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Abstract. We prove a very general fixed point theorem in the space of
functions taking values in a random normed space (RN-space). Next,
we show several of its consequences and, among others, we present ap-
plications of it in proving Ulam stability results for the general inho-
mogeneous linear functional equation with several variables in the class
of functions f mapping a vector space X into an RN-space. Particu-
lar cases of the equation are for instance the functional equations of
Cauchy, Jensen, Jordan—von Neumann, Drygas, Fréchet, Popoviciu, the
polynomials, the monomials, the p-Wright affine functions, and several
others. We also show how to use the theorem to study the approximate
eigenvalues and eigenvectors of some linear operators.

Mathematics Subject Classification. 39B05, 39B82, 47H10, 54E70.
Keywords. Fixed point, function space, general linear functional equa-
tion, random normed space, Ulam stability, approximate eigenvalue,
approximate eigenvector.

1. Introduction

In this paper, we prove a fixed point theorem for classes of functions taking
values in a random normed space (RN-space) and show some applications of
it to several issues connected with Ulam-type stability.

The study on such stability was initiated by a question of Ulam from
1940 (cf., e.g., [48,96]) asking if an “approximate” solution of the functional
equation of group homomorphisms must be “close” to an exact solution of
the equation. The first answer was provided by Hyers [48], who considered
the question for the Cauchy functional equation in Banach spaces and used
the method that subsequently was called the direct method. He defined the
equation solution explicitly as a pointwise limit of a sequence of mappings
constructed from the given approximate solution.
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Later, Hyers’ result was generalized by Aoki [10], Rassias [84], Forti [37],
Gajda [39], Gavruta [40] and others, with a similar method. We refer to the
monographs [25,49,53] for more information on history and recent research
directions related to the subject.

Further, in 2003, Radu [82] proposed a new method to retrieve the
main result of Rassias [84], based on the fixed point alternative in [34]. The
same fixed point method, using also Banach Contraction Principle, has sub-
sequently been used by many other authors to study the stability of a large
variety of functional equations (see for example [21,27,33,69,74] and the ref-
erences therein). A modification of it was proposed in [74,75], where the
author tied some set of functions to the given approximate solution of a
given functional equation to make it a complete metric space, and then to
apply the Banach theorem. Many new fixed point theorems have been shown
in the literature, to investigate Ulam stability in spaces endowed with some
kind of generalized metrics, such as fuzzy metric, quasi-metric, partial met-
ric, G-metric, D-metric, b-metric, 2-metric, ultrametric, modular metric, and
dislocated metric; see for instance [5,9,46,56,64].

Some authors have also used a somewhat different approach, proposed
for the first time in [18,19] (see [21] for further references), which applies the
fixed point result for function spaces proved in [20]. For instance, Bahyrycz
and Olko [13] applied that approach in their study on stability of the general
functional equation

i=1 j=1

for functions f mapping a linear space X over a field K into a Banach space
Y, where A € Y and, for every i = 1,2,...,m, j =1,2,...,n, A; € K* :=
K\{0}, and a;; € K. Let us mention that numerous functional equations that
are well known in the literature are particular cases of (1.1) (see Sect. 6 for
more details).

Bahyrycz and Olko [14] and Zhang [98] (see also [75]) published the
hyperstability results for Eq. (1.1) obtained by the same theorem in [20].
Related results can also be found in [16,17].

The theory of probabilistic metric (or random normed) spaces was pro-
posed by Menger [66] as a probabilistic extension of the metric space theory
(see also [87]). This theory was later investigated by Serstnev [89-91] (we
also refer to the book [44]). It seems that Alsina [7] was the first to consider
Ulam-type stability of functional equations in probabilistic normed spaces.
Next, in 2008, Mihet and Radu [68], using the fixed point method, proved the
stability results for the Cauchy and Jensen functional equations in random
normed spaces.

The stability of many other functional equations was also investigated
in random spaces. For example, Kim et al. [57] investigated the stability of
the general cubic functional equation, Abdou et al. [1] studied the stability of
the quintic functional equations, Alshybani et al. [6] used the direct and the
fixed point methods to prove the stability results for the additive—quadratic
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functional equation, and Pinelas et al. [76] used the direct and the fixed point
method to show stability of a new type of the n-dimensional cubic functional
equation. We also refer to the book of Cho et al. [28] for more details on that
type of stability in random normed spaces.

In this paper, we will first show a general fixed point theorem for classes
of functions taking values in a random normed space. This is the random
normed space version of the fixed point theorems in [20,22] (see also [24]),
which turned out to be very useful in investigations of the stability of various
functional equations. Next, we show how to use the theorem to study the
Ulam stability of various functional equations in a single variable and inves-
tigate the approximate eigenvalues and eigenvectors in the spaces of function
taking values in RN-spaces.

Finally, using this fixed point theorem, we prove the very general results
on the stability of the functional equation

STAf D aix; | =D, wn) (1.2)
i=1 j=1

for functions mapping a linear space X into a random normed space Y, with
a given function D : X™ — Y. As special cases of this result, we can obtain
the stability criteria for numerous functional equations in several variables,
in the framework of random normed spaces.

2. Preliminaries

In the sequel, we use the definitions and properties of the random normed
space (RN-space) as in [7,28,44,45,64,68,87,89-91]. However, for the conve-

nience of the reader, we remind some of them.

Definition 2.1. A mapping ¢g : R — [0, 1] is called a distribution function if it
is left continuous, non-decreasing and

t)=1, infg(t)=0.
ilelﬂlgg() tlgRg()

The class of all distribution functions g with g(0) = 0 is denoted by D4.

For any real number a > 0, H, is the element of D defined by

0 ift<a;
Ha(t) '_{1 if t > a.

Definition 2.2. [28] A mapping T : [0,1] x [0,1] — [0,1] is a triangular norm
(briefly a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T(a,1) =a for all a € [0,1];
(¢) T(a,b) <T(c,d), whenever a < ¢ and b < d.

Remark 2.53. Clearly, in general, a t-norm does not need to be continuous.
Typical examples of continuous ¢-norms are as follows:

T,(a,b) =ab, Tum(a,b) =min(a,b), Tr(a,b) =max(a+b—1,0).
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Moreover, in view of (b) and (c), for each t-norm T and z € [0, 1], we have:
T(x,1)=T(1,z) =2z, T(x,0)=T(0,z)=0.
Remark 2.4. (Cf. [28]) If T is a t-norm, m € Ny and a; € [0,1] for i € Ny,

then we write
T, G = G, Tgfn"ai =T (aman, Tg;"_lai), n € N.
Since T is commutative and associative, it is easy to show by induction that

Tt = T(T}Z"‘"ai,TgﬂjﬂHai), m,n,l € Ng,l > 0. (2.1)

m m

Note yet that, by (c), the sequence (/7" a;),en is non-increasing for every

m € N and therefore always convergent. So, for each m € N, we may introduce
the following notation:

T a;:= lim T"""a; = inf T ™aq,.
1=m 7 s 00 i=m T neN 1=m ?

A t-norm T can be extended in a unique way to an m-ary operation
taking:
T(ay,...,an) =T a;.
To shorten some long formulas, we will write
T(a) :=T(a,a), ac<0,1].
It is easy to show by induction on k (using the associativity and commuta-
tivity of T') that
ko 7 k
Tl (T ) = T (T T ass ) (22)
for every k,n,m € Ny, k > 1, and a;; € [0,1] with j = 1,...,k and i =
m,...,m -+ n. We need that property a bit later.

Definition 2.5. Let Y be a real vector space, F' : © — F, a mapping from
Y into Dy, and T a continuous t-norm. We say that (Y, F,T) is a random
normed space (briefly RN-space) if the following conditions are satisfied:

(1) F, = Hy if and only if x = 0 (the null vector);

(2) Fau(t) = Fy (ﬁ) forallz € Y, ¢t > 0 and a # 0;

(3) Fysy(t+s) > T(Fy(t),Fy(s)) for all z,y € Y and ¢,s > 0.
For more information on the RN-spaces, we refer to [41,45,65,87,89)].

Ezample. Let (Y, ] ||) be a normed space. Then both (Y, F, Tys) and (Y, F, T),)
are random normed spaces, where for every x € Y

0 ift<o0
F.(t) .= e,

The same remains true if

0 if t <0,
Folt) = {elzl/t if ¢ > 0.

Definition 2.6. (Cf., e.g.,, [41,65]) Let (Y, F,T) be an RN-space.
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(1) A sequence (z,)nen in Y is said to converge (or to be convergent) to
z € Y (which we denote by: lim,, 4o z, = x) if
lim F, _,(t)=1, t>0,

n—-+00
i.e., for each € > 0 and each ¢t > 0, there exists an N.; € N such that
Fp,—5(t)>1—¢ foralln > N, ,.
(2) A sequence (zy)nen in Y is said to be an M-Cauchy sequence if
lim  F,, . ()=1, t>0,

n,m—-4oo
i.e., for each € > 0, and each ¢t > 0, there exists V., € N such that
Fy —5,, () >1—¢, forall Noy <n<m.
(3) A sequence (x,)nen in Y is said to be a G-Cauchy sequence if
lim F,, (t)=1, t>0,keN,

—Tn+tk
n—-+o0o n+

ie., for every € > 0, k € N and ¢ > 0, there exists an N.;; € N such
that F, ..., (t) >1—e€foralln> N;.

(4) (Y, F,T) is said to be G-complete (M-complete, respectively) if every
G-Cauchy (M-Cauchy, resp.) sequence in Y is convergent to some point
inY.

Remark 2.7. Since every M-Cauchy sequence is also G-Cauchy, it is easily
seen that each G-complete RN-space is M-complete.

3. A general fixed point theorem in RN-spaces

Our first main result is a very general RN-space version of a fixed point
theorem in [20]; actually, we follow the approach from [22] (see also [24]). We
provide some applications of it in the next sections.

In what follows, X is a non-empty set, (Y, F,T) is an RN-space, Ny :=
NU{0} and Ry := [0, 400) (the set of non-negative real numbers). If U and V'
are nonempty sets, then as usual UY denotes the family of all mappings from
V to U. If F € UY, then F" stands for the n-th iterate of F, i.e., FO(z) =z
and F"*1(z) = F(F"(z)) for € U and n € Ny. The space Y¥ is endowed
with the coordinatewise operations, so that it is a linear space.

To simplify some expressions, for given ¢ € Df and z € X, we write
¢, to mean ¢(x), i.e.,

b (t) = o(2)(t), ze€X, teR.

For every ¢, 1 € D, the inequality ¢ < 1 means that ¢(t) < ¢(¢) for each
t > 0. We use this abbreviation to simplify formulas whenever the variable ¢
is not necessary to express them precisely.

Definition 3.1. Let A : DY — D and J : YX — Y be given. We say that
the operator .J is A-contractive if, for every £, € Y and every ¢ € Df ,

<Vxex Fle—ny@) = %) = (Vzex Floe—im@) = (A¢)x>~
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The convergence in D, will mean the pointwise convergence. Therefore,
we say that a sequence (¢, )nen in Dy converges to some ¢ € D if

lim ), (t) =¥(t), t>0.
Hence, the convergence of (¢, )nen to Hp means that

lim ¢n(t) =1, ¢>0.

We need yet the following hypothesis on A : Df — Df .

(Co) If (gn)nen is a sequence in Y™ such that the sequence ( g (m )neN

converges to Hy for every = € X, then the sequence ( )n N

converges to Hy for every z € X, where F, € DY <t is given by F (x) =
Fy. (z) for x € X.

Remark 3.2. Let xo € D be given by: xo(z) = Hy for z € X. Then (C)
actually means the continuity of A at the point xo (with respect to the
pointwise convergence topologies in Df and D) and the property: Axo = Xxo-

Let veN, &,...,& : X — X, and Ly,...,L, : X — (0,00) be fixed.
A natural example of operator A fulfilling hypothesis (Cy) can be defined by

v t
(Ats)z(t) = /Ti:l(sfq,(ﬂ?) (VLl(J?)) y o€ Df, x € X, t > 0. (31)

We refer to Remark 3.10 for further comments on this situation.

In what follows, Q2 stands for the family of all real sequences (wp)nen,
with w,, € (0,1) for each n € Ny and

iwi =1.
=0

Let us first state the following lemma, which will be used in the sequel.

Lemma 3.3. Let A : Df — Df and € : X — Dy be arbitrary. Then, for every
re€ X, keNy, weQ, andt > 0, the limits

() = lim T e, (), (32)
oy (t) = Jim T (A6, (wiit) (3.3)
exist in R and
(0 = mf T, (£, (3.4
“ok(t) = inf T (A )y (wimkt). (3.5)

Proof. Fix k € Ny, z € X and t > 0 and write

; t
Tm(z,t, k) = Tl.kztcm_l(Ale)w <m> , meN
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Since (A’e), € Dy, it is a non-decreasing function for each i € N. Hence,

) t . t

ANe), [ — | > (Ae), | —— ).

o () = wa. (47)

Consequently,
m— i 3 m— i 3
, t
=71, T YA —
(’ e E)I(m+1)>

m t m— i 3
> T((Ak+ )z (M) [ THEm=1(Afe), <m+1) >

; t
= ﬂi—im(Ale)x < ) = Tm+1($7 ta k))

m+1

whence the sequence (7,,(x,t,k))men is non-increasing and, therefore, for
every k € No, x € X and t > 0, the following limit exists

ok(t) = lim 7, (z,t k) = irg\] Tm (2,8, k). (3.6)

Next, fix w € Q, k € Ng, z € X and t > 0, and write
(@, t. k) o= T (Ae)y (wimnt), m €N,
Then,
pml,t, k) = TR (A e), (wiit)
= T(L T (Ae), (Wiszt))
> (A7), (wint), TER" ™ (Ae), (wi-it))
= TF™(A'€)y (wikt) = pi (a8, k).

This means that the sequence (p,(x,t, k))men is non-increasing. Therefore,
there exists the limit

“ok(t) .= n}gnoo pm(,t, k) = nlqréfN pm(, 6, k).

Remark 8.4. Fix r € X and k € Ng. If T'=T); in Lemma 3.3, then

: m— A t
ok (t) ;== lim TZ:;C L(Afe), ()

m— o0 m

= lim inf (AFTi71le), (t)
m

m—ooi=1,....m

— inf (AFTM1e), (t> .

meN m
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If T =T,, then (3.4) implies that

of(t) = inf [](A*Fi"1e), () .
meN bl m
Analogous equalities are valid for “o* with any w € Q.
In the sequel, given A : Df — Df and € : X — D, we write
oy (t) = sup “of(t), Ty(t) = max{oy(t), oy (t)} (3.7)
we
for every x € X, k € Ny and t > 0, where ¢¥(¢) and “o%(¢) are defined by
(3.2) and (3.3).

Theorem 3.5. LetA:DfHDf, e: X =Dy, J:YX sYXand f: X —
Y be given. Assume that A satisfies hypothesis (Co), J is A-contractive,
F(Jf—f)(aa) > €, x€X, (38)
and one of the following three conditions holds.
(i) (Y,F,T) is M-complete and

o t
. . k+j/ad _
kgrfoc jlenl\lf0 T, (A'€)s (j—&- 1) 1, zeX, t>0. (3.9)
(ii) (Y, F,T) is M-complete and for each k € N there is a sequence (w¥),en, €
Q with
: : k+3j At k
kEToo jleanO T (Ne)g(wigt) =1, z€X, t>0. (3.10)
(i) (Y, F,T) is G-complete and lim,,_, oo (A"€), = Hy for x € X, i.e.,
lirf (A"e)z(t) =1, ze€X, t>0. (3.11)
Then, for every x € X, the limit
U) = lim (")) (3.12)

exists in'Y and ¥ € YX thus defined is a fized point of J with

F(w_ka)(x)(t) > Zl(lopl) Ef(at), ke No, S X, t> 0. (313)

Moreover, in case (1) or (ii) holds, ¥ is the unique fixed point of J such that
there exists a € (0,1) with

Frp—gepya)(t) > 8(at), keNy, z€X, t>0. (3.14)
Proof. First we show by induction that, for every n € Ny,
F(J7L+1f_J'rLf)(I) > (An€)gg7 reX. (315)

The case n = 0 is just (3.8). So, fix n € Ny satisfying (3.15). Then, using the
A-contractivity of J and the inductive assumption, we obtain

F(Jn+2f,!]n+1f)(x) Z (A(A"e))w = (AnJrlé)x, r e X.
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Thus, we have proved that (3.15) holds for every n € Ny. Consequently,
for every n € Ng, m € N, z € X and ¢t > 0 we have

Egnim g—gm @) (8) = Fyin gasies g guri py(a) (1)

. t
> Ti2g  Fnitr pgnvif) () <m>
m—1 n+1i t n+m—1 7 4
Z Ti:() (A €)£ E = 7‘;:” (A 6)_73 E 5 (316)

and analogously, as wy,—1t < Y .o w;t for every (wn)nen, € 2,
Fiynem pn )@y (8) 2 T F gt pmvios pyay (wim1t)
> T, (A, (i)
=T (A€ s (wimnt), (Wn)nen, € Q. (3.17)

Now, we show that the limit (3.12) exists in Y for every x € X. First
consider the case of (i). Then, by (3.16), for all k,m € N, n € Ny, z € X and
t>0,

Figmssgguem ey (26) 2 T(Flguen o pya (s Fogng—gmom oy (®))
> T(ﬂiﬁk—l(Afe>m (,i) TN, (;) )
pinf Flgmir pegmim @) (24)
> kgL{NT<T”+k HAle), (,’;) T (), (;))

) t t
>T| inf T/ F(AYe), [ —— f T (ANe), (—— ) |-
> (klgNo . () e, (5
Hence, (3.9), (b) and the continuity of T" at (1, 1) yield

Consequently, by (c),

lim  inf F(Jw+kf Jn+mf)(w)( ) =1, ze€X,t>0.

n—oo k,me

If (ii) is valid, then (3.17) implies that, for all k,m € N, n € Ny, z € X
and ¢t > 0,

Fgnsk pmgntm f)(a) (2) = T(Fuwkf—wf)(z)(t)vF(J"f—Jn+mf><z) <f))

> T (T (W) (Wi t), T T (M) (w2 1) ),
and consequently, by (c),
inf F(Jn+kf Jntm ) (@) (2t)

k,me

> inf T<Tn+k 1(Az) ( )Tn+m I(Az) ( m t))

k,meN Win

> T( 1nf T’H'"(AZ ) (

Z n

. m—+n [ m
t),niggoTi:n (A e)x(wi_nt)).
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Hence, (3.10), (b) and the continuity of T at (1, 1) yield
lim  inf F(JnJrkf,Jnerf)(m) (t) =1, ze€X, t>0.

n—oo k,meN

Thus we have proved that, for every x € X, (J"f(x))nen is an M-Cauchy
sequence and, as (Y, F,T) is M-complete, the limit (3.12) exists.
In the case of (iii), in view of (3.16),

. t
F(Jn+mf_Jnf)(x) (t) > 1172071(/\”—"_16)1 (m> , € X, t>0, n,meN,

whence (3.11) and the continuity of 7" at (1,1) imply that
lim FJ'ILf(z)_J'n«I»'rnf(f) (t) =1, ze€eX,t>0, meN.

n—-+oo

Thus, for every z € X, (J"f(2))nen is a G-Cauchy sequence. As (Y, F,T) is
G-complete, the limit (3.12) exists.

Now, we prove (3.13). Note that, in view of Lemma 3.3, 7% (¢) is well
defined by (3.7) for every k € No, x € X and ¢ > 0.

Fixt >0,z € X, a € (0,1) and n € Ny. First, we show that

F(w,Jnf)(z) (t) Z ag(at). (318)
To this end, observe that (3.16) implies

Foysn @ (&) 2 T(Fiy g oy (L= @)1), g gn o (at))

= T<F<wﬂ+mff><z>((1 — a)t), TP (Ao, (‘;‘f) )
(3.19)

for every m € N. Hence, by (3.12) and the continuity of T at the point
(1,02 (at)), by letting m — +oo, we obtain (3.18).
Next, we show that

Fap—in @) (t) 2 gz (at). (3.20)
So, fix w € © and note that (3.17) implies

Figan @ (8) = T(Fiy g oy (L= @)1), g yn o (at) )
> T(Fiy o gy (1= @)t) T L (A (wi-nat) )
(3.21)

for every m € N. Hence, by (3.12) and the continuity of T at the point
(1, WJQ(at)), by letting m — +oo, we obtain

Flp—gmpya)(t) 2 “og(at). (3.22)

Clearly, (3.22) implies (3.20), which with (3.18) yields (3.13).
Furthermore, by the A-contractivity of J,

F(Jw,JnJrlf)(z) (t) > (AFw—J"f)g;(t)7 t>0, e X. (323)
Since (3.12) means that
hlf F(d,,‘]nf)(w) =Hy, zelX,
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by (Co) we have
lim (AwaJnf)z =Hy,, xz€lX.

n—-+oo

Whence, on account of (3.23),
nEToo F(J¢_J"+1f)(?f) =Hy, welX,

and consequently

Jp(z) = lim (J"Tf)(z) = ¢(z), =€ X.

n—-+4oo
Thus, we have shown that 1 is a fixed point of J.
It remains to prove the statements on the uniqueness of . So, assume
that (i) or (ii) holds and 11,19 € YX are two fixed points of J such that
F(wj—.]kf)(x)(t) > (/J'\I;(Otjt), keNg, re€ X, t>0,=1,2,
with some aq,as € (0,1). Then, for all z € X, ¢t > 0 and k € Ny, we get

Fly ) () (2) 2 T (Flgy =35 ) (0) (8): Fav o)) ()
> T (6% (a1 t),55(axt)). (3.24)
Note yet that, in view of (3.4) and (3.5), each of the conditions (3.9) and
(3.10) implies

lim &f(t)=1, ze€X, t>0. (3.25)
k—+o00

Hence, by letting k — oo in (3.24), by the continuity of T" at the point (1, 1),
we finally obtain that

F(llil—ll)z)(w) = Hy, =z¢€X, (326)
which means that ¥, = 5. O
Remark 3.6. If, for a given k € Ny and 2 € X, the function ¥ is left contin-

uous (which is not necessarily the case, because this depends on the forms of
e and T'), then it is easily seen that (3.13) can be replaced by

Fly—gepy()(t) 2 05(t), t>0.
Otherwise, for every fixed z € X and k € Ny, the inequality in (3.13) can of
course be replaced by
F(¢,ka')(m)(t) > ZT\];(CVL]C t), t >0,

with any fixed o, € (0,1).

Remark 3.7. The assumptions (i) and (ii) in Theorem 3.5 look nearly the
same and (i) is a bit simpler than (ii). However, as we will see below, in some
situations (3.10) (with some sequence (w¥),en, € ) and (3.11) are fulfilled,

while (3.9) is not.
Namely, let T'= T, and A have the following simple form:

(AG)y(t) = ba0(bt), z€X, t>0, €D,
with some a,b € (0,00) (cf. the proof of Corollary 6.4). Then,
(A"6)4(t) = Sann(b"t), € X, t>0, §€DY, neN.
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Further, assume that X is a normed space, p € [0,00), v € Ry and
t
€(t)=———, z€X, t>0.
t+ =P
Write eg := ba~P. Clearly, for every n € N, z € X and t > 0,
" bt bt "
(A G)m(t) = Eanx(b t) m = € <am’) — € (eot), (327)

and therefore

TN A, () =  inf e (efTt), jeN. (3.28)
i€{0,...,j—1}
Assume that eg > 1. Then, by (3.27),
lim (A"),(t) = lim e, (eft) =1, z€ X, t>0, (3.29)
n— oo n—-+00

which means that (3.11) holds. Further, for every k € Ny, (3.28) yields
TN A ), (1) = ex(ebt), jEN, z€ X, t>0,

whence
k+j /A 3 . elgt
inf 7,7 (A'e), ( —— ) = inf e ( - =0, z€X,t>0.
J€No J+1 j€No j+1

Consequently, for every z € X and t > 0,
1k t bt
ok (t) = lim Ti]:;g L(Ae), () = lim ¢, (0> =0, k€N,
J—00 J J—00 ]

and

t
lim inf T (Ale), () -
k—+oco jENg j+1

Hence, (3.9) is not valid and o makes no contribution in estimation (3.13).
On the other hand, for every z € X, t > 0 and w = (wp)nen, € 2, we
have

Tg}cj(Aie)m(wi_kt) = ie{O,i.ljlfjfl}e (elg‘H it).

So, for & = (Wp)nen, € Q, with
O;:=r'(1—-7), i€Ny, ri=—
we have
etTD; =ef(1—r)=efHeg—1), i€N.
Therefore, for every z € X and t > 0,
T (N€) (Gimit) = ex (b (eo — 1)t),

W]lellce
1 f T J A o ] 1 f € eg — 1 1
m 1m ]ln ) ( ) ( ) m 1m jln 61( 0 ( 0 ) )

= lim e (ef” Yep — Dt) =1,

m——+oo
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Sk () = lim T (A€), (@i-it) = ex(ef (eo — 1)1).
This means that (3.10) holds with w* =& for k € Ny and
GR(t) > “ok(t) = eu (e (eo — 1)t), x€X, t>0.

For the situation where (3.10) is valid with sequences w* € Q that are
not the same for all k € N, we refer to Remark 5.3.

Remark 3.8. Note that in the proof of Theorem 3.5, we have only used con-
tinuity of T at the points of the form (1,£) for & € (0,1]. Actually, even
that assumption can be weakened. Namely, it is enough to assume that T is
continuous only at the point (1, 1), but then we have to modify inequality in
(3.13) basing it only on (3.19) and (3.21) without taking the limits.

Remark 3.9. Observe that the properties of the t-norm yield

; t
: k+npd < n
klenl\floTl:n (A E>w<k+1> < (A"€)z(t), ze€ X, t>0, ne Ny,

whence (3.9) implies (3.11). However, since every G-complete RN-space is M-
complete (see Remark 2.7) and not necessarily conversely, assumption (iii) is
not weaker than (i).

Remark 3.10. Let v € N, &,...,&, : X — X, and Lq,...,L, : X — (0,00)
be fixed. If the operator .J has the form

Jn(x) := H(x, (& (x)),... ,n(gy(x))), neYX zeX, (3.30)

with a function H : X x Y¥ — Y satisfying the following Lipschitz-type
condition:

Vt(x)) t>0, (3.31)

forallz € X and y1,...,%u,21,.-.,2, € Y, then such J is A-contractive with
A defined by (3.1) and such A fulfills hypothesis (Cy) (see Remark 3.2).
Clearly, (3.31) holds if H has the following simple form:

H(z,y1,. ., Y) ZL Vi +h(z), z€X, y1,...,y, €Y, (3.32)
with a fixed function 2 € YX. Then, (3.30) becomes
ZL )+ h(z), feYX zeX. (3.33)

In particular, such J satisfies the following Lipschitz-type condition:

v i X
Flau—m @) (t) 2 T Flu—n)i(2) (W) ;s EYT,

re X, t>0. (3.34)
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If we want to admit functions L; taking values in R (i.e., in particular
taking the value zero), then we can rewrite that condition in the subsequent
form:

v 4 X
Flp—am @) () 2 T FLy@) (e (2) —n(& (@) <V> pn €Y,
zeX, t>0. (3.35)

Note that if, in such a situation, L;(x) # 0 for some i € {1,...,v} and some
z € X, then

t
Fri@) (@) -n(&: ) () = Fugeu@)-n(es(@)) (| Li(x)> , >0

but if L;(z) = 0, then
Fri (@) (@) -n(e()) (1) = Fo(t) =1, t>0.

In view of Remark 3.10, for operators .J : YX — Y X fulfilling condition
(3.34), we have the following particular case of Theorem 3.5, with a stronger
statement on the uniqueness of fixed point (because under the weaker as-
sumption that (3.14) holds only for k£ = 0).

Theorem 3.11. Let v € N, € € Df, &,...,6, € XX, Ly,....L, : X —
(0,00), A : DY — D be defined by (3.1), J : Y* — Y satisfy condition
(3.34), and f : X =Y fulfil (3.8). Assume that one of the conditions (i)—(iii)
of Theorem 3.5 holds. Then, for every x € X, the limit (3.12) exists and the
function 1 € YX, defined in this way, is a fized point of J satisfying (3.14).

Moreover, if (1) or (ii) holds, then v is the unique fixed point of J such
that there is o € (0,1) with

Fly—pya(t) >02(at), t>0, z€X. (3.36)
Proof. First, fix £,n € YX and ¢ € ’Df with
Fle-n)@) 2 ¢, €KX,
Then, by (3.34),

i} t
Fp—an@) () = T Flu—n)(e:(2) <1/L(x)>

> T 0¢, () (zsz(:c)) = (Ap).(t), w€X,t>0.

Hence, J is A-contractive. Moreover, as we have noticed in Remark 3.10, A
satisfies hypothesis (Cp). Hence, by Theorem 3.5, limit (3.12) exists for every
x € X and so defined function ¢ is a fixed point of J satisfying (3.14).

It remains to show the statement on uniqueness of 1. So, let 7 € YX
be a fixed point of J such that, for some a € (0, 1),

Fi—pyw(t) >02(at), t>0, z€X. (3.37)
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Fix z € X, w = (Wp)nen, € @ and t > 0. We show that, for every
n € Ny, we have

t
Flynp_gimy@®) > lim T(TrEm=1(Ale), (= 3.38
o) 2 i T(Tr N, () ), (3.38)
_nat
n n > ntm—1 g 7‘(}7’ na . .
Fignyp—gnry@)(t) 2 mLITOOT<T (A'€)a < 5 (3.39)

This is the case for n = 0, because by the continuity of T, for every z € X
and t > 0, we have

Flyp—my@)(t) > (F(w (=) (t> Fe-p@ <;)>
-1( @MM wor(55)

m— i at
Analogously,

EN t ~ at
> 0 af > w 0 [ =7 .
F<w—7>(m>(t)T<%<2>>T( %(2>), w e N

Since T is continuous, we finally get

1/ A wi—pat
F(wr><m>(t)27n£glmT<T o (A6 (B"))

Now assume that (3.38) is valid for some n € Ng. Then, by (2.2) and
the continuity of T', for every x € X and ¢t > 0,

t
Fiyn+iy_gn ) > T  Fgng_gnrye;(z
(rtryg—gntin) @) () 2 T Flamy—moy g @) (VL @ >

v n+m—1 7
= Tj= mLHEooT<T (A'€)g; ) (ZmuL ) >
_ v n+m—1 7
o mllHFlooT 1T<T (A')e; ) <2myL )>
— n+m—1pv z
o mLHEooT<T T i (@) <2ml/L ) >
= lim T(T"+m LA( (at))

m——+o0 m

_ n+m i Lm
- 77L1_1>I_I|_100T(T’ n+1(A G)m (2m> )

Next, assume that (3.39) is valid for some n € Ny. Then in the same
way, by (2.2) and the continuity of T, for every z € X, ¢t > 0, and w € ,

, t
Fpnirg—griiny @) (t) 2 T Fmy—mrg @) (VL(:E))

ot
>TY, lim T(Tm 1 (Ale), Wizn @
- Jflm—1>+oo ( ( kj(m)(?l/Lj(:c)
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. v n+m—1/Ai M
g G Crey)
- n+m—1pv i M
-l P15 09 (57255 )
i—n t
— lim T(Tn+m 1(Az+1 )ac (W o >)
m——400 2

n—+m i wi—n—lat
mEﬁlmT@ S (A (2) )

Thus, we have proved (3.38) and (3.39) for every n € N, z € X, w € Q, and

¢ > 0. Whence
-(32))
)z

~ . t
= T( lim Tl (Ale ( ) ) (3.40)
Flr—p)(@) () = Fgnr—gny)(a) ()

> 1115_1 T(T”'|rm L(A%e) Wi ))

= f( lim 7/ (Ale), (“"27”'”5) ) (3.41)

m— 00

Fr)(@) () = Flnr—ny)(@)(t)
> lim T(T"+m L(Ate

m——+oo

§°\S~

2

§°

Now, if (3.9) holds, then by letting n — +o0o in (3.40), by the continuity of 7',
we get Fi_y))(t) = 1 for every z € X and ¢ > 0, which means that 7 = .
Similarly, if (3.10) holds, then we argue analogously by letting n — 400 in

(3.41). O

As for the uniqueness of the fixed points of J in Theorem 3.5, we also
have the following proposition.

Proposition 3.12. Let A : Df — Df, J:YX =YX be A-contractive, k € Ny
and o € {o*} U {“c* : w € O} satisfy

lirf (A"0),(t)=1, z€X, t>0, (3.42)
where o*, “o* € DY are given by o*(x) = ok and “o*(z) = “ok forx € X.

Then, for every f: X — Y, J has at most one fixed point 1y with
F(wO*ka)(ﬂl) 20(33), reX.

Proof. Fix f : X — Y and assume that 11,1y € YX are fixed points of .J
satisfying

Fly—ripy@) 2 02, v € X, j=1,2.
Then, by the A-contractivity of J,
F(mej_Jk+mf)(I) > (AmO')x, rze X, j=1,2, m € Ny,
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and consequently,

Flapy—2) (@) (1) = Flymapy —gmy) () ()
t

t
> T( Fymapy—gotm gy (2) (2> s Fgrtm p— gmaps) (@) <2> >
t t
> T((Ama)z ( 2) (A"0), ( 2))

for every m € Ng, z € X and ¢ > 0. Hence, by letting m tend to oo, by (3.42)
and the continuity of 7" at the point (1,1), Fiy, —y,)(@) = Ho for z € X.
Consequently, 17 = 1. O

If X has only one element, then YX can actually be identified with
Y and Theorem 3.5 becomes an analog of the classical Banach Contraction
Principle (somewhat generalized), given in Corollary 3.14 below. To present
it, we need the following hypothesis, concerning mappings A : D — D,
which is a special case of hypothesis (Cp).

(C) The sequence ()\(an))neN
(zn)nen in Y, which converges to 0.

converges pointwise to Hy for each sequence

To avoid any ambiguity, let us give one more definition, which is a special
case of an earlier definition, namely: Definition 3.1.

Definition 3.13. Let A : Dy — D, be given. We say that a mapping h: Y —
Y is A-contractive provided

Fry—hw) = A0 == \(@)
for every z,w € Y and ¢ € Dy with F,_,, > ¢.

Corollary 3.14. Let \ : D, — D satisfy hypothesis (C) and h : Y — Y be
A-contractive. Let € € Dy be such that

Fh(z)—z >e€, z€Y, (3.43)

and assume that one of the following three conditions holds.
(o) (Y,F,T) is M-complete and

. t
li inf "INy —— | =1, t>0.
htoo jEN, = (o) (j + 1) , >0

(B) (Y, F,T) is M-complete and, for each k € N, there is a sequence (wF)nen,
€ Q with

Jim it TEI (N (wfyt) =1, t> 0,

(v) (Y, F,T) is G-complete and
lim (\"€) = Ho. (3.44)

n—-+oo
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Then, for every w = (wp)nen, € 2 and ¢t > 0, the limits

= lim A"
%= lim h*(),

k() = lim Tf;;“(xe)<t>,

m——+oo m

“le(t) = lim T (Ne) (wiit)

m (2
exist (in' Y and R, respectively) and zo is a fived point of h such that

Fo_pi() > sup Ii(at), >0, k€N,

a€(0,1)
where
1o (t) == max{ly(t),L.(£)}, 1,(t) == sup “Iy(t), t>0, keN,.

we

Moreover, in case («) or () holds, zo is the unique fixed point of h for
which there exists o € (0,1) with

Fz()fhk(z)(t) > lAk(at), t>0, ke Np.

Remark 3.15. Let g : R — R and G : [0,1] — [0, 1] be non-decreasing, left
continuous and such that ¢(0) = G(0) =0, G(1) =1,

G(t) >t, lim g"(t) = oo, t>0.
n—oo
Let A : Dy — D, have the form

(A(t) = G(E(9(t), §€Dy, teR
Then,

lm_ (\€)(1) = lm_GMEG" (1) =1, t>0, £€D,,
which means that (3.44) holds for every € € D...
A very simple example of such A is obtained when G is the identity map
of [0,1] (i-e., G(t) =t) and

g(t) =at, teR, (3.45)
with a fixed a > 1. Clearly, then (A\)(t) = £(at) for £ € Dy and ¢t > 0 and, in

this case, the A\-contractive mappings are known as B-contractions or Sehgal
contractions (see [67,88]).
If g is the identity map on R and

G(t) =

S

e cp S [0,1], (3.46)

with some k € (0, 1), then A-contractive mappings are fuzzy contractive (see
[43,67,83]).

If both (3.45) and (3.46) hold, then A-contractive mappings are called
strict B-contractions (see [67,85]).
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4. Approximate eigenvalues

In this section, we show an application of Theorem 3.5 in investigation of the
approximate eigenvalues and eigenvectors, which corresponds to the results
in [36,47].

It is well known that YX is a real linear space with the operations
defined pointwise in the usual way:

(€ +m)(z) =€) +n(z), (af)(x):=a(z), &neYX,zeX aekR.

The next corollary is an example of a result concerning approximate
eigenvalues of some linear operators on Y. Actually, the assumption of
linearity of the operators is not necessary in the proof, but the notion of
eigenvalue might be ambiguous without it (see, e.g., [86]) and therefore we
confine only to the linear case.

Corollary 4.1. Let v € R\{0}, Ag : DY — D satisfy (Co), and Jo : Y —
YX be linear and Ag-contractive. Assume h € YX and € € Df satisfy the
condition

F(Joh—'yh)(w) >e weX. (41)

If one of the conditions (i), (ii) and (iii) of Theorem 3.5 is valid with
(A0)4(t) = (Aod)(|7]t), d€DY, z€ X, t>0, (4.2)

then ~y is an eigenvalue of Jy, the limits
b(e) = Tim (S5 0) @) (4.3)
o0(t) == lim T3 (A%e), <t> , (4.4)
m— oo m

“ol(t) == lim Tgal(Aie)w(wit) (4.5)

exist for every © € X, w = (Wn)nen, € @ and t > 0, and the function
o € YN, given by

Yo(z) =~y 1Y(x), =€X,
is an eigenvector of Jo, with the eigenvalue v, such that

Flyo-nya) () > sup o2(aly[t), z€X, t>0. (4.6)
0,1)

ae(
Proof. Let ¢ :=~h and J : YX — YX be given by:
(Jm() = (Jo(v 'm)(x), neY™, zeX.
Then, in view of the Ag-contractivity and linearity of .Jy, for every pu,& € YX
and § € Df with F,,_¢)(z) = 0z, we have
Fau-i6)@) () = Fuo (-1 -s(r-100)@) (&) 2 Faou-se)@ (1718), - >0,
whence
F(JufJé)(x)(t) > (AO(S)GJ("YM) = (Aé)w(t)a t>0,
which means that J is A —contractive. Next, we can write (4.1) in the form:

F(Jw,w)(m) > ey, xEX. (4.7)
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Hence, by Theorem 3.5 and Lemma 3.3, the limits (4.3), (4.4) and (4.5) exist

for every x € X, w = (wn)nen, € € and ¢ > 0. Moreover, the function
1Y : X =Y, defined by (3.12), is a fixed point of J with
Fly—p))(t) = sup 09(at), z€X, t>0. (4.8)
a€e(0,1)

Write 1o := v~ ). Now, it is easily seen that Jyyog = Ji) = ¥ = yhg, (4.6) is
equivalent to (4.8), and (3.12) yields (4.3). O

Clearly, under suitable additional assumptions in Corollary 4.1, we can
deduce from Theorem 3.5 some statements on the uniqueness of v, and con-
sequently on the uniqueness of 1.

Given € € DY, let us introduce the following definition: v € R\{0} is an
e-eigenvalue of a linear operator Jy : YX — Y X provided there exists h € YX
such that F(joh—yn)(x) = €z for v € X.

It is easily seen that Corollary 4.1 yields the following simple result.

Corollary 4.2. Let Ag : Df — Df, Jo : YX = YX be Ag-contractive and
linear, and € € Df. If v € R\{0} is an ec-eigenvalue of Jy and one of the
conditions (1)—(iii) of Theorem 3.5 is valid with A given by (4.2), then 7y is an
eigenvalue of Jy.

5. Ulam stability of functional equations in a single variable

In this section, as before, X is a nonempty set and (Y, F,T) is an RN-space.
As we have mentioned in the Introduction, the main issue of Ulam
stability can be very briefly expressed in the following way: when must a
function satisfying an equation approximately (in some sense) be near an
exact solution to the equation?
The next definition (cf. [25, p. 119, Ch. 5, Definition 8]) makes that
notion a bit more precise for the RN-spaces.

Definition 5.1. Let £ and C be nonempty subsets of Df with &€ C C. Let 7
be an operator mapping C into D=, G be an operator mapping a nonempty
set K C Y¥ into YX, and xg € Y. We say that the equation

Go(x) = xo(z), z€X, (5.1)
is (€,7)-stable provided for any ¢ € £ and ¢y € K with
F(Q¢0*X0)(90) > Exy, X E )(7 (52)
there exists a solution ¢ € K of (5.1) such that
F(¢,¢O)(I) > (TE)M e X. (53)

Roughly speaking, (€, 7 )-stability of (5.1) means that every approxi-
mate (in the sense of (5.2)) solution ¢ € K of (5.1) is always close (in the
sense of (5.3)) to an exact solution ¢ € K of (5.1).

Now, we present a simple Ulam stability outcome that can be derived
from the results of the previous sections. To this end, we need the following
hypothesis.
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H) veNH: XxY"—>Y,L;...,L,: X — (0,00) and

reX, (w,...,w), (21,...,2,) €YY, t>0. (5.4)

The subsequent corollary can be easily deduced from Theorem 3.11.

v t
FH(z,wl,.4.,w,,)—H(x,z1,...,z,,) (t) > Tiilei—Zi ( ) ’

Corollary 5.2. Let hypothesis (H1) be valid, &,...,&, € XX, feYX e ¢
Df and

Fr(a,f(61(2)) s f (€ (@)~ f(2) 2 Exs T E X. (5.5)

Assume that one of the assumptions (1)—(iil) of Theorem 3.5 is fulfilled with
A Df — Df given by

t

Then, for each x € X, w = (Wp)nen, € Q and t > 0, the limits
P(x) = lm (J"f)(z),
n— oo
t

00(t) = lim TG (Ale), () |

m— 00 m
“ol(t) == lim T5'(A'€), (wit) (5.7)
exist (in Y and R, respectively), with J : Y* — Y X given by:

(Jn)(x) == H(z, (& (2), .06 (2), neY™, zeX, (58
and the mapping 1 € YX, defined by (5.7), fulfills

H(z, (& (), ..., (& (@) =¢(x), z€X, (5.9)
Fo)—yp(2)(t) > sup og(at), t>0, ze€X. (5.10)
a€e(0,1)

Moreover, if one of the condition (i) and (ii) holds, then 1 is the unique
solution of (5.9) such that there is a € (0,1) with

Fliyyw)(t) > 00(at), t>0, z€X. (5.11)

Proof. Clearly, inequality (5.5) implies (3.8). Next, hypothesis (Cp) holds (see
Remarks 3.2 and 3.10) and (5.4) means that (3.34) is valid. Consequently, by
Theorem 3.11 with C = Y, the function 1 defined by (5.7) is a fixed point
of J (that is a solution of (5.9)) satisfying (5.10) (take £ = 0 in (3.14)).

The statement on the uniqueness of ¥ also follows from Theorem 3.11. O

The stability of functional equations of form (1.2) (or related to it) has
already been studied by several authors. For further information, we refer to
[4,23,25]. A very particular case of (5.9), with H given by (3.32), is the linear
functional equation of the form:

¢(x) =Y Li(@)¢(&()) + h(w), (5.12)
i=1
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with fixed functions h € Y and El, . ,EV € R¥X. That equation is called
a linear equation of higher order when & = ¢ for i = 1,...,v, with some
¢ € XX, ie., when (5.12) has the form:

¢(z) = Z Li(1)$(&'(2)) + h(x). (5.13)

Some recent results concerning the stability of less general cases of it can be
found in [25,26,51,52,70,97].
The simplest case of Eq. (5.13), when v = 1 and 0 ¢ Ly(X), can be
rewritten in the form:
1 h(zx)

¢(&(x)) = AR AT

which is also called the linear equation. Special cases of (5.14) are the gamma
functional equation

(5.14)

Pz +1) = z¢(x)
for X =Y =R, the Schroder functional equation
P(&(x)) = s¢(x) (5.15)
with fixed s € R\{0}, and the Abel functional equation
P(&(x)) = ¢(x) + 1.
For more details on Eq. (5.14) and its various particular versions, we refer to

[58,60].

Remark 5.3. Let us consider a situation analogous to that in Remark 3.7,
with T' = T}y, for the Schréder functional equation (5.15) rewritten as

~0(6()) = 6(). (516)

Clearly, Eq. (5.16) is (5.9) with v = 1, & = £ and H(z,y) = 1y for
x € X and y € Y. So we have the case as in Corollary 5.2 with A : Df — Df
given by
(A0)4(t) = be(ay(|s]t), z€X, 6 €D, t>0.
Further, let E be a normed space, X := E\{0}, p € R, L € (0,00) and

t
(t) = ———
(*) t+ L|z|P

Assume that [|£"(z)||P? < anljz||? for z € X and n € Ny, with some

sequence (a,)nen, of positive reals such that lim,, .. a,!|s|" = oco.
Write e, := a;!|s|". Clearly, for every n € N, x € X and t > 0,

|s["t
(A"€)2(t) = egna)(I8]"t) =
e [s|"t + L& ()7
whence

re X, t>0.

> €y (ent>7 (517)

lim (A"€),(t) > lir+n ex(ent) =1, 2z€X,t>0,

n—-+4oo

which means that (3.11) holds.
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Further, assume additionally that

=1
p = Z e—i < o0
=0
and write
oo
1 1
Z - : , k,i € No.
~ei T Rt
Then,
= 1
Zwi—“ =1, ekﬂ-wf = —, k,j € No.
: Pk

Now, using (5.17), we get
Ti];?(Aie)z(wffkt) > {inf }em (ekﬂ-wft) =€ (p,?lt), xe X, t>0.
’ i€{0,....

FRRES}

Consequently, for every z € X and t > 0,
lim inf 77 (Ale), (w,,t) > lim  inf e, (p;'t)

m—+o00 jENg m—-+o0 jeNg
1
= i, colomt) =1
which means that (3.10) holds with w* := (wF),en, € Q. Moreover, for

w := wY we have

w 0( t)> lim  inf ¢, (e wot) (pflt)

whence
Go(t) > “od(t) > es(p't), zE€X, t>0,

where “o! and 5 have the same meaning as in Corollary 5.2.

6. Stability of Eq. (1.2)

In this section, we are concerned with the stability of the functional equation
(1.2) for m > 1. So we assume that X is a linear space over a field K € {R,C},
Aj,a;; € Kfori=1,...,mand j=1,...,n,and that D : X" — Y is a fixed
function.

It is easily seen that particular cases of the homogeneous version of
(1.2), namely of the equation

ZALf Zaijxj == 0, (61)
i=1 j=1

are the Cauchy functional equation

flx+y) = fx)+ fly), (6.2)

the Jensen functional equation

flat+y) = 5(/22) + f(29)).
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the particular version (with ¢ = C' = 0) of the linear equation in two variables
flaz+by+c)=Af(z)+ Bf(y) + C,

the Jordan—von Neumann (quadratic) functional equation

flety) + fl@—y) =2f(x) +2f(y), (6.3)
the Drygas equation
fl@+y)+ fle—y) =2f(x) + fy) + f(=y), (6.4)

and the Fréchet functional equation
fe+ty+2)+ @)+ W)+ f(z) =flz+y) + fle+2)+ fy+2)
(6.5)

Various information on the Cauchy, Jensen and linear equations can
be found in [2,3,59]. Equation (6.3) (the parallelogram law) was used by
Jordan and von Neumann [50] in a characterization of the inner product
spaces and Egs. (6.4) and (6.5) were applied for the analogous purposes (cf.
[8,38,55]); we refer to [12,15,35,49,53,54,71,72,77-80,85] for further related
information and stability results for those equations.

Let A : YX — YX denote the Fréchet difference operator given by

Ayf(x) = A, f(x) = flz+y) - flz), zyeX.
Write
Ay, i=0Ar0 Ay Af = Ay 4, t,z € X,
and
At =0r0A,0A,, Af = Ay ¢ty t,bu,z € X,

for functions f € YX. Recurrently, we define

A’;H =A,0A}, zeX,neN,

Dopiitnyzs =By ©Ba 21y Tl Zpy1 € X, n €N

It is easily seen that the equations

ATf(x)=0, z,z€X, (6.6)
Ag,o f[(2)=0, z,21,...,2, € X,
AT f(x) =nlf(z), z,ze€X (6.7)

are particular cases of (6.1). Functions f : X — Y satisfying (6.6) and (6.7)
are called polynomial functions of order n—1 and monomial functions of order
n, respectively (see, e.g., [42,49,59,61,93] for information on their solutions
and stability).

Let us mention yet that (6.5) can be written as

C*f(z,y,2) =0, wz,y,z2¢€X,
where

C?f(xz,y,2) = Cf(w,y +2) = Cf(z,y) = Cf(w,2), z,y,2€X,
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and
Cf(x,y)=f(x+y) - f(x) - fly), zyeX,
i.e., C2f is the Cauchy difference of f of the second order. Recurrently,
C™" " f(xy, .. ap,u,w) = C"f(x1, ... xp,u+w) — C"f(x1,... 20, u)
—C"f(x1,. .., Tp,w)
for z1,...,xp,u,w € X, and n € N. It is easily seen that the equation
C™" M f(xy, .. Tng2) =0, T1,...,Tp40 € X,

also is of the form (6.1) for every n € N.
The functional equation

M [f (W) + @)+ fly) + f(z)}

P () () e

(M, N,m,n being non-zero integers) is another particular case of (6.1). It
has been studied in [29-32]. The Eq. (6.8) with M =m =3 and N =n =2
was considered for the first time by Popoviciu [81] in connection with some
inequalities for convex functions; for results on solutions and stability of it,
we refer to [92,94]. Solutions and stability of (6.8) with M = m = 3 and
N = n = 2 have been investigated by Lee [62]. The more general case N = n?
and M = m? of (6.8) has been studied in [63]. For results on a generalization
of (6.8) we refer to [95].

Finally, let us recall here the equation of p-Wright affine functions (called
also the p-Wright functional equation)

flpz+ (1 =p)y) + f((1 = p)x+py) = f(x) + fy), (6.9)

where p € R is fixed, which also is of form (6.1). For more information on
(6.9) and recent results on its stability we refer to [11,18].

Our main theorem in this section concerns the Ulam-type stability of
Eq. (1.2) in RN-spaces. The following two hypotheses are needed to formulate
it.
(M) There exist p € {1,--- ;m — 1} and ¢4,..., ¢, € K such that

m
Agi=| Y Ai|>0, Bi=1, i=p+1,...m,
i=p+1
where (; := E;‘L:1 a;c; fori=1,...,m.

(D) For every z1,...,2, € X,

=1 j=1

i=1
where f3; is defined as in hypothesis (M) and d(z) = D(c1z,...,cpx)
for z € X.

The next two remarks provide some comments on those hypotheses.
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Remark 6.1. 1f 377 |am;| # 0, then there exist c1,...,¢, € K such that
> i—1amjc; = 1. Therefore, hypothesis (M) is fulfilled with p = m — 1.
However, because of the forms of the conditions (i)—(iii) of Theorem 3.5 and
(6.13), it makes sense to consider (for some cases of the Eq. (1.2) and some
functions 6) also the situations with p < m — 1.

For instance, for the Cauchy equation (6.2) and its inhomogeneous form

fle+y) = flx) + f(y) + D(z,y), (6.11)
we can consider the following two situations (we refer to Corollary 6.4 and
its proof for consequences in both of them).

(al) If (6.11) is written in the form (1.2) as f(x1 + x2) — f(z1) — f(z2) =
D(J?,y), then m = 3, n = 2, A1 = 1, A2 = A3 = —1, aj; = ajp = 1,
az1 = 1, aga =0, az; = 0, azz = 1. In the matrix form, we can write a;;

as
11
iligz = 0

Clearly, (M) is valid with p =1, Ag =2, and ¢; = ¢ = 1.

(a2) If (6.11) is written in the form (1.2) as —f(z1) — f(x2) + f(a1 + 22) =
D(J?,y), then m = 3, n = 2, A1 = A2 = —1, Ag = 1, a11 = 1, a19 = O,
az1 = 0, azs = 1, ag1 = azx = 1. In the matrix form, we can write a;;

as
10
e =\

and (M) is valid with u =2, Ag =1, and ¢; = co = 1/2.

Remark 6.2. (b0) Clearly, if D is a constant function, then hypothesis (D) is
valid (this case includes Eq. (1.1)). Moreover, if functions Dy, Dy : X" — Y
satisfy the hypothesis, then so does the function ay Dy + as Do with any fixed
scalars aq, as. Below, we provide more examples of nontrivial functions D
satisfying the hypothesis.

(b1) Consider the situation (al) depicted in the previous remark, with
m:S,n:Z,A1:1,A22A3:—1,a11=a12=1,a21=1,a2220,
a31:0,a32:1,u:1,andcl:02:1.Then51:2,52:53:1and
condition (6.10) takes the form

D(SCl + To, T + Ig) — D(SChl’l) — D(IQ,IL'Q)
:D(2ZE1,2(E2) —2D(£L’17£L'2), x1,T2 e X. (612)
Observe that condition (6.12) holds in each of the following three cases:
e D is a symmetric biadditive function (i.e., D(x1,x2) = D(x2,21) and
D(z1,x9 + x3) = D(x1,22) + D(x1,23) for z1,22,23 € X);
e there exist additive hi,he : X — X such that D(xz1,22) = hi(z1) +
ho(zg) for z1,x2 € X;
e there exists p : X — Y such that D(x1,22) = p(x1 +22) — p(x1) — p(22)
for x1,29 € X.
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(b2) In the situation (a2) depicted in the previous remark, with m = 3,
n=24=A4=1 43 = -1, a1 = 1, a12 = 0, ag;1 = 0, azz = 1,
az1 =asx =1, u=2,¢1 =co =1/2, By = B3 = 1/2 and 5 = 1, condition
(6.10) takes the form

1 1 1 1 1
D<29€17 5% ) +D< T2, 5 2) —D<2(901 +$2),§($1 +9U2)>

1
_2D< $1,2.’E2> _D(mlaxQ)a :ElvaEXa

which is actually (6.12) (it is enough to replace z; by 2z; and multiply both
sides by —1).

(b3) More generally, if hy,...,h, : X — Y are solutions to equation
(6.1), then the function D : X™ — Y, given by

D(xy,...,2p) = th(xk), T1,...,%n € X,

fulfills hypothesis (D). In fact, fix z1,...,2, € X. Then, according to the
definition of d,

iAi d<iaijxj> = iAiD <01 iaijxj, ey Cp i%‘j%‘)

1=1 j=1 i=1 j=1 j=1

B Z Az Z hk (Ck Z aijl’j) = Azhk (Z aijckxj> = O7
k=1 j=1 j=1

i=1 k=11i=1

i
I
kol
I
I

whence we get (6.10).

Theorem 6.3. Let hypotheses (M) and (D) be valid and § : X™ — D satisfy
Jim (T"0)(z1,...,2,) ) =1, t>0, z1,...,3, € X, (6.13)

where T : Df" — Dfn s given by
Tx(@1,. .. z0)(t) =TI x(Bizr, ..., Bizy) (MAIZZ) ,
x€DY", t>0, 21,...,2, € X. (6.14)
Further, assume that one of the conditions (1)—(iii) of Theorem 3.5 holds with
€€ fo and A : Df — Df defined by
e(t) = 0(c1x,...,cpx)(t4p), x€ X, t>0, (6.15)

A
(AO)(t) =T 05,2 (Mf') ., 6€DY, X, t>0. (6.16)
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If f: X =Y fulfills

FZZ”:1 Aif (X0, agjay)—D(21,ex0) > 9($1, e ,In), T1,...,Tpn € X, (617)

j=1

then there is a solution 1 : X — 'Y of Eq. (1.2) such that

Fry—fy)(t) > sup 72at), t>0, zc€ X, (6.18)
ae(0,1)

with 50 defined by (3.7) (see also (3.2) and (3.3)).
Moreover, in case where (1) or (ii) holds, there is exactly one solution
¥ € YX of (1.2) such that there exists o € (0,1) with

Fy—p(t) > 55(at), >0, veX. (6.19)

Proof. Write |o| = 1/A and fix z € X. Putting z; := ¢z for j € {1,...,n}
in (6.17), we get
FET:{ A, f(Biz)—d(z) = O(crz, ..., cp).

Moreover,

ad Aif(Biw) = f(@) + Y Aiaf (Bix).
=1

i=1
Therefore,

Fra)+ash | A f(Bia)—ad@) () = Fasm  a,(82)—ad(z)(t)

= FZZH:1 Aif(Z?:l aijcjw)—d(w) (Aot) > 9(0156, ey Cnl')(Aot), t>0.

Consequently,
Ff(:v)fJf(a:) (t) > 0(6156, ey Cnl‘)(Aot), t >0, (620)
with the operator J : YX — Y X defined by

JE(x) = —a(ZAif(ﬂix) - d(w)), feY¥ zeX.
i=1

Note that the assumptions of Theorem 3.11 are satisfied for such .J, because,
for every £,7 € YX and z € X,

(JE = Tn)(x) = —a Y _ Ai(& —n)(Bix),

i=1
whence

Flue—am@ () = Foaxn | ae—n) @) (t)
Aot

> T/ Fay(e—n)(pin) (u)

Apt
=T/ Fle—n)(Bix (), t> 0.
=14(§—n)(Biz) 1] A

This means that the condition (3.34) is fulfilled with &;(z) = Gz and
L;(z) = |Ai]/Ao. Consequently, by Theorem 3.11, for every k € Ny, € X
and t > 0, the limit (3.12) exists and the function ¢ € Y is a fixed point of
J fulfilling (6.18).
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Moreover, if one of the conditions (i), (ii) holds, then ¢ is the unique

fixed point of J such that there is a € (0,1) with
Fly—p)@)(t) >02(at), t>0, z€X. (6.21)

Now, we show that 1 is a solution to (6.1). To this end, observe that

iAﬂ/)(iaijxj) ZA hm Jk <Za”x]>
i=1 j=
hm (ZA JEf (Zaijxj)), T1,...,T, € X. (6.22)
j=1

First, we prove by induction that, for each k¥ € Ny and x1,...,x, € X,

Fym  aep (s aijijD(x“__?%)E(Tke)(xl,...,xn). (6.23)

The case k = 0 is (6.17). So fix k¥ € Ny and assume that (6.23) holds.
Then, by hypothesis (D), for every z1,...,z, € X,

m

S A (IR (Zw;) iMka)(i%%)
i=1 j=1
A(JRf) <5ziaiﬁj> d(iaiﬂjﬂ
=1 = =t

w m n m n
= *O{ZA[ZAl (Zaljﬂl%) +aZAld<Zalj:rJ>
=1 i=1 j=1 i=1 j=1
w m n m
=—a) A A (Zawﬁl%) +a) AD <51x1,...,ﬂ19§n>
=1 i=1 J=1 =1
“ m n
Z ZAz (J*f) <Zaijﬁl$g‘> - D(ﬂth . ~,51In,>]
=1 i=1 j=1
—I—D(l‘l,l‘g...,.’)ﬁn). (624)

Hence, by (6.14) and the assumed inequality (6.23),

Fzr”: AR (S i)~ D) (E)

T ot (AT, AR ( ;;1uijﬁzxj)—Dwle,.A.ﬁmn)](t)
Apt
l LY A (TR F) (X0 aijBiz; )~ DBz, Bizn) <N|Al>

A
> T (T50)(Biaa, - . ., Biwy) (lﬁ)

Z(Tk+19)($17...,1'n)(t), zl,...,xneX, t>0.



33 Page 30 of 38 C. Benzarouala et al. JFPTA

Thus we have proved that (6.23) holds for each k € Ny. Now, by letting
k — oo in (6.23), in view of (6.13), for every z1,...,z, € X, we get

lim Fi, =1, t>0, (6.25)

k—o0 i=

LATED (S0 @iz ) —D(@1,0-,m0) (t)

which means that

m

n
kh—{EOZ;AZ(ka) <z;aijxj> = D(xl, SN ,l‘n), T1,...,Tp € X.
1= Jj=

Consequently, by (6.22),

m n
ZAiw<Zaij],‘j> :D($1,...,$n), T1,y...,Tn € X. (626)
i=1 j=1

To complete the proof, observe that every solution of (1.2) is a fixed
point of J and therefore the statement on uniqueness follows directly from
the uniqueness property of ¢ as a fixed point of J satisfying (6.21). O

Using Theorem 6.3, we can obtain various stability results for numerous
equations. For instance, for the Cauchy inhomogeneous equation (6.11) we
can argue as in the following corollary.

Corollary 6.4. Assume that T =Ty, Y is M-complete, || || is a norm on X,
D : X? —Y satisfies condition (6.12), p,v1,vs € [0,00), p # 1, vy + vy # 0,
and f: X —'Y satisfies
t
> .
t+ vr|[z]|P + valy[]P
z,y € X, t>0. (6.27)

E(oty)~ (@)~ (9)~ D) ()
Then there exists a unique solution ¢ : X — Y to the Cauchy inhomogeneous
equation (6.11) such that
t
Frimwia () >09(04) > ———
s (1) 2 0:(t) 2 e

where 0(t) is defined by (3.7) and

reX, t>0, (6.28)

V1 + V2
227

Vo =

Proof. Equation (6.11) is (1.2) with m = 3 and n = 2. Next, Remark 6.2
shows that condition (6.12) means that D fulfills hypothesis (D). So, we use
Theorem 6.3 with

O(z1, ) (1) t

—tr o[+ oo P’
and consider two separate cases: p < 1 and p > 1.

The first case (p < 1) coincides with the situation (al) of Remark 6.1,
with A1 = 7A2 = 7A3 =1 and

r1,20 € X, t >0,

11
e = (G1)
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when hypothesis (M) is valid with 4 = 1 and ¢; = ¢3 = 1. Then, Ay = 2,
01 = ai1¢1 + a1aca = 2, and consequently (see (6.14)—(6.16))

(T)(@1,22)(8) = x(By1, Br2) (M‘f;f') (2, 200)(21),

t>0, 21,2 € X,y € DY, (6.29)
(Ad)(t) := 0,0 (ﬁgtﬂ) =65,(2t), €Dy, z€X, t>0,
e2(t) = B(cr, caz) (tAg) = m EX, t>0, (6.30)

with v := (v + v2)/2.

Arguing as in Remark 3.7 (with a = b =2 and ey = ba™? = 2177 > 1),
we obtain that A satisfies condition (3.10) (with some sequence (w¥),en, € Q)
and

~ _ t
30(t) > eu(e5 (e — 1)) = ol C €X, t>0,
with
v 0 + U2

T T T g

Moreover, by (6.29),
lim (TkG)(xl,xg)(t) = lim 0(2%z;,2%x,)(2%t)

k—o0 k—o0
t
- 1 — 1’ R = X, t> O7
S e D (e P + vallea ) e

which means that (6.13) is fulfilled. Therefore our statement for p < 1 results
from Theorem 6.3.

In the case p > 1, we need situation (a2) of Remark 6.1, with —1 =
A1 = A2 = —A3 and

10
e =\

when hypothesis (M) holds with 4 = 2, Ag = 1 and ¢; = ¢o = 1/2. The
reasoning is analogous to the case p < 1, but for the convenience of the
reader, we present it in some details. Namely, when 51 = [y = 1/2, €,(t) is
given by (6.30), but with v = 27P(v; + v3), and for every x, 21,29 € X, t > 0
and § € fo ,

Agt Apt t
Aéxtzﬂaé.x(o):min{éw( 0 >}=51x -1,
(A6)x (1) =198; N'Ail i=1,2 Bi N'Ail 3 2

1 1 1

TO(z1,22)(t) = T2, 0(Bra1, Bo2) (;)
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According to Remark 3.7 (with @ = b = 1/2 and consequently eg :=
ba—P = 2P~1 > 1), condition (3.10) is satisfied and

~ _ t
o5 (t) > ex(eg Yeg — 1)t) = T oolZl re X, t>0,
with
v V1 + Vg

T 12t 22"
Note yet that, for 1,22 € X and t > 0, we have
klim (T%0) (z1,22)(t) = klim 0(2 %2y, 27 25)(27%¢)
t
= lim =1
koo t+ 2807P) (vy |21 [P + v |22 ||P)

This means that (6.13) is fulfilled. Therefore, also our statement for p > 1
results from Theorem 6.3. O

Vo

Remark 6.5. According to Remark 6.2 ((b0) and (bl)), the function D in
Corollary 6.4 can be of the following form:

D(z,y) = zo +u1(z) + u2(y) + us(z,y) + g(x +y) —g(x) —9(y), =x,y€X,

with any fixed: g : X — Y, additive u1,u2 : X — Y, biadditive symmetric
uz: X? —Y,and zp €Y.
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