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Abstract. We prove a very general fixed point theorem in the space of
functions taking values in a random normed space (RN-space). Next,
we show several of its consequences and, among others, we present ap-
plications of it in proving Ulam stability results for the general inho-
mogeneous linear functional equation with several variables in the class
of functions f mapping a vector space X into an RN-space. Particu-
lar cases of the equation are for instance the functional equations of
Cauchy, Jensen, Jordan–von Neumann, Drygas, Fréchet, Popoviciu, the
polynomials, the monomials, the p-Wright affine functions, and several
others. We also show how to use the theorem to study the approximate
eigenvalues and eigenvectors of some linear operators.
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1. Introduction

In this paper, we prove a fixed point theorem for classes of functions taking
values in a random normed space (RN-space) and show some applications of
it to several issues connected with Ulam-type stability.

The study on such stability was initiated by a question of Ulam from
1940 (cf., e.g., [48,96]) asking if an “approximate” solution of the functional
equation of group homomorphisms must be “close” to an exact solution of
the equation. The first answer was provided by Hyers [48], who considered
the question for the Cauchy functional equation in Banach spaces and used
the method that subsequently was called the direct method. He defined the
equation solution explicitly as a pointwise limit of a sequence of mappings
constructed from the given approximate solution.
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Later, Hyers’ result was generalized by Aoki [10], Rassias [84], Forti [37],
Gajda [39], Gǎvruta [40] and others, with a similar method. We refer to the
monographs [25,49,53] for more information on history and recent research
directions related to the subject.

Further, in 2003, Radu [82] proposed a new method to retrieve the
main result of Rassias [84], based on the fixed point alternative in [34]. The
same fixed point method, using also Banach Contraction Principle, has sub-
sequently been used by many other authors to study the stability of a large
variety of functional equations (see for example [21,27,33,69,74] and the ref-
erences therein). A modification of it was proposed in [74,75], where the
author tied some set of functions to the given approximate solution of a
given functional equation to make it a complete metric space, and then to
apply the Banach theorem. Many new fixed point theorems have been shown
in the literature, to investigate Ulam stability in spaces endowed with some
kind of generalized metrics, such as fuzzy metric, quasi-metric, partial met-
ric, G-metric, D-metric, b-metric, 2-metric, ultrametric, modular metric, and
dislocated metric; see for instance [5,9,46,56,64].

Some authors have also used a somewhat different approach, proposed
for the first time in [18,19] (see [21] for further references), which applies the
fixed point result for function spaces proved in [20]. For instance, Bahyrycz
and Olko [13] applied that approach in their study on stability of the general
functional equation

m∑

i=1

Aif

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + A = 0 (1.1)

for functions f mapping a linear space X over a field K into a Banach space
Y , where A ∈ Y and, for every i = 1, 2, . . . ,m, j = 1, 2, . . . , n, Ai ∈ K

∗ :=
K\{0}, and aij ∈ K. Let us mention that numerous functional equations that
are well known in the literature are particular cases of (1.1) (see Sect. 6 for
more details).

Bahyrycz and Olko [14] and Zhang [98] (see also [75]) published the
hyperstability results for Eq. (1.1) obtained by the same theorem in [20].
Related results can also be found in [16,17].

The theory of probabilistic metric (or random normed) spaces was pro-
posed by Menger [66] as a probabilistic extension of the metric space theory
(see also [87]). This theory was later investigated by Šerstnev [89–91] (we
also refer to the book [44]). It seems that Alsina [7] was the first to consider
Ulam-type stability of functional equations in probabilistic normed spaces.
Next, in 2008, Mihet and Radu [68], using the fixed point method, proved the
stability results for the Cauchy and Jensen functional equations in random
normed spaces.

The stability of many other functional equations was also investigated
in random spaces. For example, Kim et al. [57] investigated the stability of
the general cubic functional equation, Abdou et al. [1] studied the stability of
the quintic functional equations, Alshybani et al. [6] used the direct and the
fixed point methods to prove the stability results for the additive–quadratic
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functional equation, and Pinelas et al. [76] used the direct and the fixed point
method to show stability of a new type of the n-dimensional cubic functional
equation. We also refer to the book of Cho et al. [28] for more details on that
type of stability in random normed spaces.

In this paper, we will first show a general fixed point theorem for classes
of functions taking values in a random normed space. This is the random
normed space version of the fixed point theorems in [20,22] (see also [24]),
which turned out to be very useful in investigations of the stability of various
functional equations. Next, we show how to use the theorem to study the
Ulam stability of various functional equations in a single variable and inves-
tigate the approximate eigenvalues and eigenvectors in the spaces of function
taking values in RN-spaces.

Finally, using this fixed point theorem, we prove the very general results
on the stability of the functional equation

m∑

i=1

Aif

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ = D(x1, . . . , xn) (1.2)

for functions mapping a linear space X into a random normed space Y , with
a given function D : Xn → Y . As special cases of this result, we can obtain
the stability criteria for numerous functional equations in several variables,
in the framework of random normed spaces.

2. Preliminaries
In the sequel, we use the definitions and properties of the random normed
space (RN-space) as in [7,28,44,45,64,68,87,89–91]. However, for the conve-
nience of the reader, we remind some of them.

Definition 2.1. A mapping g : R → [0, 1] is called a distribution function if it
is left continuous, non-decreasing and

sup
t∈R

g(t) = 1, inf
t∈R

g(t) = 0.

The class of all distribution functions g with g(0) = 0 is denoted by D+.

For any real number a ≥ 0, Ha is the element of D+ defined by

Ha(t) :=
{

0 if t ≤ a;
1 if t > a.

Definition 2.2. [28] A mapping T : [0, 1] × [0, 1] → [0, 1] is a triangular norm
(briefly a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T (a, 1) = a for all a ∈ [0, 1];
(c) T (a, b) ≤ T (c, d), whenever a ≤ c and b ≤ d.

Remark 2.3. Clearly, in general, a t-norm does not need to be continuous.
Typical examples of continuous t-norms are as follows:

Tp(a, b) = ab, TM (a, b) = min(a, b), TL(a, b) = max(a + b − 1, 0).
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Moreover, in view of (b) and (c), for each t-norm T and x ∈ [0, 1], we have:

T (x, 1) = T (1, x) = x, T (x, 0) = T (0, x) = 0.

Remark 2.4. (Cf. [28]) If T is a t-norm, m ∈ N0 and ai ∈ [0, 1] for i ∈ N0,
then we write

Tm
i=mai := am, Tm+n

i=m ai := T (am+n, Tm+n−1
i=m ai), n ∈ N.

Since T is commutative and associative, it is easy to show by induction that

Tm+n+l
i=m ai = T

(
Tm+n

i=m ai, T
m+n+l
i=m+n+1ai

)
, m, n, l ∈ N0, l > 0. (2.1)

Note yet that, by (c), the sequence (Tm+n
i=m ai)n∈N is non-increasing for every

m ∈ N and therefore always convergent. So, for each m ∈ N, we may introduce
the following notation:

T∞
i=mai := lim

n→∞ Tm+n
i=m ai = inf

n∈N

Tn+m
i=m ai.

A t-norm T can be extended in a unique way to an n-ary operation
taking:

T (a1, . . . , an) := Tn
i=1ai.

To shorten some long formulas, we will write

T̂ (a) := T (a, a), a ∈ [0, 1].

It is easy to show by induction on k (using the associativity and commuta-
tivity of T ) that

T k
j=1T̂

(
Tm+n

i=m aij

)
= T̂

(
Tm+n

i=m T k
j=1aij

)
(2.2)

for every k, n,m ∈ N0, k ≥ 1, and aij ∈ [0, 1] with j = 1, . . . , k and i =
m, . . . , m + n. We need that property a bit later.

Definition 2.5. Let Y be a real vector space, F : x �→ Fx a mapping from
Y into D+, and T a continuous t-norm. We say that (Y, F, T ) is a random
normed space (briefly RN-space) if the following conditions are satisfied:
(1) Fx = H0 if and only if x = 0 (the null vector);
(2) Fαx(t) = Fx

(
t

|α|
)

for all x ∈ Y, t > 0 and α �= 0;
(3) Fx+y(t + s) ≥ T (Fx(t), Fy(s)) for all x, y ∈ Y and t, s ≥ 0.

For more information on the RN-spaces, we refer to [41,45,65,87,89].

Example. Let (Y, ‖ ‖) be a normed space. Then both (Y, F, TM ) and (Y, F, Tp)
are random normed spaces, where for every x ∈ Y

Fx(t) :=
{

0 if t ≤ 0,
t

t+‖x‖ if t > 0.

The same remains true if

Fx(t) :=
{

0 if t ≤ 0,
e−‖x‖/t if t > 0.

Definition 2.6. (Cf., e.g.,, [41,65]) Let (Y, F, T ) be an RN-space.
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(1) A sequence (xn)n∈N in Y is said to converge (or to be convergent) to
x ∈ Y (which we denote by: limn→+∞ xn = x) if

lim
n→+∞ Fxn−x(t) = 1, t > 0,

i.e., for each ε > 0 and each t > 0, there exists an Nε,t ∈ N such that
Fxn−x(t) > 1 − ε, for all n ≥ Nε,t.

(2) A sequence (xn)n∈N in Y is said to be an M -Cauchy sequence if

lim
n,m→+∞ Fxn−xm

(t) = 1, t > 0,

i.e., for each ε > 0, and each t > 0, there exists Nε,t ∈ N such that
Fxn−xm

(t) > 1 − ε, for all Nε,t ≤ n < m.
(3) A sequence (xn)n∈N in Y is said to be a G-Cauchy sequence if

lim
n→+∞ Fxn−xn+k

(t) = 1, t > 0, k ∈ N,

i.e., for every ε > 0, k ∈ N and t > 0, there exists an Nε,t,k ∈ N such
that Fxn−xn+k

(t) > 1 − ε for all n ≥ Nε,t,k.
(4) (Y, F, T ) is said to be G-complete (M -complete, respectively) if every

G-Cauchy (M -Cauchy, resp.) sequence in Y is convergent to some point
in Y .

Remark 2.7. Since every M -Cauchy sequence is also G-Cauchy, it is easily
seen that each G-complete RN-space is M -complete.

3. A general fixed point theorem in RN-spaces
Our first main result is a very general RN-space version of a fixed point
theorem in [20]; actually, we follow the approach from [22] (see also [24]). We
provide some applications of it in the next sections.

In what follows, X is a non-empty set, (Y, F, T ) is an RN-space, N0 :=
N∪{0} and R+ := [0,+∞) (the set of non-negative real numbers). If U and V
are nonempty sets, then as usual UV denotes the family of all mappings from
V to U . If F ∈ UU , then Fn stands for the n-th iterate of F , i.e., F 0(x) = x
and Fn+1(x) = F (Fn(x)) for x ∈ U and n ∈ N0. The space Y X is endowed
with the coordinatewise operations, so that it is a linear space.

To simplify some expressions, for given φ ∈ DX
+ and x ∈ X, we write

φx to mean φ(x), i.e.,

φx(t) := φ(x)(t), x ∈ X, t ∈ R.

For every ϕ,ψ ∈ D+ the inequality ϕ ≤ ψ means that ϕ(t) ≤ ψ(t) for each
t > 0. We use this abbreviation to simplify formulas whenever the variable t
is not necessary to express them precisely.

Definition 3.1. Let Λ : DX
+ → DX

+ and J : Y X → Y X be given. We say that
the operator J is Λ-contractive if, for every ξ, η ∈ Y X and every φ ∈ DX

+ ,
(

∀x∈X F(ξ−η)(x) ≥ φx

)
=⇒

(
∀x∈X F(Jξ−Jη)(x) ≥ (Λφ)x

)
.
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The convergence in D+ will mean the pointwise convergence. Therefore,
we say that a sequence (ψn)n∈N in D+ converges to some ψ ∈ D+ if

lim
n→∞ ψn(t) = ψ(t), t > 0.

Hence, the convergence of (ψn)n∈N to H0 means that

lim
n→∞ ψn(t) = 1, t > 0.

We need yet the following hypothesis on Λ : DX
+ → DX

+ .

(C0) If (gn)n∈N is a sequence in Y X such that the sequence
(
Fgn(x)

)
n∈N

converges to H0 for every x ∈ X, then the sequence
(
(ΛFgn

)x

)
n∈N

converges to H0 for every x ∈ X, where Fgn
∈ DX

+ is given by Fgn
(x) :=

Fgn(x) for x ∈ X.

Remark 3.2. Let χ0 ∈ DX
+ be given by: χ0(x) = H0 for x ∈ X. Then (C0)

actually means the continuity of Λ at the point χ0 (with respect to the
pointwise convergence topologies in DX

+ and D+) and the property: Λχ0 = χ0.
Let ν ∈ N, ξ1, . . . , ξν : X → X, and L1, . . . , Lν : X → (0,∞) be fixed.

A natural example of operator Λ fulfilling hypothesis (C0) can be defined by

(Λδ)x(t) := T ν
i=1δξi(x)

(
t

νLi(x)

)
, δ ∈ DX

+ , x ∈ X, t > 0. (3.1)

We refer to Remark 3.10 for further comments on this situation.

In what follows, Ω stands for the family of all real sequences (ωn)n∈N0

with ωn ∈ (0, 1) for each n ∈ N0 and
∞∑

i=0

ωi = 1.

Let us first state the following lemma, which will be used in the sequel.

Lemma 3.3. Let Λ : DX
+ → DX

+ and ε : X → D+ be arbitrary. Then, for every
x ∈ X, k ∈ N0, ω ∈ Ω, and t > 0, the limits

σk
x(t) := lim

j→∞
T k+j−1

i=k (Λiε)x

(
t

j

)
, (3.2)

ωσk
x(t) := lim

j→∞
T k+j−1

i=k (Λiε)x

(
ωi−kt

)
(3.3)

exist in R and

σk
x(t) = inf

j∈N

T k+j−1
i=k (Λiε)x

(
t

j

)
, (3.4)

ωσk
x(t) = inf

j∈N

T k+j−1
i=k (Λiε)x

(
ωi−kt

)
. (3.5)

Proof. Fix k ∈ N0, x ∈ X and t > 0 and write

τm(x, t, k) := T k+m−1
i=k (Λiε)x

(
t

m

)
, m ∈ N.
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Since (Λiε)x ∈ D+, it is a non-decreasing function for each i ∈ N. Hence,

(Λiε)x

(
t

m

)
≥ (Λiε)x

(
t

m + 1

)
.

Consequently,

τm(x, t, k) = T k+m−1
i=k (Λiε)x

(
t

m

)
≥ T k+m−1

i=k (Λiε)x

(
t

m + 1

)

= T

(
1, T k+m−1

i=k (Λiε)x

(
t

m + 1

))

≥ T

(
(Λk+mε)x

(
t

m + 1

)
, T k+m−1

i=k (Λiε)x

(
t

m + 1

))

= T k+m
i=k (Λiε)x

(
t

m + 1

)
= τm+1(x, t, k),

whence the sequence (τm(x, t, k))m∈N is non-increasing and, therefore, for
every k ∈ N0, x ∈ X and t > 0, the following limit exists

σk
x(t) = lim

m→∞ τm(x, t, k) = inf
m∈N

τm(x, t, k). (3.6)

Next, fix ω ∈ Ω, k ∈ N0, x ∈ X and t > 0, and write

ρm(x, t, k) := T k+m−1
i=k (Λiε)x

(
ωi−kt

)
, m ∈ N.

Then,

ρm(x, t, k) = T k+m−1
i=k (Λiε)x

(
ωi−kt

)

= T
(
1, T k+m−1

i=k (Λiε)x

(
ωi−kt

))

≥ T
(
(Λk+mε)x

(
ωmt

)
, T k+m−1

i=k (Λiε)x

(
ωi−kt

))

= T k+m
i=k (Λiε)x

(
ωi−kt

)
= ρm+1(x, t, k).

This means that the sequence (ρm(x, t, k))m∈N is non-increasing. Therefore,
there exists the limit

ωσk
x(t) := lim

m→∞ ρm(x, t, k) = inf
m∈N

ρm(x, t, k).

�

Remark 3.4. Fix x ∈ X and k ∈ N0. If T = TM in Lemma 3.3, then

σk
x(t) := lim

m→∞ T k+m−1
i=k (Λiε)x

(
t

m

)

= lim
m→∞ inf

i=1,...,m
(Λk+i−1ε)x

(
t

m

)

= inf
m∈N

(Λk+m−1ε)x

(
t

m

)
.
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If T = Tp, then (3.4) implies that

σk
x(t) = inf

m∈N

m∏

i=1

(Λk+i−1ε)x

(
t

m

)
.

Analogous equalities are valid for ωσk
x with any ω ∈ Ω.

In the sequel, given Λ : DX
+ → DX

+ and ε : X → D+, we write

σk
x(t) := sup

ω∈Ω

ωσ k
x (t), σ̂k

x(t) := max{σk
x(t), σk

x(t)} (3.7)

for every x ∈ X, k ∈ N0 and t > 0, where σk
x(t) and ωσk

x(t) are defined by
(3.2) and (3.3).

Theorem 3.5. Let Λ : DX
+ → DX

+ , ε : X → D+, J : Y X → Y X and f : X →
Y be given. Assume that Λ satisfies hypothesis (C0), J is Λ-contractive,

F(Jf−f)(x) ≥ εx, x ∈ X, (3.8)

and one of the following three conditions holds.
(i) (Y, F, T ) is M-complete and

lim
k→+∞

inf
j∈N0

T k+j
i=k (Λiε)x

(
t

j + 1

)
= 1, x ∈ X, t > 0. (3.9)

(ii) (Y, F, T ) is M-complete and for each k ∈ N there is a sequence (ωk
n)n∈N0 ∈

Ω with

lim
k→+∞

inf
j∈N0

T k+j
i=k (Λiε)x

(
ωk

i−kt
)

= 1, x ∈ X, t > 0. (3.10)

(iii) (Y, F, T ) is G-complete and limn→+∞(Λnε)x = H0 for x ∈ X, i.e.,

lim
n→+∞ (Λnε)x(t) = 1, x ∈ X, t > 0. (3.11)

Then, for every x ∈ X, the limit

ψ(x) := lim
n→+∞(Jnf)(x) (3.12)

exists in Y and ψ ∈ Y X thus defined is a fixed point of J with

F(ψ−Jkf)(x)(t) ≥ sup
α∈(0,1)

σ̂k
x(αt), k ∈ N0, x ∈ X, t > 0. (3.13)

Moreover, in case (i) or (ii) holds, ψ is the unique fixed point of J such that
there exists α ∈ (0, 1) with

F(ψ−Jkf)(x)(t) ≥ σ̂k
x(αt), k ∈ N0, x ∈ X, t > 0. (3.14)

Proof. First we show by induction that, for every n ∈ N0,

F(Jn+1f−Jnf)(x) ≥ (Λnε)x, x ∈ X. (3.15)

The case n = 0 is just (3.8). So, fix n ∈ N0 satisfying (3.15). Then, using the
Λ-contractivity of J and the inductive assumption, we obtain

F(Jn+2f−Jn+1f)(x) ≥
(
Λ(Λnε)

)
x

= (Λn+1ε)x, x ∈ X.
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Thus, we have proved that (3.15) holds for every n ∈ N0. Consequently,
for every n ∈ N0, m ∈ N, x ∈ X and t > 0 we have

F(Jn+mf−Jnf)(x)(t) = F∑m−1
i=0 (Jn+i+1f−Jn+if)(x)(t)

≥ Tm−1
i=0 F(Jn+i+1f−Jn+if)(x)

(
t

m

)

≥ Tm−1
i=0 (Λn+iε)x

(
t

m

)
= Tn+m−1

i=n (Λiε)x

(
t

m

)
, (3.16)

and analogously, as ωm−1t <
∑∞

i=m−1 ωit for every (ωn)n∈N0 ∈ Ω,

F(Jn+mf−Jnf)(x)(t) ≥ Tm
i=1F(Jn+if−Jn+i−1f)(x)

(
ωi−1t

)

≥ Tm
i=1(Λ

n+i−1ε)x

(
ωi−1t

)

= Tn+m−1
i=n (Λiε)x

(
ωi−nt

)
, (ωn)n∈N0 ∈ Ω. (3.17)

Now, we show that the limit (3.12) exists in Y for every x ∈ X. First
consider the case of (i). Then, by (3.16), for all k,m ∈ N, n ∈ N0, x ∈ X and
t > 0,

F(Jn+kf−Jn+mf)(x)(2t) ≥ T
(
F(Jn+kf−Jnf)(x)(t), F(Jnf−Jn+mf)(x)(t)

)

≥ T

(
Tn+k−1

i=n (Λiε)x

(
t

k

)
, Tn+m−1

i=n (Λiε)x

(
t

m

))
.

Consequently, by (c),

inf
k,m∈N

F(Jn+kf−Jn+mf)(x)(2t)

≥ inf
k,m∈N

T

(
Tn+k−1

i=n (Λiε)x

(
t

k

)
, Tn+m−1

i=n (Λiε)x

(
t

m

))

≥ T

(
inf

k∈N0
Tn+k

i=n (Λiε)x

(
t

k + 1

)
, inf
m∈N0

Tn+m
i=n (Λiε)x

(
t

m + 1

))
.

Hence, (3.9), (b) and the continuity of T at (1, 1) yield

lim
n→∞ inf

k,m∈N

F(Jn+kf−Jn+mf)(x)(t) = 1, x ∈ X, t > 0.

If (ii) is valid, then (3.17) implies that, for all k,m ∈ N, n ∈ N0, x ∈ X
and t > 0,

F(Jn+kf−Jn+mf)(x)(2t) ≥ T
(
F(Jn+kf−Jnf)(x)(t), F(Jnf−Jn+mf)(x)(t)

)

≥ T
(
Tn+k−1

i=n (Λiε)x

(
ωk

i−nt
)
, Tn+m−1

i=n (Λiε)x

(
ωm

i−nt
))

,

and consequently, by (c),

inf
k,m∈N

F(Jn+kf−Jn+mf)(x)(2t)

≥ inf
k,m∈N

T
(
Tn+k−1

i=n (Λiε)x

(
ωk

i−nt
)
, Tn+m−1

i=n (Λiε)x

(
ωm

i−nt
))

≥ T
(

inf
k∈N0

T k+n
i=n (Λiε)x

(
ωk

i−nt
)
, inf
m∈N0

Tm+n
i=n (Λiε)x

(
ωm

i−nt
))

.
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Hence, (3.10), (b) and the continuity of T at (1, 1) yield

lim
n→∞ inf

k,m∈N

F(Jn+kf−Jn+mf)(x)(t) = 1, x ∈ X, t > 0.

Thus we have proved that, for every x ∈ X, (Jnf(x))n∈N is an M-Cauchy
sequence and, as (Y, F, T ) is M-complete, the limit (3.12) exists.

In the case of (iii), in view of (3.16),

F(Jn+mf−Jnf)(x)(t) ≥ Tm−1
i=0 (Λn+iε)x

(
t

m

)
, x ∈ X, t > 0, n,m ∈ N,

whence (3.11) and the continuity of T at (1, 1) imply that

lim
n→+∞ FJnf(x)−Jn+mf(x)(t) = 1, x ∈ X, t > 0, m ∈ N.

Thus, for every x ∈ X, (Jnf(x))n∈N is a G-Cauchy sequence. As (Y, F, T ) is
G-complete, the limit (3.12) exists.

Now, we prove (3.13). Note that, in view of Lemma 3.3, σ̂k
x(t) is well

defined by (3.7) for every k ∈ N0, x ∈ X and t > 0.
Fix t > 0, x ∈ X, α ∈ (0, 1) and n ∈ N0. First, we show that

F(ψ−Jnf)(x)(t) ≥ σn
x (αt). (3.18)

To this end, observe that (3.16) implies

F(ψ−Jnf)(x)(t) ≥ T
(
F(ψ−Jn+mf)(x)

(
(1 − α)t

)
, F(Jn+mf−Jnf)(x)

(
αt

))

≥ T

(
F(ψ−Jn+mf)(x)

(
(1 − α)t

)
, Tn+m−1

i=n (Λiε)x

(
αt

m

))

(3.19)

for every m ∈ N. Hence, by (3.12) and the continuity of T at the point(
1, σn

x (αt)
)
, by letting m → +∞, we obtain (3.18).

Next, we show that

F(ψ−Jnf)(x)(t) ≥ σn
x(αt). (3.20)

So, fix ω ∈ Ω and note that (3.17) implies

F(ψ−Jnf)(x)(t) ≥ T
(
F(ψ−Jn+mf)(x)

(
(1 − α)t

)
, F(Jn+mf−Jnf)(x)

(
αt

))

≥ T
(
F(ψ−Jn+mf)(x)

(
(1 − α)t

)
, Tn+m−1

i=n (Λiε)x

(
ωi−nαt

))

(3.21)

for every m ∈ N. Hence, by (3.12) and the continuity of T at the point(
1, ωσn

x (αt)
)
, by letting m → +∞, we obtain

F(ψ−Jnf)(x)(t) ≥ ωσn
x (αt). (3.22)

Clearly, (3.22) implies (3.20), which with (3.18) yields (3.13).
Furthermore, by the Λ-contractivity of J ,

F(Jψ−Jn+1f)(x)(t) ≥
(
ΛFψ−Jnf

)
x
(t), t > 0, x ∈ X. (3.23)

Since (3.12) means that

lim
n→+∞ F(ψ−Jnf)(x) = H0, x ∈ X,
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by (C0) we have

lim
n→+∞

(
ΛFψ−Jnf

)
x

= H0, x ∈ X.

Whence, on account of (3.23),

lim
n→+∞ F(Jψ−Jn+1f)(x) = H0, x ∈ X,

and consequently

Jψ(x) = lim
n→+∞(Jn+1f)(x) = ψ(x), x ∈ X.

Thus, we have shown that ψ is a fixed point of J .
It remains to prove the statements on the uniqueness of ψ. So, assume

that (i) or (ii) holds and ψ1, ψ2 ∈ Y X are two fixed points of J such that

F(ψj−Jkf)(x)(t) ≥ σ̂k
x(αjt), k ∈ N0, x ∈ X, t > 0, j = 1, 2,

with some α1, α2 ∈ (0, 1). Then, for all x ∈ X, t > 0 and k ∈ N0, we get

F(ψ1−ψ2)(x)(2t) ≥ T
(
F(ψ1−Jkf)(x)(t), F(Jkf−ψ2)(x)(t)

)

≥ T
(
σ̂k

x(α1 t), σ̂k
x(α2 t)

)
. (3.24)

Note yet that, in view of (3.4) and (3.5), each of the conditions (3.9) and
(3.10) implies

lim
k→+∞

σ̂k
x(t) = 1, x ∈ X, t > 0. (3.25)

Hence, by letting k → ∞ in (3.24), by the continuity of T at the point (1, 1),
we finally obtain that

F(ψ1−ψ2)(x) = H0, x ∈ X, (3.26)

which means that ψ1 = ψ2. �

Remark 3.6. If, for a given k ∈ N0 and x ∈ X, the function σ̂k
x is left contin-

uous (which is not necessarily the case, because this depends on the forms of
ε and T ), then it is easily seen that (3.13) can be replaced by

F(ψ−Jkf)(x)(t) ≥ σ̂k
x(t), t > 0.

Otherwise, for every fixed x ∈ X and k ∈ N0, the inequality in (3.13) can of
course be replaced by

F(ψ−Jkf)(x)(t) ≥ σ̂k
x(αx,k t), t > 0,

with any fixed αx,k ∈ (0, 1).

Remark 3.7. The assumptions (i) and (ii) in Theorem 3.5 look nearly the
same and (i) is a bit simpler than (ii). However, as we will see below, in some
situations (3.10) (with some sequence (ωk

n)n∈N0 ∈ Ω) and (3.11) are fulfilled,
while (3.9) is not.

Namely, let T = TM and Λ have the following simple form:

(Λδ)x(t) = δax(bt), x ∈ X, t > 0, δ ∈ DX
+ ,

with some a, b ∈ (0,∞) (cf. the proof of Corollary 6.4). Then,

(Λnδ)x(t) = δanx(bnt), x ∈ X, t > 0, δ ∈ DX
+ , n ∈ N.
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Further, assume that X is a normed space, p ∈ [0,∞), v ∈ R+ and

εx(t) =
t

t + v‖x‖p
, x ∈ X, t > 0.

Write e0 := ba−p. Clearly, for every n ∈ N, x ∈ X and t > 0,

(Λnε)x(t) = εanx(bnt) =
bnt

bnt + v‖anx‖p
= εx

(
bnt

anp

)
= εx

(
en
0 t

)
, (3.27)

and therefore

T k+j−1
i=k (Λiε)x(t) = inf

i∈{0,...,j−1}
εx

(
ek+i
0 t

)
, j ∈ N. (3.28)

Assume that e0 > 1. Then, by (3.27),

lim
n→+∞ (Λnε)x(t) = lim

n→+∞ εx

(
en
0 t

)
= 1, x ∈ X, t > 0, (3.29)

which means that (3.11) holds. Further, for every k ∈ N0, (3.28) yields

T k+j−1
i=k (Λiε)x(t) = εx

(
ek
0t

)
, j ∈ N, x ∈ X, t > 0,

whence

inf
j∈N0

T k+j
i=k (Λiε)x

(
t

j + 1

)
= inf

j∈N0
εx

(
ek
0t

j + 1

)
= 0, x ∈ X, t > 0.

Consequently, for every x ∈ X and t > 0,

σk
x(t) = lim

j→∞
T k+j−1

i=k (Λiε)x

(
t

j

)
= lim

j→∞
εx

(
ek
0t

j

)
= 0, k ∈ N0,

and

lim
k→+∞

inf
j∈N0

T k+j
i=k (Λiε)x

(
t

j + 1

)
= 0.

Hence, (3.9) is not valid and σk
x makes no contribution in estimation (3.13).

On the other hand, for every x ∈ X, t > 0 and ω = (ωn)n∈N0 ∈ Ω, we
have

T k+j
i=k (Λiε)x

(
ωi−kt

)
= inf

i∈{0,...,j−1}
εx

(
ek+i
0 ωit

)
.

So, for ω̂ = (ω̂n)n∈N0 ∈ Ω, with

ω̂i := ri(1 − r), i ∈ N0, r :=
1
e0

,

we have

ek+i
0 ω̂i = ek

0(1 − r) = ek−1
0 (e0 − 1), i ∈ N0.

Therefore, for every x ∈ X and t > 0,

T k+j
i=k (Λiε)x

(
ω̂i−kt

)
= εx

(
ek−1
0 (e0 − 1)t

)
,

whence

lim
m→+∞ inf

j∈N0
Tm+j

i=m (Λiε)x

(
ω̂m

i−mt
)

= lim
m→+∞ inf

j∈N0
εx

(
em−1
0 (e0 − 1)t

)

= lim
m→+∞ εx

(
em−1
0 (e0 − 1)t

)
= 1,
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ω̂σk
x(t) = lim

j→∞
T k+j−1

i=k (Λiε)x

(
ω̂i−kt

)
= εx

(
ek−1
0 (e0 − 1)t

)
.

This means that (3.10) holds with ωk = ω̂ for k ∈ N0 and

σ̂k
x(t) ≥ ω̂σk

x(t) = εx

(
ek−1
0 (e0 − 1)t

)
, x ∈ X, t > 0.

For the situation where (3.10) is valid with sequences ωk ∈ Ω that are
not the same for all k ∈ N, we refer to Remark 5.3.

Remark 3.8. Note that in the proof of Theorem 3.5, we have only used con-
tinuity of T at the points of the form (1, ξ) for ξ ∈ (0, 1]. Actually, even
that assumption can be weakened. Namely, it is enough to assume that T is
continuous only at the point (1, 1), but then we have to modify inequality in
(3.13) basing it only on (3.19) and (3.21) without taking the limits.

Remark 3.9. Observe that the properties of the t-norm yield

inf
k∈N0

T k+n
i=n (Λiε)x

(
t

k + 1

)
≤ (Λnε)x(t), x ∈ X, t > 0, n ∈ N0,

whence (3.9) implies (3.11). However, since every G-complete RN-space is M -
complete (see Remark 2.7) and not necessarily conversely, assumption (iii) is
not weaker than (i).

Remark 3.10. Let ν ∈ N, ξ1, . . . , ξν : X → X, and L1, . . . , Lν : X → (0,∞)
be fixed. If the operator J has the form

Jη(x) := H
(
x, η(ξ1(x)), . . . , η(ξν(x))

)
, η ∈ Y X , x ∈ X, (3.30)

with a function H : X × Y ν → Y satisfying the following Lipschitz-type
condition:

FH(x,y1,...,yν)−H(x,z1,...,zν)(t) ≥ T ν
i=1Fyi−zi

(
t

νLi(x)

)
, t > 0, (3.31)

for all x ∈ X and y1, . . . , yν , z1, . . . , zν ∈ Y , then such J is Λ-contractive with
Λ defined by (3.1) and such Λ fulfills hypothesis (C0) (see Remark 3.2).

Clearly, (3.31) holds if H has the following simple form:

H(x, y1, . . . , yν) =
ν∑

i=1

Li(x)yi + h(x), x ∈ X, y1, . . . , yν ∈ Y, (3.32)

with a fixed function h ∈ Y X . Then, (3.30) becomes

Jf(x) :=
ν∑

i=1

Li(x)f(ξi(x)) + h(x), f ∈ Y X , x ∈ X. (3.33)

In particular, such J satisfies the following Lipschitz-type condition:

F(Jμ−Jη)(x)(t) ≥ T ν
i=1F(μ−η)(ξi(x))

(
t

νLi(x)

)
, μ, η ∈ Y X ,

x ∈ X, t > 0. (3.34)
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If we want to admit functions Li taking values in R (i.e., in particular
taking the value zero), then we can rewrite that condition in the subsequent
form:

F(Jμ−Jη)(x)(t) ≥ T ν
i=1FLi(x)(μ(ξi(x))−η(ξi(x)))

(
t

ν

)
, μ, η ∈ Y X ,

x ∈ X, t > 0. (3.35)

Note that if, in such a situation, Li(x) �= 0 for some i ∈ {1, . . . , ν} and some
x ∈ X, then

FLi(x)(μ(ξi(x))−η(ξi(x)))(t) = Fμ(ξi(x))−η(ξi(x))

(
t

|Li(x)|

)
, t > 0;

but if Li(x) = 0, then

FLi(x)(μ(ξi(x))−η(ξi(x)))(t) = F0(t) = 1, t > 0.

In view of Remark 3.10, for operators J : Y X → Y X fulfilling condition
(3.34), we have the following particular case of Theorem 3.5, with a stronger
statement on the uniqueness of fixed point (because under the weaker as-
sumption that (3.14) holds only for k = 0).

Theorem 3.11. Let ν ∈ N, ε ∈ DX
+ , ξ1, . . . , ξν ∈ XX , L1, . . . , Lν : X →

(0,∞), Λ : DX
+ → DX

+ be defined by (3.1), J : Y X → Y X satisfy condition
(3.34), and f : X → Y fulfil (3.8). Assume that one of the conditions (i)–(iii)
of Theorem 3.5 holds. Then, for every x ∈ X, the limit (3.12) exists and the
function ψ ∈ Y X , defined in this way, is a fixed point of J satisfying (3.14).

Moreover, if (i) or (ii) holds, then ψ is the unique fixed point of J such
that there is α ∈ (0, 1) with

F(ψ−f)(x)(t) ≥ σ̂0
x(αt), t > 0, x ∈ X. (3.36)

Proof. First, fix ξ, η ∈ Y X and φ ∈ DX
+ with

F(ξ−η)(x) ≥ φx, x ∈ X.

Then, by (3.34),

F(Jμ−Jη)(x)(t) ≥ T ν
i=1F(μ−η)(ξi(x))

(
t

νLi(x)

)

≥ T ν
i=1φξi(x)

(
t

νLi(x)

)
= (Λφ)x(t), x ∈ X, t > 0.

Hence, J is Λ-contractive. Moreover, as we have noticed in Remark 3.10, Λ
satisfies hypothesis (C0). Hence, by Theorem 3.5, limit (3.12) exists for every
x ∈ X and so defined function ψ is a fixed point of J satisfying (3.14).

It remains to show the statement on uniqueness of ψ. So, let τ ∈ Y X

be a fixed point of J such that, for some α ∈ (0, 1),

F(τ−f)(x)(t) ≥ σ̂0
x(αt), t > 0, x ∈ X. (3.37)
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Fix x ∈ X, ω = (ωn)n∈N0 ∈ Ω and t > 0. We show that, for every
n ∈ N0, we have

F(Jnψ−Jnτ)(x)(t) ≥ lim
m→+∞ T̂

(
Tn+m−1

i=n (Λiε)x

(
αt

2m

))
, (3.38)

F(Jnψ−Jnτ)(x)(t) ≥ lim
m→+∞ T̂

(
Tn+m−1

i=n (Λiε)x

(
ωi−nαt

2

))
. (3.39)

This is the case for n = 0, because by the continuity of T , for every x ∈ X
and t > 0, we have

F(ψ−τ)(x)(t) ≥ T

(
F(ψ−f)(x)

(
t

2

)
, F(τ−f)(x)

(
t

2

))

≥ T̂

(
σ0

x

(
αt

2

))
= T̂

(
lim

m→+∞ Tm−1
i=0 (Λiε)x

(
αt

2m

) )

= lim
m→+∞ T̂

(
Tm−1

i=0 (Λiε)x

(
αt

2m

) )
.

Analogously,

F(ψ−τ)(x)(t) ≥ T̂

(
σ0

x

(
αt

2

) )
≥ T̂

(
ωσ0

x

(
αt

2

) )
, ω ∈ Ω.

Since T is continuous, we finally get

F(ψ−τ)(x)(t) ≥ lim
m→+∞ T̂

(
Tm−1

i=0 (Λiε)x

(
ωi−nαt

2

))
.

Now assume that (3.38) is valid for some n ∈ N0. Then, by (2.2) and
the continuity of T , for every x ∈ X and t > 0,

F(Jn+1ψ−Jn+1τ)(x)(t) ≥ T ν
j=1F(Jnψ−Jnτ)(ξj(x))

(
t

νLj(x)

)

≥ T ν
j=1 lim

m→+∞ T̂

(
Tn+m−1

i=n (Λiε)ξj(x)

(
αt

2mνLj(x)

) )

= lim
m→+∞ T ν

j=1T̂

(
Tn+m−1

i=n (Λiε)ξj(x)

(
αt

2mνLj(x)

))

= lim
m→+∞ T̂

(
Tn+m−1

i=n T ν
j=1(Λ

iε)ξj(x)

(
αt

2mνLj(x)

))

= lim
m→+∞ T̂

(
Tn+m−1

i=n (Λ(Λiε))x

(
αt

2m

))

= lim
m→+∞ T̂

(
Tn+m

i=n+1(Λ
iε)x

(
ανt

2m

) )
.

Next, assume that (3.39) is valid for some n ∈ N0. Then in the same
way, by (2.2) and the continuity of T , for every x ∈ X, t > 0, and ω ∈ Ω,

F(Jn+1ψ−Jn+1τ)(x)(t) ≥ T ν
j=1F(Jnψ−Jnτ)(ξj(x))

(
t

νLj(x)

)

≥ T ν
j=1 lim

m→+∞ T̂

(
Tn+m−1

i=n (Λiε)ξj(x)

(
ωi−nαt

2νLj(x)

) )
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= lim
m→+∞ T ν

j=1T̂

(
Tn+m−1

i=n (Λiε)ξj(x)

(
ωi−nαt

2νLj(x)

))

= lim
m→+∞ T̂

(
Tn+m−1

i=n T ν
j=1(Λ

iε)ξj(x)

(
ωi−nαt

2νLj(x)

))

= lim
m→+∞ T̂

(
Tn+m−1

i=n (Λi+1ε)x

(
ωi−nαt

2

))

= lim
m→+∞ T̂

(
Tn+m

i=n+1(Λ
iε)x

(
ωi−n−1αt

2

))
.

Thus, we have proved (3.38) and (3.39) for every n ∈ N, x ∈ X, ω ∈ Ω, and
t > 0. Whence

F(τ−ψ)(x)(t) = F(Jnτ−Jnψ)(x)(t)

≥ lim
m→+∞ T̂

(
Tn+m−1

i=n (Λiε)x

(
αt

2m

))

= T̂

(
lim

m→+∞ Tn+m−1
i=n (Λiε)x

(
αt

2m

))
, (3.40)

F(τ−ψ)(x)(t) = F(Jnτ−Jnψ)(x)(t)

≥ lim
m→+∞ T̂

(
Tn+m−1

i=n (Λiε)x

(
ωi−nαt

2

))

= T̂

(
lim

m→+∞ Tn+m−1
i=n (Λiε)x

(
ωi−nαt

2

) )
. (3.41)

Now, if (3.9) holds, then by letting n → +∞ in (3.40), by the continuity of T̂ ,
we get F(τ−ψ)(x)(t) = 1 for every x ∈ X and t > 0, which means that τ = ψ.
Similarly, if (3.10) holds, then we argue analogously by letting n → +∞ in
(3.41). �

As for the uniqueness of the fixed points of J in Theorem 3.5, we also
have the following proposition.

Proposition 3.12. Let Λ : DX
+ → DX

+ , J : Y X → Y X be Λ-contractive, k ∈ N0

and σ ∈ {σk} ∪ { ωσk : ω ∈ Ω} satisfy

lim
n→+∞ (Λnσ)x(t) = 1, x ∈ X, t > 0, (3.42)

where σk, ωσk ∈ DX
+ are given by σk(x) = σk

x and ωσk(x) = ωσk
x for x ∈ X.

Then, for every f : X → Y, J has at most one fixed point ψ0 with

F(ψ0−Jkf)(x) ≥ σ(x), x ∈ X.

Proof. Fix f : X → Y and assume that ψ1, ψ2 ∈ Y X are fixed points of J
satisfying

F(ψj−Jkf)(x) ≥ σx, x ∈ X, j = 1, 2.

Then, by the Λ-contractivity of J ,

F(Jmψj−Jk+mf)(x) ≥ (Λmσ)x, x ∈ X, j = 1, 2, m ∈ N0,
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and consequently,

F(ψ1−ψ2)(x)(t) = F(Jmψ1−Jmψ2)(x)(t)

≥ T

(
F(Jmψ1−Jk+mf)(x)

(
t

2

)
, F(Jk+mf−Jmψ2)(x)

(
t

2

))

≥ T

(
(Λmσ)x

(
t

2

)
, (Λmσ)x

(
t

2

))

for every m ∈ N0, x ∈ X and t > 0. Hence, by letting m tend to ∞, by (3.42)
and the continuity of T at the point (1, 1), F(ψ1−ψ2)(x) = H0 for x ∈ X.
Consequently, ψ1 = ψ2. �

If X has only one element, then Y X can actually be identified with
Y and Theorem 3.5 becomes an analog of the classical Banach Contraction
Principle (somewhat generalized), given in Corollary 3.14 below. To present
it, we need the following hypothesis, concerning mappings λ : D+ → D+,
which is a special case of hypothesis (C0).

(C) The sequence
(
λ(Fzn

)
)
n∈N

converges pointwise to H0 for each sequence
(zn)n∈N in Y , which converges to 0.

To avoid any ambiguity, let us give one more definition, which is a special
case of an earlier definition, namely: Definition 3.1.

Definition 3.13. Let λ : D+ → D+ be given. We say that a mapping h : Y →
Y is λ-contractive provided

Fh(z)−h(w) ≥ λφ := λ(φ)

for every z, w ∈ Y and φ ∈ D+ with Fz−w ≥ φ.

Corollary 3.14. Let λ : D+ → D+ satisfy hypothesis (C) and h : Y → Y be
λ-contractive. Let ε ∈ D+ be such that

Fh(z)−z ≥ ε, z ∈ Y, (3.43)

and assume that one of the following three conditions holds.

(α) (Y, F, T ) is M-complete and

lim
k→+∞

inf
j∈N0

T k+j
i=k (λiε)

(
t

j + 1

)
= 1, t > 0.

(β) (Y, F, T ) is M-complete and, for each k ∈ N, there is a sequence (ωk
n)n∈N0

∈ Ω with

lim
k→+∞

inf
j∈N0

T k+j
i=k (λiε)

(
ωk

i−kt
)

= 1, t > 0.

(γ) (Y, F, T ) is G-complete and

lim
n→+∞ (λnε) = H0. (3.44)
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Then, for every ω = (ωn)n∈N0 ∈ Ω and t > 0, the limits

z0 := lim
n→+∞ hn(z),

lk(t) := lim
m→+∞ Tm+k−1

i=k (λiε)

(
t

m

)
,

ωlk(t) := lim
m→+∞ Tm+k−1

i=k (λiε)
(
ωi−kt

)

exist (in Y and R, respectively) and z0 is a fixed point of h such that

Fz0−hk(z)(t) ≥ sup
α∈(0,1)

l̂k(αt), t > 0, k ∈ N0,

where

l̂k(t) := max{lk(t), l k(t)}, l k(t) := sup
ω∈Ω

ωlk(t), t > 0, k ∈ N0.

Moreover, in case (α) or (β) holds, z0 is the unique fixed point of h for
which there exists α ∈ (0, 1) with

Fz0−hk(z)(t) ≥ l̂k(αt), t > 0, k ∈ N0.

Remark 3.15. Let g : R → R and G : [0, 1] → [0, 1] be non-decreasing, left
continuous and such that g(0) = G(0) = 0, G(1) = 1,

G(t) ≥ t, lim
n→∞ gn(t) = ∞, t > 0.

Let λ : D+ → D+ have the form

(λξ)(t) = G(ξ(g(t))), ξ ∈ D+, t ∈ R.

Then,

lim
n→+∞ (λnξ)(t) = lim

n→+∞ Gn(ξ(gn(t))) = 1, t > 0, ξ ∈ D+,

which means that (3.44) holds for every ε ∈ D+.
A very simple example of such λ is obtained when G is the identity map

of [0, 1] (i.e., G(t) ≡ t) and

g(t) = at, t ∈ R, (3.45)

with a fixed a > 1. Clearly, then (λξ)(t) = ξ(at) for ξ ∈ D+ and t > 0 and, in
this case, the λ-contractive mappings are known as B-contractions or Sehgal
contractions (see [67,88]).

If g is the identity map on R and

G(t) =
s

s + κ(1 − s)
, s ∈ [0, 1], (3.46)

with some κ ∈ (0, 1), then λ-contractive mappings are fuzzy contractive (see
[43,67,83]).

If both (3.45) and (3.46) hold, then λ-contractive mappings are called
strict B-contractions (see [67,85]).



Vol. 25 (2023) A fixed point theorem and Ulam stability Page 19 of 38 33

4. Approximate eigenvalues
In this section, we show an application of Theorem 3.5 in investigation of the
approximate eigenvalues and eigenvectors, which corresponds to the results
in [36,47].

It is well known that Y X is a real linear space with the operations
defined pointwise in the usual way:

(ξ + η)(x) := ξ(x) + η(x), (αξ)(x) := αξ(x), ξ, η ∈ Y X , x ∈ X, α ∈ R.

The next corollary is an example of a result concerning approximate
eigenvalues of some linear operators on Y X . Actually, the assumption of
linearity of the operators is not necessary in the proof, but the notion of
eigenvalue might be ambiguous without it (see, e.g., [86]) and therefore we
confine only to the linear case.

Corollary 4.1. Let γ ∈ R\{0}, Λ0 : DX
+ → DX

+ satisfy (C0), and J0 : Y X →
Y X be linear and Λ0-contractive. Assume h ∈ Y X and ε ∈ DX

+ satisfy the
condition

F(J0h−γh)(x) ≥ εx, x ∈ X. (4.1)

If one of the conditions (i), (ii) and (iii) of Theorem 3.5 is valid with

(Λδ)x(t) := (Λ0δ)x(|γ|t), δ ∈ DX
+ , x ∈ X, t > 0, (4.2)

then γ is an eigenvalue of J0, the limits

ψ(x) := lim
n→∞

(
Jn

0 (γ−n+1h)
)
(x), (4.3)

σ0
x(t) := lim

m→∞ Tm−1
i=0 (Λiε)x

(
t

m

)
, (4.4)

ωσ0
x(t) := lim

m→∞ Tm−1
i=0 (Λiε)x

(
ωit

)
(4.5)

exist for every x ∈ X, ω = (ωn)n∈N0 ∈ Ω and t > 0, and the function
ψ0 ∈ Y X , given by

ψ0(x) := γ−1ψ(x), x ∈ X,

is an eigenvector of J0, with the eigenvalue γ, such that

F(ψ0−h)(x)(t) ≥ sup
α∈(0,1)

σ̂0
x(α|γ| t), x ∈ X, t > 0. (4.6)

Proof. Let ϕ := γh and J : Y X → Y X be given by:

(Jη)(x) =
(
J0(γ−1η)

)
(x), η ∈ Y X , x ∈ X.

Then, in view of the Λ0-contractivity and linearity of J0, for every μ, ξ ∈ Y X

and δ ∈ DX
+ with F(μ−ξ)(x) ≥ δx, we have

F(Jμ−Jξ)(x)(t) = F(J0(γ−1μ)−J0(γ−1ξ))(x)(t) ≥ F(J0μ−J0ξ)(x)(|γ|t), t > 0,

whence

F(Jμ−Jξ)(x)(t) ≥ (Λ0δ)x(|γ|t) = (Λδ)x(t), t > 0,

which means that J is Λ – contractive. Next, we can write (4.1) in the form:

F(Jϕ−ϕ)(x) ≥ εx, x ∈ X. (4.7)
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Hence, by Theorem 3.5 and Lemma 3.3, the limits (4.3), (4.4) and (4.5) exist
for every x ∈ X, ω = (ωn)n∈N0 ∈ Ω and t > 0. Moreover, the function
ψ : X → Y , defined by (3.12), is a fixed point of J with

F(ψ−ϕ)(x)(t) ≥ sup
α∈(0,1)

σ̂0
x(αt), x ∈ X, t > 0. (4.8)

Write ψ0 := γ−1ψ. Now, it is easily seen that J0ψ0 = Jψ = ψ = γψ0, (4.6) is
equivalent to (4.8), and (3.12) yields (4.3). �

Clearly, under suitable additional assumptions in Corollary 4.1, we can
deduce from Theorem 3.5 some statements on the uniqueness of ψ, and con-
sequently on the uniqueness of ψ0.

Given ε ∈ DX
+ , let us introduce the following definition: γ ∈ R\{0} is an

ε-eigenvalue of a linear operator J0 : Y X → Y X provided there exists h ∈ Y X

such that F(J0h−γh)(x) ≥ εx for x ∈ X.
It is easily seen that Corollary 4.1 yields the following simple result.

Corollary 4.2. Let Λ0 : DX
+ → DX

+ , J0 : Y X → Y X be Λ0-contractive and
linear, and ε ∈ DX

+ . If γ ∈ R\{0} is an ε-eigenvalue of J0 and one of the
conditions (i)–(iii) of Theorem 3.5 is valid with Λ given by (4.2), then γ is an
eigenvalue of J0.

5. Ulam stability of functional equations in a single variable
In this section, as before, X is a nonempty set and (Y, F, T ) is an RN-space.

As we have mentioned in the Introduction, the main issue of Ulam
stability can be very briefly expressed in the following way: when must a
function satisfying an equation approximately (in some sense) be near an
exact solution to the equation?

The next definition (cf. [25, p. 119, Ch. 5, Definition 8]) makes that
notion a bit more precise for the RN-spaces.

Definition 5.1. Let E and C be nonempty subsets of DX
+ with E ⊂ C. Let T

be an operator mapping C into DX
+ , G be an operator mapping a nonempty

set K ⊂ Y X into Y X , and χ0 ∈ Y X . We say that the equation

Gφ(x) = χ0(x), x ∈ X, (5.1)

is (E , T ) - stable provided for any ε ∈ E and φ0 ∈ K with

F(Gφ0−χ0)(x) ≥ εx, x ∈ X, (5.2)

there exists a solution φ ∈ K of (5.1) such that

F(φ−φ0)(x) ≥ (T ε)x, x ∈ X. (5.3)

Roughly speaking, (E , T )-stability of (5.1) means that every approxi-
mate (in the sense of (5.2)) solution φ0 ∈ K of (5.1) is always close (in the
sense of (5.3)) to an exact solution φ ∈ K of (5.1).

Now, we present a simple Ulam stability outcome that can be derived
from the results of the previous sections. To this end, we need the following
hypothesis.
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(H1) ν ∈ N, H : X × Y ν → Y , Li, . . . , Lν : X → (0,∞) and

FH(x,w1,...,wν)−H(x,z1,...,zν) (t) ≥ T ν
i=1Fwi−zi

(
t

νLi(x)

)
,

x ∈ X, (w1, . . . , wν), (z1, . . . , zν) ∈ Y ν , t > 0. (5.4)

The subsequent corollary can be easily deduced from Theorem 3.11.

Corollary 5.2. Let hypothesis (H1) be valid, ξ1, . . . , ξν ∈ XX , f ∈ Y X , ε ∈
DX

+ and

FH(x,f(ξ1(x)),...,f(ξν(x)))−f(x) ≥ εx, x ∈ X. (5.5)

Assume that one of the assumptions (i)–(iii) of Theorem 3.5 is fulfilled with
Λ : DX

+ → DX
+ given by

(Λδ)x(t) = T ν
i=1δξi(x)

(
t

νLi(x)

)
, δ ∈ DX

+ , x ∈ X. (5.6)

Then, for each x ∈ X, ω = (ωn)n∈N0 ∈ Ω and t > 0, the limits

ψ(x) := lim
n→∞(Jnf)(x),

σ0
x(t) := lim

m→∞ Tm−1
i=0 (Λiε)x

(
t

m

)
,

ωσ0
x(t) := lim

m→∞ Tm−1
i=0 (Λiε)x

(
ωit

)
(5.7)

exist (in Y and R, respectively), with J : Y X → Y X given by:

(Jη)(x) := H(x, η(ξ1(x)), . . . , η(ξν(x))), η ∈ Y X , x ∈ X, (5.8)

and the mapping ψ ∈ Y X , defined by (5.7), fulfills

H(x, ψ(ξ1(x)), . . . , ψ(ξν(x))) = ψ(x), x ∈ X, (5.9)
Ff(x)−ψ(x)(t) ≥ sup

α∈(0,1)

σ̂x
0 (αt), t > 0, x ∈ X. (5.10)

Moreover, if one of the condition (i) and (ii) holds, then ψ is the unique
solution of (5.9) such that there is α ∈ (0, 1) with

F(f−ψ)(x)(t) ≥ σ̂0
x(αt), t > 0, x ∈ X. (5.11)

Proof. Clearly, inequality (5.5) implies (3.8). Next, hypothesis (C0) holds (see
Remarks 3.2 and 3.10) and (5.4) means that (3.34) is valid. Consequently, by
Theorem 3.11 with C = Y X , the function ψ defined by (5.7) is a fixed point
of J (that is a solution of (5.9)) satisfying (5.10) (take k = 0 in (3.14)).

The statement on the uniqueness of ψ also follows from Theorem 3.11. �

The stability of functional equations of form (1.2) (or related to it) has
already been studied by several authors. For further information, we refer to
[4,23,25]. A very particular case of (5.9), with H given by (3.32), is the linear
functional equation of the form:

φ(x) =
ν∑

i=1

L̃i(x)φ(ξi(x)) + h(x), (5.12)
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with fixed functions h ∈ Y X and L̃1, . . . , L̃ν ∈ R
X . That equation is called

a linear equation of higher order when ξi = ξi for i = 1, . . . , ν, with some
ξ ∈ XX , i.e., when (5.12) has the form:

φ(x) =
ν∑

i=1

L̃i(t)φ(ξi(x)) + h(x). (5.13)

Some recent results concerning the stability of less general cases of it can be
found in [25,26,51,52,70,97].

The simplest case of Eq. (5.13), when ν = 1 and 0 �∈ L̃1(X), can be
rewritten in the form:

φ(ξ(x)) =
1

L̃1(x)
φ(x) − h(x)

L̃1(x)
, (5.14)

which is also called the linear equation. Special cases of (5.14) are the gamma
functional equation

φ(x + 1) = xφ(x)

for X = Y = R, the Schröder functional equation

φ(ξ(x)) = sφ(x) (5.15)

with fixed s ∈ R\{0}, and the Abel functional equation

φ(ξ(x)) = φ(x) + 1.

For more details on Eq. (5.14) and its various particular versions, we refer to
[58,60].

Remark 5.3. Let us consider a situation analogous to that in Remark 3.7,
with T = TM , for the Schröder functional equation (5.15) rewritten as

1
s
φ(ξ(x)) = φ(x). (5.16)

Clearly, Eq. (5.16) is (5.9) with ν = 1, ξ1 = ξ and H(x, y) = 1
sy for

x ∈ X and y ∈ Y . So we have the case as in Corollary 5.2 with Λ : DX
+ → DX

+

given by

(Λδ)x(t) = δξ(x)(|s|t), x ∈ X, δ ∈ DX
+ , t > 0.

Further, let E be a normed space, X := E\{0}, p ∈ R, L ∈ (0,∞) and

εx(t) =
t

t + L‖x‖p
, x ∈ X, t > 0.

Assume that ‖ξn(x)‖p ≤ an‖x‖p for x ∈ X and n ∈ N0, with some
sequence (an)n∈N0 of positive reals such that limn→∞ a−1

n |s|n = ∞.
Write en := a−1

n |s|n. Clearly, for every n ∈ N, x ∈ X and t > 0,

(Λnε)x(t) = εξn(x)(|s|nt) =
|s|nt

|s|nt + L‖ξn(x)‖p
≥ εx

(
ent

)
, (5.17)

whence

lim
n→+∞ (Λnε)x(t) ≥ lim

n→+∞ εx

(
ent

)
= 1, x ∈ X, t > 0,

which means that (3.11) holds.
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Further, assume additionally that

ρ :=
∞∑

i=0

1
ei

< ∞

and write

ρk :=
∞∑

i=k

1
ei

, ωk
i :=

1
ρkek+i

, k, i ∈ N0.

Then,
∞∑

i=0

ωk
i = 1, ek+jω

k
j =

1
ρk

, k, j ∈ N0.

Now, using (5.17), we get

T k+j
i=k (Λiε)x

(
ωk

i−kt
)

≥ inf
i∈{0,...,j}

εx

(
ek+iω

k
i t

)
= εx

(
ρ−1

k t
)
, x ∈ X, t > 0.

Consequently, for every x ∈ X and t > 0,

lim
m→+∞ inf

j∈N0
Tm+j

i=m (Λiε)x

(
ωm

i−mt
)

≥ lim
m→+∞ inf

j∈N0
εx

(
ρ−1

m t
)

= lim
m→+∞ εx

(
ρ−1

m t
)

= 1,

which means that (3.10) holds with ωk := (ωk
n)n∈N0 ∈ Ω. Moreover, for

ω := ω0 we have
ωσ0

x(t) ≥ lim
j→∞

inf
i∈{0,...,j−1}

εx

(
eiω

0
i t

)
= εx

(
ρ−1t

)
,

whence

σ̂0
x(t) ≥ ωσ0

x(t) ≥ εx

(
ρ−1t

)
, x ∈ X, t > 0,

where ωσ0
x and σ̂0

x have the same meaning as in Corollary 5.2.

6. Stability of Eq. (1.2)
In this section, we are concerned with the stability of the functional equation
(1.2) for m > 1. So we assume that X is a linear space over a field K ∈ {R,C},
Ai, aij ∈ K for i = 1, . . . , m and j = 1, . . . , n, and that D : Xn → Y is a fixed
function.

It is easily seen that particular cases of the homogeneous version of
(1.2), namely of the equation

m∑

i=1

Aif

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ = 0, (6.1)

are the Cauchy functional equation

f(x + y) = f(x) + f(y), (6.2)

the Jensen functional equation

f(x + y) =
1
2
(
f(2x) + f(2y)

)
,
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the particular version (with c = C = 0) of the linear equation in two variables

f(ax + by + c) = Af(x) + Bf(y) + C,

the Jordan–von Neumann (quadratic) functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y), (6.3)

the Drygas equation

f(x + y) + f(x − y) = 2f(x) + f(y) + f(−y), (6.4)

and the Fréchet functional equation

f(x + y + z) + f(x) + f(y) + f(z) = f(x + y) + f(x + z) + f(y + z).
(6.5)

Various information on the Cauchy, Jensen and linear equations can
be found in [2,3,59]. Equation (6.3) (the parallelogram law) was used by
Jordan and von Neumann [50] in a characterization of the inner product
spaces and Eqs. (6.4) and (6.5) were applied for the analogous purposes (cf.
[8,38,55]); we refer to [12,15,35,49,53,54,71,72,77–80,85] for further related
information and stability results for those equations.

Let Δ : Y X → Y X denote the Fréchet difference operator given by

Δyf(x) = Δ1
yf(x) := f(x + y) − f(x), x, y ∈ X.

Write

Δt,z := Δt ◦ Δz, Δ2
t := Δt, t, t, z ∈ X,

and

Δt,u,z := Δt ◦ Δu ◦ Δz, Δ3
t := Δt, t, t, t, u, z ∈ X,

for functions f ∈ Y X . Recurrently, we define

Δn+1
z := Δz ◦ Δn

z , z ∈ X, n ∈ N,

Δxn+1,xn,...,x1 := Δxn+1 ◦ Δxn,...,x1 , x1, . . . , xn+1 ∈ X, n ∈ N.

It is easily seen that the equations

Δn
z f(x) = 0, x, z ∈ X, (6.6)

Δxn,...,x1f(x) = 0, x, x1, . . . , xn ∈ X,

Δn
z f(x) = n!f(z), x, z ∈ X (6.7)

are particular cases of (6.1). Functions f : X → Y satisfying (6.6) and (6.7)
are called polynomial functions of order n−1 and monomial functions of order
n, respectively (see, e.g., [42,49,59,61,93] for information on their solutions
and stability).

Let us mention yet that (6.5) can be written as

C2f(x, y, z) = 0, x, y, z ∈ X,

where

C2f(x, y, z) = Cf(x, y + z) − Cf(x, y) − Cf(x, z), x, y, z ∈ X,
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and

Cf(x, y) = f(x + y) − f(x) − f(y), x, y ∈ X,

i.e., C2f is the Cauchy difference of f of the second order. Recurrently,

Cn+1f(x1, . . . , xn, u, w) = Cnf(x1, . . . , xn, u + w) − Cnf(x1, . . . , xn, u)

− Cnf(x1, . . . , xn, w)

for x1, . . . , xn, u, w ∈ X, and n ∈ N. It is easily seen that the equation

Cn+1f(x1, . . . , xn+2) = 0, x1, . . . , xn+2 ∈ X,

also is of the form (6.1) for every n ∈ N.
The functional equation

M

[
f

(
x + y + z

m

)
+ f(x) + f(y) + f(z)

]

= N

[
f

(
x + y

n

)
+ f

(
x + z

n

)
+ f

(
y + z

n

)]
, (6.8)

(M,N,m, n being non-zero integers) is another particular case of (6.1). It
has been studied in [29–32]. The Eq. (6.8) with M = m = 3 and N = n = 2
was considered for the first time by Popoviciu [81] in connection with some
inequalities for convex functions; for results on solutions and stability of it,
we refer to [92,94]. Solutions and stability of (6.8) with M = m = 3 and
N = n = 2 have been investigated by Lee [62]. The more general case N = n2

and M = m2 of (6.8) has been studied in [63]. For results on a generalization
of (6.8) we refer to [95].

Finally, let us recall here the equation of p-Wright affine functions (called
also the p-Wright functional equation)

f(px + (1 − p)y) + f((1 − p)x + py) = f(x) + f(y), (6.9)

where p ∈ R is fixed, which also is of form (6.1). For more information on
(6.9) and recent results on its stability we refer to [11,18].

Our main theorem in this section concerns the Ulam-type stability of
Eq. (1.2) in RN-spaces. The following two hypotheses are needed to formulate
it.
(M) There exist μ ∈ {1, · · · ,m − 1} and c1, . . . , cn ∈ K such that

A0 :=

∣∣∣∣∣

m∑

i=μ+1

Ai

∣∣∣∣∣ > 0, βi = 1, i = μ + 1, . . . , m,

where βi :=
∑n

j=1 aijcj for i = 1, . . . , m.
(D) For every x1, . . . , xn ∈ X,

m∑

i=1

Aid

(
n∑

j=1

aijxj

)
=

m∑

i=1

AiD

(
βix1, . . . , βixn

)
, (6.10)

where βi is defined as in hypothesis (M) and d(x) = D(c1x, . . . , cnx)
for x ∈ X.
The next two remarks provide some comments on those hypotheses.
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Remark 6.1. If
∑n

j=1 |amj | �= 0, then there exist c1, . . . , cn ∈ K such that∑n
j=1 amjcj = 1. Therefore, hypothesis (M) is fulfilled with μ = m − 1.

However, because of the forms of the conditions (i)–(iii) of Theorem 3.5 and
(6.13), it makes sense to consider (for some cases of the Eq. (1.2) and some
functions θ) also the situations with μ < m − 1.

For instance, for the Cauchy equation (6.2) and its inhomogeneous form

f(x + y) = f(x) + f(y) + D(x, y), (6.11)

we can consider the following two situations (we refer to Corollary 6.4 and
its proof for consequences in both of them).
(a1) If (6.11) is written in the form (1.2) as f(x1 + x2) − f(x1) − f(x2) =

D(x, y), then m = 3, n = 2, A1 = 1, A2 = A3 = −1, a11 = a12 = 1,
a21 = 1, a22 = 0, a31 = 0, a32 = 1. In the matrix form, we can write aij

as

(aij) 1≤i≤3,
1≤j≤2

=

⎛

⎝
1 1
1 0
0 1

⎞

⎠ .

Clearly, (M) is valid with μ = 1, A0 = 2, and c1 = c2 = 1.
(a2) If (6.11) is written in the form (1.2) as −f(x1) − f(x2) + f(x1 + x2) =

D(x, y), then m = 3, n = 2, A1 = A2 = −1, A3 = 1, a11 = 1, a12 = 0,
a21 = 0, a22 = 1, a31 = a32 = 1. In the matrix form, we can write aij

as

(aij) 1≤i≤3,
1≤j≤2

=

⎛

⎝
1 0
0 1
1 1

⎞

⎠ ,

and (M) is valid with μ = 2, A0 = 1, and c1 = c2 = 1/2.

Remark 6.2. (b0) Clearly, if D is a constant function, then hypothesis (D) is
valid (this case includes Eq. (1.1)). Moreover, if functions D1,D2 : Xn → Y
satisfy the hypothesis, then so does the function α1D1 +α2D2 with any fixed
scalars α1, α2. Below, we provide more examples of nontrivial functions D
satisfying the hypothesis.

(b1) Consider the situation (a1) depicted in the previous remark, with
m = 3, n = 2, A1 = 1, A2 = A3 = −1, a11 = a12 = 1, a21 = 1, a22 = 0,
a31 = 0, a32 = 1, μ = 1, and c1 = c2 = 1. Then β1 = 2, β2 = β3 = 1 and
condition (6.10) takes the form

D(x1 + x2, x1 + x2) − D(x1, x1) − D(x2, x2)

= D(2x1, 2x2) − 2D(x1, x2), x1, x2 ∈ X. (6.12)

Observe that condition (6.12) holds in each of the following three cases:
• D is a symmetric biadditive function (i.e., D(x1, x2) = D(x2, x1) and

D(x1, x2 + x3) = D(x1, x2) + D(x1, x3) for x1, x2, x3 ∈ X);
• there exist additive h1, h2 : X → X such that D(x1, x2) = h1(x1) +

h2(x2) for x1, x2 ∈ X;
• there exists ρ : X → Y such that D(x1, x2) = ρ(x1 +x2)−ρ(x1)−ρ(x2)

for x1, x2 ∈ X.
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(b2) In the situation (a2) depicted in the previous remark, with m = 3,
n = 2, A1 = A2 = 1, A3 = −1, a11 = 1, a12 = 0, a21 = 0, a22 = 1,
a31 = a32 = 1, μ = 2, c1 = c2 = 1/2, β2 = β3 = 1/2 and β3 = 1, condition
(6.10) takes the form

D

(
1
2
x1,

1
2
x1

)
+ D

(
1
2
x2,

1
2
x2

)
− D

(
1
2
(x1 + x2),

1
2
(x1 + x2)

)

= 2D

(
1
2
x1,

1
2
x2

)
− D

(
x1, x2

)
, x1, x2 ∈ X,

which is actually (6.12) (it is enough to replace xi by 2xi and multiply both
sides by −1).

(b3) More generally, if h1, . . . , hn : X → Y are solutions to equation
(6.1), then the function D : Xn → Y , given by

D(x1, . . . , xn) =
n∑

k=1

hk(xk), x1, . . . , xn ∈ X,

fulfills hypothesis (D). In fact, fix x1, . . . , xn ∈ X. Then, according to the
definition of d,

m∑

i=1

Ai d

(
n∑

j=1

aijxj

)
=

m∑

i=1

AiD

(
c1

n∑

j=1

aijxj , . . . , cn

n∑

j=1

aijxj

)

=
m∑

i=1

Ai

n∑

k=1

hk

(
ck

n∑

j=1

aijxj

)
=

n∑

k=1

m∑

i=1

Aihk

(
n∑

j=1

aijckxj

)
= 0,

m∑

i=1

AiD

(
βix1, . . . , βixn

)
=

m∑

i=1

Ai

n∑

k=1

hk

(
βixk

)

=
n∑

k=1

m∑

i=1

Aihk

(
n∑

j=1

aijcjxk

)
= 0,

whence we get (6.10).

Theorem 6.3. Let hypotheses (M) and (D) be valid and θ : Xn → D+ satisfy

lim
k→∞

(
T kθ

)
(x1, . . . , xn)(t) = 1, t > 0, x1, . . . , xn ∈ X, (6.13)

where T : DXn

+ → DXn

+ is given by

T χ(x1, . . . , xn)(t) =Tμ
i=1χ(βix1, . . . , βixn)

(
A0t

μ|Ai|

)
,

χ ∈ DXn

+ , t > 0, x1, . . . , xn ∈ X. (6.14)

Further, assume that one of the conditions (i)–(iii) of Theorem 3.5 holds with
ε ∈ DX

+ and Λ : DX
+ → DX

+ defined by

εx(t) := θ(c1x, . . . , cnx)(tA0), x ∈ X, t > 0, (6.15)

(Λδ)x(t) := Tμ
i=1δβix

(
A0t

μ|Ai|

)
, δ ∈ DX

+ , x ∈ X, t > 0. (6.16)
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If f : X → Y fulfills

F∑m
i=1 Aif(

∑n
j=1 aijxj)−D(x1,...,xn) ≥ θ(x1, . . . , xn), x1, . . . , xn ∈ X, (6.17)

then there is a solution ψ : X → Y of Eq. (1.2) such that

F(ψ−f)(x)(t) ≥ sup
α∈(0,1)

σ̂0
x(αt), t > 0, x ∈ X, (6.18)

with σ̂0
x defined by (3.7) (see also (3.2) and (3.3)).
Moreover, in case where (i) or (ii) holds, there is exactly one solution

ψ ∈ Y X of (1.2) such that there exists α ∈ (0, 1) with

F(ψ−f)(x)(t) ≥ σ̂0
x(αt), t > 0, x ∈ X. (6.19)

Proof. Write |α| = 1/A0 and fix x ∈ X. Putting xj := cjx for j ∈ {1, . . . , n}
in (6.17), we get

F∑m
i=1 Aif(βix)−d(x) ≥ θ(c1x, . . . , cnx).

Moreover,

α

m∑

i=1

Aif
(
βix

)
= f(x) +

μ∑

i=1

Aiαf
(
βix

)
.

Therefore,

Ff(x)+α
∑μ

i=1 Aif(βix)−αd(x)(t) = Fα
∑m

i=1 Aif(βix)−αd(x)(t)

= F∑m
i=1 Aif(

∑n
j=1 aijcjx)−d(x)(A0t) ≥ θ(c1x, . . . , cnx)(A0t), t > 0.

Consequently,

Ff(x)−Jf(x)(t) ≥ θ(c1x, . . . , cnx)(A0t), t > 0, (6.20)

with the operator J : Y X → Y X defined by

Jξ(x) := −α

(
μ∑

i=1

Aiξ(βix) − d(x)

)
, ξ ∈ Y X , x ∈ X.

Note that the assumptions of Theorem 3.11 are satisfied for such J , because,
for every ξ, η ∈ Y X and x ∈ X,

(Jξ − Jη)(x) = −α

μ∑

i=1

Ai(ξ − η)
(
βix

)
,

whence

F(Jξ−Jη)(x)(t) = F−α
∑μ

i=1 Ai(ξ−η)(βix)(t)

≥ Tμ
i=1FAi(ξ−η)(βix)

(
A0t

μ

)

= Tμ
i=1F(ξ−η)(βix)

(
A0t

μ|Ai|

)
, t > 0.

This means that the condition (3.34) is fulfilled with ξi(x) = βix and
Li(x) = |Ai|/A0. Consequently, by Theorem 3.11, for every k ∈ N0, x ∈ X
and t > 0, the limit (3.12) exists and the function ψ ∈ Y X is a fixed point of
J fulfilling (6.18).
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Moreover, if one of the conditions (i), (ii) holds, then ψ is the unique
fixed point of J such that there is α ∈ (0, 1) with

F(ψ−f)(x)(t) ≥ σ̂0
x(αt), t > 0, x ∈ X. (6.21)

Now, we show that ψ is a solution to (6.1). To this end, observe that

m∑

i=1

Aiψ

(
n∑

j=1

aijxj

)
=

m∑

i=1

Ai lim
k→∞

(Jkf)

(
n∑

j=1

aijxj

)

= lim
k→∞

(
m∑

i=1

Ai(Jkf)

(
n∑

j=1

aijxj

))
, x1, . . . , xn ∈ X. (6.22)

First, we prove by induction that, for each k ∈ N0 and x1, . . . , xn ∈ X,

F∑m
i=1 Ai(Jkf)(∑n

j=1 aijxj)−D(x1,...,xn) ≥ (T kθ)(x1, . . . , xn). (6.23)

The case k = 0 is (6.17). So fix k ∈ N0 and assume that (6.23) holds.
Then, by hypothesis (D), for every x1, . . . , xn ∈ X,

m∑

i=1

Ai(Jk+1f)

(
n∑

j=1

aijxj

)
=

m∑

i=1

AiJ(Jkf)

(
n∑

j=1

aijxj

)

= −α
m∑

i=1

Ai

[
μ∑

l=1

Al(Jkf)

(
βl

n∑

j=1

aijxj

)
− d

(
n∑

j=1

aijxj

)]

= −α

μ∑

l=1

Al

m∑

i=1

Ai(Jkf)

(
n∑

j=1

aijβlxj

)
+ α

m∑

i=1

Aid

(
n∑

j=1

aijxj

)

= −α

μ∑

l=1

Al

m∑

i=1

Ai(Jkf)

(
n∑

j=1

aijβlxj

)
+ α

m∑

l=1

AlD

(
βlx1, . . . , βlxn

)

= −α

μ∑

l=1

Al

[
m∑

i=1

Ai(Jkf)

(
n∑

j=1

aijβlxj

)
− D

(
βlx1, . . . , βlxn

)]

+ D(x1, x2 . . . , xn). (6.24)

Hence, by (6.14) and the assumed inequality (6.23),

F∑m
i=1 Ai(Jk+1f)(∑n

j=1 aijxj)−D(x1,...,xn)(t)

= F−α
∑μ

l=1[Al

∑m
i=1 Ai(Jkf)(∑n

j=1 aijβlxj)−D(βlx1,...,βlxn)](t)

≥ Tμ
l=1F∑m

i=1 Ai(Jkf)(∑n
j=1 aijβlxj)−D(βlx1,...,βlxn)

(
A0t

μ|Al|

)

≥ Tμ
l=1(T kθ)(βlx1, . . . , βlxn)

(
A0t

μ|Al|

)

= (T k+1θ)(x1, . . . , xn)(t), x1, . . . , xn ∈ X, t > 0.
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Thus we have proved that (6.23) holds for each k ∈ N0. Now, by letting
k → ∞ in (6.23), in view of (6.13), for every x1, . . . , xn ∈ X, we get

lim
k→∞

F∑m
i=1 Ai(Jkf)(∑n

j=1 aijxj)−D(x1,...,xn)(t) = 1, t > 0, (6.25)

which means that

lim
k→∞

m∑

i=1

Ai(Jkf)

(
n∑

j=1

aijxj

)
= D(x1, . . . , xn), x1, . . . , xn ∈ X.

Consequently, by (6.22),
m∑

i=1

Aiψ

(
n∑

j=1

aijxj

)
= D(x1, . . . , xn), x1, . . . , xn ∈ X. (6.26)

To complete the proof, observe that every solution of (1.2) is a fixed
point of J and therefore the statement on uniqueness follows directly from
the uniqueness property of ψ as a fixed point of J satisfying (6.21). �

Using Theorem 6.3, we can obtain various stability results for numerous
equations. For instance, for the Cauchy inhomogeneous equation (6.11) we
can argue as in the following corollary.

Corollary 6.4. Assume that T = TM , Y is M -complete, ‖ ‖ is a norm on X,
D : X2 → Y satisfies condition (6.12), p, v1, v2 ∈ [0,∞), p �= 1, v1 + v2 �= 0,
and f : X → Y satisfies

Ff(x+y)−f(x)−f(y)−D(x,y)(t) ≥ t

t + v1‖x‖p + v2‖y‖p
,

x, y ∈ X, t > 0. (6.27)

Then there exists a unique solution ψ : X → Y to the Cauchy inhomogeneous
equation (6.11) such that

Ff(x)−ψ(x)(t) ≥ σ̂0
x(t) ≥ t

t + v0‖x‖p
, x ∈ X, t > 0, (6.28)

where σ̂0
x(t) is defined by (3.7) and

v0 =
v1 + v2

|2 − 2p| .

Proof. Equation (6.11) is (1.2) with m = 3 and n = 2. Next, Remark 6.2
shows that condition (6.12) means that D fulfills hypothesis (D). So, we use
Theorem 6.3 with

θ(x1, x2)(t) =
t

t + v1‖x1‖p + v2‖x2‖p
, x1, x2 ∈ X, t > 0,

and consider two separate cases: p < 1 and p > 1.
The first case (p < 1) coincides with the situation (a1) of Remark 6.1,

with A1 = −A2 = −A3 = 1 and

(aij) 1≤i≤3,
1≤j≤2

=

⎛

⎝
1 1
1 0
0 1

⎞

⎠ ,
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when hypothesis (M) is valid with μ = 1 and c1 = c2 = 1. Then, A0 = 2,
β1 = a11c1 + a12c2 = 2, and consequently (see (6.14)–(6.16))

(T χ)(x1, x2)(t) = χ(β1x1, β1x2)
(

A0t

μ|A1|

)
= χ(2x1, 2x2)(2t),

t > 0, x1, x2 ∈ X,χ ∈ DX2

+ , (6.29)

(Λδ)x(t) := δβ1x

(
A0t

μ|A1|

)
= δ2x(2t), δ ∈ DX

+ , x ∈ X, t > 0,

εx(t) = θ(c1x, c2x)(tA0) =
t

t + v‖x‖p
, x ∈ X, t > 0, (6.30)

with v := (v1 + v2)/2.
Arguing as in Remark 3.7 (with a = b = 2 and e0 = ba−p = 21−p > 1),

we obtain that Λ satisfies condition (3.10) (with some sequence (ωk
n)n∈N0 ∈ Ω)

and

σ̂0
x(t) ≥ εx

(
e−1
0 (e0 − 1)t

)
=

t

t + v0‖x‖p
, x ∈ X, t > 0,

with

v0 =
v

1 − 2p−1
=

v1 + v2

2 − 2p
.

Moreover, by (6.29),

lim
k→∞

(
T kθ

)
(x1, x2)(t) = lim

k→∞
θ(2kx1, 2kx2)(2kt)

= lim
k→∞

t

t + 2k(p−1)(v1‖x1‖p + v2‖x2‖p)
= 1, x1, x2 ∈ X, t > 0,

which means that (6.13) is fulfilled. Therefore our statement for p < 1 results
from Theorem 6.3.

In the case p > 1, we need situation (a2) of Remark 6.1, with −1 =
A1 = A2 = −A3 and

(aij) 1≤i≤3,
1≤j≤2

=

⎛

⎝
1 0
0 1
1 1

⎞

⎠ ,

when hypothesis (M) holds with μ = 2, A0 = 1 and c1 = c2 = 1/2. The
reasoning is analogous to the case p < 1, but for the convenience of the
reader, we present it in some details. Namely, when β1 = β2 = 1/2, εx(t) is
given by (6.30), but with v = 2−p(v1 + v2), and for every x, x1, x2 ∈ X, t > 0
and δ ∈ DX

+ ,

(Λδ)x(t) = T 2
i=1δβix

(
A0t

μ|Ai|

)
= min

i=1,2

{
δβix

(
A0t

μ|Ai|

)}
= δ 1

2x

(
t

2

)
,

T θ(x1, x2)(t) = T 2
i=1θ(β1x1, β2x2)

(
t

2

)
= θ

(
1
2
x1,

1
2
x2

)(
1
2
t

)
.
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According to Remark 3.7 (with a = b = 1/2 and consequently e0 :=
ba−p = 2p−1 > 1), condition (3.10) is satisfied and

σ̂x
0 (t) ≥ εx

(
e−1
0 (e0 − 1)t

)
=

t

t + v0‖x‖p
, x ∈ X, t > 0,

with

v0 =
v

1 − 21−p
=

v1 + v2

2p − 2
.

Note yet that, for x1, x2 ∈ X and t > 0, we have

lim
k→∞

(
T kθ

)
(x1, x2)(t) = lim

k→∞
θ(2−kx1, 2−kx2)(2−kt)

= lim
k→∞

t

t + 2k(1−p)(v1‖x1‖p + v2‖x2‖p)
= 1.

This means that (6.13) is fulfilled. Therefore, also our statement for p > 1
results from Theorem 6.3. �

Remark 6.5. According to Remark 6.2 ((b0) and (b1)), the function D in
Corollary 6.4 can be of the following form:

D(x, y) = z0 + u1(x) + u2(y) + u3(x, y) + g(x + y) − g(x) − g(y), x, y ∈ X,

with any fixed: g : X → Y , additive u1, u2 : X → Y , biadditive symmetric
u3 : X2 → Y , and z0 ∈ Y .
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