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Abstract. The purpose of this work is to develop a more complete the-
ory regarding solutions to the problem of laminar flow in channels with
porous walls. We establish new knowledge regarding the qualitative
and quantitative properties of solutions to a fourth order boundary
value problem under consideration. In contrast to the previous liter-
ature, our strategy involves establishing new a priori bounds on so-
lutions and draws on contractive mapping principles. This enables a
deeper understanding of the problem by strategically addressing the
questions of existence, uniqueness and approximation of solutions un-
der one integrated framework, rather than applying somewhat disjointed
approaches. Through this strategy, we advance current knowledge by
extending the range of values of the Reynolds number under which the
problem will admit a unique solution; and we furnish a sequence of
functions whose limit converges to this solution, enabling an iterative
approximation to any theoretical degree of accuracy.

Mathematics Subject Classification. 34B60, 76S05.

Keywords. Laminar flow, channel with porous walls, fluid dynamics,
boundary value problem, contraction mapping, fixed point technique.

1. Introduction

The purpose of this paper is to establish a more complete theory of lami-
nar flow in channels with porous walls that is modelled by a fourth order
boundary value problem (BVP). We study the existence, uniqueness and ap-
proximation of solutions to the following nonlinear, fourth order differential
equation
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f (iv) + R(f ′f ′′ − ff ′′′) = 0, η ∈ [0, 1], (1.1)

where f = f(η), R is a Reynolds number and (1.1) is subject to the two-point
boundary conditions:

f(0) = 0, f ′′(0) = 0, f ′(1) = 0, f(1) = 1. (1.2)

By a solution to the BVP (1.1), (1.2) we mean a function f : [0, 1] → R such
that f is four times differentiable, with a continuous fourth order derivative
on [0, 1], which we denote by f ∈ C4([0, 1]), and our f satisfies both (1.1)
and (1.2) for some value of R.

Laminar flows in channels with porous walls have attracted the attention
of applied mathematicians and engineers since the 1940 s. This is partly due
to their connection with a diverse range of physical problems that are of
significant interest. For example, in aeronautics the method of transpiration
cooling has gained attention:

“In this method, the surfaces to be protected against the in-
fluence of a hot fluid stream are manufactured from a porous
material and a cold fluid is ejected through the wall to form a
protective layer along the surface. Certain areas on the skin
of high-velocity aircraft may be provided with these surfaces
as protection against the influence of aerodynamic heating.
Porous surfaces with suction also are used on airfoils and
bodies of aircraft to delay separation or transition to tur-
bulence; in these cases, the flow along the surface is of a
boundary-layer type.” [4, pp. 1–2]

In addition, channel flows are seen in plants [6] and animals [9], where vas-
cular systems distribute energy to where it is needed, and enable distal parts
of the organism to communicate [8]. Furthermore, channels play a significant
role in the transportation of liquids or gases and energy from sites of produc-
tion to the consumer or industry [8], and the protection of channel walls via
transpiration cooling is of primary interest in nuclear applications [4].

There are at least three significant points of distinction between our
current work and the existing literature. They include: the mathematical
form of the problem under consideration; the types of methods employed;
and the nature of the results obtained. We discuss them below.

In much of the literature relating to laminar flow within channels with
porous walls (and its variations) [3–5,7,8,10–14,17,18,22,23], the majority of
scholars have exclusively considered and analyzed the problem as an equiva-
lent third order BVP

f ′′′ + R[(f ′)2 − ff ′′] = K

which was coupled with the three point conditions

f(0) = f ′(1) = f ′′(0) = 0

where the constant of integration K is to be determined from the remaining
boundary condition f(1) = 1. There is a minority of authors who have ana-
lyzed the problem as equivalent third and fourth order BVPs (and, even fifth
order, on occasion), however the attention on the third order problem mostly
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dominates the scientific discussion therein. Thus we can see that a focus on
the equivalent fourth order BVP in the extent literature has not been prev-
elant. This may have been due to the authors therein favouring lower order
problems perhaps due to a perception that its form is more agreeable to work
with and seeing its potential to open up interesting avenues. The continued
focus on the third order form of the BVP seen in the literature may also be
partly due to human nature and the act of conditioning—we tend to see and
continue to work with the mathematical forms that we have been conditioned
and accustomed to.

In contrast, herein we take the position that the fourth order BVP (1.1),
(1.2) presents a natural form to work with. For example, the form enables
a complete integration between the differential equation and the boundary
conditions, synthesizing the data from the problem as an integral equation.
This is in contrast to third order approaches where there are constants of
integration in the equation and a fourth “hanging” boundary condition to
consider. In addition, the mathematical theory regarding solutions to fourth
order BVPs has recently been advanced in directions [1] that potentially can
shine new light on (1.1), (1.2) and so we feel that this presents a timely
opportunity to directly work with the form of the fourth order BVP (1.1),
(1.2).

Extent mathematical methods regarding laminar flow in channels with
porous walls can be broadly grouped into: perturbation techniques; asymp-
totic approaches; numerical and initial value methods; and fixed point tech-
niques with differential inequalities. The above approaches have enabled a
deeper understanding of (1.1), (1.2) through: a development of series so-
lutions [3,11,17,18,23]; fostering the existence and uniqueness of solutions
[7,10,13,22]; and furnishing multiple solutions [5,7,12] for various values of
R. In particular, the dominant approach for the existence of solutions via
fixed point theory has involved topological ideas, such as the Leray-Schauder
degree theory. This has been subsequently coupled with uniqueness (or non-
multiplicity) concepts involving differential inequalities and then separate
approximation methods are drawn on to gain additional insight. In compari-
son, herein we introduce contraction mapping ideas in what appears to be a
first time synthesis and application to the problem of laminar flow in chan-
nels with porous walls. There are several advantages in this synthesis. Firstly,
a contractive mapping approach forms an integrated strategy towards exis-
tence, uniqueness and approximation of solutions by its very nature. Secondly,
this synthesis does not depend on whether R is positive or negative (unlike
some previous approaches that concentrate on either suction or injection).
Together, our synthesis offers a more integrated approach than previously
developed strategies regarding the existence, uniqueness and numerical as-
pects of solutions.

Most importantly, our employment of contractive mappings enables an
extension of previous results. While the case R < 0 has been shown to possess
a unique solution, the case R > 0 is far more open, with the best range for
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the existence and uniqueness set in [22] at

0 < R <
−(72

√
3 + 1) +

√
(72

√
3 + 1)2 + 12

√
3(72

√
3 − 24)

48(3
√

3 − 1)
≈ 4.005014 × 10−2.

We extend this range herein by at least an order of magnitude.
Our results complement the recent and growing body of knowledge re-

garding the theory and applications of Navier-Stokes equations [15,24], lami-
nar flow [2,19,21,27] and swirling flow [26] by establishing a firm mathemat-
ical foundation for the problem (1.1), (1.2).

Our paper is organized as follows. In Sect. 2 we briefly derive the prob-
lem (1.1), (1.2) with aims of completeness and context for our work, and
to enable a comparison between the form of our equations and those that
have been previously analyzed. Furthermore, we construct an integral equa-
tion that is equivalent to (1.1), (1.2) that forms the basis of our contractive
mapping approach. In Sect. 3 we establish new bounds on integrals of var-
ious Green’s functions associated with (1.1), (1.2). Some of the estimates
therein are sharp and they prove to be useful when developing our main
existence, uniqueness and approximation results in Sect. 4. Therein we estab-
lish the main results drawing on an approach involving contractive mappings
and fixed point theory. We conclude with some open problems for further
investigation in Sect. 5.

2. Formulation of the problem

Let us briefly derive the equations of interest, drawing on the ideas and
exposition of Berman [3] and Robinson [12]. Further details may be found
therein and in [11,16–18,23].

Consider a channel with a rectangular cross section. One side of the
cross section that represents the distance between the porous walls is much
smaller than the other, and this constraint enables an analysis of the problem
as an instance of two-dimensional flow.

Furthermore, consider the steady, incompressible, laminar flow where
the fluid is subject to either injection or suction with constant velocity V
through the walls. We assume that both channel walls have equal permeabil-
ity.

We choose a coordinate system so that its origin is placed at the centre
of the channel. Let x and y denote the co-ordinate axes that are, respectively,
parallel and perpendicular to the channel walls, and let u = u(x, y) and v =
v(x, y) denote the velocity components in the x and y directions, respectively.
Let the width of the channel (ie, the distance between the walls) be 2h and
let the channel have length L.

Let p = p(x, y) denote the pressure that we assume is a sufficiently
smooth function. Let ρ denote the density of the fluid and let ν denote the
constant kinematic viscosity of the fluid. Under the assumed conditions and
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choice of axes, we introduce the dimensionless variable

η =
y

h

and then the Navier–Stokes equations can be expressed as

u
∂u

∂x
+

v

h

∂u

∂η
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

1
h2

∂2u

∂η2

)
(2.1)

u
∂v

∂x
+

v

h

∂v

∂η
= − 1

hρ

∂p

∂η
+ ν

(
∂2v

∂x2
+

1
h2

∂2v

∂η2

)
. (2.2)

The continuity equation takes the form
∂u

∂x
+

1
h

∂v

∂η
= 0

and the associated boundary conditions are

u(x,±1) = 0, v(x, 0) = 0

v(x,±1) = ±V,
∂u

∂η
(x, 0) = 0.

For a two-dimensional incompressible flow, a stream function ψ exists such
that

u(x, η) =
1
h

∂ψ

∂η
(2.3)

v(x, η) = −∂ψ

∂x
(2.4)

with the continuity equation being satisfied.
Due to a symmetrical flow about the plane lying midway between the

channel walls, we will analyze the solution over half of the channel, i.e., from
the midplane to one wall.

For constant wall velocity V, Berman [3] cleverly observed that the
equations of motion and the boundary conditions could be satisfied under
an assumption that the velocity component v is independent of x and he
skillfully introduced a stream function, ψ, of the form

ψ(x, η) := [hū(0) − Vx]f(η)

where f is a suitably smooth function of the distance parameter η and f is to
be determined later. In addition, ū(0) is an arbitrary velocity at x = 0 that
will be managed away in due course.

From (2.3) and (2.4) we can derive the velocity components

u(x, η) =
[
ū(0) − V x

h

]
f ′(η) (2.5)

v(x, η) = v(η) = Vf(η). (2.6)

For constant wall velocity V, the y component of velocity v becomes
a function of η only. If (2.5) and (2.6) are substituted into the equations of
motion then we obtain

− 1
ρ

∂p

∂x
=

[
ū(0) − V x

h

] [
−V

h
[(f ′)2 − ff ′′] − ν

h2
f ′′′

]
(2.7)
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− 1
hρ

∂p

∂η
=

v

h

dv

dη
− ν

h2

d2v

dη2
. (2.8)

The right-hand side of (2.8) is seen to be a function of η only and so differ-
entiation with respect to x yields

∂2p

∂x∂η
= 0.

If we now differentiate (2.7) with respect to η then we obtain
[
ū(0) − V x

h

] d

dη

[V
h

[(f ′)2 − ff ′′] +
ν

h2
f ′′′

]
=

∂2p

∂η∂x

and employing the symmetry of mixed partial derivatives of p we thus obtain
[
ū(0) − V x

h

] d

dη

[V
h

[(f ′)2 − ff ′′] +
ν

h2
f ′′′

]
= 0.

If the above equation is to hold for all x then we must have

0 =
d

dη

[V
h

[(f ′)2 − ff ′′] +
ν

h2
f ′′′

]

= f (iv) + R[f ′f ′′ − ff ′′′]

where

R :=
Vh

ν

is a Reynolds number and we have thus derived (1.1).
The boundary conditions on the function f and its derivatives are ob-

tained from (2.5) and (2.6) to produce (1.2). Note that we have R > 0 for
suction at both walls and R < 0 for injection at both walls.

Let us establish an equivalency between the BVP (1.1), (1.2) and an
integral equation. The integral equation will be critical in Sect. 3 to develop
our main results.

Theorem 2.1. The BVP (1.1), (1.2) is equivalent to the integral equation

f(η) =
∫ 1

0

G(η, s)R (f ′(s)f ′′(s) − f(s)f ′′′(s)) ds + φ(η), η ∈ [0, 1].

(2.9)

Above: G(η, s) is a Green’s function given explicitly by

G(η, s) :=
1
12

{
s(1 − η)2[(s2 − 3)η + 2s2], for 0 ≤ s ≤ η ≤ 1,

η(1 − s)2[(η2 − 3)s + 2η2], for 0 ≤ η ≤ s ≤ 1;
(2.10)

and φ is given by

φ(η) =
1
2
(3η − η3). (2.11)
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Proof. It is sufficient to construct f from the form

f(η) = φ1(η) + φ(η)

where φ is the solution to

φ(iv) = 0; φ(0) = 0, φ′′(0) = 0, φ(1) = 1, φ′(1) = 0;

and φ1 is the solution to

φ
(iv)
1 + R(φ′

1φ
′′
1 − φ1φ

′′′
1 ) = 0; φ1(0) = 0, φ′′

1(0) = 0, φ1(1) = 0, φ′
1(1) = 0.

Direct integration and determination of the associated constants shows
that

φ(η) =
1
2
(3η − η3).

Integrate both sides of the differential equation for φ1 from s = 0 to
s = η four times to obtain

φ1(η) = −1
6

∫ η

0

(η − s)3R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds

+Aη3 + Bη2 + Cη + D (2.12)

and we determine the constants of integration A,B,C,D from the homoge-
neous boundary conditions for φ1. Our left-hand conditions φ1(0) = 0 and
φ′′
1(0) = 0 ensure D = 0 and B = 0, respectively. In addition, employing the

right-hand conditions, we obtain

φ1(1) = 0 = −1
6

∫ 1

0

(1 − s)3R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds + A + C

φ′
1(1) = 0 = −1

2

∫ 1

0

(1 − s)2R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds + 3A + C.

Solving the above system of equations for A and C we obtain

A =
1
12

[∫ 1

0

[
3(1 − s)2 − (1 − s)3

] R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds

]

=
1
12

[∫ η

0

(1 − s)2(s + 2)R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds

+
∫ 1

η

(1 − s)2(s + 2)R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds

]

C =
1
6

∫ 1

0

(1 − s)3R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds − A

=
1
12

[∫ η

0

(1 − s)2(−3s)R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds

+
∫ 1

η

(1 − s)2(−3s)R (φ′
1(s)φ

′′
1(s) − φ1(s)φ′′′

1 (s)) ds

]
.

Substituting these expressions into (2.12) and applying some algebraic ma-
nipulation finally leads us to the form (2.9).
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Direct differentiation of our f with the aforementioned values of A and
C lead us to the differential equation (1.1). Substitution of appropriate values
of η into (2.9) and its derivatives reveals that the boundary conditions (1.2)
also hold. �

3. Bounds on the Green’s functions

Let us now establish some new bounds involving the integral of the Green’s
function in (2.10) and its derivatives. The results will be applied in Sect. 4
to form our main existence, uniqueness and approximation results. In addi-
tion, the bounds are of independent mathematical interest as they have the
potential to be helpful outside the scope of the present article, for example,
in topological approaches to BVPs.

Our first result establishes the non-positivity of G and a new, sharp
bound on the integral of |G|.
Theorem 3.1. The Green’s function G in (2.10) satisfies G ≤ 0 on [0, 1]×[0, 1]
and ∫ 1

0

|G(η, s)| ds ≤ 39 + 55
√

33
65536

<
3

500
=: β0, for all η ∈ [0, 1]. (3.1)

Our estimate is sharp in the sense it is the best result possible.

Proof. For 0 ≤ s ≤ η ≤ 1 we have

(s2 − 3)η + 2s2 = s2(η + 2) − 3η ≤ η2(η + 2) − 3η ≤ 0

and so

s(1 − η)2[(s2 − 3)η + 2s2] ≤ 0

therein. Similarly, for 0 ≤ η ≤ s ≤ 1 we have

(η2 − 3)s + 2η2 ≤ s2(s + 2) − 3s ≤ 0

and the non-positivity of G thus also holds on this region.
Combining the above two cases we obtain G ≤ 0 on [0, 1] × [0, 1].
For all η ∈ [0, 1] consider

∫ 1

0

|G(η, s)| ds = −
∫ 1

0

G(η, s) ds

= − 1

12

[∫ η

0

s(1 − η)2[(s2 − 3)η + 2s2] ds +

∫ 1

η

η(1 − s)2[(η2 − 3)s + 2η2] ds

]

=
η4

24
− η3

16
+

η

48

=
1

48
η(2η + 1)(η − 1)2.

If we apply calculus to the above quartic function then we see that it
achieves its maximum value on [0, 1] at

η∗ =
1 +

√
33

16
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which may be substituted into the above quartic function to obtain

max
η∈[0,1]

∫ 1

0

|G(η, s)| ds =
∫ 1

0

|G(η∗, s)| ds

=
39 + 55

√
33

65536
<

3
500

.

�

Our second result complements Theorem 3.1 by generating a new bound
on the integral of |∂G/∂η|.
Theorem 3.2. The Green’s function G in (2.10) satisfies

∫ 1

0

∣∣∣∣
∂

∂η
G(η, s)

∣∣∣∣ ds <
1
25

=: β1, for all η ∈ [0, 1]. (3.2)

Proof. For all η ∈ [0, 1] consider
∫ 1

0

∣∣∣∣
∂

∂η
G(η, s)

∣∣∣∣ ds

=
∫ η

0

∣∣∣∣
(η − 1)s((s2 − 3)η + s2 + 1)

4

∣∣∣∣ ds +
∫ 1

η

∣∣∣∣
(1 − s)2((η2 − 1)s + 2η2)

4

∣∣∣∣ ds

≤ 1
4

[∫ η

0

(1 − η)s(−(s2 − 3)η + s2 + 1) ds +
∫ 1

η

(1 − s)2(−(η2 − 1)s + 2η2) ds

]

= − 7
36

η5 +
1
3
η4 − 1

3
η3 +

25
144

η2 +
1
48

=
1

144
(1 − η)(28η4 − 20η3 + 28η2 + 3η + 3).

Now, if we apply calculus to the above quintic function then we see that
it achieves its maximum value on [0, 1] at

η∗ =
(13378 + 70

√
94137)2/3 + 32(13378 + 70

√
94137)1/3 − 656

70(13378 + 70
√

94137)1/3

which may be substituted into the above quintic function to obtain

max
η∈[0,1]

∫ 1

0

∣∣∣∣
∂

∂η
G(η, s)

∣∣∣∣ ds

≤ (−9228485
√

94137 + 14747147607)(13378 + 70
√

94137)1/3

19373188800000
+

13592477
360150000

+
(−2111935

√
94137 + 317136861)(13378 + 70

√
94137)2/3

19373188800000

<
1
25

.

�

Our third result constructs a new bound on the integral of |∂2G/∂η2|.
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Theorem 3.3. The Green’s function G in (2.10) satisfies
∫ 1

0

∣∣∣∣
∂2

∂η2
G(η, s)

∣∣∣∣ ds ≤ 9
8

=: β2, for all η ∈ [0, 1]. (3.3)

Proof. For all η ∈ [0, 1] consider
∫ 1

0

∣∣∣∣
∂2

∂η2
G(η, s)

∣∣∣∣ ds

=
∫ η

0

∣∣∣∣
s((s2 − 3)η + 2)

2

∣∣∣∣ ds +
∫ 1

η

∣∣∣∣
η(s3 − 3s + 2)

2

∣∣∣∣ ds

≤
∫ η

0

s(−(s2 − 3)η + 2)
2

ds +
∫ 1

η

η(s3 − 3s + 2)
2

ds

= −1
4

(
η4 − 6η2 + 2η − 3

2

)
η.

The above quintic function is strictly increasing on [0, 1] and thus must
achieve its maximum value on [0, 1] at η∗ = 1 which gives

max
η∈[0,1]

∫ 1

0

∣∣∣∣
∂2

∂η2
G(η, s)

∣∣∣∣ ds ≤ 9
8
.

�

Our final result constructs a new, sharp bound on the integral of |∂3G/
∂η3|.
Theorem 3.4. The Green’s function G in (2.10) satisfies

∫ 1

0

∣∣∣∣
∂3

∂η3
G(η, s)

∣∣∣∣ ds ≤ 5
8

=: β3, for all η ∈ [0, 1]. (3.4)

Our estimate is sharp in the sense it is the best result possible.

Proof. For all η ∈ [0, 1] consider
∫ 1

0

∣∣∣∣
∂3

∂η3
G(η, s)

∣∣∣∣ ds

=
∫ η

0

∣∣∣∣
s(s2 − 3)

2

∣∣∣∣ ds +
∫ 1

η

∣∣∣∣
(1 − s)2(s + 2)

2

∣∣∣∣ ds

= −1
2

∫ η

0

s(s2 − 3) ds +
1
2

∫ 1

η

(1 − s)2(s + 2) ds

= −1
4
η4 +

3
2
η2 +

3
8

− η.

The above function is increasing on [0, 1] and so must achieve its maximum
value on [0, 1] at η∗ = 1. Thus, we have

max
η∈[0,1]

∫ 1

0

∣∣∣∣
∂3

∂η3
G(η, s)

∣∣∣∣ ds =
[∫ 1

0

∣∣∣∣
∂3

∂η3
G(η, s)

∣∣∣∣ ds

]

η=1

=
5
8

as claimed. �
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4. Existence, uniqueness and approximation

In this section, we formulate our main results regarding existence, uniqueness
and approximation of solutions via fixed point methods under contraction
mappings.

4.1. Metrics and spaces

Let us construct a metric in an appropriate metric space. Consider the set
of real-valued functions that are defined on [0, 1] and are thrice continuously
differentiable therein. Denote this space by C3([0, 1]). For functions f, g ∈
C3([0, 1]), consider the following metric on C3([0, 1]):

d(f, g) := max
i∈{0,1,2,3}

{
Wi max

η∈[0,1]
|f (i)(η) − g(i)(η)|

}
; (4.1)

where

W0 = 1, W1 =
β0

β1
=

3
20

, W2 =
β0

β2
=

2
375

, W3 =
β0

β3
=

6
625

. (4.2)

It is well known that the pair (C3([0, 1]), d) form a complete metric
space.

Let R > 0 be a constant and let φ be defined in (2.11). Our analysis
will involve the following set

B :=
{

(η, u, v, w, z) ∈ R
5 : η ∈ [0, 1], |u − φ(η)| ≤ R,

|v − φ′(η)| ≤ 20
3

R, |w − φ′′(η)| ≤ 375
2

R, |z − φ′′′(η)| ≤ 625
6

R

}
.

We note that our φ in (2.11) satisfies the following inequalities on [0, 1]:

|φ| ≤ 1, |φ′| ≤ 3/2, |φ′′| ≤ 3, |φ′′′| ≤ 3. (4.3)

The following result establishes a critically important bound on parts of (1.1)
and will be used in the proof of our main results. In particular, this bound
will be of importance in establishing an invariance condition for a mapping
between two balls.

Theorem 4.1. Let

h(u, v, w, z) := R(vw − uz). (4.4)

We claim that h is bounded on B by

M := |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
. (4.5)

Proof. For (η, u, v, w, z) ∈ B consider

|h(u, v, w, z)| = |R(vw − uz)|
≤ |R| (|v| |w| + |u| |z|)
= |R| [|(v − φ′(η) + φ′(η)|)(|w − φ′′(η) + φ′′(η)|)

+ (|u − φ(η) + φ(η)|)(|z − φ′′′(η) + φ′′′(η)|)]
≤ |R| [|(v − φ′(η)| + |φ′(η)|)(|w − φ′′(η)| + |φ′′(η)|)



55 Page 12 of 21 S. S. Almuthaybiri, C. C. Tisdell JFPTA

+ (|u − φ(η)| + |φ(η)|)(|z − φ′′′(η)| + |φ′′′(η)|)]
≤ |R|

[(
20
3

R +
3
2

)(
375
2

R + 3
)

+ (R + 1)
(

625
6

R + 3
)]

= |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
.

Above, we have repeatedly applied the triangle inequality and used the form
of B and (4.3). �

Unfortunately, the function h is not globally Lipschitz in the sense of
(4.6) on the whole of [0, 1] × R

4. A global Lipschitz state is a desirable con-
dition in the theory and application of differential equations. However, by
strategically restricting our attention to the subset B, the following result
ensures that our h will be Lipschitz therein.

Theorem 4.2. Let

h(u, v, w, z) := R(vw − uz).

For given R > 0 and R, our h is Lipschitz on B in the sense that there are
non-negative constants Li (not all zero) such that

|h(u0, u1, u2, u3) − h(v0, v1, v2, v3)| ≤
3∑

i=0

Li|ui − vi|

for all (η, u0, u1, u2, u3), (η, v0, v1, v2, v3) ∈ B. (4.6)

Proof. It is sufficient to show that h has bounded partial deriatives on B. As
we will see, these bounds can then act as the Lipschitz constants Li.

For all (η, u, v, w, z) ∈ B consider∣∣∣∣
∂h

∂u

∣∣∣∣ = | − Rz| = |R||z − φ′′′(η) + φ′′′(η)|

≤ |R|[|z − φ′′′(η)| + |φ′′′(η)|] ≤ |R|
[
625
6

R + 3
]

=: L0. (4.7)

Also, we can also obtain the following inequalities on B via similar arguments∣∣∣∣
∂h

∂v

∣∣∣∣ ≤ |R|
[
375
2

R + 3
]

=: L1 (4.8)
∣∣∣∣
∂h

∂w

∣∣∣∣ ≤ |R|
[
20
3

R +
3
2

]
=: L2 (4.9)

∣∣∣∣
∂h

∂z

∣∣∣∣ ≤ |R| [R + 1] =: L3. (4.10)

By the fundamental theorem of calculus we have

h(u0, u1, u2, u3) − h(v0, v1, v2, v3)

=
∫ u0

v0

∂h

∂s
(s, v1, v2, v3) ds +

∫ u1

v1

∂h

∂t
(u0, t, v2, v3) dt

+
∫ u2

v2

∂h

∂q
(u0, u1, q, v3) dq +

∫ u3

v3

∂h

∂p
(u0, u1, u2, p) dp
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and since all partial derivatives are bounded on B we thus have

|h(u0, u1, u2, u3) − h(v0, v1, v2, v3)| ≤
3∑

i=0

∣∣∣∣
∫ ui

vi

Li dv

∣∣∣∣

=
3∑

i=0

Li|ui − vi|.

�

4.2. Contraction mapping approach

We will draw on the following fixed point theorem credited to Stefan Banach,
see [25, Theorem 1.A]. It involves sufficient conditions under which a mapping
will admit a unique fixed point, and generates a sequence that converges to
this fixed point.

Theorem 4.3. Let X be a nonempty set and let d be a metric on X such that
(X, d) forms a complete metric space. If the mapping T : X → X satisfies

d(Tf, Tg) ≤ αd(f, g), for some 0 < α < 1 and all f, g ∈ X; (4.11)

then there is a unique z ∈ X such that Tz = z. In addition, for any z0 ∈ X
we have d(zn, z) → 0 where zn is a recursively defined sequence defined via
zn+1 := Tzn.

We are now in a position to synthesize our previous results to form our
main results.

Theorem 4.4. If there is a R > 0 and R such that

|R|
[
8125

6
R2 +

4901
12

R +
15
2

]
3

500
≤ R (4.12)

|R|
[
65
4

R +
4901
2000

]
< 1 (4.13)

then the BVP (1.1), (1.2) admits a unique solution f with

(η, f(η), f ′(η), f ′′(η), f ′′′(η)) ∈ B, for all η ∈ [0, 1].

Proof. To avoid the repeated use of complicated constants and expressions we
will draw on the notation defined earlier in this paper. Let the constants βi be
defined in (3.1), (3.2), (3.3), (3.4). Let the function h be defined in (4.4). Let
the constants Li be defined in (4.7), (4.8), (4.9), (4.10) and let M be defined
in (4.5). Choose R > 0 to form B where R and R satisfy (4.12) and (4.13).
Based on the form (2.9), we define the operator T : C3([0, 1]) → C3([0, 1])
by

(Tf)(η) :=
∫ 1

0

G(η, s)R(f ′(s)f ′′(s) − f(s)f ′′′(s)) ds + φ(η), η ∈ [0, 1].

Consider the pair (C3([0, 1]), d) where the constants Wi in our d in (4.1) are
defined in (4.2). Our pair forms a complete metric space.
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Now, for the constant R > 0 and function φ in the definition of B,
consider the following set BR ⊂ C3([0, 1])

BR := {f ∈ C3([0, 1]) : d(f, φ) ≤ R}.

Since BR is a closed subspace of C3([0, 1]), the pair (BR, d) forms a complete
metric space.

Consider the operator T : BR → C3([0, 1]) where we have restricted its
domain. We wish to show that there exists a unique f ∈ BR such that

Tf = f

which is equivalent to proving the BVP (1.1), (1.2) has a unique solution in
BR. (Any solutions lying in C3([0, 1]) will also lie in C4([0, 1]) as repeatedly
differentiating (2.9) will show.)

To prove that our T has a unique fixed point in BR, we show that the
assumptions of Theorem 4.3 hold with X = BR.

Let us show the invariance condition T : BR → BR holds. For f ∈ BR

and η ∈ [0, 1], consider

|(Tf)(η) − φ(η)| ≤
∫ 1

0

|G(η, s)| |R(f ′(s)f ′′(s) − f(s)f ′′′(s))| ds

≤ M

∫ 1

0

|G(η, s)| ds

≤ Mβ0

= |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
3

500
.

Similarly,

|(Tf)′(η) − φ′(η)| ≤
∫ 1

0

∣∣∣∣
∂

∂η
G(η, s)

∣∣∣∣ |R(f ′(s)f ′′(s) − f(s)f ′′′(s)))| ds

≤ M

∫ 1

0

∣∣∣∣
∂

∂η
G(η, s)

∣∣∣∣ ds

≤ Mβ1

= |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
1
25

.

Thus
β0

β1
|(Tf)′(η) − φ′(η)| ≤ Mβ0

= |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
3

500
.

In addition, via similar arguments, we can obtain

|(Tf)′′(η) − φ′′(η)| ≤ Mβ2,

= |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
9
8
;
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|(Tf)′′′(η) − φ′′′(η)| ≤ Mβ3;

= |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
5
8
;

so that
β0

β2
|(Tf)′′(η) − φ′′(η)| ≤ Mβ0 = |R|

[
8125

6
R2 +

4901
12

R +
15
2

]
3

500
;

β0

β3
|(Tf)′′′(η) − φ′′′(η)| ≤ Mβ0 = |R|

[
8125

6
R2 +

4901
12

R +
15
2

]
3

500
.

Thus, for all f ∈ BR we have

d(Tf, φ) ≤ max{Mβ0,Mβ0,Mβ0,Mβ0}
= Mβ0

= |R|
[
8125

6
R2 +

4901
12

R +
15
2

]
3

500
≤ R

by assumption (4.12). Hence, for all f ∈ BR we have Tf ∈ BR so that
T : BR → BR.

Let us now show that T is contractive on BR with respect to d. For
f, g ∈ BR and η ∈ [0, 1], consider

|(Tf)(η) − (Tg)(η)|

≤
∫ 1

0

|G(η, s)| |h(f(s), f ′(s), f ′′(s), f ′′′(s)) − h(g(s), g′(s), g′′(s), g′′′(s))| ds

≤
∫ 1

0

|G(η, s)|
(

3∑
i=0

Li |f (i)(s) − g(i)(s)|
)

ds

≤ β0

(
L0d(f, g) + L1

β1

β0
d(f, g) + L2

β2

β0
d(f, g) + L3

β3

β0
d(f, g)

)

= (L0β0 + L1β1 + L2β2 + L3β3)d(f, g)

= |R|
[
65
4

R +
4901
2000

]
d(f, g)

where we have applied Theorem 4.2.
Similarly, we can show

|(Tf)′(η) − (Tg)′(η)| ≤ β1

(
L0 + L1

β1

β0
+ L2

β2

β0
+ L3

β3

β0

)
d(f, g);

|(Tf)′′(η) − (Tg)′′(η)| ≤ β2

(
L0 + L1

β1

β0
+ L2

β2

β0
+ L3

β3

β0

)
d(f, g);

|(Tf)′′′(η) − (Tg)′′′(η)| ≤ β3

(
L0 + L1

β1

β0
+ L2

β2

β0
+ L3

β3

β0

)
d(f, g).

Thus, for all f, g ∈ BR we have

d(Tf, Tg) = max
i∈{0,1,2,3}

{
Wi max

η∈[0,1]
|(Tf)(i)(η) − (Tg)(i)(η))

}
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≤ (L0β0 + L1β1 + L2β2 + L3β3)d(f, g)

= |R|
[
65
4

R +
4901
2000

]
d(f, g).

Due to our assumption (4.13) we see that T is a contractive map on BR.
Hence all of the conditions of Theorem 4.3 hold with X = BR. Theorem

4.3 is applicable and yields the existence of a unique fixed point to T that
lies in BR ⊂ C3([0, 1]). This solution is also in C4([0, 1]) as can be verified by
differentiating the integral equation (2.9). Thus we have equivalently shown
that the BVP (1.1), (1.2) has a unique solution. �

The question remains: when do the constraints (4.12) and (4.13) hold?
The following result addresses this question by choosing a R > 0 that maxi-
mizes |R|.
Theorem 4.5. For all

|R| <
2000

√
65

19500 + 4901
√

65
≈ 0.2732360884

the BVP (1.1), (1.2) has a unique solution lying in B with

R = 3
√

65
325

≈ 0.07442084075.

Proof. Note that (4.12) and (4.13) are equivalent to

|R| ≤ R[
8125
6 R2 + 4901

12 R + 15
2

]
3

500

(4.14)

|R| <
1[

65
4 R + 4901

2000

] . (4.15)

The two curves of the functions of R that make up the right-hand sides of
the inequalities (4.14) and (4.15) intersect at

R = 3
√

65
325

≈ 0.07442084075.

The value of these functions at their point of intersection is

2000
√

65
19500 + 4901

√
65

≈ 0.2732360884 (4.16)

and so, for values of |R| strictly less than (4.16), both of our inequalities
(4.12) and (4.13) will hold. Thus, for these values of R and R the conclusion
of Theorem 4.4 holds. �

Remark 4.1. The range

|R| <
2000

√
65

19500 + 4901
√

65
≈ 2.732360884 × 10−1

in Theorem 4.5 improves the result in [22] for R > 0 who established the
existence of a unique solution for
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0 < R <
−(72

√
3 + 1) +

√
(72

√
3 + 1)2 + 12

√
3(72

√
3 − 24)

48(3
√

3 − 1)
≈ 4.005014 × 10−2.

We observe that our upper limit for R is at least an order of magnitude
higher than the result in [22].

Remark 4.2. Due to the rather small value of R in Theorem 4.5, the result
can be interpreted as establishing the existence of a solution that uniquely
lies within a thin strip, where the graph of function φ lies at the centre, and

|f(η) − φ(η)| =
∣∣∣∣f(η) − 1

2
(3η − η3)

∣∣∣∣ ≤ 3
√

65
325

, for all η ∈ [0, 1].

Part of the significance with the small value of R can be related to the location
of our solution. For small R we know that our solution cannot deviate “too
much” from the known function φ.

Remark 4.3. Note that the conclusions of Theorem 4.4 and Theorem 4.5 say
nothing about what might happen outside of the set B. Additional solutions
may exist whose graphs are not completely contained in B.

Let us now pivot our attention to examine the approximation of solu-
tions to (1.1), (1.2). The following results involve Picard iterants [20, Sec.
2] that will form approximations to the unique solution f of the BVP (1.1),
(1.2). The following approximation results are a consequence of Theorem 4.3
holding for the operator T therein, see [25, Theorem 1.A].

Remark 4.4. Let the conditions of Theorem 4.5 hold. If we recursively define
a sequence of approximations fn = fn(η) on [0, 1] via

f0(η) := φ(η) =
1
2
(3η − η3)

fn+1(η) :=
∫ 1

0

G(η, s)R(f ′
n(s)f ′′

n (s) − fn(s)f ′′′
n (s)) ds+f0(η), n=0, 1, 2, · · ·

then:
• the sequence fn converges to the solution f of (1.1), (1.2) with respect

to the d metric and the rate of convergence is given by

d(fn+1, f) ≤ (L0β0 + L1β1 + L2β2 + L3β3)d(fn, f)

= |R|
[
65
4

R +
4901
2000

]
d(fn, f)

• for each n, an a priori estimate on the error is

d(fn, f) ≤ (L0β0 + L1β1 + L2β2 + L3β3)n

1 − (L0β0 + L1β1 + L2β2 + L3β3)
d(f1, φ)

=

[|R| [ 65
4 R + 4901

2000

]]n

1 − |R| [ 65
4 R + 4901

2000

]d(f1, φ)
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• for each n, an a posteriori estimate on the error is

d(fn+1, f) ≤ (L0β0 + L1β1 + L2β2 + L3β3)
1 − (L0β0 + L1β1 + L2β2 + L3β3)

d(fn+1, fn)

=
|R| [ 65

4 R + 4901
2000

]

1 − |R| [ 65
4 R + 4901

2000

]d(fn+1, fn).

Remark 4.5. If we begin with f0 then we can compute

f1(η) = − η

280
(Rη6 + (−3R + 140)η2 + 2R − 420

)

f2(η) = − η

8736000

[(
η14 − 300

77
η13 − 78

11
η10 +

390
7

η9 +
65
21

η8

−780
7

η7 +
1053
49

η6 − 234
7

η4 +
296027
1617

η2 − 58496
539

)
)

R3

+
(

3640
11

η10 − 2600η9 − 650η8 + 23400η7 − 14040
7

η6 + 8580η4

−6190600
77

η2 +
4107350

77

)
R2

+46800(η2 − 5)(−1 + η)2(η + 1)2R + 4368000η2 − 13104000
]

One of the advantages in our method of approximation over that of pertur-
bation techniques (eg, see Terrill’s [16]) is that there we have no constants
of integration that need to be calculated and re-calculated with every step of
the process. This leads to a much more streamlined and efficient sequence of
appproximations than have been available in the previous literature.

5. Opportunities and conclusion

Let us briefly identify some potential open problems for further research.
Two of our estimates in Sect. 2 are sharp, while the remaining two ap-

pear to be of a rougher nature. Is it possible to sharpen the bounds in Sect. 2?
This would have the potential to further extend the range of R under which
(1.1), (1.2) would admit a unique solution.

Is it possible to sharpen the conditions (4.12) and (4.13), perhaps via
the consideration of alternative metrics or sets? Once again, this would po-
tentially enable an extension of the range of R that would ensure uniqueness
of solutions.

In this work we have aimed to provide a more complete theory of exis-
tence, uniqueness and approximation of solutions to the BVP from laminar
flow in channels with porous walls. We advanced the current state of play via
a contractive mapping approach and extended the range of Reynolds number
under which a unique solution exists.
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