R) with critical
orbits G(vi) isolated in (∇φi)−1(0) for i = 1, 2. Suppose that Gv1 = Gv2 = H
and put Wi = T⊥

vi
G(vi). Fix Ωi = G · Bε(vi, Wi) such that (∇φi)−1(0) ∩ Ωi

= G(vi) and ε satisfies Theorem 4.1. Define ψi : Bε(vi, Wi) → R by ψi =
φi|Bε(vi,Wi). If (G,H) is an admissible pair and

∇H-deg(∇ψ1, Bε(v1, W1)) 
= ∇H- deg(∇ψ2, Bε(v2, W2)), (2.3)

then
∇G- deg(∇φ1,Ω1) 
= ∇G-deg(∇φ2,Ω2). (2.4)

Remark 2.6. With similar assumptions, a counterpart of the above result
can be also formulated in the infinite-dimensional case. Then, φi, ψi instead
of being finite-dimensional maps can be completely continuous perturbations
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of the identity or, in a more general setting, completely continuous pertur-
bations of some Fredholm operators. In the former case, one can apply the
degree for equivariant gradient maps in infinite-dimensional spaces (see the
appendix), whereas in the latter case the degree for invariant strongly indef-
inite functionals (see [16]) can be used. However, since in the proofs of our
results we restrict our attention to the finite-dimensional maps, we do not
give the precise formulation of the infinite-dimensional result. Such a rela-
tion in the non-degenerate infinite-dimensional case has been formulated in
Theorem 2.8 of [19].

3. Elliptic systems

3.1. Formulation of the problem

Our aim in this section is to study bifurcations of weak solutions of some
nonlinear problems, parameterised by λ ∈ R. We consider two different types
of problems, namely the system defined on the (N − 1)-dimensional unit
sphere SN−1:

− Δu = ∇uF (u, λ) on SN−1 (3.1)

and the Neumann problem on the N -dimensional open unit ball BN :{
−�u = ∇uF (u, λ) in BN

∂u
∂ν = 0 on SN−1.

(3.2)

We consider these systems with analogous assumptions. Moreover, the general
setting in both problems is similar. Therefore, in the rest of this subsection,
we describe both cases simultaneously.

We assume that the considered systems satisfy the following conditions:

(B1) R
p is an orthogonal representation of a compact Lie group Γ,

(B2) F ∈ C2(Rp × R, R) is Γ-invariant with respect to the first variable, i.e.,
F (γu, λ) = F (u, λ) for every γ ∈ Γ, u ∈ R

p, λ ∈ R. Moreover, there
exist C > 0 and s ∈ [1, (N + 2)(N − 2)−1) such that |∇2

uF (u, λ)| ≤
C(1 + |u|s−1) (if N = 2, we assume that s ∈ [1,+∞)),

(B3) u0 ∈ R
p is a critical point of F (·, λ) for all λ ∈ R and there exists a

symmetric matrix A such that ∇2
uF (u0, λ) = λA,

(B4) Γu0 = {e}.

From (B2)–(B3) it follows that Γ(u0) ⊂ (∇uF (·, λ))−1(0) for every λ ∈ R.
We assume:

(B5) there is ε > 0 such that for all λ ∈ R there holds: (∇uF (·, λ))−1(0)
∩ Γ(u0)ε = Γ(u0), where Γ(u0)ε is an ε-neighbourhood of Γ(u0) in R

p,
(B6) degB(∇uF |T ⊥

u0
Γ(u0)(·, λ), Bε(T⊥

u0
Γ(u0)), 0) 
= 0 for every λ ∈ R\{0} and

sufficiently small ε, where degB denotes the Brouwer degree.

Remark 3.1. The assumption (B6) is given in terms of the Brouwer degree
of some map on a space normal to the orbit. It is worth pointing out that in
some cases this assumption is easy to verify. For example, it is satisfied if one
of the following conditions holds:
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(i) dim ker∇2
uF (u0, λ) = dim Γ(u0) for all λ ∈ R \ {0}, i.e., the orbit Γ(u0)

is non-degenerate,
(ii) u0 is a minimum of the potential F (·, λ) for all λ ∈ R \ {0},

see for example the proofs of Theorems 5.6–5.7 of [35]. Additionally, it is easy
to see that in the former case the assumption (B5) is also satisfied.

We are going to study bifurcations of non-constant solutions of these
systems, by applying the results from the previous section. To this end
we will formulate the problem in a variational setting, i.e., we will con-
sider weak solutions as critical points of some associated functionals. We
define such functionals on appropriate Hilbert spaces. More precisely, con-
sider M ∈ {BN , SN−1}, denote by H1(M) the Sobolev space on M with the
inner product

〈v, w〉H1(M) =
∫
M

(∇v(x),∇w(x)) + v(x) · w(x)dx

and consider a separable Hilbert space H =
⊕p

i=1 H1(M) with the scalar
product

〈v, w〉H =
p∑

i=1

〈vi, wi〉H1(M). (3.3)

Weak solutions of problems (3.1) and (3.2) are in one-to-one correspon-
dence with critical points of the functional Φ: H × R → R defined by

Φ(u, λ) =
1
2

∫
M

|∇u(x)|2dx −
∫
M

F (u(x), λ)dx. (3.4)

Denote by ũ0 ∈ H the constant function ũ0(x) ≡ u0. A standard compu-
tation (see, for example, [14] for a similar reasoning) shows that the gradient
of the functional Φ has the following form:

∇uΦ(u, λ) = u − ũ0 − LλA(u − ũ0) + ∇η(u − ũ0, λ),

where LλA : H → H is given by

〈LλAu, v〉H =
∫
M

(u(x), v(x)) + (λAu(x), v(x))dx for all v ∈ H.

Moreover, LλA is a self-adjoint, bounded and completely continuous oper-
ator and ∇uη : H × R → H is a completely continuous operator such that
∇uη(0, λ) = 0, ∇2

uη(0, λ) = 0 for every λ ∈ R.
Systems (3.1) and (3.2) have two kinds of symmetries: the Γ-invariance

of the potential F and the SO(N)-invariance of the domain M. These sym-
metries are inherited by the associated functional. More precisely, it is easy
to check that the space H, with the product given by (3.3), is an orthogonal
representation of G = Γ × SO(N), where the action is given by

(γ, α)(u)(x) = γu(α−1x) for (γ, α) ∈ G, u ∈ H, x ∈ M. (3.5)

This definition and the assumption (B2) imply that the functional Φ is
G-invariant.
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Since u0 ∈ (∇uF (·, λ))−1(0), the function ũ0 is a solution of problem
(3.1) (respectively problem (3.2)) for all λ ∈ R. By the definition of the action
of the group G on H given by (3.5), we obtain that G(ũ0) = Γ(ũ0) is an orbit
of weak solutions for all λ ∈ R. We are going to study bifurcations from this
family, i.e., from G(ũ0) × R.

Definition 3.2. We say that a global bifurcation of solutions of ∇uΦ(u, λ) = 0
occurs from the orbit G(ũ0)×{λ0} if there is a connected component C(ũ0, λ0)
of

cl{(u, λ) ∈ (H × R) \ (G(ũ0) × R) : ∇uΦ(u, λ) = 0}
containing (ũ0, λ0) and such that either C(ũ0, λ0) is unbounded or it is bounded
and C(ũ0, λ0) ∩ (G(ũ0) × (R \ {λ0})) 
= ∅.

Note that if a global bifurcation occurs, we obtain a connected com-
ponent of the set of nontrivial solutions for every v ∈ G(ũ0) (by nontriv-
ial solutions we understand solutions different than those from the family
G(ũ0)×R). In particular, if the group G is connected, we obtain a connected
set of nontrivial solutions bifurcating from G(ũ0) × {λ0}.

To investigate the global bifurcation problem, we apply the degree for
equivariant gradient maps, see the appendix. From the above reasoning, it
follows that ∇uΦ(·, λ) is G-equivariant and of the form of a completely con-
tinuous perturbation of the identity for every λ ∈ R. Therefore, to be able
to apply the degree, it only remains to define a G-equivariant approximation
scheme on the space H. This scheme is defined with the use of the eigenspaces
of the Laplacian; therefore, we first recall some basic spectral properties of
this operator.

Denote by σ(−Δ;M) = {0 = β1 < β2 < · · · < βk < · · · } the set of all
distinct eigenvalues of the Laplacian on M. Let V−Δ(βk) be the eigenspace of
−Δ corresponding to an eigenvalue βk. From the spectral theorem, it follows
that H1(M) = cl(

⊕∞
k=1 V−Δ(βk)). Therefore, it is natural to define the

approximation scheme in the following way: consider H
n =

⊕n
k=1 Hk, where

Hk =
⊕p

i=1 V−Δ(βk) and a natural G-equivariant projection πn : H → H

such that πn(H) = H
n for n ∈ N. Then, {πn : H → H : n ∈ N} defines a

G-equivariant approximation scheme on H.

Remark 3.3. A standard computation shows that

σ(Id − LλA) =
{

βk − λαj

1 + βk
: αj ∈ σ(A), βk ∈ σ(−Δ;M)

}
,

where σ(·) denotes the spectrum of a linear operator. For the details, we refer
the reader, for example, to the proof of Lemma 3.2 in [14].

In the proofs of the main theorems of this section, we consider the
eigenspaces of the Laplacian as representations of the group SO(N). We
recall the characterisation of their nontriviality in the following lemma.

Lemma 3.4. Fix β ∈ σ(−Δ;M).
(1) If M = SN−1, then for all β 
= 0 the eigenspaces V−Δ(β) are irreducible

nontrivial SO(N)-representations and V−Δ(0) is a trivial one.
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(2) If M = BN and dim V−Δ(β) > 1, then the eigenspace V−Δ(β) is a
nontrivial SO(N)-representation. If dim V−Δ(β) = 1, then the corre-
sponding eigenspace is trivial.

For the proof in the case of a sphere, we refer to [22] (Theorem 5.1), in
the second one to Remark 5.11 of [15].

3.2. Global bifurcations of solutions of the system on a sphere

From now on, we consider the systems separately, starting with the one on a
sphere:

− Δu = ∇uF (u, λ) on SN−1 (3.6)
under the assumptions (B1)–(B6). For such a system, we can describe exactly
all the levels where a bifurcation can occur. Such a description is given in
the lemma below. Its proof is similar in spirit to the one of Theorem 3.2.1
of [31] and it is based on the fact that the only radial eigenfunctions of the
Laplacian on a sphere are constant functions.

Put

Λ =
⋃

αj∈σ(A)\{0}

⋃
βk∈σ(−Δ;SN−1)\{0}

{
βk

αj

}
.

Lemma 3.5. If (ũ0, λ0) is an accumulation point of nontrivial solutions of
system (3.6), then λ0 ∈ Λ.

Proof. Fix λ0 ∈ R and suppose that (ũ0, λ0) is an accumulation point of non-
trivial weak solutions of system (3.6), i.e., there exists a sequence of nontrivial
solutions (vn, λn) converging to (ũ0, λ0).

By the definition of the functional associated with the system, weak
solutions of (3.6) are solutions of

∇uΦ(u, λ) = 0. (3.7)

This equation is equivalent to the system

∇u1Φ(u1, u2, λ) = 0, (3.8)
∇u2Φ(u1, u2, λ) = 0, (3.9)

where u = (u1, u2) ∈ ker ∇2
uΦ(ũ0, λ0) ⊕ im ∇2

uΦ(ũ0, λ0) = H.
Considering the latter equation, due to the fact that ∇2

u2
Φ(ũ0, λ0) is an

isomorphism, we can use the equivariant implicit function theorem (see [11]).
This theorem implies the existence of an SO(N)-equivariant map

ω : Dε(ker ∇2
uΦ(ũ0, λ0)) × (λ0 − ε, λ0 + ε) → im ∇2

uΦ(ũ0, λ0)

such that (u1, u2, λ) = (u1, ω(u1, λ), λ) is the only solution of (3.9) at a
neighbourhood of (ũ0, λ0). Therefore, the solutions of (3.7) in such a neigh-
bourhood must be of the form (u1, ω(u1, λ), λ).

Consider the isotropy group of such a solution. Using the G-equivariance
of ω, we obtain G(u1,w(u1,λ),λ) = Gu1 ∩ Gw(u1,λ) ∩ Gλ = Gu1 . Therefore, the
existence of a sequence (vn, λn) converging to (ũ0, λ0) implies that

ker ∇2
uΦ(ũ0, λ0) ∩

∞⊕
k=2

Hk 
= ∅. (3.10)
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Indeed, assume, by contrary, that ker ∇2
uΦ(ũ0, λ0) ⊂ H1 and consider the

group action (3.5), restricted to the subgroup {e} × SO(N), on the spaces
Hk. Identifying {e} × SO(N) with SO(N), from Lemma 3.4 we have H1 =
H

SO(N). Therefore, the above computations, with the assumption
ker ∇2

uΦ(ũ0, λ0) ⊂ H1, imply that SO(N)(vn,λn) = SO(N) for every n. As a
consequence, vn ∈ H1, i.e., (vn, λn) are constant solutions corresponding to
critical points of F . This is a contradiction with (B5).

To finish the proof, notice that the inequality (3.10) and Remark 3.3
imply that there are βk ∈ σ(−Δ;SN−1) \ {0} and αj ∈ σ(A) such that
βk−λ0αj

1+βk
= 0, i.e., βk = λ0αj . This in particular proves that αj 
= 0 and

finally λ0 = βk

αj
∈ Λ. �

Remark 3.6. Lemma 3.5 gives us a necessary condition for the so-called lo-
cal bifurcation. This bifurcation does not have to be a global one, i.e., the
bifurcating set does not have to be connected.

Now we are in a position to prove the sufficient condition for the global
bifurcation phenomenon of nontrivial solutions of system (3.6). Namely, we
will show that for all λ ∈ Λ the phenomenon occurs from the orbit G(ũ0) ×
{λ}. In other words, we will prove that for the system on a sphere, the
necessary condition is also a sufficient one.

Theorem 3.7. Consider system (3.6) with the potential F and u0 satisfying
the assumptions (B1)–(B6) and fix λ0 ∈ Λ. Then, a global bifurcation of
solutions of (3.6) occurs from the orbit G(ũ0) × {λ0}.

Proof. Fix λ0 ∈ Λ and choose ε > 0 such that Λ ∩ [λ0 − ε, λ0 + ε] = {λ0}.
From the definition of Λ, such a choice is always possible. Since λ0 ± ε /∈
Λ, Lemma 3.5 implies that G(ũ0) ⊂ H is an isolated critical orbit of the
G-invariant functionals Φ(·, λ0 ± ε) : H → R. Therefore, there exists an open,
bounded and G-invariant subset Ω ⊂ H such that (∇uΦ(·, λ0±ε))−1(0)∩cl(Ω)
= G(ũ0).

Due to the global bifurcation theorem (see Theorem 4.7), and taking
into consideration the necessary condition of bifurcation (Lemma 3.5), to
prove the assertion it is enough to show that

∇G-deg(∇uΦ(·, λ0 − ε),Ω) 
= ∇G-deg(∇uΦ(·, λ0 + ε),Ω). (3.11)

From the definition of the degree, this inequality is equivalent with

∇G-deg(∇uΦ|Hn(·, λ0 − ε),Ω ∩ H
n) 
= ∇G-deg(∇uΦ|Hn(·, λ0 + ε),Ω ∩ H

n),
(3.12)

where n is sufficiently large. In the following, we assume that this n is fixed.
Denote by H the isotropy group of ũ0 and note that by the assump-

tion (B4) we have H = {e} × SO(N). Consider an H-representation W =
T⊥

ũ0
G(ũ0) and an H-invariant functional Ψ = Φ|W. By Corollary 2.5 (note

that the pair (G,H) = (Γ × SO(N), {e} × SO(N)) is admissible, see Lemma
2.8 of [15]) and the excision property of the degree, to prove (3.12) it is enough
to show that
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∇H -deg(∇uΨ|Wn(·, λ0 − ε), Bδ(ũ0, W
n))


= ∇H -deg(∇uΨ|Wn(·, λ0 + ε), Bδ(ũ0, W
n)),

where W
n = W ∩ H

n and Bδ(ũ0, W
n) ⊂ Ω ∩ W

n is such that δ > 0 is taken
from the slice theorem (see Theorem 4.1).

Instead of the functional Ψ|Wn , it is more convenient to consider the
shifted functional Πn(u, λ)=Ψ|Wn(u+ũ0, λ). Denote by Π±(u) = Πn(u, λ0±ε)
and note that (by (B5)) 0 is an isolated critical point of Π±. Moreover,

∇H -deg(∇uΨ|Wn(·, λ0 ± ε), Bδ(ũ0, W
n)) = ∇H -deg(∇Π±, Bδ(Wn)).

Put L± = ∇2Π±(0) : W
n → W

n. Since λ0 ±ε /∈ Λ, we obtain ker(L−) =
ker(L+) and, by the self-adjointness, im (L−) = im (L+). We denote the
kernel and image of L± by N and R, respectively.

The computation of the degree of ∇Π± can be reduced to the com-
putation of the degrees of some maps defined on Bδ(N ) and Bδ(R). More
precisely, using the splitting lemma (see Theorem 4.8) we obtain ε > 0 and
H-equivariant homotopies ∇uH± : (Bε(N ) × Bε(R)) × [0, 1] → W

n, connect-
ing ∇Π± with a product mapping (∇ϕ±, (L±)|R) where ∇ϕ± : Bε(N ) → N
are some H-equivariant maps. Without loss of generality, we can assume that
ε = δ.

Therefore, by the homotopy invariance property of the degree we obtain

∇H -deg(∇Π±, Bδ(Wn)) = ∇H -deg((∇ϕ±, (L±)|R), Bδ(N ) × Bδ(R)).

Note that since L± are isomorphisms, the (Bδ(N )×Bδ(R))-admissibility
of the product maps described above implies the Bδ(N )-admissibility of ∇ϕ±.
Therefore, we can apply the product formula (see Lemma 4.5) of the degree
and obtain

∇H -deg((∇ϕ±, (L±)|R), Bδ(N ) × Bδ(R))

= ∇H -deg(∇ϕ±, Bδ(N )) � ∇H -deg((L±)|R, Bδ(R)).

Denote by T the space normal to the orbit Γ(ũ0) in H1 at ũ0 (i.e., T =
T⊥

ũ0
Γ(ũ0) where the complement is taken in H1). Note that, since λ0 ± ε /∈ Λ,

we have N ⊂ H1 and R = (T � N ) ⊕
⊕n

k=2 Hk. Put R̃ = T � N and
Rn =

⊕n
k=2 Hk.

Using again the fact that L± are isomorphisms we can apply once more
the product formula, obtaining

∇H -deg((L±)|R, Bδ(R))

= ∇H -deg((L±)|R̃, Bδ(R̃)) � ∇H -deg((L±)|Rn
, Bδ(Rn))

and consequently

∇H -deg(∇Π±, Bδ(Wn))

= ∇H -deg(∇ϕ±, Bδ(N )) � ∇H -deg((L±)|R̃, Bδ(R̃))

� ∇H -deg((L±)|Rn
, Bδ(Rn))

= ∇H -deg((∇ϕ±, (L±)|R̃), Bδ(N ) × Bδ(R̃)) � ∇H -deg((L±)|Rn
, Bδ(Rn)).

(3.13)
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Let us consider the first factor in the above product. It is easy to check
that the restrictions of the homotopies H± (given by the splitting lemma,
see also Remark 4.9) to T = N ⊕ R̃ connect (∇ϕ±, (L±)|R̃) with ∇Ψ|N⊕R̃.
Moreover, from the definitions of Ψ and T we have ∇Ψ|T = ∇F |T . From the
above, since N ⊕ R̃ ⊂ W

H , using Eq. (4.1) we obtain

∇H -deg((∇ϕ±, (L±)|R̃), Bδ(N ) × Bδ(R̃))
= degB(∇F |T (·, λ0 ± ε), Bδ(T ), 0) · I,

where I is the identity in U(H).
Consider now the latter factor in the last product in (3.13). Denote

by W(λ),V(λ) the negative and zero eigenspaces of (Id − LλA)|Rn
(i.e., the

direct sum of the eigenspaces of (Id − LλA)|Rn
, corresponding to negative

and zero eigenvalues, respectively). The description of these spaces can be
obtained via Remark 3.3. Moreover, from this description, it follows that for
n sufficiently large W(λ) and V(λ) are the negative and zero eigenspaces of
(Id−LλA)|H⊥

1
. Without loss of generality, we can assume that n satisfies this

condition. Therefore, from Remark 3.3, we have

W(λ) =
⊕

αj∈σ(A)

⊕
βk∈σ(−Δ;SN−1)\{0}

βk<λαj

V−Δ(βk)μA(αj)

and
V(λ) =

⊕
αj∈σ(A)

⊕
βk∈σ(−Δ;SN−1)\{0}

βk=λαj

V−Δ(βk)μA(αj).

Here μA(αj) denotes the multiplicity of αj as an eigenvalue of A. More-
over, V−Δ(βk)μA(αj) is formally understood as span{h · f : h ∈ V−Δ(βk), f ∈
VA(αj)}, see also [15]. However, since in our computations only the dimen-
sions of these spaces are important, we use the fact that this space is isomor-
phic to the direct sum of μA(αj) copies of V−Δ(βk).

Consider λ0 > 0 and assume that ε is such that λ0 − ε > 0.

A standard computation, see for example [14], shows that

∇H -deg((L+)|Rn
, Bδ(Rn))

= ∇H -deg(−Id,Bδ(W(λ0 − ε))) � ∇H -deg(−Id,Bδ(V(λ0)))

and

∇H -deg((L−)|Rn
, Bδ(Rn)) = ∇H -deg(−Id,Bδ(W(λ0 − ε))).

Moreover, it is known that the above degrees of −Id are invertible (see The-
orem 2.1 of [16]).

Summing up, using Eq. (3.13) and the above computations, we obtain
that to prove (3.15) we have to show

degB(∇F |T (·, λ0 + ε), Bδ(T ), 0) · ∇H -deg(−Id,Bδ(V(λ0)))

= degB(∇F |T (·, λ0 − ε), Bδ(T ), 0) · I.
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Since V(λ0) is a nontrivial SO(N)-representation (see Lemma 3.4) and,
therefore, also a nontrivial H-representation, by Remark 4.6, ∇H -deg(−Id,
Bε(V(λ0))) 
= a · I for any a ∈ Z. Using the assumption (B6), we obtain the
assertion in this case.

Similarly, for λ0 < 0, assuming λ0 + ε < 0, we obtain

∇H -deg((L+)|Rn
, Bδ(Rn)) = ∇H -deg(−Id,Bδ(W(λ0 + ε)))

and

∇H -deg((L−)|Rn
, Bδ(Rn)) = ∇H -deg(−Id,Bδ(W(λ0 + ε)))

�∇H -deg(−Id,Bδ(V(λ0))).

The rest of the proof is analogous to the previous case. �

3.3. Global bifurcations of solutions of the system on a ball

Now we turn our attention to the system defined on a ball:{
−�u = ∇uF (u, λ) in BN

∂u
∂ν = 0 on SN−1 (3.14)

under the assumptions (B1)–(B6). For the Laplacian considered on a
ball, there exist radial eigenfunctions different than the constant ones. Con-
sequently, the method used to prove the necessary condition for a bifurcation
in the case of the system considered in Sect. 3.2 cannot be applied to find a
counterpart here. Therefore, we will study bifurcations of solutions of (3.14)
in a different way. In particular, for some λ ∈ R we are able to prove only a
local (not global) bifurcation (we say that a local bifurcation occurs from the
orbit G(ũ0)×{λ0} if (ũ0, λ0) is an accumulation point of nontrivial solutions
of (3.14)).

Theorem 3.8. Consider the system (3.14) with the potential F and u0 satisfy-
ing the assumptions (B1)–(B6). Let α0 ∈ σ(A)\{0} and β0 ∈ σ(−Δ;BN )\{0}
be such that dim V−Δ(β0) > 1. Then, for every ε > 0, such that 0 /∈
( β0

α0
− ε, β0

α0
+ ε), at least one of the following statements holds:

(i) a local bifurcation of solutions of (3.14) occurs from the orbit G(ũ0)×{λ}
for every λ ∈ ( β0

α0
− ε, β0

α0
) or for every λ ∈ ( β0

α0
, β0

α0
+ ε),

(ii) a global bifurcation of solutions of (3.14) occurs from the orbit G(ũ0) ×
{λ̂} for some λ̂ ∈ ( β0

α0
− ε, β0

α0
+ ε).

Remark 3.9. Let us emphasise the difference between Theorems 3.7 and 3.8.
While in the case of the system on a sphere the set Λ of possible bifurcation
points is discrete (see Lemma 3.5), in a case of a system on a ball it can
happen that a bifurcation occurs at each level of some interval (as stated in
Theorem 3.8(i)). As mentioned before, this difference is a consequence of the
different behaviour of Laplacians on a sphere and on a ball.

Proof. Fix ε > 0 such that 0 /∈ ( β0
α0

− ε, β0
α0

+ ε) and assume that the first
statement does not hold. Then, there exist λ± such that

β0

α0
− ε < λ− <

β0

α0
< λ+ <

β0

α0
+ ε
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and G(ũ0) is an isolated critical orbit of Φ(·, λ±) : H → R. Therefore, there
exists Ω ⊂ H being an open, bounded and G-invariant subset such that
(∇uΦ(·, λ±))−1(0)∩cl(Ω) = G(ũ0). Hence, the degrees ∇G-deg(∇uΦ(·, λ±),Ω)
are well-defined, and to prove the assertion we will apply the Rabinowitz al-
ternative given in Theorem 4.7. To this end, we will show that

∇G-deg(∇uΦ(·, λ−),Ω) 
= ∇G-deg(∇uΦ(·, λ+),Ω). (3.15)

To prove (3.15), consider an orthogonal H-representation W = T⊥
ũ0

G(ũ0)
and an H-invariant functional Ψ = Φ|W×R, where H = {e} × SO(N) is the
isotropy group of ũ0. Then, as in the proof of Theorem 3.7, we obtain that
(3.15) is equivalent with

∇H -deg(∇uΨ|Wn(·, λ−), Bδ(ũ0, W
n)) 
= ∇H -deg(∇uΨ|Wn(·, λ+), Bδ(ũ0, W

n)),
(3.16)

where W
n = W ∩ H

n. Considering the shifting of the critical point to the
origin, we get

∇H -deg(∇uΨ|Wn(·, λ±), Bδ(ũ0, W
n)) = ∇H -deg(∇Π±, Bδ(Wn)),

where Π±(u) = Ψ|Wn(u + ũ0, λ±).
It is easy to observe that from the assumptions it follows that λ+ and

λ− are of the same sign. Suppose that λ+ > λ− > 0. Reasoning as in the
proof of Theorem 3.7, we can obtain formulas for ∇H -deg(∇Π±, Bδ(Wn)).
More precisely, for λ ∈ R let us denote

W(λ) =
⊕

αj∈σ(A)

⊕
βk∈σ(−Δ;BN )\{0}

βk<λαj

V−Δ(βk)μA(αj).

Moreover, put

Λ =
⋃

αj∈σ(A)\{0}

⋃
βk∈σ(−Δ;BN )\{0}

{
βk

αj

}

and

V(λ−,λ+) =
⊕

λ∈Λ∩(λ−,λ+)

⊕
αj∈σ(A)

⊕
βk∈σ(−Δ;BN )\{0}

βk=λαj

V−Δ(βk)μA(αj).

Then, applying the splitting lemma with the homotopy invariance property
and the product formula, we obtain

∇H -deg(∇Π−, Bδ(Wn)) = degB(∇F |T ⊥
u0

Γ(u0)(·, λ−), Bε(T⊥
u0

Γ(u0)), 0)

·∇H -deg(−Id,Bε(W(λ−)))

and

∇H -deg(∇Π+, Bδ(Wn)) = degB(∇F |T ⊥
u0

Γ(u0)(·, λ+), Bε(T⊥
u0

Γ(u0)), 0)

·∇H -deg(−Id,Bε(W(λ−))) � ∇H -deg(−Id,Bε(V(λ−,λ+))).

Hence, by the invertibility of ∇H -deg(−Id,Bε(W(λ−))), see Theorem
2.1 of [16], we can reduce (3.16) to

degB(∇F |T ⊥
u0

Γ(u0)(·, λ−), Bε(T⊥
u0

Γ(u0)), 0) · I
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= degB(∇F |T ⊥
u0

Γ(u0)(·, λ+), Bε(T⊥
u0

Γ(u0)), 0) · ∇H -deg(−Id,Bε(V(λ−,λ+))).

To finish the proof, note that V−Δ(β0) is a nontrivial SO(N)-
representation (by Lemma 3.4). Therefore, since V−Δ(β0) ⊂ V(λ−,λ+), the
space V(λ−,λ+) is also a nontrivial SO(N)-representation. Hence, by Re-
mark 4.6, ∇H -deg(−Id,Bε(V(λ−λ+))) 
= a · I for any a ∈ Z. Using (B6), we
therefore obtain (3.16), from this and Corollary 2.5 we get (3.15). Applying
Theorem 4.7 we complete the proof in the case of positive λ±.

Reasoning in a similar way in the case λ− < λ+ < 0, we finish the
proof. �

Remark 3.10. In [15], we have investigated a problem similar to (3.14).
Namely, we have considered the system (3.14) with the potential of the form
F (u, λ) = λf(u) with f having a non-degenerate critical orbit. In particular,
we have proved that in this non-degenerate case, under the assumptions
of Theorem 3.8, there occurs a global bifurcation exactly from the orbit
G(ũ0) × { β0

α0
}. Theorem 3.8, therefore, generalises this result to the case of a

degenerate critical orbit and a more general potential F .
The precise indication of the bifurcation level is a consequence of the

necessary condition given in Lemma 3.1 of [15]. Since we do not have such
a condition in the degenerate case, we have obtained only an approximate
location of the bifurcation, i.e., we have proved that there is a global bifur-
cation at any arbitrarily small neighbourhood of β0

α0
or there occurs a local

bifurcation at every level from this neighbourhood.
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4. Appendix

4.1. Equivariant topology

Let V be a finite-dimensional, orthogonal representation of a compact Lie
group G. Fix v0 ∈ V, put H = Gv0 and consider an H-representation W =
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T⊥
v0

G(v0), i.e., W is the space normal to the orbit G(v0) at v0. Denote by
Bε(v0, W) the open ball of radius ε centred at v0 and by G×H X the twisted
product of an H-space X over H, see [25,37]. In the theorems below, we
collect some properties of a neighbourhood of an orbit, for their proofs see
for example [4,8,10,29].

Theorem 4.1. (Slice theorem) There exists ε > 0 such that the mapping
G×H W → V defined by [g, w] �→ gw induces a G-equivariant diffeomorphism
θ from G×H Bε(v0, W) to an open G-invariant neighbourhood G·Bε(v0, W) =
{gw : g ∈ G,w ∈ Bε(v0, W)} of the orbit G(v0).

Theorem 4.2. If ε is given by Theorem 4.1 and g ·Bε(v0, W)∩Bε(v0, W) 
= ∅,
then g ∈ H.

Theorem 4.3. Fix G-invariant functions φ1, φ2 : G · Bε(v0, W) → R, where
ε is given by Theorem 4.1 and assume that φ1(w) = φ2(w) for every w ∈
Bε(v0, W). Then, φ1 = φ2.

In our paper, we use a topological invariant (namely the degree for
equivariant gradient maps) which is an element of the Euler ring (U(G),+, �),
see [36,37] for the definition of this ring. When applying the degree, we use
the fact that U(G) can be identified with the Z-module

⊕
(H)G∈sub[G] Z (see

Corollary IV.1.9 of [37]), where sub[G] is the set of conjugacy classes of closed
subgroups of G. Moreover, we use the representation of elements of U(G)
as finite sums of the form

∑
(H)G∈sub[G] nH · χG(G/H+), where nH ∈ Z

and χG(G/H+) is a G-equivariant Euler characteristic of a pointed G-CW-
complex G/H+ (see [37]). The unit in U(G) is I = χG(G/G+).

4.2. Equivariant degree

Let V be a finite-dimensional, orthogonal representation of a compact Lie
group G, and let ϕ ∈ C1(V, R) be a G-invariant function. Moreover, let
Ω ⊂ V be an open, bounded G-invariant set such that ∂Ω ∩ (∇ϕ)−1(0) = ∅.
In such a case, we say that ϕ is an Ω-admissible function. For such V, ϕ and
Ω, Gȩba has defined in [13] the degree ∇G-deg(∇ϕ,Ω), being an element of
the Euler ring U(G).

The definition given by Gȩba uses the fact that any G-invariant Ω-
admissible function can be approximated by a G-invariant Ω-Morse function
and in the next step by a so-called special G-invariant Ω-Morse function.
However, in our applications it is enough to use the relation of G-invariant
Ω-admissible functions with G-invariant Ω-Morse functions. Recall that ϕ is
called an Ω-Morse function if for every v ∈ (∇ϕ)−1(0) ∩ Ω the orbit G(v) is
non-degenerate, i.e., dim ker∇2ϕ(v) = dimG(v).

The following lemma is a consequence of Theorem 2.2 of [9].

Lemma 4.4. If ϕ ∈ C2(V, R) is an Ω-admissible G-invariant function, then
there exists a G-invariant set Ω0 and a G-invariant function ϕ̂ ∈ C2(V, R)
such that
(1) (∇ϕ)−1(0) ∩ Ω ⊂ Ω0 ⊂ cl(Ω0) ⊂ Ω,
(2) ϕ̂(v) = ϕ(v) for every v ∈ V \ Ω0,
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(3) ϕ̂ is a G-invariant Ω-Morse function.

We say that a G-invariant Ω-Morse function ϕ̂ satisfying the assertion
of the above lemma is associated with ϕ. Note that from the lemma it follows
that ϕ̂ and ϕ are Ω-homotopic, i.e., there exists a G-invariant C2-function
h : V × [0, 1] → R such that (∇vh)−1(0) ∩ (∂Ω × [0, 1]) = ∅ and ∇vh(v, 0) =
∇ϕ(v),∇vh(v, 1) = ∇ϕ̂(v).

The degree ∇G-deg(∇ϕ,Ω) has properties analogous to these of the
Brouwer degree such as additivity, excision, linearisation, homotopy invari-
ance, see [13,34]. Moreover, there holds the product formula for this degree,
see [17]. For the convenience of the reader we recall it below.

Lemma 4.5. Let Ωi ⊂ Vi be open, bounded and G-invariant subsets of
G-representations Vi and let ϕi ∈ C1(Vi, R) be G-invariant and Ωi-admissible
functions for i = 1, 2. Then, ϕ1 +ϕ2 ∈ C1(V1 ⊕ V2, R) is Ω1 ×Ω2-admissible
and

∇G-deg((∇ϕ1,∇ϕ2),Ω × Ω2) = ∇G-deg(∇ϕ1,Ω1) � ∇G-deg(∇ϕ2,Ω2).

Remark 4.6. It is known (see [13]) that if G acts trivially on Ω, then

∇G-deg(∇ϕ,Ω) = degB(∇ϕ,Ω, 0) · I. (4.1)

On the other hand, applying the results from [12] (in particular Lemma
3.4) it is easy to prove that for a connected group G and any nontrivial
G-representation V there holds ∇G-deg(−Id,B(V)) 
= a · I for any a ∈ Z.

Now we are going to provide a sketch of the definition of the G-equivariant
degree in the infinite-dimensional case. Denote by H an infinite-dimensional,
separable Hilbert space being an orthogonal representation of the group G.
Let {πn : H → H : n ∈ N} be a sequence of G-equivariant orthogonal projec-
tions. We say that this sequence is a G-equivariant approximation scheme on
H if the following conditions are fulfilled
(1) H

n = im πn is a finite-dimensional, orthogonal G-representation for any
n ∈ N,

(2) H
n

� H
n+1 for any n ∈ N,

(3) lim
n→∞

πnu = u for any u ∈ H.

Let us consider a G-equivariant gradient operator ∇Φ ∈ C1(H, H) of
the form of a completely continuous perturbation of the identity. Let Ω ⊂ H

be an open, bounded G-invariant set such that ∂Ω ∩ (∇Φ)−1(0) = ∅. In
this situation, the degree ∇G-deg(∇Φ,Ω) ∈ U(G) is defined by the following
formula, see [34],

∇G-deg(∇Φ,Ω) = ∇G-deg(∇Φ|Hn ,Ω ∩ H
n),

where n is sufficiently large.
Our aim is to consider the global bifurcation phenomenon, see Defi-

nition 3.2. In the proofs of the bifurcation results in Sect. 3 we apply an
equivariant version of the Rabinowitz alternative, we recall it below.

Consider a family of G-invariant functionals Φ ∈ C2(H × R, R) of the
form ∇uΦ(u, λ) = u − ∇uζ(u, λ), where ∇uζ : H × R → H is a completely
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continuous, G-equivariant operator. Suppose that there is u0 ∈ H such that
G(u0) ⊂ (∇uΦ(·, λ))−1(0) for every λ ∈ R. We call elements of G(u0)×R the
trivial solutions of ∇uΦ(u, λ) = 0.

Theorem 4.7. Suppose that there are λ± and a G-invariant open, bounded set
Ω ⊂ H such that (∇uΦ(·, λ±))−1(0) ∩ cl(Ω) = G(u0). If

∇G- deg(∇uΦ(·, λ−),Ω) 
= ∇G- deg(∇uΦ(·, λ+),Ω),

then a global bifurcation of solutions of ∇uΦ(u, λ) = 0 occurs from the orbit
G(u0) × {λ̂} for some λ̂ ∈ (λ−, λ+).

The proof of this theorem is standard in the degree theory, see for in-
stance [5,7,32,33].

4.3. Equivariant splitting lemma

We end this section with recalling the so-called splitting lemma that we use
in computations of the degree in the degenerate case.

Consider a compact Lie group H, a finite-dimensional orthogonal
H-representation W and an H-invariant function ψ ∈ C2(W, R). Suppose
that 0 is its isolated critical point. Assume additionally that ∇2ψ(0) is not
an isomorphism. Denote by N and R the kernel and the image of ∇2ψ(0),
both being orthogonal H-representations.

Theorem 4.8. There exist ε > 0 and an H-equivariant homotopy ∇H : (Bε(N )
× Bε(R)) × [0, 1] → W satisfying
(1) (∇uH)−1(0) ∩ ((Bε(N ) × Bε(R)) × [0, 1]) = {0} × [0, 1], i.e., 0 is an

isolated critical point of H(·, t) for every t ∈ [0, 1],
(2) ∇uH((v, w), 0) = ∇ψ(v, w) for all u = (v, w) ∈ Bε(N ) × Bε(R),
(3) there exists an H-equivariant map ∇ϕ : Bε(N ) → N such that

∇uH((v, w), 1) = (∇ϕ(v), (∇2ψ(0)|R)w) for all (v, w) ∈ Bε(N )×Bε(R).

The proof of the above theorem can be found in [11] (Lemma 3.2) and
uses a homotopy proposed by Dancer in [6]. Since in the proof of Theorem 3.7
the form of this homotopy is needed, we recall it below.

Remark 4.9. The homotopy considered in Theorem 4.8 is of the form

H((v, w), t) =
1
2
〈(∇2ψ(0)|R)w,w〉 +

1
2
t(2 − t)〈(∇2ψ(0)|R)w̃(v), w̃(v)〉 +

+tη(v, w̃(v)) + (1 − t)η(v, w + tw̃(v)〉,
where ψ(u) = 1

2 〈∇2ψ(0)(u), u〉 + η(u) and w̃ is a function obtained from the
equivariant version of the implicit function theorem (see Theorem 3.1 of [11]).
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Poland
e-mail: Anna.Golebiewska@mat.umk.pl;

cstefan@mat.umk.pl

Joanna Kluczenko
Faculty of Mathematics and Computer Science
University of Warmia and Mazury
ul. S�loneczna 54
10-710 Olsztyn
Poland
e-mail: jgawrycka@matman.uwm.edu.pl

Accepted: June 13, 2022.


	Bifurcations from degenerate orbits of  solutions of nonlinear elliptic systems
	Abstract
	1. Introduction
	2. Degree of a critical orbit
	3. Elliptic systems
	3.1. Formulation of the problem
	3.2. Global bifurcations of solutions of the system on a sphere
	3.3. Global bifurcations of solutions of the system on a ball

	4. Appendix
	4.1. Equivariant topology
	4.2. Equivariant degree
	4.3. Equivariant splitting lemma

	References




