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Abstract. Viterbo has conjectured that any Lagrangian in the unit co-
disc bundle of a torus which is Hamiltonian isotopic to the zero-section
satisfies a uniform bound on its spectral norm; a recent result by
Shelukhin showed that this is indeed the case. The modest goal of our
note is to explore two natural generalisations of this geometric setting
in which the bound of the spectral norm fails: first, passing to Legen-
drian isotopies in the contactisation of the unit co-disc bundle (recall
that any Hamiltonian isotopy can be lifted to a Legendrian isotopy)
and, second, considering Hamiltonian isotopies but after modifying the
co-disc bundle by attaching a critical Weinstein handle.
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1. Introduction and results

Spectral invariants were introduced in Viterbo’s seminal work [31]. Since
their appearance they have become one of the most fundamental tools of
quantitative symplectic topology. We do not intend to give an overview of
its development and many applications here; instead we direct the reader to
work by Oh [23] for a thorough introduction to the subject from a modern
perspective.

Very briefly, spectral invariants in the symplectic case consist of func-
tions from the group of Hamiltonian diffeomorphisms

c : Ham(X,ω) → R

that take values in the real numbers, and which satisfy a list of axioms that
will be omitted. The spectral invariants that we consider here are constructed
as follows. For a pair of exact Lagrangian submanifolds L0, L1 ⊂ (X, dλ) (the
symplectic manifold is thus necessarily exact) one can associate the Floer
complex CF (L0, φ(L1)) to any Hamiltonian diffeomorphism φ ∈ Ham(X,ω)
endowed with its canonical action filtration. Spectral invariants are certain
real numbers that encode information about this filtered chain complex. To
make this precise, we utilise the language of the barcode from the theory of
persistent homology in topological data analysis, which goes back to work by
Carlsson–Zomorodian–Collins–Guibas [8]. This theory has been proven to be
very useful in quantitative symplectic topology, where it was introduced by
Polterovich–Shelukhin [25] and Usher–Zhang [30]; also see the recent work
[24] by Polterovich–Rosen–Samvelyan–Zhang for a systematic introduction.
Here we give a quick definition of the barcode of a filtered complex that will
suit our needs in Sect. 2.2.

The barcode can be defined for any chain complex (C, ∂, a) with a fil-
tration by subcomplexes

C<c
∗ := a−1[−∞, c) ⊂ C∗

defined by an “action” function

a : C → {−∞} ∪ R,
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where a−1(−∞) = {0}. Phrased in this language, the spectral invariants
are the values of the starting points of the semi-infinite bars of the barcode
associated to the Floer complex. In fact, the main interest here is not the
spectral invariants themselves, but rather the following derived quantities
(see Definition 2.7):

• The spectral range of a filtered complex, denoted by

ρ(C, ∂, a) ∈ {−∞} ∪ [0,+∞].

This quantity is defined as the supremum of the distances between the
starting points of two semi-infinite bars in the corresponding barcode.
(It takes the value −∞ if and only if there are no semi-infinite bars.)

• The boundary depth of a filtered complex, denoted by

β(C, ∂, a) ∈ {−∞} ∪ [0,+∞].

This quantity is defined as the supremum of the lengths of a finite bar in
the corresponding barcode. (It takes the value −∞ if and only if there
are no bars of finite length.)

For the Floer complex CF (L, φ1
H(L)) of a closed embedded exact Lagrangian

and its Hamiltonian deformation, the spectral range coincides with a quantity
called the spectral norm. This can be seen using Leclercq’s results from [20,
Corollary 1.7], after relating the spectral invariants used in that article to
the endpoints of semi-infinite bars in the relevant barcode. Since we will not
use any of the particular features satisfied by the spectral norm here, we will
gloss over the difference between these two concepts and simply define the
spectral norm as

γ(CF (Λ, φ1
H(Λ))) := ρ(CF (Λ, φ1

H(Λ))),

i.e. we prescribe it to be equal to the spectral range.

Remark 1.1. The correct way to define the spectral norm in the setting of
Legendrians would be to define γ as the difference of action levels of the
classes that correspond to the unit for the cup-product and its image under
Poincaré duality. We do not go into details of products and Poincaré duality
here, but when Λ is a Legendrian without Reeb chords, we again expect an
equality between spectral norm and spectral range. In general there should
be an inequality γ ≤ ρ.

We also need a generalisation of the above spectral invariants to contact
manifolds. Since we will only consider contact manifolds of a very particular
type, namely contactisations

(Y, α) = (X × R, dz + λ)

of exact symplectic manifolds (X, dλ) (see Sect. 2.1), this can be done by
relying on well-established techniques. From our point of view, the spectral
invariants of a contact manifold are defined for the group of contactomor-
phisms which are contact-isotopic to the identity, and yield functions

c : Cont0(Y, α) → R.
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Note that the value does depend on the choice of contact form α here, and
not just on the contact structure kerα ⊂ TY . It should be noted that
spectral invariants in the contact setting are much less studied and devel-
oped than the symplectic version. However, the original formulation of the
spectral invariants, which appeared in [31] for symplectic cotangent bundles
(X,ω) = (T ∗M,d(p dq)), admits a straightforward generalisation to the stan-
dard contact jet-space

(J1M = T ∗M × R, dz − p dq),

as shown by Zapolsky [33]. In fact, the spectral invariants in [31] are based
on a version of Floer homology defined using generating families, and this
theory can be generalised to invariants of Legendrian isotopies inside jet-
spaces by work of Chekanov [7]. Note that jet-spaces are particular cases of
contactisations.

The spectral invariants considered here can be defined either by using
generating families as in [33], or using a Floer homology constructed using the
Chekanov–Eliashberg algebra as first done in [13] by Ekholm–Etnyre–Sabloff;
also see work [4] by the author together with Chantraine–Ghiggini–Golovko.
The Chekanov–Eliashberg algebra is a Legendrian isotopy invariant in the
form of a unital differential graded algebra (DGA) that is freely generated
by the Reeb chords on the Legendrian, which are all assumed to be trans-
verse. Given a pair of Legendrians Λ0 and Λ1, the spectral invariants that we
consider are associated to the barcode of the Floer complex CF (Λ0, φ(Λ1))
where φ is a contactomorphism that is contact isotopic to the identity. See
Sect. 2.3 for the definition of this Floer complex.

Viterbo conjectured in [32] that the spectral norm γ(CF (0Tn , φ(0Tn)))
of the Floer complex of the zero section 0Tn ⊂ T ∗Tn satisfies a uniform
bound whenever φ ∈ Ham(T ∗Tn) maps the zero section φ(0Tn) ⊂ DT ∗Tn

into the unit-disc cotangent bundle. In recent work by Shelukhin [28,29] this
property was finally shown to be the case, even for a wide range of cotangent
bundles beyond the torus case. The main point of our work here is to give
examples of geometric settings beyond symplectic co-disc bundles, where the
analogous boundedness of the spectral norm fails. It should be stressed that,
in the time of writing of this article, there are still many cases of cotangent
bundles for which the problem remains open: does the spectral norm of an
exact Lagrangian inside DT ∗M which is Hamiltonian isotopic to the zero-
section satisfy a uniform bound for an arbitrary closed smooth manifold M?

As a first result, in Part (1) of Theorem A, we show that the spectral
norm of Legendrians inside the contactisation D∗S1 × R ⊂ J1S1 which are
Legendrian isotopic to the zero section does not satisfy a uniform bound.
Recall that any Hamiltonian isotopy of 0S1 ⊂ DT ∗S1 lifts to a Legendrian
isotopy of the zero section j10 ⊂ J1S1 (see Lemma 2.1); consequently, one
way to formulate Part (1) of Theorem A is by saying that Viterbo’s conjecture
cannot be generalised to Legendrian isotopies.

Below we denote by

Fθ0,z0 := {θ = θ0, z = z0} ⊂ J1S1
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a Legendrian lift of the Lagrangian cotangent fibre T ∗
θ0

S1.

Theorem A.

(1) There exists a contact isotopy φt : J1S1 → J1S1 that satisfies

φt|j10 : j10 ↪→ DT ∗S1 × R = (S1 × [−1, 1]) × R,

and for which CF (j10, φt(j10)) all are generated by precisely two mixed
Reeb chords, whose difference in length grows indefinitely as t → +∞.
In particular, the spectral norm γ(CF (j10, φt(j10))) becomes arbitrarily
large as t → +∞.

(2) There exists a contact isotopy φt : J1S1 → J1S1 that satisfies

φt|Λst : Λst ↪→ DT ∗S1 × R>0 = (S1 × [−1, 1]) × R>0 ⊂ J1S1,

where Λst ⊂ J1S1 is the standard Legendrian unknot shown in Fig. 1,
and for which the boundary depth β(CF (φt(Λst), Fθ0,0)) becomes arbi-
trarily large as t → +∞. In addition, we may assume that φt is sup-
ported inside some subset {z ≥ c}, where c > 0, and for which the
inclusion {z ≥ c} ∩ Λst � Λst is a strict subset.

In recent work [2, Section 6.2] Biran–Cornea showed that a bound
γ(CF (0M , L)) ≤ C on the spectral norm of the Floer complex of a Lagrangian
L ⊂ T ∗M , where L is Hamiltonian isotopic to the zero section, implies the
bound β(CF (L, T ∗

ptM)) ≤ 2C on the boundary depth of the Floer complex of
L and a cotangent fibre. The Legendrians produced by Part (2) of Theorem
A can be used to show that the analogous result cannot be generalised to
Legendrian isotopies. More precisely,

Corollary B. There exists a contact isotopy φt : J1S1 → J1S1 that satisfies

φt|j10 : j10 ↪→ DT ∗S1 × R = (S1 × [−1, 1]) × R,

and for which the spectral norm γ(CF (j10, φ1(j10))) is uniformly bounded for
all t ≥ 0, while the boundary depth β(CF (φ1(0S1), Fθ0,z0)) becomes arbitrarily
large as t → +∞.

Proof. Take a cusp-connected sum of a C1-small perturbation of the zero-
section j10 and any unknot Λt

st from the family produced by Part (2) of
Theorem A; the case of Λst is shown in Fig. 1. We refer to [9] for the definition
of cusp-connected sum (also called ambient Legendrian 0-surgery) along a
Legendrian arc (the so-called surgery disc). We perform the cusp-connected
sum along a Legendrian arc contained inside the region {z < c}, and which is
disjoint from the support of the Legendrian isotopy of the unknots. Note that
the Legendrian resulting from the cusp-connected sum is Legendrian isotopic
to the zero-section, as shown in Fig. 1. It follows that the same is true for
the cusp-connected sum of j10 and any Legendrian Λt

st from the family.
Finally, to evaluate the effect of the ambient surgery on the barcodes

of the Floer complexes we apply Theorem C. To that end, the following two
facts are needed. First, CF (Λst, j

10) is acyclic, and thus its barcode consists
of only finite bars. The acyclicity of the Floer complex is a consequence of the
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Figure 1. Left: the front projection of the zero section
j10 ⊂ J1(R/Z) = J1S1 and a standard Legendrian unknot
Λst. Middle: the result of a Legendrian RI -move on each
component, Λ− denotes the union of the two components.
Right: the Legendrian Λ+ which is the result after a cusp-
connected sum along the dotted arc shown in the middle
picture. Λ+ is Legendrian isotopic to the zero section (Λ+ is
obtained by performing two RI -moves on the zero-section)

invariance under Legendrian isotopy. (After a translation of Λst sufficiently far
in the p-coordinate, all generators of the Floer complex disappear.) Second,

CF (j1f ∪ Λt
st, j

10) = CF (j1f, j10) ⊕ CF (Λt
st, j

10)

is a direct sum of complexes. The barcode of the complex on the left-hand side
is thus the union of the barcodes of the two complexes in the direct sum on
the right-hand side. Here we have suppressed the choices of augmentations,
since these Floer complexes do not depend on these choices (up to action
preserving automorphism); see Remark 1.2. �

To define Floer homology for a pair of Legendrians Λ0, Λ1, it is necessary
to also include the data of augmentations εi : A(Λi) → k of their Chekanov–
Eliashberg algebras; these are unital DGA-morphisms onto the ground field.
We write CF ((Λ0, ε0), (Λ1, ε1)) for the induced complex, which in general
does depend on the choices of augmentations; we refer to Sect. 2.4 for more
details.

Remark 1.2. There are Legendrian isotopy classes for which different choices
of augmentations always give rise to Floer complexes that are isomorphic as
filtered chain complexes; this can be characterised using the invariance of the
augmentation category of Chantraine–Bourgeois from [3]. Cases include the
Legendrian isotopy class of the zero section j10, the Legendrian fibre Fθ,z,
and the standard Legendrian unknot. The property is a consequence of the
fact that these Legendrian isotopy classes admit representatives for which the
Chekanov–Eliashberg algebra admits a unique augmentation.

Theorem C. Let Λ+ be a Legendrian obtained from Λ− by a Legendrian ambi-
ent surgery. After making the surgery-region sufficiently small, we can assume
that there is an action-preserving isomorphism

CF ((Λ+, ε+), (Λ, ε)) → CF ((Λ−, ε−), (Λ, ε))

of complexes, where (Λ, ε) is an arbitrary but fixed Legendrian equipped with
an augmentation ε of its Chekanov–Eliashberg algebra A(Λ), and where the
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augmentation ε+ of A(Λ+) is induced by pulling back the augmentation ε− of
A(Λ−) under the unital DGA-morphism induced by the standard Lagrangian
handle-attachment cobordism. In particular, the barcodes of the two Floer
complexes coincide.

In the setting of exact Lagrangian cobordisms in the sense of Arnol’d
between exact Lagrangian submanifolds similar results were found in [2, Sec-
tion 5.3] .

Finally we present a Hamiltonian isotopy of a closed exact Lagrangian
inside a Liouville domain for which the spectral norm becomes arbitrarily
large. The simplest examples of such a Liouville domain is the 2-torus with
an open ball removed; we denote this space by (Σ1,1, dλ) and depict it in
Fig. 13. The detailed construction is given in Sect. 2.1.2. As kindly pointed
out to the author by the anonymous referee, this fact is not new. The same
phenomenon was exhibited in, e.g. Zapolsky’s work [34, Lemma 1.10], as well
as the more recent [19, Remark 6] by Kislev–Shelukhin.

Theorem D. There exists a closed exact Lagrangian submanifold L ⊂ (Σ1,1, ω)
and a compactly supported Hamiltonian H : Σ1,1 → R for which the induced
compactly supported Hamiltonian isotopy φt

H : (Σ1,1, ω) → (Σ1,1, ω) satisfies
the property that the spectral norm γ(CF (L, φt

H(L))) becomes arbitrarily large
as t → +∞.

1.1. Why the proofs of uniform bounds fail for Legendrians

The techniques that are used in [29] and [2] to prove the results in the case of
the cotangent bundle are not yet fully developed in the case of Legendrians in
contactisations. This includes the closed-open map, which is a crucial ingre-
dient in [29], and a unital A∞-structure on the Floer complex with relevant
PSS-isomorphisms, which is crucial in [2]. Nevertheless, we still do expect
that these operations can be defined also for the Floer homology of Legendri-
ans in contactisations. In fact the A∞-structure was recently extended to this
setting by Legout [21]. Assuming the possibility to define these operations
in the Legendrian setting, what goes wrong when one tries to generalise the
proofs to the Legendrian case?

First we recall the properties of the Floer homology complex of a Leg-
endrian and itself; see, e.g. [13] for the details. To define CF (Λ,Λ) one must
first make the mixed Reeb chords transverse by a Legendrian perturbation
of the second copy of Λ. We do this by replacing Λ with a section j1f in its
standard contact jet-space neighbourhood, where f : Λ → R is a C1-small
Morse function. In this manner, we obtain

CF (Λ,Λ) = CMorse(f ;k) ⊕
⊕

c∈Q(Λ)

kpc ⊕ kqc

where Q(Λ) denotes the set of Reeb chords on Λ, and CMorse(f ;k) is the
Morse homology complex with basis given by the critical points of the func-
tion f : Λ → R. The action of the former chords are approximately equal
to a(pc) = 
(c) and a(qc) = −
(c) while the action of the latter is equal
to a(x) = f(x). What is important to notice here is that the generators of
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CMorse(f ;k) may be assumed to have arbitrarily small action, while this is
not the case for the generators that correspond to pure Reeb chords. When
Λ is the Legendrian lift of a Lagrangian embedding, there are of course only
generators of the type CMorse(f ;k). This turns out to be the crucial difference
between the symplectic and the contact case.

Example in Part (1) of Theorem A: The proof in [29] uses the closed-
open map. More precisely, a crucial ingredient in the proof is the action-
preserving property of the operations P ′

a on the Floer homology CF (0M , φ1
H

(0M )), which are defined using the length-0 part φ0(a) and length-1 part
φ1(a, ·) of the closed open map for certain elements a ∈ SH(T ∗M) in sym-
plectic cohomology (by this we mean the unital version of the symplectic
invariant, which is contravariant with respect to inclusion of exact Liouville
subdomains). In the case when the Legendrian has pure Reeb chords (i.e. it is
not the lift of an exact Lagrangian embedding), the chain φ0(a) ∈ CF (Λ,Λ)
may consist of generators whose action does not vanish (since they do not
correspond to Morse generators). In this case the action-preserving property
of P ′

a can no longer be determined from the aciton of a ∈ SH(T ∗M) alone.
Example in Part (2) of Theorem A: The proof in [2, Section 6.2] uses

the fact that there are continuation elements a ∈ CF (φ1
H(0M ), 0M ) and

b ∈ CF (0M , φ1
H(0M )) for which μ2(a, b) ∈ CF (φ1

H(0M ), φ1
H(0M )) is the

unique maximum of a suitable Morse function. In the Legendrian case the
element μ2(a, b) ∈ CF (φ1(j10), φ1(j10)) is still a homology unit; however, it
not necessarily a sum of Morse chords, and can, therefore, have significant
action. In particular, multiplication with the element μ2(a, b) is not necessar-
ily identity on the chain level, nor is it necessarily homotopic to the identity
by a chain homotopy of small action. The geometrically induced chain homo-
topy μ3(a, b, ·) between μ2(a, μ2(b, ·)) and μ2(μ2(a, b), ·) increases action by
at most the spectral norm, and is used in [2] for establishing the bound on
the boundary depth. However, this chain homotopy does not do the job any
more, since we also need an additional chain-homotopy (of unknown action
properties) to take us from the map μ2(μ2(a, b), ·) to the chain level identity.

2. Background

2.1. Contact geometry of jet-spaces and contactisations

An exact symplectic manifold is a smooth 2n-dimensional manifold (X2n, dλ)
equipped with a choice of a primitive one-form λ for an exact symplectic two-
form ω = dλ, i.e. ω is skew-symmetric, non-degenerate, and closed. Note that
the primitive λ should be considered as part of the data describing the exact
symplectic manifold. A compact exact symplectic manifold with boundary
(W,dλ) is a Liouville domain if the Liouville vector field, i.e. the vector field
ζ given as the symplectic dual of λ via the equation ιζdλ = λ, is transverse
to the boundary ∂W . The flow generated by ζ is called the Liouville flow
and satisfies (φt

ζ)
∗λ = etλ. An open exact symplectic manifold (W,dλ) is

a Liouville manifold if the all critical points of the Liouville vector field are
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contained inside some compact Liouville domain W ⊂ (W,dλ), and if the
Liouville flow is complete.

A Hamiltonian isotopy is a smooth isotopy of X which is generated by
a time-dependent vector field Vt ∈ Γ(TX) that satisfies ιVt

dλ = −dHt for
some smooth time-dependent function

H : X × Rt → R

which is called the Hamiltonian; a diffeomorphism of X which is the time-t
flow generated by such a vector field preserves the symplectic form (but not
necessarily the primitive) and is denoted by

φt
H : (X,ω) → (X,ω);

we call such a map a Hamiltonian diffeomorphism, and the corresponding
flow a Hamiltonian isotopy. Conversely, any choice of Hamiltonian function
induces a Hamiltonian isotopy φt

H in the above manner. Since we consider
exact symplectic manifolds, a smooth isotopy φt : X → X is a Hamiltonian
isotopy if and only if (φt)∗λ = λ + dGt ∈ Ω1(X) holds for some smooth
function

G : X × Rt → R.

Note that the Hamiltonian function that corresponds to a Hamiltonian iso-
topy is determined only up to the addition of a function that only depends
on t.

Any exact 2n-dimensional symplectic manifold (X2n, dλ) gives rise to a
2n + 1-dimensional contact manifold (X × Rz, dz + λ) called its contactisa-
tion, which is equipped with the canonical contact one-form αst := dz + λ.
The contactisations induced by choices of primitives of the symplectic form
λ and λ′ = λ + df that differ by the exterior differential of f : X → R are
isomorphic via the coordinate change z �→ z − f . Recall that the contact
condition is equivalent to dαst being non-degenerate on the contact planes
ker αst ⊂ T (X × R). A contact isotopy is a smooth isotopy which preserves
the distribution kerαst (but not necessarily the contact form). The contrac-
tion ιVt

αst of the contact form and the infinitesimal generator gives a bijective
correspondence between contact isotopies and smooth time-dependent func-
tions on X × R, the latter are called contact Hamiltonians. We refer to [18]
for more details.

Lemma 2.1. A Hamiltonian isotopy φt
H : (X, dλ) → (X, dλ) with a choice of

Hamiltonian Ht : X → R lifts to a contact isotopy

X × R → X × R,

(x, z) �→ (φt
H(x), z − Gt(x)),

where the function G : X × Rt → R is defined by

Gt(x) =
∫ t

0

λ(Vs(φs
H(x))) − Hs(φs

H(x))ds

and satisfies the property

(φt
H)∗λ = λ + dGt.
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Moreover, this contact isotopy preserves the contact form αst and is generated
by the time-dependent contact Hamiltonian Ht ◦ prX : X × Rz → R.

A smooth immersion of an n-dimensional manifold

Λ � (X2n × R, dz + λ)

in the contactisation is Legendrian if it is tangent to kerαst, while a smooth
n-dimensional immersion L � (X2n, λ) in an exact symplectic manifold is
exact Lagrangian if λ pulls back to an exact one-form. The following relation
between Legendrians and exact Lagrangians is immediate:

Lemma 2.2. The canonical projection of a Legendrian immersion to (X,λ) is
an exact Lagrangian immersion. Conversely, any exact Lagrangian immer-
sion lifts to a Legendrian immersion of the contactisation X ×R. Moreover,
the lift is uniquely determined by the choice of a primitive f : L → R of the
pull-back λ|TL = df , via the formula z = −f .

Transverse double points of Lagrangian immersions are stable. On the
other hand, generic Legendrian immersions are in fact embedded. However,
there are stable self-intersections of Legendrians that appear in one-parameter
families. Recall the following standard fact; again we refer to, e.g. [18] for
details.

Lemma 2.3. A compactly supported smooth isotopy φt(Λ) ⊂ X × R through
Legendrian embeddings, also called a Legendrian isotopy, can be generated by
an ambient contact isotopy.

2.1.1. The cotangent bundle and jet-space. There is a canonical exact sym-
plectic two-form −d(p dq) on any smooth cotangent bundle T ∗M , whose prim-
itive −p dq is the tautological one-form with a minus sign. The cotangent
bundle is a Liouville manifold and any co-disc bundle is a Liouville domain.
The zero-section 0M ⊂ T ∗M is obviously an exact Lagrangian embedding.

The contactisation of T ∗M is the one-jet space J1M = T ∗M ×Rz with
the canonical contact one-form dz − p dq. The zero-section in T ∗M lifts to
the one-jet j1c of any constant function c (obviously the one-jet j1f of an
arbitrary function f : M → R is Legendrian isotopic to j10). For us the most
relevant example is actually the two-dimensional symplectic cotangent bundle
T ∗S1 = S1 ×Rp equipped with the exact symplectic two-form −d(p dθ), and
its corresponding contactisation, i.e. the three-dimensional contact manifold

(J1S1 = T ∗S1 × Rz, dz − p dθ)

(note the sign convention for the Liouville form).
To describe Legendrians in J1M we will make use of the front-projection,

by which one simply means the canonical projection

ΠF : J1M → M × Rz.

A Legendrian immersion can be uniquely determined by its post-composition
with the front projection. A generic Legendrian knot in J1S1 has a front
projection whose singular locus consists of

• non-vertical cubical cusps and
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zz

RI

xx

Figure 2. RI: the first Legendrian Reidemeister move in
the front projection

zz

RII

xx

Figure 3. RII: the second Legendrian Reidemeister move
in the front projection

• transverse self-intersections.

Note that the front projection cannot be tangent to ∂z by the Legendrian
condition (i.e. there are no vertical tangencies).

Two sheets of the front projection that have the same slopes (i.e. p-
coordinates) above some given point in the base, project to a double-point
inside T ∗M . There is a bijection between double points of this projection
and Reeb chords, where a Reeb chord is an integral curve of ∂z with both
endpoints on the Legendrian. The difference of z-coordinate of the endpoint
and starting point of a Reeb chord c is called its length and is denoted by

(c) ≥ 0.

Double-points of the Legendrian immersion itself correspond to self-
tangencies of the front projection. This is not a stable phenomenon, and
double-points of Legendrians generically arise only in one-parameter families.
These double-points can be considered as Reeb chords of length zero.

Two Legendrian knots inside J1R or J1S1 with generic fronts are Leg-
endrian isotopic if and only if their front projections can be related by a
sequence of Legendrian Reidemeister moves [26] together with an ambient
isotopy of the front inside S1 ×Rz; see [15] for an introduction to Legendrian
knots.

For convenience we will also introduce a composite move that we will
make repeated use of; this is the one shown in Fig. 5, which involves taking
two cusp edges with different slopes, and making them cross each other (it is
important that the cusps have different slopes).
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zz

RIII

xx

Figure 4. RIII: the third Legendrian Reidemeister move in
the front projection

zz

2 × RII

xx

Figure 5. A composite move: the front to the right is ob-
tained by performing two consecutive RII -moves on the front
to the left together with an isotopy

2.1.2. The punctured torus. Here we construct an example of a two-dimen
sional non-planar Liouville domain: the two torus minus an open ball, which
we denote by (Σ1,1, dλ).

First, consider the primitive

λ0 = −1
2
(p dq − q dp)

of the standard linear symplectic form dq ∧ dp on R2. We have the identities

λ0 + d
(pq

2

)
= q dp,

λ0 − d
(pq

2

)
= −p dq.

Take a smooth function σ : R2 → R which in the standard coordinates la-
belled by (p, q) ∈ R2 is given by

• σ(p, q) = pq/2 on {|q| ≤ 1, |p| > 2}, while it is of the form g(p)q/2 for
some smooth function g that satisfies g(p), g′(p) ≥ 0 on {|q| ≤ 1, |p| ≥
1};

• σ(p, q) = −pq/2 on {|q| > 2, |p| ≤ 1}, while it is of the form −g(q)p/2 for
some smooth function g that satisfies g(q), g′(q) ≥ 0 on {|q| ≥ 1, |p| ≤
1};

• σ(p, q) = 0 on {|q| < 1, |p| < 1}; and
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Consider the exact symplectic manifold (X, dλ) which is obtained by taking
the cross-shaped domain

{p ∈ [−2, 2], q ∈ [−1, 1]} ∪ {q ∈ [−2, 2], p ∈ [−1, 1]} ⊂ R2

and identifying {p = 2} with {p = −2}, and {q = −2} with {q = 2} in the
obvious manner. Topologically the result is a punctured torus. The Liouville
form λ0 + dσ on R2 extends to a Liouville form λ on this punctured torus.
The punctured torus has a skeleton Sk ⊂ X which is the image of the cross
{pq = 0} under the quotient; in other words, Sk ⊂ X is the union of two
smooth Lagrangian circles that intersect transversely in a single point. Note
that

Sk =
∞⋂

T=1

φ−T (X).

We claim that the sought Liouville domain (Σ1,1, dλ) can be realised as a
suitable subset of this exact symplectic manifold, simply by smoothing its
corners; see Fig. 13.

Since (Σ1,1, λ) is a surface with non-empty boundary, it admits a sym-
plectic trivialisation of its tangent bundle. This implies that the all La-
grangian submanifolds of Σ1,1 have a well-defined Maslov class; see Sect.
2.5 for more details. We will make heavy use of the fact that the Maslov class
depends on the choice of a symplectic trivialisation; in this case, symplectic
trivialisations up to homotopy can be identified with homotopy classes of
maps

Σ1,1 → S1

i.e. cohomology classes H1(Σ1,1;Z).

2.2. Barcode of a filtered complex and notions from spectral invariants

A (strict) filtered complex over some field k is a chain complex (C, ∂, a) in
which each element is endowed with an action a(c) ∈ R � {−∞} and such
that the following properties are satisfied:

• a(c) = −∞ if and only if c = 0,
• a(r · c) = a(c) for any r ∈ k∗,
• a(a + b) ≤ max{a(a), a(b)}, and
• a(∂(a)) < a(a) for any a �= 0.

The subset

C<a = a−1({−∞} ∪ (−∞, a))

is a k-subspace by the first three bullet points; this subspace is a subcomplex
by the last bullet point.

We say that a basis {ei} is compatible with the filtration, if the action
of a general element c ∈ C is given by

a(r1e1 + · · · + rnen) = max{a(ei); ri �= 0}, ri ∈ k, (2.1)

i.e. the action function is determined by its values on elements in the basis.
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Remark 2.4. The non-trivial condition in the definition is the equality “=”
in Formula (2.1); for a general basis the above equality gets replaced with an
inequality “≤”.

The existence of a compatible basis for any filtered complex was proven
by Barannikov [1]; see [30] for a more general version (in that article they are
called “orthogonal bases”), as well as [24]. For proof adapted to the notation
used here, see [10, Lemma 2.2].

Given a basis with a specified action on each basis element, one can
also use the above formula to construct a filtration on the entire complex,
under the assumption that the differential decreases action. The Floer com-
plexes described below get endowed with filtrations in precisely this manner,
i.e. by specifying an action for each canonical and geometrically induced basis
element.

For every filtered complex there is a notion of a barcode; we refer to
[10, Section 2] for the details of the presentation that we rely on here. The
barcode is a set of intervals of the form [a, b) and [a,+∞), where a, b ∈ R, and
we allow multiplicities. Instead of giving the usual definition of the barcode,
we give it the following alternative characterisation.

Lemma 2.5. (Lemma 2.6 in [10]) The barcode can be recovered from the fol-
lowing data:
(1) For any basis which is compatible with the action filtration, there is a

bijection between the set of actions of basis elements and the union of
start and endpoints of bars (counted with multiplicities).

(2) For any two numbers a < b, the number of bars of C∗ whose endpoints
e satisfy e ∈ (b,+∞] and starting points s satisfy s ∈ [a, b) is equal to
dim H(C<b/C<a).

Corollary 2.6. Assume that the barcode contains a finite bar [a, b). Then, for
any compatible basis {ei}, we can deduce the existence of basis elements ei

and ej with a(ei) = b, a(ej) = a, such that 〈∂ei, ej〉 �= 0.
Conversely, if there exists a compatible basis {ei} for which ∂ei = rej for

some coefficient r �= 0, then the barcode contains the finite bar [a(ej), a(ei)).

Note that the barcode considered here is independent of the grading.
An efficient way to deduce properties of the barcode is thus to find (possibly
several different) gradings for the complex, for which the differential remains
an operation of degree −1. The existence of such gradings imposes restrictions
on the differential, which in view of the previous corollary imposes restrictions
on the barcode. This technique will be used in the proofs given in Sects. 3.1
and 3.3.

For a filtered complex as above we can associate the following important
notions.

Definition 2.7.

(1) The spectral range ρ(C, ∂, a) ∈ {−∞} ∪ [0,+∞] is the supremum of
the distances between starting points of the semi-infinite bars in the
barcode.
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(2) The boundary depth β(C, ∂, a) ∈ {−∞} ∪ [0,+∞] is supremum of the
lengths of the finite bars in the barcode.

Note that the above quantities automatically are equal to −∞ in the
case when the supremum is taken over the empty set (i.e. when there are no
semi-infinite and finite bars, respectively).

An important feature of the barcode is that remains invariant under
simple bifurcations of the complex, i.e. action preserving handle-slides and
birth/deaths. Legendrian isotopies induce one-parameter families of the Floer
complex considered here, which undergoes bifurcations of precisely this type;
hence the corresponding barcode undergoes continuous deformations under
Legendrian isotopies. Since this property will not be needed, we do not give
more details here, but instead direct the interested reader to [10].

2.3. Outline of Floer homology and generating family homology for Legen-
drians

Floer homology for pairs (L0, L1) of closed exact Lagrangian submanifolds
of cotangent bundles was originally defined by Floer [16]. For any such pair
one obtains the Floer chain complex CF (L0, L1) with a basis given by the
intersections L0 ∩ L1, which here are assumed to be transverse. Floer also
showed that the homology of the complex—the so-called Floer homology
HF (L0, L1)—is invariant under Hamiltonian isotopy of either Lagrangian
Li. Moreover, in the case when L1 is a C1-small Hamiltonian perturbation
of L0 the Floer complex CF (L0, L1) = CMorse(f) is the Morse complex for a
C1-small Morse function f : L0 → R and suitable auxiliary data; see Floer’s
original computation [17]. (This property might not hold for the Floer ho-
mology of a Legendrian, due to additional generators corresponding to Reeb
chords; see Sect. 1.1.)

Nowadays there are several different techniques available for construct-
ing Floer homology. Here we will consider the setting of Legendrian submani-
folds of contactisations (W ×R, αst) of a Liouville manifold (W,dλ), in which
Floer homology associates a chain complex CF (Λ0,Λ1) to a pair of Legen-
drian submanifolds equipped with additional data. In this case, the homology
of the complex is invariant under Legendrian isotopy of either Legendrian Λi.
This is the version that we will use also in the case of exact Lagrangian em-
beddings in (W,dλ). To that end, recall that exact Lagrangians admit lifts to
Legendrians by Lemma 2.2, and that a Hamiltonian isotopy of the Lagrangian
induces a Legendrian isotopy of the Legendrian lift by Lemma 2.1.

In the case when W = T ∗M , and thus W × R = J1M , in [33] Zapol-
sky relied on generating family homology defined for generating families due
to Chekanov [7] to define spectral invariants. Generating family homology
is a Hamiltonian isotopy invariant obtained by Morse functions on finite-
dimensional spaces, which behaves very similarly to Floer homology. In cer-
tain cases these two invariants have even been shown to be equivalent. Since
we will work with contactisations that are more general than jet-spaces, we
instead follow the techniques from [13] by Ekholm–Etnyre–Sabloff, where
the Floer chain complex is constructed as the linearised Legendrian contact-
homology complex associated to the Chekanov–Eliashberg algebra [6], [12].
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First we outline the general set-up Floer homology in the setting of
Legendrians, which applies equally well to either the version used here or the
version defined using generating families (when applicable). Given a pair of
Legendrians Λ0,Λ1 ⊂ W × R, equipped with additional data denoted by εi

to be specified below (in the version defined using generating families, these
additional data are simply the choice of a generating family), one obtains a
graded (grading is in Z or Z/μZ depending on the Maslov class as described
in Sect. 2.5) filtered chain complex

(CF∗((Λ0, ε0), (Λ1, ε1)), ∂, a)

with a canonical compatible basis as a k-vector space given by the
• Reeb chords c from Λ0 to Λ1 of action a(c) = 
(c) equal to the Reeb

chord length; together with the
• Reeb chords c from Λ1 to Λ0 of action a(c) = −
(c) equal to minus the

Reeb chord length.

We assume that all Reeb chords are transversely cut out, and hence that
they form a discrete subset, which thus is finite whenever the Legendrians
are closed. With our conventions the differential is strictly action decreasing
and of degree −1. In the case of generating family homology, the differential is
the Morse homology differential for a Morse function on a finite-dimensional
manifold that is constructed using the generating family. Below we give more
details of the Floer complex defined via the Chekanov–Eliashberg algebra, for
which the differential counts pseudoholomorphic strips in W with boundary
on the Lagrangian projections ΠW (Λi) ⊂ W (these are exact Lagrangian im-
mersions with transverse self-intersections). In this case the strips are more-
over allowed to have corners that map to the double points of the Lagrangian
projections; the strips are then counted with weights given by the value of
the augmentations on the corresponding pure Reeb chords. More details are
given in Sect. 2.4 below.

The Floer complex satisfies the following important properties; see [13]
for details.

• A Legendrian isotopy of the Legendrian Λi induces a canonical continua-
tion of the additional data εi, and the resulting one-parameter family of
Floer complexes undergoes only simple bifurcations, i.e. handle-slides
and births/deaths. In particular, the homology of the complex is not
changed under such a deformation.

• In the case when Λ ⊂ W ×R has no Reeb chords (i.e. it is the lift of an
exact Lagrangian embedding), and when Λ′ is a C1-small Legendrian
perturbation, then the induced Floer complex

(CF ((Λ, ε), (Λ′, ε′)), ∂, a) = CMorse(f ;k)

is the Morse homology complex of some C1-small Morse function f : Λ →
R.

Again we refer to Sect. 1.1 for a description of the complex under the presence
of pure Reeb chords; in this case the Morse complex is only realised as a
quotient complex of a subcomplex.
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2.4. Floer complex as the linearised Chekanov–Eliashberg algebra

Here we present the relevant technical details for the particular construction
of Floer homology used in this paper, i.e. relying on the Chekanov–Eliashberg
algebra for Legendrians in contactisation from [12]. Using the Chekanov–
Eliashberg algebra to define Floer homology for Legendrian submanifolds is
not new, it goes back to work [13] by Ekholm–Etnyre–Sabloff; also see [22]
by Lanzat–Zapolsky for a nice application of this theory together with a
systematic treatment.

Assume that Λ0,Λ1 ⊂ W ×R are two Legendrian submanifolds. Further,
assume that the Chekanov–Eliashberg algebras of Λi admit augmentations

εi : (A(Λi), ∂) → k;

recall that the Chekanov–Eliashberg algebra is a unital DGA generated by
the Reeb chords of the Legendrian, and that an augmentation is a unital
DGA morphism to the ground field. In particular, when the Legendrian Λi

has no Reeb chords, the Chekanov–Eliashberg algebra takes the simple form
A(Λi) = k, and there is a canonical augmentation. An important property
of augmentations is that they can be pushed forward under a Legendrian
isotopy; see, e.g. [4] and [6].

Typically one wants more additional data than just an augmentation.
For instance, to use coefficients in a field of characteristic different from two,
one also needs to fix the choice of a spin structure on both Legendrians Λi. To
endow the Floer complex a Z-grading, we need to specify a Maslov potential;
we refer to Sect. 2.5 for more details concerning the grading, which will play
an important role for us.

The Floer complex

CF ((Λ0, ε0), (Λ1, ε1))

is generated by the chords that have one endpoint on Λ0 and one endpoint
on Λ1 (either being a starting point). These Reeb chords on Λ0 ∪ Λ1 are
called the mixed Reeb chords. To define the differential, we will identify the
above vector space with the underlying vector space linearised Legendrian
contact homology complex of the link Λ0 ∪ φT

∂z
(Λ1), where the latter is the

k-vector space is generated by all Reeb chords that start on Λ0 and end on
the translation φT

∂z
(Λ1) of Λ1 in the positive z-direction. Note that the mixed

chords on Λ0 ∪ Λ1 are in bijective correspondence with the mixed chords on
Λ0 ∪ φT

∂z
(Λ1) for any choice of T ∈ R. In the following we take T � 0 to

be sufficiently large, so that no chord starts on φT
∂z

(Λ1) and ends on Λ0. Of
course, the length of a mixed chord c above depends on the parameter T and
will not be equal to the action a(c) defined above; the relation between action
and length is given by


(c) = a(c) + T.

The remaining Reeb chords on the link Λ0 ∪ φT
∂z

(Λ1) have both endpoints
either on Λ0 or φT

∂z
(Λ1), and are called pure. Note that the Reeb chords

on φT
∂z

(Λ1) are in bijective correspondence with those of Λ1. In fact, their
Chekanov–Eliashberg algebras are even canonically isomorphic.
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The differential is the Linearised Legendrian contact homology differ-
ential induced by a choice of almost complex structure, together with the
augmentations εi for the Chekanov–Eliashberg algebras A(Λi) generated by
the pure chords. This version of a Floer complex defined via the Chekanov–
Eliashberg algebra was originally considered in [13]; also see [4] for a more
recent realisation. We now give a sketch of the definition of the differential.
It is roughly speaking defined by counts of rigid pseudoholomorphic discs in
(W,dλ), for some choice of compatible almost complex structure, where the
disc has

• boundary on the exact Lagrangian immersion ΠW (Λ0 ∪ φT
∂z

(Λ1)) ⊂
(W,λ);

• precisely one positive puncture at a double point which corresponds to
a mixed chord—this is the input;

• precisely one negative puncture at a double point which corresponds to
a mixed chord—this is the output; and

• several additional negative punctures at double points which correspond
to pure chords.

By positive (resp. negative) boundary puncture, one means a point where
the boundary of the pseudoholomorphic disc makes a jump that increases
(resp. decreases) the z-value of the Legendrian Λ0 ∪φT

∂z
(Λ1) ⊂ W ×Rz when

following the boundary according to the orientation of the disc induced by the
almost complex structure. When counting the strip, one weighs the count by
the value of the augmentation εi on the pure chords from the last point. This
is a part of the so-called linearised differential induced by the augmentation,
as defined in [6]; also see the notion of the bilinearised Legendrian contact
homology as defined by Bourgeois–Chantraine in [3].

From positivity of symplectic area of such pseudoholomorphic discs to-
gether with Stokes’ theorem one obtains that the Reeb chord length of the
input chord must be larger than the Reeb chord of the output. In other words,
the complex is strictly filtered in the sense defined in Sect. 2.2, and the Reeb
chords constitute a compatible basis.

From the index formula for the expected dimension of the moduli space
of pseudoholomorphic discs, it follows that the degree of the input is one
greater than the degree of the output; i.e. the differential is of degree −1.

2.5. Maslov potential and grading

The Maslov potential is a useful framework for introducing gradings in La-
grangian Floer homology which originally is due to Seidel [27]. The choice of
a Maslov potential gives a well-defined grading in Z. In general the potential
is only well-defined modulo the Maslov number μ ∈ Z (the positive generator
of the subgroup of Z which is the image of the Maslov class); in that case the
grading is only defined in Z/μZ. Here we describe a grading for which the
differential of the Floer complex considered above becomes a map of degree
−1, i.e. it decreases the degree.
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Assume that W has vanishing first Chern class; this is, e.g. the case when
W has a symplectic trivialisation, which is automatic when dimR W = 2. The
Z–grading of the generators is defined as follows.

Consider the determinant bundle

C∗ → detC TW → W

induced by some choice of a compatible almost complex structure. The quo-
tient

C∗/R∗ = (R2\{0})/R∗ = RP 1 = R/πZ

gives rise to an induced RP 1-bundle that we denote by

L = (detC TW )/R∗ → W.

Note that the bundle L is trivial when W has vanishing first Chern class
(actually, the first Chern class being two-torsion is sufficient). In this case
there might be several choices of homotopy classes of trivialisations.

First, we make the choice of a trivialisation of the above determinant
bundle. This choice gives rise to a trivialisation L = RP 1 × W → W of the
RP 1-bundle as well. Then, taking the fibre-wise universal cover of this trivial
RP 1-bundle, we obtain the affine R-bundle L̃ = R × W → W . The fibre of
this bundle is thus the choice of an R-lift of the angle in RP 1 = R/πZ of an
unoriented real line.

Second, one makes the choice of a Maslov potential for each of the
Legendrians Λi. This is the lift of the canonically defined section

(detR TΠW (Λi))/R∗ ⊂ (detC TW )/R∗

along Λi of the above RP 1-bundle L to the associated R-bundle L̃. Recall
that a non-zero Maslov class is the obstruction to the existence of such a lift.
When a Maslov potential exists and the Legendrian is connected, there is a
natural free and transitive Z-action on its Maslov potentials.

Given choices of Maslov potentials, the grading of a generator c ∈
CF∗((Λ0, ε0), (Λ1, ε1)) is finally obtained in the following manner. Denote
by ϕ̃i ∈ L̃c the R-lift of the angle of the real determinant line

(detR TcΠW (Λi))/R∗ ⊂ (detC TcW )/R∗

specified by the choices of Maslov potentials. Consider a compatible almost
complex structure J on TcW for which J · TcΠW (Λ0) = TcΠW (Λ1) to-
gether with the induced family of Lagrangian planes eitTcΠW (Λ0) ∈ TcW ,
t ∈ [0, π/2], that joins TcΠW (Λ0) to

eiπ/2TcΠW (Λ0) = J · TcΠW (Λ0) = TcΠW (Λ1).

There is a continuous path of real determinant lines ϕt
0 ∈ Lc; denote by

ϕ̃t
0 ∈ L̃c the continuous lift to the fibre-wise universal cover R → RP 1, where

ϕ̃0
0 = ϕ̃0. In particular, ϕ̃

π/2
0 is a lift of the determinant line ϕ1. The degree

of the generator c is finally defined by

|c| = (ϕ̃π/2
0 − ϕ̃1)/π ∈ Z.
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In the below examples we provide some useful techniques for specifying
Maslov potentials and computing degrees in the cases that we are interested
in here.

Example 2.8.
(1) In the case of W = T ∗M there is a trivialisation of detC T (T ∗M) in

which the tangent planes to the zero section all coincide with the real
part R∗ ⊂ C∗ of the fibres. The zero-section Λ0 = j10 can be induced
with the Maslov potential ϕ̃0 which is zero in each R-fibre of L̃.

(2) A choice of Maslov potential for a general Legendrian Λ1 ⊂ J1M for
the trivialisation from Part (1) above (if it exists) can be described by
comparing it to the canonical Maslov potential for the zero section j10.
More precisely, the difference between the Maslov potential at a point
x ∈ Λ1 for which TxΠW (Λ1) is transverse to the Lagrangian fibre of
T ∗M and the canonical Maslov potential for j10 = Λ0 at the point
p(x) ∈ Λ0, where p : J1M → M is the bundle projection, can be de-
scribed by an integer m(x) ∈ Z in the following manner.
The fibre-wise rescaling of J1M induces an isotopy of Legendrian tan-
gent planes that isotopes any tangent plane TxΛ1 which is transverse to
the fibre to the tangent plane Tp(x)j

10 of the zero section. There is an
induced continuous path of determinant lines ϕt

1 ∈ L where

ϕ0
1 = (detR TxΠW (Λ1))/R∗ ⊂ (detC Tx(T ∗M))/R∗,

and ϕ1
1 is the determinant line of the zero-section at the point p(x).

Consider the continuous choice of lifts ϕ̃t
1 ∈ L̃ that extend the choice of

Maslov potential for Λ1. The difference

m(x) = (ϕ̃1
1 − ϕ̃0)/π ∈ Z

is an integer that uniquely recovers the choice of Maslov potential at
x ∈ Λ1 (for x where the Lagrangian projection is transverse to the
fibre).
The integer m(x) is locally constant in the open subsets of Λ1 for which
the Lagrangian projection is transverse to the fibres, and changes by +1
as one traverses a cusp-edge in the direction of decreasing z-value. This
is illustrated in Fig. 6.

(3) In the case when detC TW is trivial, the homotopy classes of trivial-
isations of detC TW are in bijection with homotopy classes of maps
W → C∗, which is the same as classes in H1(W ;Z). In the particular
case W = T ∗S1, the description of the Maslov potential given in Part (2)
is only valid above a simply connected subset, e.g. T ∗(−π, π) ⊂ T ∗S1.
The Maslov potential for a general Legendrian in this setting can be de-
scribed by the choice of numbers m(x) as above, that, however, satisfy
the additional property that they make a jump by a fixed value l ∈ 2Z
when traversing the hypersurface {θ = π} in the direction of increasing
θ-value. (The case l = 0 corresponds to the canonical trivialisation for
which the zero-section admits a Maslov potential.) This is illustrated in
the top of Fig. 7.
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(4) Let Λi ⊂ J1M , i = 0, 1, be two Legendrians with choices of Maslov
potentials that have the form j1fi over some subset in M (i.e. the La-
grangian projections are transverse to the fibre there), where the Maslov
potentials are determined by integers mi ∈ Z in the manner described
above. If f1 −f0 has a non-degenerate critical point at p ∈ M (i.e. there
is a transverse Reeb chord c there), then the above degree formula be-
comes

|c| = indexMorse
p (f1 − f0) + m0 − m1

where the first term on the right-hand side is the Morse index of the
critical point. We refer to [11, Lemma 3.4] for the computation.

Lemma 2.9.

(1) Let φ1 : W ×R → W ×R be the time-one map of a compactly supported
contact isotopy. For any choice of Maslov potential on the Legendrian Λ
there an induced Maslov potential on its image φ1(Λ) ⊂ W ×R uniquely
defined by the property that the Maslov potentials extend over the exact
Lagrangian cobordism from Λ to φ1(Λ) induced by the isotopy.

(2) If φ1 is a generic C1-small contact isotopy, then the small chords of
Λ ∪ φ1(Λ) are in bijective correspondence with the critical points of a
C1-small Morse function f : Λ → R, and the above grading coincides
with the Morse index, if φ1(Λ) is endowed with the Maslov potential
induced from Λ via the isotopy φt as in Part (1).

Proof. (1) The trace of the Legendrian isotopy can be made into a Lagrangian
cylinder inside the symplectisation

(Rt × W × Rz, d(etαst))

with cylindrical ends over the initial and final Legendrian; see work [5] by
Chantraine. The Maslov potential of Λ induces a Maslov potential on the
negative end of this cobordism. This Maslov potential can be extended to the
entire cobordism by elementary topology (it is a Lagrangian cylinder). The
induced Maslov potential on the positive end is the sought Maslov potential
on φ1(Λ).

(2) This computation is standard, and can be performed in a small
neighbourhood of Λ. In particular, for a small perturbation of the zero-section
j10 ⊂ J1M by a section j1f , this is an immediate consequence of Part
(4) of Example 1. In general, recall that any Legendrian Λ has a standard
neighbourhood which is contactomorphic to a neighbourhood of the zero
section j10 ⊂ J1Λ, under which Λ, moreover, is identified with j10; see [18].
The perturbation can be assumed to be given by the one-jet j1f of some
C1-small smooth function f : Λ → R in the same neighbourhood. �

3. Examples that exhibit unbounded spectral norms

The following basic auxiliary results facilitate our computations, and will be
invoked repeatedly.
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Lemma 3.1.

(1) Let φt : Λ0 ↪→ W × R be a Legendrian isotopy of a closed Legendrian
Λ0 that admits a Maslov potential, and endow φ1(Λ0) with the Maslov
potential induced from Λ0 via the isotopy, as described in Part (1) of
Lemma 2.9. Further assume that Λ0 has no Reeb chords. If the complex
CF (Λ0, φ

1(Λ0)) in degrees 0 and dim Λ0 consists of unique Reeb chord
generators c and d, then the spectral range satisfies

ρ(CF (Λ0, φ
1(Λ0))) ≥ |
(c) − 
(d)|.

(In fact, it is even true that the spectral range is equal to 
(c) − 
(d),
where this quantity, moreover, is positive, but we will not show this.)

(2) Consider a Floer complex CF (Λ0,Λ1) which is Z-graded and acyclic.
Furthermore, assume that there is a choice of symplectic trivialisation
and Maslov potential for which there are no generators in degrees i + 1
or i − 2, while there are unique Reeb chords c, d in the degrees |c| = i
and |d| = i − 1. Then the boundary depth satisfies the bound

β(CF (Λ0,Λ1)) ≥ 
(c) − 
(d).

Proof. (1): This follows from invariance properties of the Floer homology.
Note that the homology of CF (Λ0,Λ0) has unique generators in degrees 0
and dim Λ which represent the point class and fundamental class in Morse
homology. It follows by degree reasons that the Reeb chord generators c and
d must both be cycles which are not boundaries. The two corresponding semi-
infinite bars in the barcode have endpoints that are separated by precisely
|
(c) − 
(d)| as sought.

(2): Acyclicity together with the degree assumptions implies that ∂c = d.
The statement then follows by the second part of Corollary 2.6 since the Reeb
chords form a compatible basis. �

3.1. Legendrian isotopy of the unknot (Proof of Part (2) of Theorem A)

Consider the contact manifold J1R = Rq ×Rp ×Rz with coordinates q, p, z
and contact form dz − p dq. Under the quotient Rq → R/2πZ = S1 we
obtain the angular coordinate θ induced by θ ≡ q mod 2π. In other words,
the aforementioned contact manifold J1R is the universal cover of the contact
manifold J1S1 = S1 × Rp × Rz equipped with the standard contact form
dz − p dθ.

First consider the standard Legendrian unknot Λst ⊂ J1S1 with front
projection as shown in Fig. 6, which thus is contained inside the subset
J1(−π, π) ⊂ J1S1. The p-coordinate of this particular representative can
be seen to be estimated in terms of the ratio of a and b, which yields

Λst ⊂ {|p| ≤ 2a/b}.

Recall the well-known fact that Λst has vanishing Maslov class and hence
admits a Maslov potential; see Fig. 6. Further, this Legendrian has a unique
transverse Reeb chord and its Chekanov–Eliashberg algebra is equal to the
polynomial algebra in one variable of degree 1 with no differential (either
for k = Z2 or for arbitrary k and the choice of bounding spin structure);
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see [14]. In particular, its Chekanov–Eliashberg algebra admits the trivial
augmentation.

We also fix a Legendrian fibre

F = F(π/4,0) = {π/2} × Rp × {0} ⊂ J1(−π, π) ⊂ J1S1.

Note that the Reeb chords between any Legendrian Λ and F are in bijective
correspondence with the intersection points of Λ and the hypersurface {θ =
π/4}. Note that the image of F under the front projection is given by the
point {(π/4, 0)}; Reeb chords correspond to lines contained inside {θ = π/4}
in the front projection that have one endpoint on {(π/4, 0}) and one endpoint
on the projection of Λ. These chords are depicted in Fig. 6.

Since F that has no Reeb chords, its Chekanov–Eliashberg algebra
trivially admits an augmentation. We can thus define the Floer homology
complex CF (Λst, F ) which is generated by two Reeb chords c and d, where
0 > 
(c) > 
(d) and |c| = |d| + 1. Note that CF (Λst, F ) is an acyclic complex
by invariance under Legendrian isotopy; after shrinking the unknot suffi-
ciently, all mixed chords disappear.

The goal is to construct a Legendrian isotopy Λt
st ⊂ J1S1 of the unknot

confined to the subset

{|p| ≤ 2a/b} ⊂ J1S1

for which the boundary depth of CF (ΛT
st, F ) becomes arbitrarily large as

t → +∞. This isotopy will be constructed as the projection of an isotopy
Λ̃t

st ⊂ J1R of the unknot inside the universal cover J1R → J1S1. In fact,
the Legendrian isotopy Λ̃t

st is very simple; it is the rescaling of

Λ̃st = Λst ⊂ J1(−π, π) ⊂ J1R

under the contact isotopy (q, p, z) �→ (et · q, p, et · z) defined on the universal
cover; note that this contact isotopy simply rescales the front projection.

It is easy to check that CF (Λ̃t
st, F ) satisfies the property that the bound-

ary depth goes to +∞ as t → +∞. Indeed, these complexes are generated
by the two unique transversely cut out Reeb chords ct and dt between Λ̃t

st

and F for all values t > 0. These chords, moreover, satisfy the property that

(ct) − 
(dt) becomes arbitrarily large as t → +∞; c.f. Part (2) of Lemma
3.1.

What remains to prove is the following two claims for the projection
Λt

st ⊂ J1S1 of the Legendrian rescaling Λ̃t ⊂ J1R. First, we claim that Λt
st

indeed is a Legendrian isotopy. Second, we show that the boundary depth of
CF (Λt

st, F ) goes to +∞ as t → +∞
The fact that Λt

st is a Legendrian isotopy can be seen by considering
the sequence of front projections; see Figs. 7 and 8. Except for an isotopy of
the front, the front also undergoes a sequence RIII -moves together with the
composite move shown in Fig. 5. The Lagrangian projection of Λ̃2 is shown
in Fig. 9.

Then we need to estimate the boundary depth of the sequence of Floer
complexes CF (Λt

st, F ). In addition to Reeb chords ct and dt, which corre-
spond to the Reeb mixed Reeb chords on the lift and have exactly the same
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a

b

Λst
d0

m − 1

m

c0F

z

θ
π−π

Figure 6. The standard Legendrian unknot Λst and the
Legendrian fibre F . Note that there are precisely two trans-
verse Reeb chords c0, d0 between F and Λst. The choice of
m ∈ Z determines a Maslov potential on Λst as described in
Part (2) of Example 1

actions, there are additional Reeb chords between Λt
st and F that appear as

t → +∞. Nevertheless, we claim that the boundary depth of CF (Λt
st, F ) still

is bounded from below by the boundary depth β(CF (Λ̃t
st, F )).

To see the last claim, we will consider different gradings of the complexes
CF (Λt

st, F ), obtained by changing the symplectic trivialisation of T ∗S1. Note
that Λst is null-homotopic inside J1S1 and thus has a vanishing Maslov class
independently of the choice of symplectic trivialisation. Moreover, the chords
ct and dt always satisfy |ct| − |dt| = 1 regardless of the choice of Maslov
potential and symplectic trivialisation; see the top of Fig. 7.

We claim that, after changing the symplectic trivialisation of T ∗S1 by
introducing a sufficiently large number l/2 � 0 of full rotations of the stan-
dard symplectic frame as one traverses the hypersurface {θ = π} in the
direction of increasing θ-coordinate, all generators c′ in the complex except
different from ct and dt acquire degrees that satisfy

|c′| − |ct| /∈ [−10, 10].

To see this, we note that the Maslov potential of these sheets acquire an
additional term kl where k ∈ Z\{0}; see Parts (3) and (4) of Example 1.

Since these degree properties can be achieved, the statement now follows
directly by Part (2) of Lemma 3.1. �
3.2. Legendrian isotopy of the zero-section (Proof of Part (1) of Theorem A)

We use the same coordinates as in the above Sect. 3.1. In fact, the sought
Legendrian isotopy is also constructed in a manner similar to the construction
of Λt given there, by performing a rescaling of a part of the front inside the
universal cover J1R (and then projecting back to J1S1). The isotopy is shown
in Figs. 10 and 11. One starts by considering a Legendrian perturbation
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Λ2
st

m +m l− l

m − 1 − l m − 1 + l

F

F

Λ̃2
st

d2

c2

d2

c2

z

z

θ

q
π

m

m − 1

−π

π−π

Figure 7. Above: Λ̃2
st has a front which is a linear rescaling

of the front of Λst inside J1R. The number m defines a
choice of Maslov potential for Λ2

st, where l ∈ 2Z depends on
the homotopy class of the trivialisation of detC(T (T ∗S1)).
Below: Λ2

st is the projection of Λ̃2
st inside J1S1. Except for

the mixed chords ct and dt that exist for the lift, there are
now additional mixed chords

j1f of j10 which has precisely two chords. Then one performs a RII -move.
Rescaling the front of the Legendrian introduced by the RII -move in the
universal cover R2 and then projecting back to S1 ×R is again a Legendrian
isotopy. In Fig. 11 one sees that there are exactly two chords between j10
and the produced Legendrians, while the difference in action between these
two generators grows indefinitely as t → +∞. �

3.3. Hamiltonian isotopy on the punctured torus (Proof of Theorem D)

Here we consider the exact Lagrangian embedding L ⊂ (Σ1,1, dλ) of S1 which
is given as the image of {p = 0} ⊂ R2 under the quotient construction in Sect.
2.1.2; see Fig. 13. We perform a Hamiltonian perturbation L′ that intersects
the original Lagrangian transversely in precisely two points c and d. The
spectral norm is thus γ(CF (L,L′)) = 
(c) − 
(d).
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Λt
st

dt

ct

z

θ
π−π

Figure 8. This shows the projection Λt
st of the rescaling

Λ̃t
st under the universal cover J1R → J1S1

Λ̃2
st

p

q
π−π

Figure 9. The figure depicts the Lagrangian projection of
Λ̃2

st to T ∗R. The Lagrangian projection of Λ2
st to T ∗S1 is

induced by the quotient projection R → S1. The Lagrangian
projection of Λ̃t

st is obtained by rescaling the q-coordinate of
T ∗R followed by the canonical projection to T ∗S1

Then consider the autonomous Hamiltonian

ρ : Σ1,1 → R≤0

with support inside {q ∈ [−δ, δ]} for some small δ > 0, and which is equal to
the smooth bump-function ρ(q) ≤ 0 in one variable of the form

• ρ(q) ≡ −1 in a neighbourhood of q = 0;
• ρ(q) = ρ(−q);
• and ρ′(q) ≤ 0 for q < 0.
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z

θ

z

θ
π−π π−π

d d

c

d d

c0

Λ Λ0

Figure 10. Left: a Legendrian perturbation of the zero sec-
tion. The vertical chords denote the two Reeb chords be-
tween the zero-section j10 and the perturbation. Right: the
perturbed version of the zero-section after a suitable Legen-
drian RI -move

The Hamiltonian isotopy φt
ρ wraps the region q ∈ (−δ, 0) in the negative

p-direction, while it wraps the region q ∈ (0, δ) in the positive p-direction.
We claim that CF (L, φt

ρ(L
′)) has a spectral norm which becomes arbi-

trarily large as t → +∞. What is clear is that 
(c)− 
(d) → +∞ as t → +∞.
(Use, e.g. Lemma 2.1.) Again there are additional generators that appear as
t → +∞, so knowing that 
(c) − 
(d) → +∞ is not sufficient.

As in Sect. 3.1 a change of symplectic trivialisation can again give us
what we need. First consider the canonical symplectic trivialisation, induced
by the trivialisation of R2 and the quotient projection. Then deform this
trivialisation by adding a number l/2 � 0 of full rotations of the standard
symplectic frame (relative the constant one) as one traverses the {p = 1}.
Note that the Lagrangian corresponding to {p = 0} still has a Maslov poten-
tial after this change of trivialisation. Similarly to the computation in Sect.
3.1, it is now readily seen that all generators c′ different from c and d satisfy
the property that

|c′| − |c| /∈ [−10, 10],

after we have chosen l � 0 sufficiently large. In the meantime, |c| − |d| = 1
is always satisfied.

The spectral norm can now finally be computed by invoking Part (1) of
Lemma 3.1.

4. Proof of Theorem C

By definition, our two Floer complexes are the linearised Legendrian contact
homology complexes generated as a k-vector space by the mixed Reeb chords
on the Legendrian link

Λ± ∪ φT
∂z

(Λ).

Here T � 0 is fixed but sufficiently large.
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π 2π−2π −π

z

z

θ

q

π−π

d d

ct

d d
Λt

Figure 11. Λt is obtained from Λ0 by a linear rescaling of
the front inside {z ≥ 0} in the universal cover J1R2 followed
by the canonical projection J1R → J1S1. The front of Λt

undergoes the composite move shown in Fig. 5 consisting of
two consecutive RII -moves along with RIII -moves

The cusp-connected sum performed on Λ− ∪ φT
∂z

(Λ) produces Λ+ ∪
φT

∂z
(Λ) (of course, only the first component is affected). There is an associated

exact standard Lagrangian handle-attachment cobordism

L ⊂ (Rt × W × Rz, d(etαst))

inside the symplectisation as constructed in [9]. This is a cobordism with
cylindrical ends from

Λ− ∪ φT
∂z

(Λ) to Λ+ ∪ φT
∂z

(Λ),

i.e. from the Legendrian link before surgery (at the concave end) to the link
after surgery (at the convex end). One component of this cobordism is simply
the trivial cylinder R× φT

∂z
(Λ). This Lagrangian cobordism induces a unital

DGA-morphism

ΦL : A(Λ+ ∪ φT
∂z

(Λ)) → A(Λ− ∪ φT
∂z

(Λ))
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Λ̃t

p

q
π 2π−π−2π

Figure 12. The Lagrangian projection in T ∗R of the uni-
versal cover Λ̃ ⊂ J1R of Λt ⊂ J1S1 shown in Fig. 11, where
Λ̃t

∼= R. The interval shown in dark blue is a fundamental
domain for Λ̃t

q

p

d cL

L′

Σ1,1

L′
L

Figure 13. The left depicts a domain in R2 with piecewise
smooth boundary. After identifying the two horizontal pieces
of the boundary, as well as the two vertical pieces, one ob-
tains the Liouville domain shown on the right, with Liouville
form described in Sect. 2.1.2. The closed exact Lagrangian
L is the image of {p = 0} and L′ is a small Hamiltonian
perturbation of L

of the Chekanov–Eliashberg algebras. In particular, the choice of augmenta-
tion ε− of the Chekanov–Eliashberg algebra of Λ− pulls back to an augmen-
tation ε+ = ε− ◦ ΦL of the Chekanov–Eliashberg algebra of Λ+.
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q

p

q

p

d c LL

φt
ρ(L

′) φt′
ρ (L′)

Figure 14. A Hamiltonian isotopy that wraps the La-
grangian {p = 0} around the one-handle with core {q = 0},
while fixing a neighbourhood of the latter core. Note that
the Hamiltonian function is positive but constant near q = 0.
Here t′ > t

The above DGA-morphism ΦL of the Chekanov–Eliashberg algebras
after and before the surgery was computed in [9, Theorem 1.1] under the as-
sumption that the handle-attachment is sufficiently small. This computations
in particular shows that the mixed chords c on Λ+ ∪ φT

∂z
(Λ) are mapped to

ΦL(c) = c +
∑

i

ridi, ri ∈ k,

where di are words of Reeb chords that each contain an odd number of mixed
chords of Λ−∪φT

∂z(Λ), and in which every mixed chord, moreover, is of length
strictly less than 
(c). It now follows by pure algebraic considerations that
the map

CF∗((Λ+, ε+), (Λ, ε)) → CF∗((Λ−, ε−), (Λ, ε))

induced by linearising the DGA-morphism ΦL using the augmentations ε,
ε+, and ε− (see [3] and [4]) is an action-preserving isomorphism of the Floer
complexes as claimed. �
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