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Abstract. The existence of solutions for the Dirichlet problem associated
with bounded perturbations of positively-(p, q)-homogeneous Hamilton-
ian systems is considered both in nonresonant and resonant situations.
To deal with the resonant case, the existence of a couple of lower and
upper solutions is assumed. Both the well-ordered and the non-well-
ordered cases are analysed. The proof is based on phase-plane analysis
and topological degree theory.
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1. Introduction

Let H : R
2 → R be a continuously differentiable positively-(p, q)-homogeneous

positive-definite function. By this we mean that, for some p > 1 and q > 1
with (1/p) + (1/q) = 1,

H(λqx, λpy) = λp+qH(x, y) > 0 , (1)

for every λ > 0 and (x, y) �= (0, 0). We are interested in Dirichlet problems
of the type

⎧
⎨

⎩

x′ =
∂H

∂y
(x, y) + φ(t, x, y) , y′ = −∂H

∂x
(x, y) + ψ(t, x, y) ,

x(a) = 0 = x(b) ,
(2)

where the functions φ, ψ : [a, b] × R
2 → R are continuous and bounded.
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The autonomous system

x′ =
∂H

∂y
(x, y) , y′ = −∂H

∂x
(x, y) (3)

is isochronous (see [25]). More precisely, (0, 0) is a global center, and all
solutions are periodic of the same period, which we denote by τ . Moreover,
if y0 > 0, for all solutions (x, y) starting with (x(0), y(0)) = (0, y0) there is
a first time τ+ > 0 for which x(τ+) = 0, while x(t) > 0 for every t ∈ ]0, τ+[ ,
and this time τ+ is independent of y0 > 0. Symmetrically, if y0 < 0, there is
a first time τ− > 0 for which x(τ−) = 0, while x(t) < 0 for every t ∈ ]0, τ−[ .
Clearly enough, τ+ + τ− = τ .

First of all, let us state the following nonresonance result.

Theorem 1. Assume that there is an integer n ≥ 0 such that one of the
following alternatives hold

nτ < b − a < nτ + min{τ−, τ+} , (4)

nτ + max{τ−, τ+} < b − a < (n + 1)τ . (5)

Then, problem (2) has a solution.

Its proof relies on the so called shooting method, following the ideas
presented in [10] (see also [3,23]), and will be given in Section 3.

As a possible example we may consider the function

H(x, y) =
1
q

(
δ(y+)q + γ(y−)q

)
+

1
p

(
μ(x+)p + ν(x−)p

)
,

for some positive constants δ, γ, μ, ν (we use the standard notation where
f+ = max{f, 0}, f− = max{−f, 0}). If we choose δ = γ = 1 and φ ≡ 0, our
problem is then equivalent to

{
(|x′|p−2x′)′ + μ|x+|p−2x+ − ν|x−|p−2x− = h(t, x, x′) ,

x(a) = 0 = x(b) ,
(6)

with h(t, x, v) = −ψ(t, x, |v|p−2v). In this case, τ+ = πpμ
−1/p and τ− =

πpν
−1/p, cf. [18], where

πp =
2(p − 1)1/p

p sin(π/p)
π .

If p = 2, the differential equation in (6) models an asymmetric oscillator, with
τ+ = π/

√
μ, τ− = π/

√
ν, and it is well known that some care on the choice

of μ, ν must be taken to avoid resonance phenomena; when h is bounded,
the existence of a solution depends on the position of (μ, ν) with respect to
the Fuč́ık spectrum, cf. [10]. In Fig. 1, the assumption of Theorem 1 can be
visualized, when b − a = πp, taking the values (μ−1/p, ν−1/p) in the white
regions.

A different way of avoiding resonance would be the assumption of the
existence of a well-ordered couple of lower/upper solutions α ≤ β, together
with some Nagumo-type conditions. This method goes back to the pioneering
papers [20–22]. Some more care is needed in the non-well-ordered case α �≤ β,
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Figure 1. The Fuč́ık spectrum

see [1,8,9,16,17]. We refer to the book [7] for an extensive exposition on
the theory of lower and upper solutions for scalar second order differential
equations.

The concept of lower and upper solution has been recently extended to
planar systems in [15] for the periodic problem (see also [12]), and in [14] for
Sturm–Liouville type problems, including the Dirichlet problem. We recall in
Section 4 the main definitions in this case.

Here is our result for problem (2), in the well-ordered case.

Theorem 2. Assume H to be a continuously differentiable positively-(p, q)-
homogeneous positive-definite function, for some p > 1 and q > 1 with (1/p)+
(1/q) = 1. Let φ, ψ be uniformly bounded continuous functions, and let (α, β)
be a well-ordered pair of lower/upper solutions of problem (2). Then, there
exists a solution (x, y) of (2) such that α ≤ x ≤ β.

The proof will be given in Section 5. We will first need some properties
of positively-(p, q)-homogeneous Hamiltonian systems, which we provide in
Section 2. Then, the main issue will be the construction of some guiding
curves in the phase plane so to enter the framework of [14, Theorem 11].

In the sequel, we denote by Cj,�
loc the space of Cj-smooth real functions

whose jth derivative is locally 
-Hölder continuous, with 
 > 0. Moreover,
defining the function

ϕ1(t) = sin
( t − a

b − a
π
)

,

we introduce the following order relation: for any continuous function x :
[a, b] → R, we write

x 	 0 (7)

if and only if

there exists ε > 0 such that x(t) ≥ ε ϕ1(t) , for every t ∈ [a, b] .



66 Page 4 of 32 A. Fonda et al. JFPTA

We will write either u 	 v or v 
 u when u − v 	 0.
Concerning the non-well-ordered case, we recall that the existence of a

pair of lower/upper solutions does not guarantee the existence of a solution,
since resonance phenomena can occur with respect to the higher part of the
spectrum. However, at least for scalar second-order equations, it is well known
that resonance can be handled with respect to the first eigenvalue, cf. [7]. This
observation leads us to assume, in the non-well-ordered case, that

b − a ≤ min{τ+, τ−} . (8)

Here is our result, in the non-well-ordered case.

Theorem 3. Let 
 > 0 and assume H to be a C1,�
loc-smooth positively-(p, q)-

homogeneous positive-definite function, for some p > 1 and q > 1 with (1/p)+
(1/q) = 1. Let φ, ψ be uniformly bounded C0,�

loc-smooth functions, and let (α, β)
be a non-well-ordered pair of lower/upper solutions of (2). Assume moreover
that

∂H

∂y
(x0, ·) is a strictly increasing function, for every x0 ∈ R. (9)

Then, if (8) holds, there exists a solution (x, y) of (2) such that α �
 x and
x �
 β.

The above theorem generalizes [14, Theorem 19]. Its proof is provided
in Section 6 by the use of topological degree techniques, which require the
above regularity assumptions. It would be interesting to know whether the
result still holds when the functions φ, ψ are only assumed to be continuous.
Notice that assumption (9) is surely verified for problems like (6), where
∂H
∂y (x, y) = |y|q−2y.

In the final section of the paper, we extend the previous results to sys-
tems in R

2N which can be considered as weakly coupled planar systems of
the above type. The different planar systems involved could have either well-
ordered or non-well-ordered lower and upper solutions. We are able to deal
with this mixed type of situations, still obtaining an existence result, thus car-
rying out the investigation opened in [14]. However, for the non-well-ordered
case, we need to ask the lower/upper solutions to be strict, a concept we will
introduce in Section 7.

2. Elementary properties of positively-(p, q)-homogeneous
Hamiltonian systems

For the autonomous system (3) the origin (0, 0) is an isochronous center, all
solutions having minimal period τ > 0. We denote by S(t) = (S1(t), S2(t)) the
periodic solution such that S1(0) = 0 and S2(0) > 0, with H(S1(t), S2(t)) = 1
for every t. Then, the periodic solutions of system (3) having energy H(x, y) =
E can be written as

(
x(t), y(t)

)
=

(
E

1
p S1(t + σ), E

1
q S2(t + σ)

)
,



Vol. 24 (2022) On the Dirichlet problem associated Page 5 of 32 66

for some σ ∈ R. We will use the notations

S = max{|S1(t)| + |S2(t)| : t ∈ R} ,

S′ = max{|S′
1(t)| + |S′

2(t)| : t ∈ R} . (10)

For any function u = (x, y) : [a, b] → R
2 \ {(0, 0)}, we can introduce the

generalized polar coordinates
{

x(t) = r(t)
1
p S1(θ(t)) ,

y(t) = r(t)
1
q S2(θ(t)) ,

(11)

where r(t) ≥ 0. If u(t) = (0, 0), we set r(t) = 0, while θ(t) is not defined. Let

Np(u) = ‖r‖1/p
∞ = sup{r(t)

1
p : t ∈ [a, b]} .

For every D > 0, one has that

Np(u) ≤ D ⇒ ‖x‖∞ ≤ D S and ‖y‖∞ ≤ D
p
q S .

Condition (1) can be rewritten as

H(λ
1
p x, λ

1
q y) = λH(x, y) > 0 ,

for every λ > 0 and (x, y) �= (0, 0). Then,

∂H

∂x
(λqx, λpy) = λq(p−1) ∂H

∂x
(x, y) = λp ∂H

∂x
(x, y) , (12)

∂H

∂y
(λqx, λpy) = λp(q−1) ∂H

∂y
(x, y) = λq ∂H

∂y
(x, y) . (13)

We can write the generalized Euler formula
(

x

p
,
y

q

)

· ∇H(x, y) = H(x, y) . (14)

We can rewrite (12) and (13) as

∂H

∂x
(x, μy) = μ

∂H

∂x
(μ− q

p x, y) , (15)

∂H

∂y
(x, μy) = μ

q
p
∂H

∂y
(μ− q

p x, y) , (16)

for every μ > 0. We will need the following property.

Lemma 4. For every L > 0, we have that

lim
y→±∞

∂H

∂y
(x, y) = ±∞ uniformly with respect to x ∈ [−L,L].

Proof. We first prove that there are c0 > 0 and y0 ≥ 1 such that

|x| ≤ L ⇒ ∂H

∂y
(x, y0) > c0 and

∂H

∂y
(x,−y0) < −c0 .

From (14), we have both

∂H

∂y
(0, 1) > 0 and

∂H

∂y
(0,−1) < 0 .
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Hence, we can find δ0 > 0 and c0 > 0 such that

|u| ≤ δ0 ⇒ ∂H

∂y
(u, 1) > c0 and

∂H

∂y
(u,−1) < −c0 . (17)

If we set

y0 = max
{

(L/δ0)
p
q , 1

}
,

then, for every x ∈ [−L,L] we get, using (16) and (17),

∂H

∂y
(x, y0) = y

q
p

0

∂H

∂y

(
y

− q
p

0 x, 1
)

> y
q
p

0 c0 ≥ c0 ,

∂H

∂y
(x,−y0) = y

q
p

0

∂H

∂y

(
y

− q
p

0 x,−1
)

< −y
q
p

0 c0 ≤ −c0 .

So, for any x ∈ [−L,L] and μ > 1, from (16) we obtain

∂H

∂y
(x, μy0) = μ

q
p
∂H

∂y

(
μ− q

p x, y0

)
≥ μ

q
p c0 ,

∂H

∂y
(x,−μy0) = μ

q
p
∂H

∂y

(
μ− q

p x,−y0

)
≤ −μ

q
p c0 .

The conclusion follows. �

3. Proof of Theorem 1

To prove Theorem 1, let us first assume the validity of the alternative (4).
Introducing generalized polar coordinates (11), we can compute (cf. [25,

Section 2])

θ′(t) = 1 +
1

r(t)

[
1
q
y(t)φ(t, x(t), y(t)) − 1

p
x(t)ψ(t, x(t), y(t))

]

,

r′(t) = ψ(t, x(t), y(t))r
1
p (t)S′

1(θ(t)) − φ(t, x(t), y(t))r
1
q (t)S′

2(θ(t)) .

Since the functions φ, ψ : [a, b] × R
2 → R are bounded, there is a constant K

for which

|φ(t, x, y)| ≤ K , |ψ(t, x, y)| ≤ K , for every (t, x, y) ∈ [a, b] × R
2. (18)

Setting ω = min{ 1
p , 1

q } and using (10), we have

|θ′(t) − 1| ≤ KS r(t)−ω , (19)

|r′(t)| ≤ 2KS′ r(t) , (20)

when r(t) > 1. As a consequence of (20), all the solutions of

x′ =
∂H

∂y
(x, y) + φ(t, x, y) , y′ = −∂H

∂x
(x, y) + ψ(t, x, y) (21)

are globally defined. Since we are assuming (4), choosing δ > 0 sufficiently
small, we have

nτ < (b − a)(1 − δ) < (b − a)(1 + δ) < nτ + min{τ−, τ+} . (22)
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Correspondingly, we can fix R > 1 such that

KS R
−ω

< δ .

From (19), a solution of (21) satisfying r(t) ≥ R for every t ∈ [a, b] is
such that

1 − δ < θ′(t) < 1 + δ ,

for every t ∈ [a, b]. Hence, recalling assumption (4), from (22) we get

nτ < θ(b) − θ(a) < nτ + min{τ−, τ+} . (23)

Finally, from (20) and Gronwall lemma, we can find R1 > R0 > R with
the following property: if a solution of (21) satisfies r(t0) = R0 for some
t0 ∈ [a, b], then

R < r(t) < R1 for every t ∈ [a, b] . (24)

Let us set

y+
0 = R

1
q

0 S2(0) > 0 and y−
0 = R

1
q

0 S2(τ+) < 0 .

For any σ ∈ J := [y−
0 , y+

0 ], we consider the Cauchy problem
⎧
⎨

⎩

x′ =
∂H

∂y
(x, y) + φ(t, x, y) , y′ = −∂H

∂x
(x, y) + ψ(t, x, y) ,

x(a) = 0 , y(a) = σ .
(25)

We recall that all the solutions of (25) are defined in the interval [a, b]. Then,
by [6, Corollary 2.3], there exists a closed connected set

K ⊆ {(σ, z) ∈ J × C([a, b], R2) : z = (x, y) is a solution of (25)}
whose projection on J coincides with J .

So, we can find some (y−
0 , (x−, y−)) ∈ K and (y+

0 , (x+, y+)) ∈ K. The
solutions (x±, y±) satisfy (23) and

R < r(t) < R1 for every t ∈ [a, b] .

Indeed, denoting by (r±, θ±) the modified polar coordinates of (x±, y±), we
have r±(a) = R0 and so (24) holds. Then, if we consider the initial data
y+(a) = y+

0 , [resp. y−(a) = y−
0 ], we can choose θ+(a) = 0 [resp. θ−(a) = τ+].

From (23), we get

nτ < θ+(b) < nτ + τ+ , nτ + τ+ < θ−(b) < (n + 1)τ ,

so that

x−(b) · x+(b) < 0 . (26)

Hence, defining the continuous function Z : K → R as Z(σ, (x, y)) =
x(b), from (26) we easily deduce that

Z(y−
0 , (x−, y−)) · Z(y+

0 , (x+, y+)) < 0 .

By continuity, Z(K) is an interval and we find the existence of (σ, (x, y)) ∈ K
satisfying Z(σ, (x, y)) = 0. Hence, (x, y) is the solution we were looking for.
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The proof is thus completed if (4) holds. If (5) holds, the proof is similar:
we need to replace (22) by

nτ + max{τ−, τ+} < (b − a)(1 − δ) < (b − a)(1 + δ) < (n + 1)τ ,

and (23) by

nτ + max{τ−, τ+} < θ(b) − θ(a) < (n + 1)τ .

Finally, we get

nτ + τ+ < θ+n (b) < (n + 1)τ , (n + 1)τ < θ−
n (b) < (n + 1)τ + τ+ ,

which gives (26), permitting us to conclude as above.
The proof of Theorem 1 is now completed. �

Remarks. Other types of boundary conditions can be considered, leading to
similar results. The case of a Neumann-type problem, with boundary condi-
tions y(a) = 0 = y(b), is nothing but the previous Dirichlet-type problem by
a simple switch in the variables x � y. The mixed problem

⎧
⎨

⎩

x′ =
∂H

∂y
(x, y) + φ(t, x, y) , y′ = −∂H

∂x
(x, y) + ψ(t, x, y) ,

x(a) = 0 = y(b)
(27)

can be considered, as well. Going back to the solution S = (S1, S2) of the
unperturbed system (3), we can find the positive values τ1, τ2, τ3, τ4 such that

S1(0) = 0 , S2(0) > 0

S1(τ1) > 0 , S2(τ1) = 0 ,

S1(τ1 + τ2) = 0 , S2(τ1 + τ2) < 0 ,

S1(τ1 + τ2 + τ3) < 0 , S2(τ1 + τ2 + τ3) = 0 ,

τ1 + τ2 + τ3 + τ4 = τ ,

leading to the following.

Theorem 5. Assume that there is an integer n ≥ 0 such that one of the
following alternatives hold

nτ < b − a < nτ + min{τ1, τ3} ,

nτ + τ1 + τ3 + max{τ2, τ4} < b − a < (n + 1)τ .

Then, problem (27) has a solution.

Similarly, we can consider the boundary conditions y(a) = 0 = x(b), as
well, thus obtaining the corresponding existence result. Finally, Carathéodory
conditions on φ and ψ could be assumed. We avoid entering into details, for
briefness.
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4. The definition of lower and upper solutions

Let us consider the boundary value problem
{

x′ = f(t, x, y) , y′ = g(t, x, y) ,

x(a) = 0 = x(b) ,
(28)

where f, g : [a, b]×R
2 → R are continuous functions, and recall the definitions

introduced in [14].

Definition 6. A continuously differentiable function α : [a, b] → R is said to be
a lower solution for problem (28) if there exists a continuously differentiable
function yα : [a, b] → R such that, for every t ∈ [a, b],

{
y < yα(t) ⇒ f(t, α(t), y) < α′(t) ,

y > yα(t) ⇒ f(t, α(t), y) > α′(t) ,
y′

α(t) ≥ g(t, α(t), yα(t)) ,

and

α(a) ≤ 0 , α(b) ≤ 0 .

Definition 7. A continuously differentiable function β : [a, b] → R is said to be
an upper solution for problem (28) if there exists a continuously differentiable
function yβ : [a, b] → R such that, for every t ∈ [a, b],

{
y < yβ(t) ⇒ f(t, β(t), y) < β′(t) ,

y > yβ(t) ⇒ f(t, β(t), y) > β′(t) ,
y′

β(t) ≤ g(t, β(t), yβ(t)) ,

and

β(a) ≥ 0 , β(b) ≥ 0 .

We say that (α, β) is a well-ordered pair of lower/upper solutions of
problem (28), if α and β are respectively a lower and an upper solution for
problem (28) and they satisfy

α(t) ≤ β(t) , for every t ∈ [a, b] .

On the other hand, if the above inequality does not hold, we say that the
pair (α, β) is non-well-ordered.

5. Proof of Theorem 2

Define

f(t, x, y) =
∂H

∂y
(x, y) + φ(t, x, y) , g(t, x, y) = −∂H

∂x
(x, y) + ψ(t, x, y) ,

and set mα = min α and Mβ = max β. To apply [14, Theorem 11], we need
to construct some guiding curves γ±

1,2 : [mα,Mβ ] → R such that, for every
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t ∈ [a, b] and x ∈ [α(t), β(t)],

γ−
i (x) < min{yα(t), yβ(t)} ≤ max{yα(t), yβ(t)} < γ+

i (x) , i = 1, 2 ,

g
(
t, x, γ+

1 (x)
)

> f
(
t, x, γ+

1 (x)
)
(γ+

1 )′(x) , (29)

g
(
t, x, γ+

2 (x)
)

< f
(
t, x, γ+

2 (x)
)
(γ+

2 )′(x) , (30)

g
(
t, x, γ−

1 (x)
)

< f
(
t, x, γ−

1 (x)
)
(γ−

1 )′(x) , (31)

g
(
t, x, γ−

2 (x)
)

> f
(
t, x, γ−

2 (x)
)
(γ−

2 )′(x) . (32)

This can be obtained as an immediate consequence of the next two lemmas.

Lemma 8. For any L > 0 and y0 > 0 we can define two continuously differ-
entiable functions γ+

1 , γ+
2 : [−L,L] → R satisfying

γ+
i (x) ≥ y0 , i = 1, 2 , for all x ∈ [−L,L] ,

and such that (29) and (30) hold for every t ∈ [a, b] and x ∈ [−L,L].

Proof. Since both φ and ψ are bounded, let us consider K > 0 as in (18).
From Lemma 4 we can find y1 ≥ y0 such that

∂H

∂y
(x, y) > K + 1, for all (x, y) ∈ [−L,L] × [y1,+∞[ . (33)

Since H is C1, we can find a positive constant c1 such that
∣
∣
∣
∣
∂H

∂x
(x, y)

∣
∣
∣
∣ ≤ c1 , for every (x, y) ∈ [−L,L] × [y1, y1 + 2L] . (34)

Now, since 2 − q < 1, we can find M > 1 sufficiently large so to have
(
c1M

2−q + 1
)
(K + 1) < M . (35)

We define γ+
1,2 : [−L,L] → R as

γ+
1 (x) = M(y1 + L − x) , γ+

2 (x) = M(y1 + L + x) . (36)

Notice that γ+
1,2(x) ≥ y1 ≥ y0, for every x ∈ [−L,L]. If we show that, for

i = 1, 2,
∣
∣
∣
∣
∂H

∂x
(x, γ+

i (x))
∣
∣
∣
∣ + K

∂H

∂y
(x, γ+

i (x)) − K

< M , for every x ∈ [−L,L] , (37)

then, since from (36) and (33) the denominator in (37) is positive, we get
both

M

(
∂H

∂y
(x, γ+

1 (x)) + φ(t, x, γ+
1 (x))

)

≥ M

(
∂H

∂y
(x, γ+

1 (x)) − K

)

>

∣
∣
∣
∣
∂H

∂x
(x, γ+

1 (x))
∣
∣
∣
∣ + K ≥ ∂H

∂x
(x, γ+

1 (x)) − ψ(t, x, γ+
1 (x)) ,
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and

M

(
∂H

∂y
(x, γ+

2 (x)) + φ(t, x, γ+
2 (x))

)

≥ M

(
∂H

∂y
(x, γ+

2 (x)) − K

)

>

∣
∣
∣
∣
∂H

∂x
(x, γ+

2 (x))
∣
∣
∣
∣ + K ≥ −∂H

∂x
(x, γ+

2 (x)) + ψ(t, x, γ+
2 (x)) ,

for every t ∈ [a, b] and x ∈ [−L,L] and the lemma will be proved. Hence, we
need to prove the validity of (37).

Using equality (15) and the estimate (34), we have that
∣
∣
∣
∣
∂H

∂x
(x,Mv)

∣
∣
∣
∣ = M

∣
∣
∣
∣
∂H

∂x

(
M− q

p x, v
)∣
∣
∣
∣ ≤ Mc1 ,

for every x ∈ [−L,L] and v ∈ [y1, y1 + 2L] . (38)

Moreover, using equality (16) and recalling (33), we have that

M− q
p
∂H

∂y
(x,Mv) =

∂H

∂y

(
M− q

p x, v
)

> 1 ,

for every x ∈ [−L,L] and v ∈ [y1, y1 + 2L] . (39)

From (38) and (39),
∣
∣
∣
∣
∂H

∂x
(x,Mv)

∣
∣
∣
∣ ≤ Mc1 < c1M

1− q
p
∂H

∂y
(x,Mv) = c1M

2−q ∂H

∂y
(x,Mv) ,

for every x ∈ [−L,L] and v ∈ [y1, y1 + 2L] .

Since, using (36), for all x ∈ [−L,L] we have 1
M γ+

i (x) ∈ [y1, y1+2L], i = 1, 2,
then we get

∣
∣
∣
∣
∂H

∂x
(x, γ+

i (x))
∣
∣
∣
∣ < c1M

2−q ∂H

∂y
(x, γ+

i (x)) .

Hence, recalling (33) and (36), we have
∣
∣∂H

∂x (x, γ+
i (x))

∣
∣ + K

∂H
∂y (x, γ+

i (x)) − K
<

c1M
2−q ∂H

∂y (x, γ+
i (x)) + K

∂H
∂y (x, γ+

i (x)) − K

=
c1M

2−q + K
∂H
∂y (x,γ+

i (x))

1 − K
∂H
∂y (x,γ+

i (x))

≤ (
c1M

2−q + 1
)
(K + 1) < M ,

where the last estimate is given by (35). We have thus proved (37), and so
the proof of the lemma is completed. �

Lemma 9. For any L > 0 and y0 > 0 we can define two continuously differ-
entiable functions γ−

1 , γ−
2 : [−L,L] → R satisfying

γ−
i (x) ≤ −y0 , i = 1, 2 , for all x ∈ [−L,L] ,

and such that (31) and (32) hold for every t ∈ [a, b] and x ∈ [−L,L].
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The proof of this lemma is analogous to the previous one, so we omit
it, for briefness.

Let us now conclude the proof of Theorem 2. Choosing

L = max{‖α‖∞ , ‖β‖∞} , y0 > max{‖yα‖∞ , ‖yβ‖∞} ,

we can apply Lemmas 8 and 9 to get the existence of the needed curves γ±
i .

Moreover, for every t ∈ [a, b],

y ≥ min{γ+
1 (0), γ+

2 (0)} ⇒ f(t, 0, y) > 0 ,

y ≤ max{γ−
1 (0), γ−

2 (0)} ⇒ f(t, 0, y) < 0 .

This is an immediate consequence of Lemma 4, choosing a larger value of
y0, if necessary. Then, [14, Theorem 11] applies, thus completing the proof
of Theorem 2.

6. Proof of Theorem 3

As a first step, we need the following two lemmas, where the ordering relation
defined in Introduction is used.

Lemma 10. ([14, Lemma 17]). Given a continuous function ϕ : [a, b] → R,
the sets

{x ∈ C1
0 ([a, b]) : ϕ 
 x} , {x ∈ C1

0 ([a, b]) : x 
 ϕ}
are open in C1

0 ([a, b]) = {x ∈ C1([a, b]) : x(a) = 0 = x(b)}.
Lemma 11. ([14, Lemma 18]). Given a continuously differentiable function
ϕ : [a, b] → R, we have that

max{ϕ(a), ϕ(b)} ≤ 0 ⇒ ∃ĉ > 0 : ϕ 
 ĉϕ1 ,

min{ϕ(a), ϕ(b)} ≥ 0 ⇒ ∃ĉ > 0 : ϕ 	 −ĉϕ1 .

We now use the notation introduced in Section 2, and set S̃1(t) = S1(t+ τ+).

Lemma 12. Given a continuously differentiable function ϕ : [0, τ+] → R, we
have that

max{ϕ(0), ϕ(τ+)} ≤ 0 ⇒ ∃c > 0 : ϕ 
 cS1 .

Similarly, given a continuously differentiable function ϕ : [0, τ−] → R, we
have that

min{ϕ(0), ϕ(τ−)} ≥ 0 ⇒ ∃c > 0 : ϕ 	 cS̃1 .

Proof. To prove the former statement, we apply Lemma 11 with [a, b] =
[0, τ+], recalling that S1 	 0. To prove the latter statement, we apply the
same lemma with [a, b] = [0, τ−], recalling that S̃1 
 0. �

Let us introduce a C∞-smooth cut-off function χ : R → [0, 1] such that

χ(s) =

{
1 if |s| ≤ 1 ,

0 if |s| ≥ 2 ,
(40)
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and, for every d ≥ 1, consider the modified problem
{

x′ = f̂d(t, x, y) , y′ = ĝd(t, x, y) ,

x(a) = 0 = x(b) ,
(41)

where

f̂d(t, x, y) =
d − 1

d

∂H

∂y
(x, y) + φ̃d(t, x, y) ,

ĝd(t, x, y) = −d − 1
d

∂H

∂x
(x, y) + ψ̃d(t, x, y) ,

with

φ̃d(t, x, y) = χ
( x

dS

)
χ
( y

dp/qS

) (
1
d

∂H

∂y
(x, y) + φ(t, x, y)

)

,

ψ̃d(t, x, y) = χ
( x

dS

)
χ
( y

dp/qS

) (

−1
d

∂H

∂x
(x, y) + ψ(t, x, y)

)

.

Notice that (2) and (41) coincide in the set [−dS, dS] × [−d
p
q S, d

p
q S].

In particular, if a solution u = (x, y) of (41) is such that Np(u) < d, then u
is necessarily a solution of (2).

Lemma 13. There exists D > 1 with the following property: if u = (x, y) is
any solution of (41), with d ∈ [D,+∞], satisfying α /
 x and x /
β, then
Np(u) < D.

Proof. Assume by contradiction that there exist a diverging sequence (dn)n

and some solutions un = (xn, yn) of (41), with d = dn, such that α /
xn,
xn /
 β and Np(un) > n. We introduce the functions

vn =
xn

Np(un)
and wn =

yn

Np(un)p−1
.

In particular, Np(vn, wn) = 1. Notice that, from (11) and (10), we have

‖vn‖∞ ≤ S and ‖wn‖∞ ≤ S . (42)

By (12) and (13), we see that (vn, wn) solves
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v′
n =

dn − 1
dn

∂H

∂y
(vn, wn) + Φn(t, vn, wn) ,

w′
n = −dn − 1

dn

∂H

∂x
(vn, wn) + Ψn(t, vn, wn) ,

vn(a) = 0 = vn(b) ,

(43)

where

Φn(t, vn, wn) =
1

Np(un)
φ̃dn

(t,Np(un)vn,Np(un)p−1wn) ,

Ψn(t, vn, wn) =
1

Np(un)p−1
ψ̃dn

(t,Np(un)vn,Np(un)p−1wn) .
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Then, by (42), since (vn, wn) solves (43), it is bounded in C1 × C1. By a
standard compactness argument, a subsequence converges to some (v, w) in
C1 × C1, and

⎧
⎨

⎩

v′ =
∂H

∂y
(v, w) , w′ = −∂H

∂x
(v, w)

v(a) = 0 = v(b) .

Hence, we have either (v(t), w(t)) = S(t), or (v(t), w(t)) = S(t + τ+). More
precisely, using (8), the first case is possible if and only if b − a = τ+, the
second one if and only if b−a = τ−. In the first case, since vn C1-converges to
S1 	 0, we have that vn 	 1

2S1 when n is sufficiently large, so that, recalling
Lemma 12, we get the contradiction

xn = Np(un)vn 	 1
2
Np(un)S1 	 cS1 	 α .

In the second case, since vn C1-converges to S̃1 = S1( · + τ+) 
 0, we have
that vn 
 1

2 S̃1 when n is sufficiently large, thus providing the contradiction

xn = Np(un)vn 
 1
2
Np(un)S̃1 
 cS̃1 
 β .

The proof is thus completed. �

We now fix D > 1 as in Lemma 13, assuming also

max{‖α‖∞ , ‖β‖∞} < DS ,

max{‖yα‖∞ , ‖yβ‖∞} < DS
p/q

. (44)

From Lemma 13, if u = (x, y) is any solution of (41) with d ≥ D, satisfying
both α /
x and x /
 β, then u is a solution of (2), too.

Lemma 14. The functions α and β are a lower and an upper solution of (41),
respectively, provided that d is chosen large enough.

Proof. From Lemma 4 and the boundedness of φ, we deduce the existence of a
constant K̃ > 0 such that, for every d ≥ 1, we have both φ̃d(t, α(t), y) ≥ −K̃

when y > 0, and φ̃d(t, α(t), y) ≤ K̃ when y < 0, for every t ∈ [a, b]. Moreover,
using again Lemma 4, we can take d large enough so that, if y > dp/qS then

d − 1
d

∂H

∂y
(α(t), y) + φ̃d(t, α(t), y) ≥ d − 1

d

∂H

∂y
(α(t), y) − K̃ > α′(t) ,

and if y < −dp/qS then

d − 1
d

∂H

∂y
(α(t), y) + φ̃d(t, α(t), y) ≤ d − 1

d

∂H

∂y
(α(t), y) + K̃ < α′(t) .

On the other hand, if y ∈ [−dp/qS, dp/qS], then (α(t), y) belongs to the region
where the problem has not been modified and the desired estimates hold.

The inequality for y′
α(t) still holds since, for every t ∈ [a, b], also the

point (α(t), yα(t)) belongs to the region where the problem has not been
modified. �
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Our aim now is to construct a lower solution α̂ and an upper solution β̂

such that α̂ 
 β and α 
 β̂. To do so, let us consider, for every d > 1, the
slowed autonomous system

x′ =
d − 1

d

∂H

∂y
(x, y) , y′ = −d − 1

d

∂H

∂x
(x, y) . (45)

It is isochronous, all solutions being periodic with minimal period τ d
d−1 > τ .

Lemma 15. For every ξ > 0, the problem
⎧
⎨

⎩

x′ =
d − 1

d

∂H

∂y
(x, y) , y′ = −d − 1

d

∂H

∂x
(x, y) ,

x(a) = ξ = x(b) ,

has a unique solution (xξ, yξ). Moreover, xξ(t) > ξ for every t ∈ ]a, b[. Simi-
larly, the problem

⎧
⎨

⎩

x′ =
d − 1

d

∂H

∂y
(x, y) , y′ = −d − 1

d

∂H

∂x
(x, y) ,

x(a) = −ξ = x(b) ,

has a unique solution (x−ξ, y−ξ), satisfying x−ξ(t) < −ξ for every t ∈ ]a, b[.

Proof. If we parametrize the solutions (x, y) with the energy E = d−1
d H(x, y),

we see that they cross the line L = {(x, y) ∈ R
2 : x = ξ} if and only if E

is greater than a well determined value Eξ > 0, and assumption (9) ensures
that there are exactly two crossing points (ξ, ȳ+

ξ ) and (ξ, ȳ−
ξ ), with ȳ+

ξ > ȳ−
ξ .

Since b − a ≤ τ− < τ−d/(d − 1), the solution (x, y) we are looking for cannot
follow the path to the left of L, hence, if it exists, it has to be xξ(t) > ξ for
every t ∈ ]a, b[ .

Let us denote by Tξ(E) the time needed to go from (ξ, y+
ξ ) to (ξ, y−

ξ ).
We have thus defined a function Tξ : ]Eξ,+∞[→ R which is continuous,
positive and strictly increasing. Surely Tξ(E) < b − a if E is in a small right
neighbourhood of Eξ. Hence, since limE→+∞ Tξ(E) = τ+d/(d − 1) > b − a,
there is a unique value Eξ > Eξ for which Tξ(Eξ) = b − a, and this value of
the energy determines the solution we are looking for.

We have thus proved the first part of the lemma; the proof of the second
part is similar. �

We are now ready to define the lower and upper solutions α̂ and β̂.

Lemma 16. Taking d > D and ξ > 2dS, the functions α̂ = x−ξ and β̂ = xξ

are a lower and an upper solution of (41), respectively. Moreover,

α̂ 
 β and α 
 β̂ .

Proof. Let us show that β̂ = xξ is an upper solution, with associated func-
tion yβ̂ = yξ. Recalling that φ̃d(t, x, y) and ψ̃d(t, x, y) vanish when x /∈
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[−2dS, 2dS], since ξ > 2dS, using assumption (9), we have

y < yξ(t) ⇒ d − 1
d

∂H

∂y
(xξ(t), y) <

d − 1
d

∂H

∂y
(xξ(t), yξ(t)) = x′

ξ(t) ,

y > yξ(t) ⇒ d − 1
d

∂H

∂y
(xξ(t), y) >

d − 1
d

∂H

∂y
(xξ(t), yξ(t)) = x′

ξ(t) .

Moreover,

y′
ξ(t) ≤ −d − 1

d

∂H

∂x
(xξ(t), yξ(t)) ,

since equality holds. Finally, xξ(a) ≥ 0 and xξ(b) ≥ 0, thus proving that xξ

is an upper solution. Analogously one proves that x−ξ is a lower solution.
Now, since from (44) we have ξ > 2dS > max{‖α‖∞ , ‖β‖∞}, one has

x−ξ(t) ≤ −ξ < β(t) , xξ(t) ≥ ξ > α(t) , for every t ∈ [a, b] ,

thus ending the proof of the lemma. �
Let us now fix d > D sufficiently large to ensure the validity of Lemma 14.

We thus have three well-ordered pairs of lower/upper solutions of (41):

(α̂, β̂) , (α, β̂) , (α̂, β) .

Let ā = min α̂ and b̄ = max β̂. By Lemma 4, we can find M > 0 such that, if
t ∈ [a, b] and x ∈ [ā, b̄], then

y ≥ M ⇒ f̂d(t, x, y) > 0 ,

y ≤ −M ⇒ f̂d(t, x, y) < 0 . (46)

We now need to introduce the guiding curves.

Lemma 17. There are four continuously differentiable functions γ±
i : [ā, b̄] →

R, with i = 1, 2, satisfying

ĝd

(
t, x, γ+

1 (x)
)

> f̂d

(
t, x, γ+

1 (x)
)
(γ+

1 )′(x) ,

ĝd

(
t, x, γ+

2 (x)
)

< f̂d

(
t, x, γ+

2 (x)
)
(γ+

2 )′(x) ,

ĝd

(
t, x, γ−

1 (x)
)

< f̂d

(
t, x, γ−

1 (x)
)
(γ−

1 )′(x) ,

ĝd

(
t, x, γ−

2 (x)
)

> f̂d

(
t, x, γ−

2 (x)
)
(γ−

2 )′(x) , (47)

and such that

γ−
i (x) < min{−M,yα(t), yα̂(t), yβ(t), yβ̂(t)}

≤ max{M,yα(t), y,α̂(t), yβ(t), yβ̂(t)} < γ+
i (x) , (48)

for every t ∈ [a, b] and x ∈ [ā, b̄].

Proof. It follows the lines of the proofs of Lemmas 8 and 9. �
Let us now introduce our functional setting for the problem (41).
Set I = [a, b], denote by C0,�(I) the space of 
-Hölder continuous

functions and by C1,�(I) the space of functions having derivative belonging
to C0,�(I). Moreover, define

C1,�
0 (I) = {x ∈ C1,�(I) : x(a) = 0 = x(b)} .
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We consider the linear operator

L : C1,�
0 (I) × C1,�(I) → C0,�(I) × C0,�(I)

L(x, y) = (x′ − y , y′) ,

and the Nemitskii operator

Nd : C1
0 (I) × C1(I) → C0,�(I) × C0,�(I)

Nd(x, y)(t) =
(
f̂d(t, x(t), y(t)) − y(t) , ĝd(t, x(t), y(t))

)
.

Problem (41) is then the same as

Lu = Ndu ,

with

u ∈ X := C1
0 (I) × C1(I) .

Lemma 18. The operator L is invertible with continuous inverse, and prob-
lem (41) is equivalent to u = L−1Ndu. Moreover, the operator

L−1Nd : X → X

is completely continuous.

Proof. It is rather standard, using the fact that C1,�(I) is compactly imbed-
ded in C1(I). �

Let us define the sets

V1 = V(α̂, β̂) , V2 = V(α̂, β) , V3 = V(α, β̂) ,

with the notation

V(ϕ, η) = {(x, y) ∈ X : ϕ 
 x 
 η and
γ−(x(t)) < y(t) < γ+(x(t)) , for every t ∈ I} ,

where

γ−(x) = min{γ−
i (x) , i = 1, 2} , γ+(x) = max{γ+

i (x) , i = 1, 2} . (49)

These sets are open in X = C1
0 (I) × C1(I), by Lemma 10.

We say that an open set Ω ⊂ X is admissible if L−1Nd has no fixed
points on ∂Ω and the set of fixed points of L−1Nd in Ω is bounded, i.e., it is
contained in some open ball Bρ . In this case, we can define

deg(I − L−1Nd,Ω) = dLS(I − L−1Nd,Ω ∩ Bρ) ,

where dLS denotes the Leray–Schauder degree. By excision, this definition
does not depend on the choice of ρ.

Our aim is to prove that, if there are no solutions of (41) on ∂Vj , then Vj

is admissible and

deg(I − L−1Nd,Vj) = 1 , j = 1, 2, 3.

This fact will be proved in Lemma 22.
In the following we denote by (ϕ, η) any of the three pairs

(α̂, β̂) , (α, β̂) , (α̂, β) .
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We need to truncate the functions f̂d and ĝd so to modify system (41). Define,
for any μ ≤ ν,

ζ(s, μ, ν) =

⎧
⎪⎨

⎪⎩

μ , if s < μ ,

s , if μ ≤ x ≤ ν ,

ν , if s > ν .

(50)

Fix Y > 0 such that

−Y ≤ γ−(x) ≤ γ+(x) ≤ Y ,

for every x ∈ [ā, b̄]. Let

fϕ,η(t, x, y) = f̂d

(
t, ζ(x, ϕ(t), η(t)), ζ(y,−Y , Y )

) − ζ(y,−Y , Y ) ,

gϕ,η(t, x, y) = ĝd

(
t, ζ(x, ϕ(t), η(t)), ζ(y,−Y , Y )

) − ζ(x, ϕ(t), η(t)) ,

and consider the problem
{

x′ = y + fϕ,η(t, x, y) , y′ = x + gϕ,η(t, x, y)
x(a) = 0 = x(b) ,

(51)

which is equivalent to Lu = Nϕ,ηu, with the appropriate Nemitskii operator.
Notice that the functions fϕ,η and gϕ,η are bounded. Moreover, if (x, y) is a
solution of (51) satisfying ϕ ≤ x ≤ η and −Y < y < Y , then it is a solution
of (41), too.

Lemma 19. Each (ϕ, η) is a well-ordered pair of lower/upper solutions for (51).

Proof. Assume for instance that (ϕ, η) = (α, β̂). Then, if y ∈ [−Y , Y ],

y > yα(t) ⇒ y + fα,η(t, α(t), y) = f̂d(t, α(t), y) > α′(t) ,

y < yα(t) ⇒ y + fα,η(t, α(t), y) = f̂d(t, α(t), y) < α′(t) ,

while

y > Y ⇒ y + fα,η(t, α(t), y) > Y + fα,η(t, α(t), Y ) > α′(t) ,

y < −Y ⇒ y + fα,η(t, α(t), y) < −Y + fα,η(t, α(t),−Y ) < α′(t) .

Since −Y < yα(t) < Y for every t ∈ [a, b] from the choice (48), the inequality
for y′

α(t) still holds, since (α(t), yα(t)) belongs to the region where the problem
has not been modified. All the other cases can be treated similarly. �

Lemma 20. Every solution u = (x, y) of (51) satisfies ϕ ≤ x ≤ η.

Proof. Let us define the following regions

ANE = {(t, x, y) : t ∈ [a, b] , x > η(t) , y > yη(t)} ,

ASE = {(t, x, y) : t ∈ [a, b] , x > η(t) , y < yη(t)} ,

ASW = {(t, x, y) : t ∈ [a, b] , x < ϕ(t) , y < yϕ(t)} ,

ANW = {(t, x, y) : t ∈ [a, b] , x < ϕ(t) , y > yϕ(t)} .

As in [12] and [14], one can verify that, if u = (x, y) is a solution of

x′ = y + fϕ,η(t, x, y) , y′ = x + gϕ,η(t, x, y) ,



Vol. 24 (2022) On the Dirichlet problem associated Page 19 of 32 66

Figure 2. A section at a fixed time of the regions intro-
duced in Lemmas 20 and 21, describing the dynamics of (51)

then, for any t0 ∈ [a, b],

(t0, u(t0)) ∈ ASE ⇒ (t, u(t)) ∈ ASE for every t ∈ [a, t0] ,

(t0, u(t0)) ∈ ANW ⇒ (t, u(t)) ∈ ANW for every t ∈ [a, t0] ,

(t0, u(t0)) ∈ ANE ⇒ (t, u(t)) ∈ ANE for every t ∈ [t0, b] ,

(t0, u(t0)) ∈ ASW ⇒ (t, u(t)) ∈ ASW for every t ∈ [t0, b] .

Moreover, for any t0 ∈ [a, b], if

x(t0) < ϕ(t0) and y(t0) = yϕ(t0) ,

then there exists δ > 0 such that

t0 �= a , t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ANW ,

t0 �= b , t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ASW .

Similarly, if, for any t0 ∈ [a, b],

x(t0) > η(t0) and y(t0) = yη(t0) ,

then there exists δ > 0 such that

t0 �= a , t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ASE ,

t0 �= b , t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ANE .

Indeed, by contradiction, let u = (x, y) be a solution of (51) such that
x(t0) < ϕ(t0), for some t0 ∈ [a, b]. Since x(a) = 0 ≥ ϕ(a) and x(b) =
0 ≤ ϕ(b), then t0 ∈ ]a, b[ and by the above considerations it cannot be that
(t0, u(t0)) ∈ ANW ∪ ASW . Hence, y(t0) = yϕ(t0), and there exists δ > 0 such
that (t, u(t)) ∈ ANW for t ∈ ]t0 − δ, t0[ , which leads to a contradiction. The
case x(t0) > η(t0) leads to a similar contradiction, as well. �

Lemma 21. Every solution u = (x, y) of (51) satisfies

γ−(x(t)) < y(t) < γ+(x(t)) , for every t ∈ [a, b] .
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Proof. We introduce the functions G±
i (t) = y(t) − γ±

i (x(t)), with i = 1, 2.
We first show that y(a) < γ+(x(a)) and y(b) < γ+(x(b)).

Let us prove that we cannot have y(a) ≥ γ+
1 (x(a)). At first, assume

that y(t) ≥ γ+
1 (x(t)) for every t ∈ [a, b]. Then, from (48) we get y(t) ≥ M for

every t ∈ [a, b], so that (46) gives x(b) > 0, a contradiction. So, there exists
t0 ∈ [a, b[ such that G+

1 (t0) = 0 and G+
1 (t) < 0 in a right neighborhood of

t0. We can compute, recalling (47),

(G+
1 )′(t0) = y′(t0) − (γ+

1 )′(x(t0))x′(t0)

= ĝd

(
t0, x(t0), γ+

1 (x(t0))
) − (γ+

1 )′(x(t0))f̂d

(
t0, x(t0), γ+

1 (x(t0))
)

= ĝd

(
t0, x(t0), γ+

1 (x(t0))
) − (γ+

1 )′(x(t0))f̂d

(
t0, x(t0), γ+

1 (x(t0))
)

> 0 ,

getting again a contradiction. Hence, y(a) < γ+
1 (x(a)) ≤ γ+(x(a)), recall-

ing (49).
Similarly one shows that y(b) < γ+

2 (x(b)) ≤ γ+(x(b)), going backwards
in time.

We now prove that y(t) < γ+(x(t)) for every t ∈ [a, b]. Assume by con-
tradiction that there is t0 ∈ ]a, b[ such that y(t0) ≥ γ+(x(t0)). We distinguish
two possibilities. First, if x(t0) ≥ 0, then the solution remains above γ+

1 for
all t ∈ ]t0, b]; hence, y(t) > M and x′(t) > 0 for all t ∈ ]t0, b], leading to
x(b) > 0, which is impossible. Second, if x(t0) < 0, then there must exist a
t1 ∈ [a, t0[ such that y(t1) ≤ M . But then the solution remains below γ+

2 for
all t ∈ [t1, b], in contradiction with the assumption.

Similarly, one proves that y(t) > γ−(x(t)) for every t ∈ [a, b]. �

Lemma 22. If there are no solutions of (41) on ∂Vj, then Vj is admissible
and

deg(I − L−1Nd,Vj) = 1 , j = 1, 2, 3.

Proof. For any sufficiently large ρ > 0, denoting by Bρ the open ball in X
with radius ρ, centered at the origin, we claim that

deg(I − L−1Nϕ,η, Bρ) = 1 .

Indeed, let us show that there is a ρ > 0 such that, for every λ ∈ [0, 1], every
solution of Lu = λNϕ,ηu satisfies ‖u‖C1 < ρ. By contradiction, if this is not
true, there exist a sequence (λn)n in [0, 1] and some solutions un = (xn, yn)
of Lun = λnNϕ,ηun such that ‖un‖C1 → ∞. Let vn = xn/‖un‖C1 and wn =
yn/‖un‖C1 . By a standard argument it can be seen that, for a subsequence,
λn → λ̄ ∈ [0, 1], while (vn, wn) → (v̄, w̄) in X. Moreover, v̄′ = w̄, w̄′ = λ̄v̄,
so that v̄′′ = λ̄v̄, and since v̄(a) = 0 = v̄(b), this implies v̄ ≡ 0, hence also
w̄ ≡ 0, a contradiction. By homotopy invariance, the degree is then equal to
1.

Fix ρ > 0 as above. Since there are no solutions of (41) on ∂V(ϕ, η), we
also have that there are no solutions of (51) on ∂V(ϕ, η). Hence, V(ϕ, η) is
admissible and, by excision,

deg(I − L−1Nϕ,η,V(ϕ, η)) = deg(I − L−1Nϕ,η, Bρ) = 1 .

Now, since Nϕ,η = Nd on V(ϕ, η), the result follows. �
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Lemma 23. There are no solutions of (41) on ∂V1.

Proof. We recall that in Lemma 16 we provided the definition of the functions
α̂ = x−ξ and β̂ = xξ with the choice ξ > 2dS. Let u = (x, y) be a solution
belonging to the closure of V1. Then α̂(t) ≤ x(t) ≤ β̂(t), for every t ∈ I.
Assume by contradiction that x �
 β̂. Since x(a) = 0 < ξ = β̂(a) and
x(b) = 0 < ξ = β̂(b), there must be a t0 ∈ ]a, b[ such that

x(t0) = β̂(t0) > ξ , x′(t0) = β̂′(t0) .

Hence, as ξ > 2dS, both (x(t), y(t)) and (xξ(t), yξ(t)) solve the autonomous
system (45) in a neighborhood of t0. Since

x′(t0) =
d − 1

d

∂H

∂y
(x(t0), y(t0)) ,

and

x′
ξ(t0) =

d − 1
d

∂H

∂y
(xξ(t0), yξ(t0)) ,

being x′(t0) = x′
ξ(t0) and x(t0) = xξ(t0), by assumption (9) it has to be

that y(t0) = yξ(t0). Since autonomous planar Hamiltonian systems have the
uniqueness property for Cauchy problems when the initial value is not an
equilibrium (cf. [19, Theorem 1]), then the two solutions (x(t), y(t)) and
(xξ(t), yξ(t)) coincide, as long as they remain in [ξ,+∞[×R, leading to a
contradiction. Hence, x 
 β̂. Similarly, one proves that α̂ 
 x. So, there are
no solutions of (41) on ∂V1. �

Now, if there is a solution u = (x, y) of (41) on ∂V2, then x ≤ β and
x �
 β. Since α �≤ β, there is a t0 such that x(t0) ≤ β(t0) < α(t0), implying
that α �
 x. So, u is the solution of (28) we are looking for.

A similar argument shows that if u = (x, y) is a solution of (41) on ∂V3,
then u is the solution of (28) we are looking for.

Finally, if there are no solutions of (41) on ∂V2 ∪ ∂V3, then

deg(I − L−1Nd,V1 \ V2 ∪ V3) =

= deg(I−L−1Nd,V1)−
(

deg(I−L−1Nd,V2) + deg(I−L−1Nd,V3)
)

= −1 .

Then, there is a solution of (41) in V1\V2 ∪ V3, and this is the solution of (28)
we are looking for.

The proof of Theorem 3 is thus completed.

7. Higher dimensional systems

Let us now introduce a higher dimensional version of problem (2). We will
write x = (x1, . . . , xN ) ∈ R

N , y = (y1, . . . , yN ) ∈ R
N , and assume that the

continuously differentiable function H : R
2N → R is of the type

H(x, y) =
N∑

n=1

Hn(xn, yn) . (52)
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Moreover, for every n ∈ {1, . . . , N}, we assume that there exist pn > 1 and
qn > 1, with (1/pn) + (1/qn) = 1, such that

Hn(λqnu, λpnv) = λpn+qnHn(u, v) > 0 ,

for every λ > 0 and (u, v) �= (0, 0). We consider the problem
⎧
⎨

⎩

x′ =
∂H

∂y
(x, y) + φ(t, x, y) , y′ = −∂H

∂x
(x, y) + ψ(t, x, y) ,

x(a) = 0 = x(b) ,
(53)

where the functions φ, ψ : [a, b] × R
2N → R

N are continuous and bounded.
Equivalently, writing φ = (φ1, . . . , φN ) and ψ = (ψ1, . . . , ψN ),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′
n =

∂Hn

∂yn
(xn, yn) + φn(t, x1, . . . , xN , y1, . . . , yN ) ,

y′
n = −∂Hn

∂xn
(xn, yn) + ψn(t, x1, . . . , xN , y1, . . . , yN ) ,

xn(a) = 0 = xn(b) , n = 1, . . . , N .

For ξ, υ ∈ R
N we write ξ � υ (or υ � ξ) if

ξn ≤ υn for every n ∈ {1, . . . , N} ,

and in this case we define

〈〈ξ, υ〉〉 = {u ∈ R
N : ξ � u � υ} .

We now adapt the definition of lower/upper solutions given in [14, Def-
inition 31] to the higher dimensional problem

{
x′ = f(t, x, y) , y′ = g(t, x, y) ,

x(a) = 0 = x(b) ,
(54)

where f, g : [a, b] × R
2N → R

N are continuous functions. As usual, we write
f = (f1, . . . , fN ) and g = (g1, . . . , gN ). Similarly for the vector-valued func-
tions considered below.

Definition 24. Given two C1-functions α, β : [a, b] → R
N , we say that (α, β)

is a well-ordered pair of lower/upper solutions of problem (54) if

α(t) � β(t) , for every t ∈ [a, b] ,
α(a) � 0 � β(a) , α(b) � 0 � β(b) ,

and there exist two C1-functions yα, yβ : [a, b] → R
N such that, for every

t ∈ [a, b], x, y ∈ R
N with x ∈ 〈〈α(t) , β(t)〉〉, and n ∈ {1, . . . , N}, one has

{
fn(t, x, y) < α′

n(t) when xn = αn(t) and yn < yα
n(t) ,

fn(t, x, y) > α′
n(t) when xn = αn(t) and yn > yα

n(t) ,
(55)

{
fn(t, x, y) < β′

n(t) when xn = βn(t) and yn < yβ
n(t) ,

fn(t, x, y) > β′
n(t) when xn = βn(t) and yn > yβ

n(t) ,
(56)
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and

(yα
n)′(t) ≥ gn(t, x, y) when xn = αn(t) and yn = yα

n(t) , (57)

(yβ
n)′(t) ≤ gn(t, x, y) when xn = βn(t) and yn = yβ

n(t) . (58)

Here is our result in the well-ordered case.

Theorem 25. Assume H to be as in (52), with components Hn being posi-
tively-(pn, qn)-homogeneous positive-definite continuously differentiable func-
tions, for some pn > 1 and qn > 1 with (1/pn) + (1/qn) = 1. Let φ, ψ be
uniformly bounded continuous functions, and let (α, β) be a well-ordered pair
of lower/upper solutions of problem (53). Then, there exists a solution (x, y)
of (53) such that α(t) � x(t) � β(t), for every t ∈ [a, b].

Proof. One proceeds like in the proof of [14, Theorem 32]. The main difference
here is that the functions φ and ψ depend on all variables x and y. However,
setting

mα = min{αn(t) : t ∈ [a, b], n = 1, . . . , N} ,

Mβ = max{βn(t) : t ∈ [a, b], n = 1, . . . , N} ,

the fact that φ and ψ are bounded permits to recover, for every n = 1, . . . , N ,
the required guiding curves γ±

1,n, γ±
2,n : [mα,Mβ ] → R, with i = 1, 2, and the

result follows. �

For the non-well-ordered case, we need to introduce the notion of strict
lower and upper solutions. To this aim we will follow the ideas developed in
[11], and distinguish the components which are well ordered from the others.

The couple (J ,K) is a partition of {1, . . . , N} if and only if J ∩ K = ∅

and J ∪ K = {1, . . . , N}. We denote by #J and #K the cardinality of the
sets J and K. For a given partition (J ,K), a vector

x = (x1, . . . , xN ) = (xn)n∈{1,...,N} ∈ R
N

can be decomposed as x = (xJ , xK) where xJ = (xj)j∈J ∈ R
#J and xK =

(xk)k∈K ∈ R
#K. Similarly, we can decompose every function F : D → R

N as
F(x) =

(FJ (x),FK(x)
)

with FJ : D → R
#J and FK : D → R

#K, for any
domain D. Moreover, for ξ, υ ∈ R

N we write

〈〈ξ, υ〉〉J = {u = (uJ , uK) ∈ R
N : ξJ � uJ � υJ } .

Definition 26. Let α, β : [a, b] → R
N be two C1-functions. We will say that

(α, β) is a pair of lower/upper solutions of (54) related to the partition (J ,K)
of {1, . . . , N} if the following conditions hold:

1. αj ≤ βj , for any j ∈ J ;
2. αk �≤ βk, for any k ∈ K ;
3. α(a) � 0 � β(a) and α(b) � 0 � β(b) ;
4. there are two C1-functions yα, yβ : [a, b] → R

N such that (55), (56), (57),
and (58) hold for every t ∈ [a, b], x, y ∈ R

N with x ∈ 〈〈α(t) , β(t)〉〉J ,
and n ∈ {1, . . . , N}.

In the following definition, we will use the relation 	 introduced in (7).
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Definition 27. Let (α, β) be a pair of lower/upper solutions of (54) related
to the partition (J ,K). We will say that this pair of lower/upper solutions
is strict with respect to the jth component, with j ∈ J , if αj 
 βj and, for
every solution (x, y) of (54),

αj ≤ xj ≤ βj ⇒ αj 
 xj 
 βj .

We will say that this pair of lower/upper solutions is strict with respect to
the kth component, with k ∈ K if, for every solution (x, y) of (54),

αk ≤ xk ⇒ αk 
 xk , and xk ≤ βk ⇒ xk 
 βk .

To prove the existence of a solution of (53), once a pair of lower/upper
solutions (α, β) is given, we need to ask the strictness property with respect
to the non-well-ordered components αk, βk. Moreover, we will need to ask
more regularity on the functions φ and ψ: we will ask them to be locally

-Hölder continuous for a certain 
 > 0. Here is our result.

Theorem 28. Let 
 > 0 and assume H : R
2N → R to be as in (52), with

components Hn being C1,�
loc-smooth positively-(pn, qn)-homogeneous positive-

definite functions, for some pn > 1 and qn > 1 with (1/pn) + (1/qn) = 1.
Let (α, β) be a pair of lower/upper solutions of (53) related to the partition
(J ,K) of {1, . . . , N} which is strict with respect to the kth component, for
every k ∈ K. Moreover, assume that for every k ∈ K,

∂Hk

∂y
(x0, ·) is a strictly increasing function, for every x0 ∈ R. (59)

Let φ, ψ be uniformly bounded C0,�
loc-smooth functions. If

b − a ≤ min{τ+
k , τ−

k : k ∈ K} ,

then (53) has a solution (x, y) with the following properties:
(J) for any j ∈ J , αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [a, b] ;
(K) for any k ∈ K, there exist t1k, t2k ∈ ]a, b[ such that xk(t1k) < αk(t1k) and

xk(t2k) > βk(t2k).

Proof. The case K = ∅ has been already treated in Theorem 25. To simplify
the exposition, we assume both J �= ∅ and K �= ∅, and that J = {1, . . . , M}
and K = {M + 1, . . . N} for a certain M ∈ {1, . . . , N − 1}. The proof can be
easily adapted to the case J = ∅.

As in Section 2, for every n ∈ {1, . . . , N}, let Sn(t) = (S1,n(t), S2,n(t))
be the periodic solution of the planar autonomous system

u′ =
∂Hn

∂v
(u, v) , v′ = −∂Hn

∂u
(u, v) ,

such that S1,n(0) = 0 and S2,n(0) > 0, with Hn(S1,n(t), S2,n(t)) = 1 for
every t. We set

Sn = max{|S1,n(t)| + |S2,n(t)| : t ∈ R} ,

and

S = max
{
Sn : n ∈ {1 . . . , N}} . (60)
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For each n ∈ {1, . . . , N}, we will mainly follow the procedure developed
in Section 5 if n ∈ J , and the one in Section 6 if n ∈ K, so that the couple of
variables (xn, yn) will overshadow the remaining ones, which will essentially
act as parameters. We first need to modify problem (53) both in the k-
variables, following the lines of the proof of Theorem 3, and in the j-variables,
to apply a topological degree argument, as in the proof of [11, Theorem 10].

Let us rewrite (53) as
⎧
⎪⎨

⎪⎩

x′
j = fj(t, x, y) , y′

j = gj(t, x, y) , j ∈ {1, . . . , M} ,

x′
k = fk(t, x, y) , y′

k = gk(t, x, y) , k ∈ {M + 1, . . . , N} ,

x(a) = 0 = x(b) .

We introduce the functions

ζj(t, xj) = ζ(xj , αj(t), βj(t)) ,

where ζ was defined in (50), and

Γ(t, x) =
(
ζ1(t, x1) , . . . , ζM (t, xM ) , xM+1 , . . . , xN

)
.

Then we set

f̂j(t, x, y) = fj(t,Γ(t, x), y) , ĝj(t, x, y) = gj(t,Γ(t, x), y) + xj − ζj(t, xj) .

Concerning the non-well-ordered components, we need to consider a positive
parameter d, which will be fixed later, following the construction of prob-
lem (41) in Section 6. We set

f̂k,d(t, x, y) =
d − 1

d

∂Hk

∂yk
(xk, yk) + φ̃k,d(t, x, y) ,

ĝk,d(t, x, y) = −d − 1
d

∂Hk

∂xk
(xk, yk) + ψ̃k,d(t, x, y) ,

with

φ̃k,d(t, x, y) = χ
( xk

dS

)
χ
( yk

dpk/qkS

) (
1
d

∂Hk

∂yk
(xk, yk) + φk(t,Γ(t, x), y)

)

,

ψ̃k,d(t, x, y) = χ
( xk

dS

)
χ
( yk

dpk/qkS

) (

−1
d

∂Hk

∂xk
(xk, yk) + ψk(t,Γ(t, x), y)

)

,

where S is defined in (60) and the cut-off function χ in (40). We thus are led
to the modified problem

⎧
⎪⎨

⎪⎩

x′
j = f̂j(t, x, y) , y′

j = ĝj(t, x, y) , j ∈ {1, . . . ,M} ,

x′
k = f̂k,d(t, x, y) , y′

k = ĝk,d(t, x, y) , k ∈ {M + 1, . . . , N} ,

x(a) = 0 = x(b) .

(61)

We will now provide, working separately on every component, an indexed
family of well-ordered pairs of lower/upper solutions of the modified prob-
lem (61), which will be strict in every component.

Let us first operate on a component j ∈ {1, . . . , M}. We can argue as
in Lemmas 8 and 9 so to find some guiding curves γ±

1,j and γ±
2,j . To be more
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precise, for an illustrative purpose, the curve γ+
1,j will satisfy the analogue

of (29), i.e.,

ĝj(t, x, y) > f̂j(t, x, y)(γ+
1,j)

′(xj) ,

for every t ∈ [a, b], every x ∈ R
n with αj(t) ≤ xj ≤ βj(t) and every y ∈ R

N

with yj = γ+
1,j(xj).

Then, we can follow the reasoning in [14, Theorem 11, Claim 3] and
prove that all the solutions (x, y) of (61) satisfy

αj(t) ≤ xj(t) ≤ βj(t) , (62)

and

min{γ−
1,j(x(t)) , γ−

2,j(x(t))} < yj(t) < max{γ+
1,j(x(t)) , γ+

2,j(x(t))} , (63)

for every t ∈ [a, b]. We then define the functions

α̌j(t) = αj(t) − 1 and β̌j(t) = βj(t) + 1 ,

and conclude that

(S1) for every j ∈ J , the functions α̌j and β̌j satisfy

α̌j 
 β̌j , α̌j(a) < 0 < β̌j(a) , α̌j(b) < 0 < β̌j(b) .

Moreover, the conditions (55), (56), (57) and (58) hold with n = j,
replacing αj , βj , fj , gj by α̌j , β̌j , f̂j , ĝj , setting yα̌

j = yα
j and yβ̌

j = yβ
j .

Finally, every solution (x, y) of (61) satisfies α̌j 
 xj 
 β̌j and (63).

Let us now focus our attention on a component k ∈ K. Arguing as in
Lemma 13 we can prove that

(S2) there exists D > 1 with the following property: if u = (x, y) is a solution
of (61), with d ≥ D, such that αk /
 xk and xk /
 βk, then Npk

(uk) < D.

We can surely take the same constant D for every k ∈ K. Now, as in
Lemma 14, enlarging D if necessary we can prove that

(S3) for every k ∈ K and d ≥ D, the functions αk and βk still satisfy condi-
tions (55), (56), (57) and (58), replacing fk, gk by f̂k,d, ĝk,d, respectively.

Then, Lemma 16 suggests us how to continue the proof once we have
fixed d > D sufficiently large:

(S4) for every k ∈ K, there are two couples of functions (α̂k, yα̂
k ) and (β̂k, yβ̂

k )
such that α̂k 
 β̂k, α̂k 
 βk, and αk 
 β̂k satisfying the conditions
(55), (56), (57) and (58), replacing in all formulas αk, yα

k , βk, yβ
k , fk, gk

by α̂k, yα̂
k , β̂k, yβ̂

k , f̂k,d, ĝk,d , respectively.

Now a further step is needed. We are going to prove that

(S5) for every k ∈ K, if (x, y) is a solution of (61) such that α̂k ≤ xk, then
α̂k 
 xk. Analogously, if (x, y) is a solution of (61) such that xk ≤ β̂k,
then xk 
 β̂k.
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We prove the second assertion, the proof of the first one being similar. Follow-
ing the proof of Lemma 23, assume by contradiction that there is a solution
(x, y) of (61) such that xk ≤ β̂k but xk /
 β̂k. Since xk(a) = 0 < β̂k(a) and
xk(b) = 0 < β̂k(b), there exists t0 ∈ ]a, b[ such that xk(t0) = β̂k(t0) and
x′

k(t0) = β̂′
k(t0). Using assumption (59), since

d − 1
d

∂Hk

∂yk
(xk(t0), y

β̂
k (t0)) = β̂′

k(t0) = x′
k(t0) =

d − 1
d

∂Hk

∂yk
(xk(t0), yk(t0)) ,

we get yβ̂
k (t0) = yk(t0). Recalling that φ̃k,d = 0 and ψ̃k,d = 0 in a neighbor-

hood of {(β̂k, yβ̂
k )(t) : t ∈ [a, b]}, arguing as in the proof of Lemma 23, we

conclude that (β̂k, yβ̂
k ) and (xk, yk) coincide on [a, b], leading to a contradic-

tion with the fact that xk(a) = xk(b) = 0. Hence, (S5) is proved.

For every multi-index μ = (μM+1, . . . , μN ) ∈ {1, 2, 3}N−M , we define
the couple of functions (ϕμ, ημ) by components: for every j ∈ J , we set

(ϕμ
j , ημ

j ) = (α̌j , β̌j) ,

and, for every k ∈ K,

if μk = 1 we set (ϕμ
k , ημ

k ) = (α̂k , β̂k) ,

if μk = 2 we set (ϕμ
k , ημ

k ) = (α̂k , βk) ,

if μk = 3 we set (ϕμ
k , ημ

k ) = (αk , β̂k) .

From (S1), (S3), (S4) and (S5), we can verify that, for every μ ∈
{1, 2, 3}N−M , the couple (ϕμ, ημ) is a well-ordered pair of lower/upper so-
lutions of problem (61) which is strict with respect to all its components.
Let

Ξ =
{
(ϕμ, ημ) : μ ∈ {1, 2, 3}N−M

}
.

As in Lemmas 8, 9 and 17, we can construct some guiding curves γ±
1,n, γ±

2,n,
for every n ∈ {1, . . . , N}. Then, for every couple (ϕμ, ημ) ∈ Ξ, we can modify
system (61), only in the components k ∈ K, exactly as we did to define
problem (51), and obtain the new problem
⎧
⎪⎨

⎪⎩

x′
j = f̂j(t, x, y) , y′

j = ĝj(t, x, y) , j ∈ J ,

x′
k = yk + (fk)ϕμ,ημ(t, x, y) , y′

k = xk + (gk)ϕμ,ημ(t, x, y) , k ∈ K ,

x(a) = 0 = x(b) .

(64)

With the same procedure we can show that every couple (ϕμ, ημ) is a well-
ordered pair of lower/upper solutions for the new problem, too. Moreover, as
in Lemmas 20 and 21, we can show that each solution of (64) satisfies, for
every t ∈ [a, b],

ϕμ(t) � x(t) � ημ(t) ,

and, for every n ∈ {1, . . . , N},

min{γ−
1,n(x(t)) , γ−

2,n(x(t))} < yn(t) < max{γ+
1,n(x(t)) , γ+

2,n(x(t))} .
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We need now to introduce the functional setting. We denote by f̂d and
ĝd the functions

f̂d = (f̂1, . . . , f̂M , f̂M+1,d, . . . , f̂N,d) , ĝd = (ĝ1, . . . , ĝM , ĝM+1,d, . . . , ĝN,d) ,

which describe system (61). Recalling the notations introduced in Section 6,
we consider the linear operator

L : [C1,�
0 (I)]N × [C1,�(I)]N → [C0,�(I)]N × [C0,�(I)]N

L(x, y) = (x′ − y , y′) ,

and the Nemitskii operator

Nd : [C1
0 (I)]N × [C1(I)]N → [C0,�(I)]N × [C0,�(I)]N

Nd(x, y)(t) =
(
f̂(t, x(t), y(t)) − y(t) , ĝ(t, x(t), y(t))

)
.

Then, the analogue of Lemma 18 holds and u = (x, y) is a solution of (61) if
and only if it solves

Lu = Ndu ,

with

u ∈ X := [C1
0 (I)]N × [C1(I)]N .

For every (ϕμ, ημ) ∈ Ξ, we introduce the set

Vμ =
{
(x, y) ∈ X : ϕμ

n 
 xn 
 ημ
n and

γ−
n (xn(t)) < yn(t) < γ+

n (xn(t)) , for every t ∈ [a, b] , n ∈ {1, . . . , N}} ,

where

γ−
n (x) = min{γ−

i,n(x) , i = 1, 2} , γ+
n (x) = max{γ+

i,n(x) , i = 1, 2} .

Notice that Vμ is open in X.
Fix any (ϕμ, ημ) ∈ Ξ. From (S1) and (S5), we see that there are no

solutions of (61) on ∂Vμ. Then, arguing as in the proof of Lemma 22, the set
Vμ is admissible and

deg
(
I − L−1Nd,Vμ

)
= 1 .

Then, we can follow the procedure in [11, Section 3.1] and define, for
every multi-index μ = (μM+1, . . . , μN ) ∈ {1, 2, 3, 4}N−M , the open set

Ωμ :=
{
(x, y) ∈ X : (A0

j ), (Aμk

k ), (Aγ
j ) and (Aγ

k)

hold for every j ∈ J and k ∈ K}
,

where the conditions (A0
j ), (Aμk

k ), and (Aγ
n) read as

(A0
j ) α̌j 
 xj 
 β̌j ;

(A1
k) α̂k 
 xk 
 β̂k ;

(A2
k) α̂k 
 xk 
 βk ;

(A3
k) αk 
 xk 
 β̂k ;

(A4
k) α̂k 
 xk 
 β̂k, and there are t1k, t2k ∈ ]a, b[ such that xk(t1k) < αk(t1k)

and xk(t2k) > βk(t2k) ;
(Aγ

n) γ−
n (xn(t)) < yn(t) < γ+

n (xn(t)), for every t ∈ [a, b] .
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Notice that

Ωμ = Vμ , for every μ ∈ {1, 2, 3}N−M .

Moreover, for any μ ∈ {1, 2, 3, 4}N−M and κ ∈ {M + 1, . . . , N}, using the
notation

Ωμ
κ,i = Ω(μM+1,...,μκ−1,i,μκ+1,...,μN ), i = 1, 2, 3, 4 ,

the arguments in [14, Proposition 23] show that

Ωμ
κ,4 ∩ Ωμ

κ,1 = [Ωμ
κ,1 \ Ωμ

κ,2] ∩ [Ωμ
κ,1 \ Ωμ

κ,3] ,

giving easily, passing to the complementary, Ωμ
κ,1 \ Ωμ

κ,4 = Ωμ
κ,2 ∪ Ωμ

κ,3 and
consequently

Ωμ
κ,4 = Ωμ

κ,1 \ Ωμ
κ,2 ∪ Ωμ

κ,3 .

Arguing as in [11, Propositions 15–18], we can prove that deg
(
I −

L−1Nd,Ωμ
)

is well defined for every μ ∈ {1, 2, 3, 4}N−M , and it is equal
to (−1)m, where m is the number of times the number 4 appears in the
multi-index μ. In particular, we have that

deg
(
I − L−1Nd,Ω(4,4,...,4,4)

)
= (−1)N−M �= 0 .

So, there exists a solution (x, y) of (61) belonging to Ω(4,4,...,4,4). This solution
satisfies (A4

k), for every k ∈ K, hence αk /
xk and xk /
 βk, for every k ∈ K.
Then, from (S2) we conclude that Npk

(uk) < D, so that (x, y) is indeed a
solution of the original problem (53), since the differential equation defining
the two problems coincide in the set {u ∈ R

2N : Npk
(uk) < D}. Moreover,

from (62), we have αJ (t) � xJ (t) � βJ (t) for every t ∈ [a, b]. The proof is
thus completed. �

As an example of application, consider the Dirichlet problem
{

(|x′
n|p−2x′

n)′ + μn|x+
n |p−2x+

n − νn|x−
n |p−2x−

n = hn(t, x1, . . . , xN , x′
1, . . . , x

′
N )

xn(0) = 0 = xn(πp) , n = 1, . . . , N ,

(65)

where p > 1, μn > 0 and νn > 0. In this case, if α : [0, πp] → R
N is a lower

solution, then taking yα
n = |α′

n|p−2α′
n, for every n = 1, . . . , N , conditions (55)

are always satisfied, while (57) reads as

(|α′
n|p−2α′

n)′(t) + |α+
n (t)|p−2α+

n (t) − νn|α−
n (t)|p−2α−

n (t) ≥
≥ hn(t, x1, . . . , αn(t), . . . , xN , y1, . . . , |α′

n(t)|p−2α′
n(t), . . . , yN ) , (66)

for every x ∈ R
N and y ∈ R

N . Similarly for an upper solution.
As an immediate consequence of Theorem 28, we have the following.

Corollary 29. Let 
 > 0 and hn be a uniformly bounded C0,�-smooth function,
for every n. Assume that (α, β) is a pair of lower/upper solutions of (65)
related to the partition (J ,K) of {1, . . . , N}, which is strict with respect to
the kth component, for every k ∈ K. If max{μk , νk : k ∈ K} ≤ 1, then
problem (65) has a solution x with the following properties:
(J) for any j ∈ J , αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [0, πp] ;
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(K) for any k ∈ K, there exist t1k, t2k ∈ ]0, πp[ such that xk(t1k) < αk(t1k) and
xk(t2k) > βk(t2k).

The above result should be compared with [5, Theorem 2.4] (see also
[2] and the references therein) where some monotonicity assumptions on the
nonlinearities were assumed.

Notice that, since we are dealing with second order differential
equations, the strictness property asked in the statement can be verified
by a standard argument, e.g., simply verifying that a strict inequality holds
in (66).

As an illustrative example, we suggest the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(|x′
n|p−2x′

n)′ + μn|x+
n |p−2x+

n − νn|x−
n |p−2x−

n

=
snxn

1 + |xn| + h̃n(t, x1, . . . , xN , x′
1, . . . , x

′
N ) ,

xn(0) = 0 = xn(πp) , n = 1, . . . , N ,

where sn ∈ {−1,+1} and ‖h̃n‖∞ < 1 for every n. Moreover, for those com-
ponents having sn = −1, we ask that μn ≤ 1 and νn ≤ 1.

In this example, the pair of lower/upper solutions can be defined by
components as follows. The set J is made of those n for which sn = +1,
while the set K consists of those n with sn = −1. If n ∈ J , we simply need
to choose some sufficiently large constants βn = −αn > 0. If n ∈ K, we can
argue as in [14, Proposition 26], where the case p = 2 is treated, to find αn

and βn such that αn �≤ βn.

Remark 30. A generalization of Theorem 28 can be obtained removing the
strictness assumption on one of the components κ ∈ K. Indeed, the above
proof can be easily adapted following the ideas in the proof of [11, The-
orem 19]. In such a situation, the conclusion (K) of the statement must be
slightly changed concerning the estimates on the κth component: the solution
will be such that

ακ /
 xκ and xκ /
βκ .
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Università degli Studi di Udine
Via delle Scienze 206
I-33100 Udine
Italy
e-mail: giuliano.klun@uniud.it

Accepted: August 13, 2022.


	On the Dirichlet problem associated with bounded perturbations of positively-(p,q)-  homogeneous Hamiltonian systems
	Abstract
	1. Introduction
	2. Elementary properties of positively-(p,q)-homogeneous Hamiltonian systems
	3. Proof of Theorem 1
	4. The definition of lower and upper solutions
	5. Proof of Theorem 2
	6. Proof of Theorem 3
	7. Higher dimensional systems
	References




