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fact fixed points, and convergence of the sequence follows. Additionally,
we provide a quantitative convergence analysis built on the notion of
gauge metric subregularity, which we show is necessary for quantifiable
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1. Introduction

Our focus is on the extension to p-uniformly convex spaces of tools from the
analysis of fixed point iterations in linear spaces. We are indebted to the works
of Kuwae [26] and Ariza-Ruiz, Leuştean, López-Acedo, and Nicolae [2,3]
who studied firmly nonexpansive mappings in nonlinear spaces, though the
asymptotic behavior of averaged mappings in uniformly convex Banach spaces
was already studied by Baillon, Bruck and Reich in [6]. Reich and Shafrir
established an approach to the study of convex combinations of nonexpansive
mappings in hyperbolic spaces [41], the foundations for which were developed
in [15]. Building on this, we follow the framework for nonconvex optimization
established in [35] which is predicated on only two fundamental elements in
a Euclidean setting: pointwise almost α-averaging [35, Definition 2.2] and
metric subregularity [19, Definition 2.1b]. Almost averaged mappings are, in
general, set-valued. In nonlinear metric spaces, there are several difficulties
that arise: first, there is no straight-forward generalization of the averaging
property since addition is not defined on general metric spaces; and second,
multivaluedness, which comes with allowing mappings to be expansive. The
issue of multivaluedness introduces technical overhead, but does not, at this
early stage, seem to present any conceptual difficulties. The issue of viola-
tions of conventional regularity notions is more fundamental. We show that
such violations are unavoidable if one wants to work with resolvents. The
foundations for working with these difficulties are established here. A direct
study of resolvents on spaces with curvature bounded from above appears in
[29].

We therefore restrict our attention to an appropriate generalization of
single-valued, pointwise α-averaged mappings. This generalization leads to
a definition of firmly nonexpansive mappings that is less restrictive than
notions with the same name studied in [3,5,15,40,41], though, we show that
our notion is implied by the previously studied objects. The progenitors of
these operators have been studied in [9,13,38,39]. Our main contribution
is establishing a calculus for these mappings in p-uniformly convex spaces,
showing in particular how the property is preserved under compositions and
convex combinations. This is of central importance to splitting algorithms
that are built by such convex combinations and compositions, and reduces
the convergence analysis to simply verifying that the individual components
of the splitting algorithms satisfy the required regularity. Our convergence
analysis also differs from what can be found in the previous literature in that
we assume only that the fixed point mapping has the required regularity at
fixed points. Indeed we show (Theorem 27) that, if the fixed point mapping
is pointwise nonexpansive at the asymptotic centers of all subsequences, then
all asymptotic centers are fixed points and weak (precisely, Δ-) convergence
of the fixed point sequence is guaranteed. Additionally, we provide a quanti-
tative convergence analysis built on the notion of gauge metric subregularity,
which we show is in fact necessary for quantifiable convergence estimates.
This allows one to prove convergence of a tremendous variety of splitting
algorithms for the first time in spaces with curvature bounded from above.
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After introducing notation, we begin in Sect. 2.1 with pointwise almost
α-firmly nonexpansive mappings, the central objects of this study (Defini-
tion 1). Section 3 is devoted to developing elementary properties and the
calculus of these mappings. Proposition 4 and Lemma 7 in Sect. 3.1 establish
asymptotic regularity. The calculus of pointwise nonexpansive mappings (2)
in various settings is established in Proposition 8 of Sect. 3.2. The calculus
of quasi α-firmly nonexpansive mappings is established in Theorem 11 (com-
positions) of Sect. 3.3 and Theorem 21 (convex combinations) of Sect. 3.4.
Convergence of fixed point iterations of α-firmly nonexpansive mappings is
studied in Sect. 4 where convergence without rates is established for mappings
that are only pointwise nonexpansive at the asymptotic centers of all sub-
sequences (Theorem 27) and quantitative convergence in Theorem 30 under
the additional assumption of (gauge) metric subregularity (Definition 29).
We show in Theorem 32 that metric subregularity with some gauge is in
fact necessary to guarantee quantitative convergence estimates. Some basic
applications and examples are presented in Sect. 5.

2. Notation and foundations

Throughout, (G, d) denotes a metric space. A geodesic path emanating from
a point x ∈ G and extending to the point y ∈ G is a mapping γ : [0, l] → G
with γ(0) = x, γ(l) = y and d(γ(t1), γ(t2)) = |t1 − t2| whenever t1, t2 ∈ [0, l].
When there is only one geodesic path joining any two points x and y, we use
the notation z = (1 − t)x ⊕ ty where t = d(z, x)/d(x, y) to denote the point
on the geodesic connecting x and y such that d(z, x) = td(x, y). A geodesic
space is a metric space (G, d) for which every pair of points in G is joined by
a geodesic. If each pair of points is joined by one and only one geodesic, the
metric space is uniquely geodesic. A convex set C ⊂ G is a set containing all
geodesics joining any two points in C. Following [3] we focus on p-uniformly
convex spaces with parameter c [36]: for p ∈ (1,∞), a metric space (G, d) is
p-uniformly convex with constant c > 0 whenever it is a geodesic space, and

(∀t ∈ [0, 1])(∀x, y, z ∈ G) d(z, (1 − t)x ⊕ ty)p

≤ (1 − t)d(z, x)p + td(z, y)p − c
2 t(1 − t)d(x, y)p. (1)

Examples of p-uniformly convex spaces include Lp spaces, and CAT (κ) spaces
with sufficiently small diameter if κ > 0 (see Alexandrov [1] and Gromov [16]).
CAT (0) spaces can be defined by (1) with p = 2 and c = 2. CAT (κ) spaces
for κ > 0 are relevant for the study of phase retrieval and source localization
[33]. When the diameter of the space, diamG, is bounded above by π/(2

√
κ),

then the corresponding CAT (κ) space is 2-uniformly convex with constant
c = (π − 2

√
κε) tan(ε

√
κ) for ε ∈ (0, π/(2

√
κ)−diam G] (see [37]). Kuwae has

established bounds for the constants p and c, illustrating their interdepen-
dence [26, Proposition 2.5]. In particular, we note that if c = 2, then p = 2.
For all other p ∈ (1,+∞) the constant c lies in the open interval (0, 2). There
is a connection with the modulus of convexity of a Banach space (Y, ‖ · ‖)
given by δ(ε):= inf

{
1 −

∥
∥x+y

2

∥
∥ | x, y ∈ Y, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
, i.e. Y
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will be p-uniformly convex with constant c > 0 if δ(ε) ≥ cεp [26, Remark 2.7].
Finally, we will use the notation (H, d) to indicate a Hadamard space—a
complete CAT (0) space—and H will indicate a Hilbert space.

The distance of a point x to a set D with respect to the metric d
is denoted d(x,D) := infz∈D d(x, z) and when this distance is attained at
some point x ∈ D we call this point a projection of x onto D. The mapping
of a point x to its set of projections is called the projector and is denoted
PD(x) := {x ∈ D | d(x, x) = d(x,D)}.

A standard approach to showing the convergence of fixed point se-
quences is to show that the residual of the fixed point operator vanishes.
More precisely, a self-mapping T : G → G is asymptotically regular at a point
x ∈ G whenever limk→∞ d(T kx, T k+1x) = 0. The mapping is said to be
asymptotically regular on D ⊂ G if it is asymptotically regular at all points
on D. A sequence (xk)k∈N is said to be asymptotically regular whenever
limk→∞ d(xk, xk+1) = 0.

One of the fundamental regularities of mappings is pointwise Lipschitz
continuity with Lipschitz constant 1. Mappings T : D → G (D ⊂ G) are
said to be pointwise nonexpansive at y ∈ D on D whenever

d(Tx, Ty) ≤ d(x, y) ∀x ∈ D. (2)

Firmly nonexpansive mappings, as the name suggests, satisfy a condition
that, in Hadamard spaces, implies that the mappings are nonexpansive; in
general metric spaces, however, this correspondence fails. We postpone a
precise definition until later, but this type of regularity is central to conver-
gence of fixed point iterations. In a Banach space setting, firmly nonexpansive
mappings possessing fixed points are asymptotically regular, and sequences
of fixed point iterations converge weakly to a fixed point [40]. This is also
true on p-uniformly convex (nonlinear) spaces [3]. We extend these results to
the generalization of averaged mappings, what we call α-firmly nonexpansive
mappings, that possess fixed points in Theorem 27. Rates of convergence of
the iterates are achieved in Theorem 30 under the additional assumption that
the fixed point mapping admits an error bound. The notion of α-firmly non-
expansive operators greatly simplifies the analysis of algorithms, and opens
the door to a study of expansive operators [35] where convexity/monotonicity
plays no role.

2.1. α-Firmly nonexpansive operators in uniformly convex spaces

Extending Bruck’s original definition of firmly nonexpansive mappings in
uniformly convex Banach spaces [12], Ariza-Ruiz, Leuştean and López-Acedo
[2] defined λ-firmly nonexpansive operators on subsets D of W-hyperbolic
spaces, as those operators satisfying

∃λ ∈ (0, 1) : d(Tx, Ty) ≤ d((1 − λ)x ⊕ λTx, (1 − λ)y ⊕ λTy) ∀x, y ∈ D.

(3)

If (3) holds for all λ ∈ (0, 1) the mapping T is called firmly nonexpansive in
[2,3]. The analog to α-averaged mappings [35, Definition 2.2] is problematic



Vol. 24 (2022) α-Firmly nonexpansive operators on metric spaces Page 5 of 30 14

since it requires the extension of geodesics beyond the point Tx (i.e. α < 1/2
and λ ∈

(
0, 1−α

α

)
).

Another notion of regularity in the context of Hadamard spaces that is
equivalent to (3) for an operator T : H → H and x, y ∈ H uses

φT (t) := d((1 − t)x ⊕ tTx, (1 − t)y ⊕ tTy), for t ∈ [0, 1]. (4)

In [15, Chapter 24] an operator T : H → H is called firmly nonexpansive
whenever φT is nonincreasing on [0, 1] (see also [5, Definition 2.1.13]).

For reasons that will become apparent in Sect. 4.2 we define the regu-
larity of T in terms of an auxiliary function that accounts for how T deforms
the parallelogram with corners at x, y, Tx and Ty. Define

ψ
(p,c)
T (x, y):= c

2 (d(Tx, x)p + d(Ty, y)p

+d(Tx, Ty)p + d(x, y)p − d(Tx, y)p − d(x, Ty)p) . (5)

We call this the transport discrepancy. In a Hilbert space setting this is rec-
ognizable as

‖(Id −T )x − (Id −T )y‖2 = ψ
(2,2)
T (x, y).

The next definition generalizes firmly nonexpansive mappings to those that
may violate the defining inequality in a manner analogous to such mappings
studied in [32,35]. We do not fully develop the potential of this extension
here, but will use it in a result about proximal mappings in Corollary 23.

Definition 1. Let (G, d) be a p-uniformly convex metric space with constant
c. The operator T : G → G is pointwise almost α-firmly nonexpansive at
y ∈ D ⊂ G on D if

∃α ∈ (0, 1), ε ≥ 0 : d(Tx, Ty)p ≤ (1 + ε)d(x, y)p− 1−α
α ψ

(p,c)
T (x, y) ∀x ∈ D.

(6)

A value of ε for which (6) holds is called a violation. If (6) holds with ε = 0,
then T is pointwise α-firmly nonexpansive at y ∈ D ⊂ G on D. If (6) holds
at all y ∈ D with the same constant α, then T is said to be (almost) α-firmly
nonexpansive on D. If D = G the mapping T is simply said to be (almost) α-
firmly nonexpansive. If D ⊃ FixT �= ∅ and (6) holds at all y ∈ FixT with the
same constant α then T is said to be (almost) quasi α-firmly nonexpansive.

The transport discrepancy ψ
(p,c)
T is closely related to another object

used by Berg and Nikolaev [11] in the study of a CAT (0) space (G, d). In
p-uniformly convex spaces with constant c this takes the form:

Δ(p,c)(x, y, u, v) :=
c

4
(d(x, v)p + d(y, u)p − d(x, u)p − d(y, v)p). (7)

Specializing to a Hilbert space H, this is identifiable with the inner product:

〈x − y, u − v〉 =
1
2
(‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2)

= Δ(2,2)(x, y, u, v). (8)

In the context of characterizing the regularity of a mapping T we take u = Tx

and v = Ty and it is convenient to denote Δ(p,c)
T (x, y) := Δ(p,c)(x, y, Tx, Ty).
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This object was introduced in [10, Chapter 7] in the context of Hadamard
spaces (p = c = 2) where it was called the discrepancy mapping. In particular,
note that

ψ
(p,c)
T (x, y) = c

2 (d(Tx, Ty)p + d(x, y)p) − 2Δ(p,c)
T (x, y). (9)

This leads to the following equivalent characterization of pointwise α-firmly
nonexpansive mappings.

Proposition 2. Let (G, d) be a p-uniformly convex space with constant c > 0
and let T : D → G for D ⊂ G. The mapping T is pointwise almost α-firmly
nonexpansive at y ∈ D with constant α and violation ε on D if and only if

(
α + (1 − α) c

2

)
d(Tx, Ty)p +

(
α(1 + ε) − (1 − α) c

2

)
d(x, y)p

≤ 2(1 − α)Δ(p,c)
T (x, y), ∀x ∈ D. (10)

Proof. The result follows from the definition, by expanding the transport
discrepancy (5) and using the relation (9). �

When p = 2 and c = 2, we show below in Proposition 4(v) that mappings
T satisfying (3) also satisfy

d(Tx, Ty)2 ≤ Δ(2,2)
T (x, y) ∀x, y ∈ G. (11)

Indeed, in this case, (11) is precisely Property P2 of [3]. When (11) for general
p and c holds only pointwise at y on a neighborhood D ⊂ G of y we write

d(Tx, Ty)p ≤ Δ(p,c)
T (x, y) ∀x ∈ D. (12)

This provides for a natural extension of monotonicity: an operator T : G → G
is monotone whenever

Δ(p,c)
T (x, y) � 0, ∀x, y ∈ G. (13)

From these definitions it follows that if T satisfies (3) for all λ ∈ (0, 1) then
it is monotone.

In a similar vein, in Hadamard space settings, when a mapping is firmly
nonexpansive, it is easy to see that it is also nonexpansive. But this implica-
tion is a consequence of Busemann convexity [2] and does not hold in general
metric spaces. Nevertheless, the implication is recovered for p-uniformly con-
vex spaces for pointwise firmly nonexpansive mappings at their fixed points,
since ψ

(p,c)
T is non-negative in this case.

Remark 3. It is clear from the definition that T : G → G satisfies (3) if
and only if φT defined by (4) is a nonincreasing function on [0, 1] for all
x, y ∈ G. Banert [7, Remark pp.658] shows that any mapping T satisfying
(3) for all λ ∈ (0, 1] is α-firmly nonexpansive with constant α = 1/2. Since
the argument will be useful later, we show this here. Note that φT (1) ≤ φT (t)
for all t ∈ [0, 1] whenever φT (t) is a nonincreasing function on [0, 1] for all
x, y ∈ G. On the other hand from applying (1) with p = 2 and c = 2 twice
we obtain

φ2
T (t) ≤ (1 − t)2d(x, y)2 + t2d(Tx, Ty)2

+ t(1 − t)[d(x, Ty)2 + d(y, Tx)2 − d(x, Tx)2 − d(y, Ty)2].



Vol. 24 (2022) α-Firmly nonexpansive operators on metric spaces Page 7 of 30 14

Hence

φ2
T (1) = d(Tx, Ty)2 ≤ (1 − t)2d(x, y)2 + t2d(Tx, Ty)2 + 2t(1 − t)Δ(2,2)

T (x, y),

or equivalently

(1 − t2)d(Tx, Ty)2 ≤ (1 − t)2d(x, y)2 + 2t(1 − t)Δ(2,2)
T (x, y). (14)

Dividing by 1 − t and letting t ↑ 1 yields d(Tx, Ty)2 ≤ Δ(2,2)
T (x, y). By

Proposition 2 this shows that T is α-firmly nonexpansive with constant α =
1/2 as claimed.

3. Properties of pointwise nonexpansive and α-firmly
nonexpansive mappings in metric spaces

Before developing the calculus of α-firmly nonexpansive mappings, we begin
with some elementary properties of pointwise α-firmly nonexpansive map-
pings.

3.1. Elementary properties of α-firmly nonexpansive operators

Proposition 4. Let (G, d) be a p-uniformly convex space with constant c > 0
and let T : D → G for D ⊂ G.

(i) Whenever y ∈ FixT

ψ
(p,c)
T (x, y) = c

2d(Tx, x)p ∀x ∈ D. (15)

For fixed y ∈ FixT the function ψ
(p,c)
T (·, y) is non-negative on D and

ψ
(p,c)
T (x, y) = 0 only when x ∈ FixT .

(ii) Let y ∈ FixT . T is pointwise α-firmly nonexpansive at y on D if and
only if

∃α ∈ [0, 1) : d(Tx, y)p ≤ d(x, y)p − 1−α
α

c
2d(Tx, x)p ∀x ∈ D. (16)

In particular, T is quasi α-firmly nonexpansive on D whenever T pos-
sesses fixed points and (16) holds at all y ∈ FixT with the same constant
α ∈ [0, 1).

(iii) If T is pointwise α-firmly nonexpansive at y ∈ FixT on D with constant
α ∈ [0, 1) then it is pointwise α-firmly nonexpansive at y on D with
constant α taking any value in the interval [α, 1]. In particular, if T is
pointwise α-firmly nonexpansive at y ∈ FixT on D, then it is pointwise
nonexpansive at y on D (see (2)).

(iv) If at y ∈ FixT

∃λ ∈ (0, 1) : d(Tx, y) ≤ d((1 − λ)x ⊕ λTx, y) ∀x ∈ D, (17)

then T is pointwise α-firmly nonexpansive at y with constant α = 1/(λ+
1) on D.

(v) Let p = 2 and c = 2 (that is, (G, d) is a CAT (0) space). Then
(a) Δ(2,2)

T (x, y) ≤ d(x, y)d(Tx, Ty) for all x, y ∈ G;
(b) ψ

(2,2)
T (x, y) ≥ 0 for all x, y ∈ G;

(c) the following are equivalent for any α ∈ (0, 1):
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(1) T is pointwise α-firmly nonexpansive at y with constant α on
D;

(2) T is pointwise α-firmly nonexpansive at y with constant α
taking any value in the interval [α, 1] on D;

(3)

(1 + λ)d(Tx, Ty)2 ≤ (1 − λ)d(x, y)2 + 2λΔ(2,2)
T (x, y) ∀x ∈ D,∀λ ∈ [0, 1−α

α ];

(4) T satisfying equation (3) is α-firmly nonexpansive with constant
α = 1

1+λ on D.

Proof. (i). Fix y ∈ FixT . Equation (15) follows directly from (5), from which
the rest of the claim is immediate.

(ii). This is immediate from the definition and (i).
(iii). This follows immediately from (i) and (ii).
(iv) Starting with (17), by the characterization of p-uniformly convex

spaces (1)

d(Tx, y)p ≤ d((1 − λ)x ⊕ λTx, y)p

≤ (1 − λ)d(x, y)p + λd(Tx, y)p − (1 − λ)λ c
2d(Tx, x)p

for all x ∈ D and some λ ∈ (0, 1). Rearranging terms yields

∃λ ∈ (0, 1) : d(Tx, y)p ≤ d(x, y)p − λ c
2d(Tx, x)p ∀x ∈ D.

When y ∈ FixT , by (ii), this is equivalent to T being pointwise α-firmly
nonexpansive at y with constant α = 1

λ+1 on D.
(v)(a) This is a direct consequence of the inequality

Δ(2,2)(x, y, u, v) ≤ d(x, y)d(u, v) (18)

(see [23, Theorem 2.3.1] or [28, Lemma 2.1]).
(v)(b) By (9) and (v)(a)

ψ
(2,2)
T (x, y) = d(x, y)2 + d(Tx, Ty)2 − 2Δ(2,2)

T (x, y)

≥ d(x, y)2 + d(Tx, Ty)2 − 2d(x, y)d(Tx, Ty)

= (d(x, y) − d(Tx, Ty))2 ≥ 0

for all x, y ∈ G, as claimed.
(v)(c) By (v)(b) if T is pointwise α-firmly nonexpansive at y with con-

stant α on D then

d(Tx, Ty)2 ≤ d(x, y)2 − 1−α
α ψ

(2,2)
T (x, y) ∀x ∈ D

⇐⇒
d(Tx, Ty)2 ≤ d(x, y)2 − 1−α

α ψ
(2,2)
T (x, y) ∀x ∈ D,∀α ∈ [α, 1]. (19)

Consequently, T is pointwise α-firmly nonexpansive at y with constant α on
D if and only if it is pointwise α-firmly nonexpansive at y with constant α
tanking any value in the interval [α, 1] on D. A change of variables in (19)
yields

d(Tx, Ty)2 ≤ d(x, y)2 − λψ
(2,2)
T (x, y) ∀x ∈ D,∀λ ∈ [0, 1−α

α ]
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which, from (9), is equivalent to

(1 + λ)d(Tx, Ty)2 ≤ (1 − λ)d(x, y)2 + 2λΔ(2,2)
T (x, y) ∀x ∈ D,∀λ ∈ [0, 1−α

α ].

(v)(d) For fixed λ ∈ [0, 1) (14) in Remark 3 yields

(1 + λ)d(Tx, Ty)2 ≤ (1 − λ)d(x, y)2 + 2λΔ(2,2)
T (x, y), ∀x, y ∈ D.

By (v)(c), this implies that T is α-firmly nonexpansive at all y ∈ D for any
constant α ∈ [ 1

1+λ , 1] on D. This completes the proof. �

Remark 5. Property (16) is a specialization of Property (P1) of [3] to α-firmly
nonexpansive mappings on p-uniformly convex spaces.

Closedness and convexity of the set of fixed points of nonexpansive map-
pings is easily established. Note, however, that convexity of the fixed point set
depends on convexity of the domain. In Sect. 4.2 we will not require convexity
of the domain.

Lemma 6. Let (G, d) be a p-uniformly convex metric space with constant
c > 0 and let D ⊆ G be closed and convex. Let T : G → G be pointwise
nonexpansive at all y ∈ FixT ∩ D �= ∅ on D (see (2)). Then FixT ∩ D is a
closed and convex set.

Proof. This statement for T a nonexpansive (not pointwise) mapping on a
uniquely geodesic space is in [2, Lemma 6.2]. Their proof also works for
pointwise nonexpansive mappings. �

In [3] the central property of asymptotic regularity of a mapping T at
its fixed points hinges on (i) existence of fixed points, and (ii) the valid-
ity of inequality (16) at all y ∈ FixT . Proposition 4(ii) shows that these
two requirements are equivalent to T being quasi α-firmly nonexpansive. We
show in Theorem 27 that, as a consequence of the next theorem on asymp-
totic regularity, the assumption that T is pointwise α-firmly nonexpansive
at reasonable subsets of fixed points is all that is needed to achieve weak
convergence of fixed point iterations.

Lemma 7. Let (G, d) be a p-uniformly convex space, let D ⊂ G, and let T :
G → G with FixT ∩ D nonempty and T (D) ⊆ D. Suppose further that T
is pointwise α-firmly nonexpansive at all y ∈ FixT ∩ D on D. Then given
any starting point x0 ∈ D the sequence (xk)k∈N defined by xk+1 = Txk is
asymptotically regular on D.

Proof. By Proposition 4(ii) and Remark 5, the statement is a specialization
of [3, Theorem 3.1] to the case of just a single operator. �

We show below that compositions and convex combinations of (quasi)
α-firmly nonexpansive mappings are quasi α-firmly nonexpansive. Therefore,
by the theorem above, fixed point iterations of such compositions and convex
combinations are asymptotically regular.



14 Page 10 of 30 A. Bërdëllima et al. JFPTA

3.2. Calculus of nonexpansive operators

Compositions and, with some restrictions, convex combinations of pointwise
nonexpansive mappings defined by (2) are also pointwise nonexpansive, as
the next result shows.

Proposition 8. Let D ⊂ G where (G, d) is a p-uniformly convex space with
constant c > 0 and let T1, T2 : D → G.

(i) If FixT2 ∩ FixT1 �= ∅ then any convex combination of T2 and T1 is
pointwise nonexpansive at y ∈ FixT2 ∩FixT1 on D whenever T2 and T1

are pointwise nonexpansive there.
(ii) When (G, d) is a CAT (0) space, (that is, p = 2, and c = 2), then any

convex combination of T2 and T1 is pointwise nonexpansive at y ∈ D
on D whenever T2 and T1 are pointwise nonexpansive there.

(iii) For D1 := {z | z = T1y, y ∈ D} let T2 : D1 → G be pointwise nonexpan-
sive at T1y ∈ D1 on D1 and let T1 be pointwise nonexpansive at y ∈ D.
Then the composition T2 ◦ T1 is pointwise nonexpansive at y on D.
In particular, the set of all nonexpansive operators in CAT (0) spaces is

closed under compositions and convex combinations.

Proof. (i) Let λ ∈ (0, 1) and define Tλ := (1 − λ)T2 ⊕ λT1. Applying (1) first
to Tλy and then to Tλx yields

d(Tλx, Tλy)p ≤ (1 − λ)d(Tλx, T2y)p + λd(Tλx, T1y)p − c
2λ(1 − λ)d(T2y, T1y)p

≤ (1 − λ)2d(T2x, T2y)p + λ2d(T1x, T1y)p

+λ(1 − λ) (d(T1x, T2y)p + d(T2x, T1y)p)

−λ(1 − λ)c
2

(d(T2x, T1x)p + d(T2y, T1y)p) . (20)

For y ∈ FixT2 ∩ FixT1 this yields

d(Tλx, Tλy)p ≤ (1 − λ)d(T2x, y)p + λd(T1x, y)p

≤ (1 − λ)d(x, y)p + λd(x, y)p = d(x, y)p ∀x ∈ D,

where the last inequality uses the assumed regularity of T1 and T2 at y.
Therefore (1 − λ)T2 ⊕ λT1 is pointwise nonexpansive at y ∈ FixT2 ∩ FixT1

on D for all λ ∈ [0, 1], as claimed.
(ii) Let λ ∈ (0, 1) and define Tλ := (1 − λ)T2 ⊕ λT1. Applying (20) with

p = 2 and c = 2 yields

d(Tλx, Tλy)2 ≤ (1 − λ)2d(T2x, T2y)2 + λ2d(T1x, T1y)2

+ (1 − λ)λ(d(T2x, T1y)2 + d(T1x, T2y)2

− d(T2y, T1y)2 − d(T2x, T1x)2)

= (1 − λ)2d(T2x, T2y)2 + λ2d(T1x, T1y)2

+ (1 − λ)λΔ(2,2)(T2x, T2y, T1x, T1y)

for any x ∈ D, where Δ(2,2) is defined by (7). On the other hand (G, d) is a
CAT (0) space, so (18) holds, and in particular,

Δ(2,2)(T2x, T2y, T1x, T1y) ≤ 2d(T2x, T2y)d(T1x, T1y)
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for any x, y ∈ G. Therefore

d(Tλx, Tλy)2 ≤ ((1 − λ)d(T2x, T2y) + λd(T1x, T1y))2 ∀x ∈ D.

By assumption both T2 and T1 are pointwise nonexpansive at y on D, so

d(Tλx, Tλy)2 ≤ ((1 − λ)d(x, y) + λd(x, y))2 = d(x, y)2 ∀x ∈ D

and hence d(Tλx, Tλy) ≤ d(x, y) for all x ∈ D as claimed.
(iii). This is well-known and a simple calculation. �

3.3. Compositions of α-firmly nonexpansive operators

In this section, we show how the composition of two α-firmly nonexpansive
operators is again α-firmly nonexpansive. In general this does not hold, but
the property does hold pointwise at fixed points of the composite operator,
and for many applications this is all that is needed. The next lemma relates
the fixed points of compositions of α-firmly nonexpansive mappings to the
intersection of the fixed points of the individual mappings.

Lemma 9. Let (G, d) be a metric space.
(i) Let T2, T1 : G → G satisfy FixT2 ∩FixT1 �= ∅. If T2 is pointwise nonex-

pansive at all y ∈ FixT2 ∩FixT1 �= ∅ on D ⊂ G where FixT2 ∩FixT1 ⊂
D, and T1 is pointwise α-firmly nonexpansive at all y ∈ FixT2 ∩ FixT1

on D, then FixT2T1 = FixT2 ∩ FixT1.
(ii) Let {T1, T2, . . . , Tm} be a collection of quasi α-firmly nonexpansive map-

pings, each with respective constants αj on D ⊃ ∩m
j=1 FixTj �= ∅. Then

Fix (Tm ◦ Tm−1 ◦ · · · ◦ T1) = ∩m
j=1 FixTj.

Proof. (i) The inclusion FixT2 ∩ FixT1 ⊆ FixT2T1 is obvious. Now let x be
any point in FixT2T1 and y any point in FixT2 ∩ FixT1. Then

∃α ∈ (0, 1) : d(x, y)p = d(T2T1x, T2y)p ≤ d(T1x, y)p = d(T1x, T1y)p

≤ d(x, y)p − 1 − α

α

c

2
d(x, T1x)p,

where the first inequality follows from the assumption that T2 is pointwise
nonexpansive at y ∈ FixT2 ∩ FixT1 on D, and the second inequality fol-
lows from the assumption that T1 is pointwise α-firmly nonexpansive at
y ∈ FixT2∩FixT1 on D and Proposition 4(ii). If x /∈ FixT1, then the equality
above yields d(x, y)p > d(x, y)p, which is absurd, so the only alternative is
that x ∈ FixT1. It follows that x = T2T1x = T2x, thus x ∈ FixT1 ∩ T2 and
FixT2T1 ⊆ FixT2 ∩ FixT1 which completes the proof.

(ii) In light of Remark 5, this follows immediately from [3, Proposition
2.1]. �
Lemma 10. Let (G, d) be a p-uniformly convex space with constant c, let
D ⊂ G and fix y ∈ D. Let T1 : D → G be pointwise α-firmly nonexpan-
sive at y on D with constant α1 and let T2 : D1 → G be pointwise α-firmly
nonexpansive at T1y on D1 with constant α2 where D1 := {T1x | x ∈ D}.
Then the composition T := T2 ◦ T1 is pointwise α-firmly nonexpansive at y
on D whenever

∃ α ∈ (0, 1) :
1 − α1

α1
ψ

(p,c)
T1

(x, y) +
1 − α2

α2
ψ

(p,c)
T2

(T1x, T1y)
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≥ 1 − α

α
ψ

(p,c)

T
(x, y) ∀x ∈ D. (21)

Proof. The proof is a straightforward application of Definition 1 and
(21). �

Theorem 11. Let (G, d) be a p-uniformly convex space. Let T1 : D → G for
D ⊂ G, T2 : D1 → G for D1 := {T1x | x ∈ D}, define T := T2 ◦ T1 and let
FixT ⊂ D and FixT1 ∩ FixT2 both be nonempty. If T1 is pointwise α-firmly
nonexpansive at all y ∈ FixT with constant α1 on D, and if T2 is pointwise
α-firmly nonexpansive at all y ∈ FixT with constant α2 on D1, then the
composite operator T is quasi α-firmly nonexpansive on D with constant

α = α1+α2−2α1α2
c
2 (1−α1−α2+α1α2)+α1+α2−2α1α2

. (22)

Proof. By Lemma 10, it suffices to show (21) at all points y ∈ Fix T . First,
note that by Lemma 9, FixT = FixT2 ∩ FixT1, so by (15) it holds that, for
any y ∈ Fix T and for all x ∈ D, ψ

(p.c)
T1

(x, y) = c
2d(x, T1x)p, ψ

(p.c)
T2

(T1x, T1y) =
c
2d(T1x, Tx)p, and ψ

(p.c)

T
(x, y) = c

2d(x, Tx)p. Then whenever y ∈ Fix T the
inequality (21) simplifies to

∃κ > 0 : κ1d(x, T1x)p + κ2d(T1x, Tx)p ≥ κd(x, Tx)p ∀x ∈ D, (23)

where κ1 := 1−α1
α1

, κ2 := 1−α2
α2

and κ := 1−α
α with α ∈ (0, 1). By (1), we have

c
2 t(1 − t)d(x, Tx)p ≤ c

2 t(1 − t)d(x, Tx)p + d(T1x, (1 − t)x ⊕ tTx)p

≤ (1 − t)d(T1x, x)p + td(T1x, Tx)p ∀x ∈ D,∀t ∈ (0, 1).(24)

Letting t = κ2
κ1+κ2

yields (1 − t) = κ1
κ1+κ2

, so that (24) becomes
c
2

κ1κ2
κ1+κ2

d(x, Tx)p ≤ κ1d(T1x, x)p + κ2d(T1x, Tx)p ∀x ∈ D. (25)

It follows that (23) holds for any κ ∈ (0, cκ1κ2
2(κ1+κ2)

]. We conclude that the
composition T is quasi α-firmly nonexpansive with constant

α =
κ1 + κ2

c
2κ1κ2 + κ1 + κ2

.

A short calculation shows that this is the same as (22), which completes the
proof. �

Remark 12. The fact that inequality (21) or, more specifically (23), implies
that T is quasi α-firmly nonexpansive is a consequence of the assumed regu-
larity of the individual operators T2 and T1. Whether or not this inequality
holds is a property of the space and is entirely independent of the opera-
tors. Also note that the constant α given in (22) corresponds exactly to the
constant found in [8, Proposition 4.44] for mappings on Hilbert spaces.

Corollary 13. (finite compositions of quasi α-firmly nonexpansive operators
are quasi α-firmly nonexpansive) Let (G, d) be a p-uniformly convex space. Let
T1 : D1 → G where D1 ⊂ G and for j = 2, 3, . . . ,m let Tj : Dj → G for Dj :=
{Tj−1x | x ∈ Dj−1}. If the mappings Tj are quasi α-firmly nonexpansive with
constant αj on Dj (j = 1, 2, . . . , m) and Fix(Tm ◦ Tm−1 ◦ · · · ◦ T1) ⊂ D1 is



Vol. 24 (2022) α-Firmly nonexpansive operators on metric spaces Page 13 of 30 14

nonempty, then the composite operator Tm := Tm ◦ Tm−1 ◦ · · · ◦ T1 is quasi
α-firmly nonexpansive on D1 with constant given recursively by

αm :=
κm−1 + κm

c
2κm−1κm + κm−1 + κm

(m ≥ 3), (26a)

where

κj :=
1 − αj

αj
(j ≥ 2), (26b)

κj :=
1 − αj

αj
(j ≥ 1), and (26c)

α2 :=
κ1 + κ2

c
2κ1κ2 + κ1 + κ2

. (26d)

Proof. The result follows from Theorem 11 and an elementary induction ar-
gument. �
Remark 14. It is well known that the composition of two firmly nonexpansive
mappings (for instance, projectors) in a Hilbert space (α = 1/2, p = 2, and
c = 2) is α-firmly nonexpansive with constant α = 2

3 . Theorem 11 yields this
as a special case.

3.4. Convex combinations of α-firmly nonexpansive operators

In this subsection, we see that the property of being α-firmly nonexpansive
is preserved under p-convex combinations of operators. To prove this we use
the concept of p-uniformly convex functions.

Definition 15. Let (G, d) be a p-uniformly convex space. A function f : G →
R is said to be p-uniformly convex with constant m > 0 if

f(tx ⊕ (1 − t)y) ≤tf(x) + (1 − t)f(y)

− 1
2
mt(1 − t)d(x, y)p ∀x, y ∈ G, ∀t ∈ [0, 1].

Remark 16. It is obvious from the definition that the sum of two p-uniformly
convex functions with constants m1 and m2 is p-uniformly convex with con-
stant m = m1 +m2. For any z ∈ G the function x �→ d(z, x)p is a p-uniformly
convex function with constant m = c if (G, d) is a p-uniformly convex space
with constant c > 0.

Lemma 17. Let f : G → R be p-uniformly convex with constant m > 0 and
x ∈ argmin f �= ∅. Then

f(y) ≥ f(x) +
m

2
d(x, y)p ∀y ∈ G.

Proof. Let x ∈ argmin f and f be p-uniformly convex with constant m. Then

(1 − t)f(y) ≥ f(tx ⊕ (1 − t)y) − tf(x) +
m

2
t(1 − t)d(x, y)p

≥ (1 − t)f(x) +
m

2
t(1 − t)d(x, y)p

by the definition of p-uniformly convex functions and the fact that x ∈
argmin f . Now divide by 1 − t and take the limit t → 1 to obtain the claim.
�
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The p-convex combination of n points x1, . . . , xn with weights ω1, ω2, . . . ,
ωn ∈ [0, 1] such that

∑n
i=1 ωi = 1 is denoted p⊕n

i ωixi where

p⊕n
i ωixi := argmin y

n∑

i=1

ωid(y, xi)p. (27)

Convex combinations of operators Ti are defined accordingly by

T x:=p⊕n
i ωiTix := argmin y

n∑

i=1

ωid(y, Tix)p. (28)

The following proposition shows that p-convex combinations exist and
are unique in complete p-uniformly convex spaces; this is a special case of ex-
istence and uniqueness of p-barycenters in p-uniformly convex spaces proved
by Kuwae.

Proposition 18. (Lemma 3.5 of [26]) Let (G, d) be a complete p-uniformly
convex space with constant c > 0. Then the argmin in (27) exists and is
unique.

Definition 19. [26] Let (G, d) be a geodesic space. Let γ and η be two geodesics
through p. Then γ is said to be perpendicular to η at point p denoted by
γ ⊥p η if

d(x, p) ≤ d(x, y) ∀x ∈ γ, y ∈ η.

A space is said to be symmetric perpendicular if for all geodesics γ and η
with common point p we have

γ ⊥p η ⇔ η ⊥p γ.

Examples of symmetric perpendicular spaces are CAT (0) spaces and
CAT (κ) spaces for κ > 0 with diameter strictly less than π

2
√

κ
[26, Theorem

2.11].

Theorem 20. Let (G, d) be a complete, p-uniformly convex space and for
i = 1, 2, . . . , n let the mappings Ti : G → G be pointwise α-firmly nonex-
pansive on FixTi with respective constant αi. Then for T defined by (28),
∩i∈{1,...,n} FixTi ⊂ FixT . Suppose in addition that ∩i∈{1,...,n} FixTi �= ∅ and
G is symmetric perpendicular, then FixT = ∩i∈{1,...,n} FixTi.

Proof. The inclusion FixT ⊃ ∩n
i=1 FixTi is clear. To see the converse inclu-

sion when the intersection ∩i∈{1,...,n} FixTi �= ∅ and G is symmetric perpen-
dicular, let x /∈ ∩n

i=1 FixTi and y ∈ ∩n
i=1 FixTi. For at least one j ∈ {1, . . . , n}

we have x /∈ FixTj . We use a contradiction to prove P[x,y](Tjx) �= x. There-
fore assume that P[x,y](Tjx) = x. Then [x, Tjx] ⊥x [x, y] and by symmetric
perpendicularity [x, y] ⊥x [x, Tjx]. Hence d(y, x) ≤ d(y, Tjx) this contradicts
dp(y, Tjx) ≤ dp(x, y) − 1−αi

αj

c
2dp(Tjx, x) < dp(y, x). Therefore t = 0 is not

a minimum of the convex function t �→ gj(t):=d(Tjx, ty ⊕ (1 − t)x)p on the
interval [0, 1] and the right side derivative d+gj(0) < 0 for all j with Tjx �= x.
For i with Tix = x we have gi(t) = tp and hence d+gi(0) = 0. So the function

g(t):=
n∑

i=1

ωid(ty ⊕ (1 − t)x, Tix)p =
n∑

i=1

ωigi(t)
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has d+g(0) < 0, and hence x can not be a minimum of

z �→
n∑

i=1

ωid(z, Tix)p.

This shows that T x �= x and completes the proof. �

Theorem 21. (convex combinations of pointwise α-firmly nonexpansive map-
pings are pointwise α-firmly nonexpansive) Let (G, d) be a p-uniformly convex
space with constant c > 0 that is symmetric perpendicular. Let Ti be point-
wise α-firmly nonexpansive with constant αi (i = 1, 2, . . . , n) at all points in
∩n

i=1 FixTi �= ∅ on D, and ωi ∈ [0, 1] with
∑n

i=1 ωi = 1. Then T defined by
(28) is pointwise α-firmly nonexpansive at all y ∈ FixT on D with constant

α = max
i

αi.

Proof. Let x ∈ D. By convexity of d(·, y)p and Jensen’s inequality [26, The-
orem 4.1] for p-uniformly convex spaces with the symmetric perpendicular
property we have

d(T x,T y)p = d( p⊕n
i ωiTix, y)p (29a)

≤ p⊕n
i ωid(Tix, y)p (29b)

= argmin t∈R

n∑

i=1

ωi|t − d(Tix, y)p|p (29c)

≤ argmin t∈R

n∑

i=1

ωi

∣
∣
∣
∣t −

(
d(x, y)p − 1 − αi

αi

c

2
d(x, Tix)p

)∣
∣
∣
∣

p

(29d)

≤ argmin t∈R

n∑

i=1

ωi

∣
∣
∣
∣t −

(
d(x, y)p − 1 − α

α

c

2
d(x, Tix)p

)∣
∣
∣
∣

p

(29e)

= d(x, y)p − argmin t∈R

n∑

i=1

ωi

∣
∣
∣
∣t − 1 − α

α

c

2
d(x, Tix)p

∣
∣
∣
∣

p

(29f)

≤ d(y, x)p − 1 − α

α

c

2
d(x, p⊕n

i ωiTix)p (29g)

= d(y, x)p − 1 − α

α

c

2
d(x,T x)p. (29h)

For the estimation in (29d) and (29e) we used the property that argmin t∈R∑n
i=1 ωi|t − λi|p is increasing in every constant λi. This can be easily con-

cluded since
∑n

i=1 ωi|t − λi|p is a convex function and

∂t

n∑

i=1

ωi|t − λi|p =
n∑

i=1

ωip|t − λi|p−1sgn(t − λ)

is decreasing in every λj for fixed t. �
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3.5. Constructing α-firmly nonexpansive operators

In a complete p-uniformly convex space the p-proximal mapping of a proper
lower semicontinuous function f is defined by

proxp
f,λ(x):= argmin y∈G

{
f(y) +

1
pλp−1

d(x, y)p

}
. (30)

The argmin in (30) exists and is unique if f is proper, lsc and convex [21,
Proposition 2.7]. This is a very natural definition of the proximal mapping,
as the corresponding Moreau–Yosida envelope given by

ep
f,λ(x):= inf

y∈G

{
f(y) +

1
pλp−1

d(x, y)p

}

satisfies the semigroup property ep
(ep

f,λ),μ
= ep

f,λ+μ (see [22,27]).

Proposition 22. ([21, Lemma 2.8]) Let (G, d) be a p-uniformly convex space
with parameter c > 0, λ > 0 and f : G → (−∞,+∞] be a proper, convex and
lower semicontinuous function. Then for all x, y ∈ G we have

d(proxp
f,λ(x),proxp

f,λ(y))p ≤ 1
c
[d(v, y)p + d(x,w)p − d(x, v)p − d(y, w)p]

= Δ(p, 4c )

proxp
f,λ

(x, y)

for v = proxp
f,λ(x) and w = proxp

f,λ(y).

Proof. This follows directly from [21, Lemma 2.8] with μ = pλ
2 . �

Corollary 23. (proximal mappings are almost α-firmly nonexpansive) Let
(G, d) be a p-uniformly convex space with parameter c ∈ (1, 2], let λ > 0, and
let f : G → (−∞,+∞] be a proper, convex and lsc function. Then proxp

f,λ

is almost α-firmly nonexpansive with constant αc = c2−c
c2−c+2 and violation

εc = 2−c
c−1 .

Proof. Let x ∈ Fix proxp
f,λ, y ∈ G and w = proxp

f,λ(y). Then by Proposi-
tion 22 and elementary calculations

d(x,w)p ≤ 1
c − 1

(d(x, y)p − d(y, w)p) = (1 + εc)d(x, y)p − 1
c − 1

d(y, w)p

= (1 + εc)d(x, y)p − c

2
1 − αc

αc
d(y, w)p

where

αc =
c(c − 1)

c(c − 1) + 2
.

�
Remark 24. In the special case c = 2 and hence p = 2 the violation is ε2 = 0
and prox2

f,λ is quasi α-firmly nonexpansive with constant α = 1
2 .

Proposition 25. (projectors are pointwise firmly nonexpansive) Let (G, d) be
a complete, symmetric perpendicular p-uniformly convex space, C ⊂ G a
closed convex subset. The metric projection onto the set C, denoted PC , is
pointwise α-firmly nonexpansive at any y ∈ C with constant α = 1

2 .
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Proof. First note that [x, PCx] ⊥PCx [y, PCx] since PC is the metric projector.
Then [y, PCx] ⊥PCx [x, PCx] by symmetric perpendicularity of the space.
Hence t = 0 is a minimum of the function t �→ d(tx ⊕ (1 − t)PCx, y)p on the
interval [0, 1] and

d(tx ⊕ (1 − t)PCx, y)p ≤ td(x, y)p + (1 − t)d(PCx, y)p − c

2
t(1 − t)d(x, PCx)p,

with equality at t = 0. Now t = 0 has to be a minimum of the right hand
side and

0 ≤ d
dt

∣
∣
∣
t=0

td(x, y)p + (1 − t)d(PCx, y)p − c

2
t(1 − t)d(x, PCx)p

= d(x, y)p − d(PCx, y)p − c

2
d(x, PCx)p,

which yields the claim. �

Proposition 26. (Krasnoselsky–Mann relaxations) Let (G, d) be a p-uniformly
convex space and T : G → G be pointwise nonexpansive at all y ∈ FixT . Then
Tλ:=λT ⊕ (1 − λ)Id is pointwise α-firmly nonexpansive at all y ∈ FixT with
constant αλ = λp−1

1−λ+λp−1 .

Proof. Clearly FixT = FixTλ and d(x, Tλx)p = λpd(x, Tx)p. Let y ∈ FixTλ

then

d(y, Tλx)p = d(y, λTx ⊕ (1 − λ)x)p

≤ λd(y, Tx)p + (1 − λ)d(y, x)p − c

2
λ(1 − λ)d(x, Tx)p

≤ d(x, y)p − c

2
1 − λ

λp−1
d(x, Tλx)p.

Solving 1−λ
λp−1 = 1−αλ

αλ
for αλ yields the claim. �

4. Convergence of iterated α-firmly nonexpansive mappings

The asymptotic center [14] of a bounded sequence (xk)k∈N in a metric space
(G, d) is the set

A((xk)k∈N) :=
{

x ∈ G

∣
∣
∣
∣ lim sup

k→∞
d(x, xk) = r((xk)k∈N)

}
(31)

where

r((xk)k∈N) := inf
{

lim sup
k→∞

d(y, xk)
∣
∣
∣
∣ y ∈ G

}
. (32)

Following [31], a sequence (xk)k∈N is said to Δ-converge to x ∈ G whenever
x is the unique asymptotic center of every subsequence of (xk)k∈N. In this
case x is said to be the Δ-limit of the sequence and we write xk

Δ→ x.
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4.1. Convergence: no rate

The next theorem is a slight, but important generalization of analogous re-
sults that can be found elsewhere in the literature. There are two main dif-
ferences: namely, that we assume only that the fixed point operator is quasi
α-firmly nonexpansive, and secondly, the operator is only required to be non-
expansive at the asymptotic centers of all subsequences.

Theorem 27. Let (G, d) be a p-uniformly convex space, let D ⊆ G be convex,
and let T : G → G with T (D) ⊆ D be pointwise α-firmly nonexpansive at
all y ∈ FixT ∩ D on D. Define the sequence (xk)k∈N by xk+1 = Txk with
x0 ∈ D. Let C denote the set of asymptotic centers of all subsequences of
(xk)k∈N. If T is pointwise nonexpansive on D at all points in C, then

(i) C ⊂ FixT ,
(ii) C is a singleton, and
(iii) xk

Δ→ x ∈ C.
If, in addition, T (D) is a boundedly compact subset of G, then xk → x ∈

FixT ∩ D. In particular, if T is nonexpansive on D and T (D) is boundedly
compact, then xk → x ∈ FixT ∩ D for any x0 ∈ D.

Our proof is nearly identical to the proof of [3, Theorem 4.1], but the
stronger assumptions of the theorem of that work obscure the relationship
between the regularity of fixed point operators at asymptotic centers and
Δ-convergence. In both [2] and [3], the assumption that the fixed point map-
ping is α-firmly nonexpansive implies that it is nonexpansive, which is not
the case here. More importantly, it is far too restrictive to require that the
mapping is α-firmly nonexpansive everywhere when the property is really
only required at its fixed points where there is still hope that the property
enjoys a reasonable calculus. An example illustrates how our result differs
from [3, Theorem 4.1], which is the specialization of Theorem 27 to the case
of α-firmly nonexpansive mappings that are also nonexpansive.

Example 1. (Δ-convergence of a pointwise nonexpansive mapping). For the
sets A := (R × {0}) ∪ ({0} × R) and B = {(x, x) ∈ R

2 | x ∈ R} define
the mapping T := P̃APB where PB is the Euclidean projection onto B and
P̃A : B → R

2 is defined by

P̃A(x, x) :=

{
(x, 0) when x ∈ Q,

(0, x) when x /∈ Q,

where Q ⊂ R is the set of rational numbers. The mapping T is everywhere
single-valued and not even almost nonexpansive (consider a point (x, x) ∈ B
with x irrational and any arbitrarily close rational point (y, y)). However, T
is pointwise nonexpansive at the origin on all of R

2, and every fixed point
sequence initialized anywhere on R

2 converges strongly to the origin. The
tools introduced introduced in the next section were used in a Euclidean
space setting in [18, Theorem III.8] to show that convergence is actually lin-
ear. Theorem 4.1 of [3] cannot be applied here, while Theorem 27 correctly
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identifies the relevant properties guaranteeing convergence. The awkward def-
inition of P̃A is an artifact of requiring T to be single-valued; had we allowed
multi-valued mappings, we could have simply taken the Euclidean projector
on to A in the definition of T and the results still would hold. The restriction
of this study to single-valued mappings is mostly to keep the notation as
simple as possible.

Proof of Theorem 27. Let N denote any infinite subset of N and consider the
corresponding subsequence (xk)k∈N . This subsequence is bounded since T is
a self-mapping on D (T (D) ⊆ D) and pointwise α-firmly nonexpansive—and
hence by Proposition 4(iii) nonexpansive—at all y ∈ FixT ∩ D on D. Since
D is convex, this subsequence therefore possesses a unique asymptotic center
[30], which we denote by xN . Since T is pointwise nonexpansive at xN on D,
we have

∀k ∈ N d(TxN , xk) ≤ d(TxN , Txk) + d(Txk, xk)
≤ d(xN , xk) + d(Txk, xk).

Again, since T is pointwise α-firmly nonexpansive at all y ∈ FixT ∩ D, by
Lemma 7 we have d(Txk, xk) → 0 as k → ∞. Therefore by [2, Lemma
2.11] (see also [30]), this implies that TxN = xN , that is, xN ∈ FixT . This
establishes part (i) of the claim.

To see part (ii) denote the unique asymptotic center of the entire se-
quence (xk)k∈N by x. Then

lim sup
k→

N
∞

d(xk, xN ) ≤ lim sup
k→

N
∞

d(xk, x)

≤ lim sup
k→

N

∞
d(xk, x)

≤ lim sup
k→

N

∞
d(xk, xN )

= lim
k→

N

∞
d(xk, xN ) = lim

k→
N

∞
d(xk, xN ),

where the first equality follows from the fact that the sequence of distances
is monotone decreasing and bounded below. Therefore xN = x.

Since N was an arbitrary infinite subset of N, this establishes Δ-
convergence of (xk), part (iii). To see strong convergence when T (D) is
boundedly compact, since (xk)k∈N is a bounded sequence in T (D), it has
a convergent subsequence with limit x. Whenever (d(xk, x))k∈N converges,
we can conclude that xk → x.

If T is in fact nonexpansive on D, not just pointwise, then it is point-
wise nonexpansive at all asymptotic centers of all fixed point sequences and
subsequences initialized on D, and so the above results apply for any fixed
point sequence on D. �
4.2. Quantitative convergence: error bounds

Our analysis of the convergence of fixed point iterations follows the same
pattern developed in [17,34,35]. In addition to the regularity properties de-
veloped above, we use the notions of gauge monotonicity of sequences and
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metric subregularity. What we are calling gauge monotone sequences were
first introduced in [34] where they are called μ-monotone.

Definition 28. (gauge monotonicity [34]). Let (G, d) be a metric space, let
(xk)k∈N be a sequence on G, let D ⊂ G be nonempty and let the continuous
mapping μ : R+ → R+ satisfy μ(0) = 0 and

μ(t1) < μ(t2) ≤ t2 whenever 0 ≤ t1 < t2.

(i) (xk)k∈N is said to be gauge monotone with respect to D with rate μ
whenever

d(xk+1,D) ≤ μ (d(xk,D)) ∀k ∈ N. (33)

(ii) (xk)k∈N is said to be linearly monotone with respect to D with rate r if
(33) is satisfied for μ(t) = r ·t for all t ∈ R+ and some constant r ∈ [0, 1].
A sequence (xk)k∈N is said to converge gauge monotonically to some el-

ement x∗ ∈ G with rate sk(t) :=
∑∞

j=k μ(j)(t) whenever it is gauge monotone
with gauge μ satisfying

∑∞
j=1 μ(j)(t) < ∞ ∀t ≥ 0, and there exists a constant

a > 0 such that d(xk, x∗) ≤ ask(t) for all k ∈ N.

All Fejér monotone sequences are linearly monotone (with constant r =
1) but the converse does not hold (see Proposition 1 and Example 1 of [34]).
Gauge-monotonic convergence for a linear gauge in the definition above is
just R-linear convergence.

The definition of metric subregularity below is modeled mainly after
[19, Definition 2.1b)] and [20, Definition 1 b)]. Recall that ρ : [0,∞) → [0,∞)
is a gauge function if ρ is continuous, strictly increasing with ρ(0) = 0, and
limt→∞ ρ(t) = ∞.

Definition 29. (metric regularity on a set). Let (G1, d1) and (G2, d2) be
metric spaces and let T : G1 → G2 , U1 ⊂ G1, U2 ⊂ G2. For Λ ⊂ G1, the
mapping T is called metrically regular on U1 × U2 relative to Λ with gauge ρ
whenever

d1

(
x, T −1(y) ∩ Λ

)
≤ ρ(d2 (y, T (x))) (34)

holds for all x ∈ U1 ∩Λ and y ∈ U2 with 0 < ρ(d2 (y, T (x))) where T −1(y) :=
{z | T (z) = y}. When the set U2 consists of a single point, U2 = {ȳ}, then T
is said to be metrically subregular for ȳ on U1 relative to Λ with gauge ρ.

The usual definition of metric subregularity is in the case where the
gauge is just a linear function: ρ(t) = rt. The “relative to” part of the def-
inition is also not common in the literature, but allows one to isolate the
regularity to subsets (mostly manifolds) where the iterates of algorithms are
naturally confined. See [4, Example 1.8] for a concrete example. In [24, Exam-
ple 3.9] this is placed in a context of the modulus of regularity of a mapping
with respect to its zeros. For our purposes, the easiest way to understand
metric subregularity is as one-sided Lipschitz continuity of the (set-valued)
inverse mapping T −1. We will refer to the case when the gauge is linear to
linear metric subregularity.
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We construct ρ implicitly from another non-negative function θ : [0,∞) →
[0,∞) satisfying

(i) θ(0) = 0; (ii) 0 < θ(t) < t ∀t > 0; (iii)
∞∑

j=1

θ(j)(t) < ∞ ∀t ≥ 0. (35)

The gauge we will use satisfies

ρ

((
tp − (θ(t))p

τ

)1/p
)

= t ⇐⇒ θ(t) =
(
tp − τ

(
ρ−1(t)

)p
)1/p

(36)

for τ > 0 fixed and θ satisfying (35).
In the case of linear metric subregularity on a 2-uniformly convex space

(think Hilbert space) we have

ρ(t) = rt ⇐⇒ θ(t) =
(
1 − τ

r2

)1/2

t (r ≥
√

τ).

The condition r ≥ √
τ is spurious since, if (34) is satisfied for some r′ > 0,

then it is satisfied for all r ≥ r′.
From the transport discrepancy ψ

(p,c)
T defined in (5) and a subset S ⊂ G

we construct the following surrogate mapping TS : G → R+ ∪ {+∞} by

TS(x) :=
(

2
c inf

y∈S
ψ

(p,c)
T (x, y)

)1/p

. (37)

If S = ∅ then, by definition, TS(x) := +∞ for all x. When S ⊆ FixT , then
by Proposition 4(i)

TS(x) = p

√
2
cd(Tx, x) > 0 (S �= ∅). (38)

This function is thus proper (finite at least at one point, and does not take
the value −∞) when S ⊆ FixT is nonempty. This can be interpreted as the
pointwise transport discrepancy relative to the fixed points and will be used
to characterize the regularity of the mapping T at fixed points.

For the remainder of this section, it will be assumed that (G, d) is a
p-uniformly convex space with constant c, D ⊂ G, where the self-mapping
T : G → G satisfies T (D) ⊆ D and S := FixT ∩ D is nonempty.

Theorem 30. (quantitative convergence) In addition to the standing assump-
tions, let T (D) be boundedly compact. Assume

(i) T is pointwise α-firmly nonexpansive at all points y ∈ S := FixT ∩ D
with the same constant α on D;

(ii) TS defined by (37) is metrically subregular for 0 relative to D on D with
gauge ρ given by (36) for τ = c(1 − α)/(2α), that is,

d(x, S) ≤ ρ(d(Tx, x)), ∀x ∈ D. (39)

Then for any x0 ∈ D, the sequence (xk)k∈N defined by xk+1 := Txk

satisfies

d (xk+1, S) ≤ θ (d (xk, S)) ∀k ∈ N, (40)
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where θ given implicitly by (36) satisfies (35). Moreover, the sequence (xk)k∈N

converges gauge monotonically to some x∗ ∈ S with rate O(sk(t0)) where
sk(t) :=

∑∞
j=k θ(j)(t) and t0 := d(x0, S).

Before proving the result, we establish convergence of gauge monotone
sequences.

Lemma 31. (α-firmly nonexpansive mappings with gauge monotone fixed
point sequences converge to fixed points) In addition to the standing as-
sumptions, let T (D) be boundedly compact, and assume that T is pointwise
α-firmly nonexpansive at all y ∈ S with the same constant α on D. If the se-
quence (xk)k∈N defined by xk+1 = Txk and initialized in D is gauge monotone
relative to S with rate θ satisfying (35), then (xk)k∈N converges gauge mono-
tonically to some x∗ ∈ S with rate O(sk(t0)) where sk(t) :=

∑∞
j=k θ(j)(t) and

t0 := d(x0, S).

Proof. By (15), the assumption that T is pointwise α-firmly nonexpansive at
all y ∈ S ⊂ FixT with constant α on D yields

d(Tx, y)p ≤ d(x, y)p − c(1−α)
2α d(x, Tx)p, ∀x ∈ D,∀y ∈ S. (41)

Let x0 ∈ D and define the sequence xk+1 := Txk for all k ∈ N. Since T (D)
is boundedly compact and T is pointwise α-firmly nonexpansive at all points
in S on D, by Proposition 4(iii) and Lemma 6, PSxk is nonempty (though
possibly set-valued) for all k; denote any selection by x̄k ∈ PSxk for each
k ∈ N. Then (41) yields

d(xk+1, x̄k)p ≤ d(xk, x̄k)p − c(1−α)
2α d(xk, xk+1)p, ∀k ∈ N,

which implies that

d(xk, xk+1) ≤
(

c(1−α)
2α

)−1/p

d(xk, x̄k), ∀k ∈ N.

On the other hand d(xk, x̄k) = d(xk, S) ≤ θ (d(xk−1, S)) since (xk)k∈N is
gauge monotone relative to S with rate θ. Therefore an iterative application
of gauge monotonicity yields

d(xk, xk+1) ≤
(

c(1−α)
2α

)−1/p

θ(k) (d(x0, S)) , ∀k ∈ N.

Let t0 = d(x0, S). For any given natural numbers k, l with k < l an iterative
application of the triangle inequality yields the upper estimate

d(xk, xl) ≤ d(xk, xk+1) + d(xk+1, xk+2) + ... + d(xl−1, xl)

≤
(

c(1−α)
2α

)−1/p (
θ(k)(t0) + θ(k+1)(t0) + · · · + θ(l−1)(t0)

)

<
(

c(1−α)
2α

)−1/p

sk(t0),

where sk(t0) :=
∑∞

j=k θ(j)(t0) < ∞ for θ satisfying (35). Since (θ(k)(t0))k∈N is
a summable sequence of non-negative numbers, the sequence of partial sums
sk(t0) → 0 monotonically as k → ∞ and hence (xk)k∈N is a Cauchy sequence.
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Because (G, d) is a complete metric space we conclude that xk → x∗ for some
x∗ ∈ G. Letting l → +∞ yields

lim
l→+∞

d(xk, xl) = d(xk, x∗) ≤ ask(t0), a :=
(

c(1 − α)
2α

)−1/p

.

Therefore (xk)k∈N converges gauge monotonically to x∗ with rate O(sk(t0)).
It remains to show that x∗ ∈ S. Note that for each k ∈ N we have

d(xk, x̄k) = d(xk, S) ≤ θ(k)(t0),

which yields limk d(xk, x̄k) = 0. But by the triangle inequality

d(x̄k, x∗) ≤ d(xk, x̄k) + d(xk, x∗),

so limk d(x̄k, x∗) = 0. By construction (x̄k)k∈N ⊆ S and by Lemma 6 S is
closed, hence x∗ ∈ S. �

Proof of Theorem 30. Since S ⊂ FixT , by Proposition 4(i) we have ψ
(p,c)
T (x, y)

= c
2d(Tx, x)p for all y ∈ FixT , so in fact TS(x) = d(Tx, x). Also by Proposi-

tion 4(i) TS takes the value 0 only on FixT , that is, T −1
S (0) = FixT . So by

assumption (ii) and the definition of metric subregularity (Definition 29)

d(x, S) = d(x, T −1
S (0) ∩ D)

≤ ρ (|TS(x)|) = ρ(d(Tx, x)) ∀x ∈ D.

In other words,
1−α

α
c
2

(
ρ−1 (d(x, S))

)p ≤ 1−α
α

c
2d(Tx, x)p ∀x ∈ D. (42)

On the other hand, by assumption (i) we have
1−α

α
c
2d(Tx, x)p ≤ d(x, y)p − d(Tx, y)p ∀y ∈ S,∀x ∈ D. (43)

Incorporating (42) into (43) and rearranging the inequality yields

d(Tx, y)p ≤d(x, y)p − 1−α
α

c
2

(
ρ−1 (d(x, S))

)p ∀y ∈ S,∀x ∈ D. (44)

Since this holds at any x ∈ D, it certainly holds at the iterates xk with initial
point x0 ∈ D since T is a self-mapping on D (T (D) ⊂ D). Therefore

d (xk+1, y) ≤ p

√

d (xk, y)p − 1 − α

α
c
2 (ρ−1 (d (xk, S)))p ∀y ∈ S, ∀k ∈ N.

(45)

Equation (45) simplifies. Indeed, by Lemma 6, S is closed. Moreover,
since T (D) is assumed to be boundedly compact, for every k ∈ N the distance
d(xk, S) is attained at some yk ∈ S yielding

d(xk+1, yk+1)p ≤ d(xk+1, yk)p

≤ d(xk, yk)p − 1−α
α

c
2

(
ρ−1 (d(xk, yk))

)p ∀k ∈ N. (46)

Taking the p-th root and recalling (36) yields (40).
This establishes also that the sequence (xk)k∈N is gauge monotone rel-

ative to S with rate θ satisfying Eq.(35). By Lemma 31 we conclude that
the sequence (xk)k∈N converges gauge monotonically to x∗ ∈ S with the rate
O(sk(d(x0, S))) where sk(t) :=

∑∞
j=k θ(j)(t). �
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In [34, Theorem 2] it is shown that if every fixed point sequence initial-
ized on D ⊂ G is linearly monotone with respect to FixT ∩D with rate c < 1
then the surrogate mapping Ψ is linearly metrically subregular for 0 relative
to D on D. From this they establish that linear metric subregularity is in
fact necessary for linear convergence of fixed point sequences generated by
almost α-firmly nonexpansive mappings [34, Corollary 1]. We show that this
extends more generally to fixed point iterations in p-uniform metric spaces of
quasi α-firmly nonexpansive mappings where the iterates converge at a rate
characterized by θ.

Theorem 32. (necessity of metric subregularity for monotone sequences) Sup-
pose all sequences (xk)k∈N defined by xk+1 = Txk and initialized in D are
gauge monotone relative to S := FixT ∩ D with rate θ satisfying (35). Sup-
pose, in addition, that (Id −θ)−1(·) is continuous on R+, strictly increasing,
and (Id −θ)−1(0) = 0. Then TS defined by (37) is metrically subregular for 0
relative to D on D with gauge ρ(·) = (Id −θ)−1(·).

Proof. If the fixed point sequence is gauge monotone relative to S with rate
θ satisfying (35) then by the triangle inequality

d(xk+1, xk) ≥ d(xk, S) − d(xk+1, S)
≥ d(xk, S) − θ (d(xk, S)) ∀k ∈ N. (47)

On the other hand, as shown in the proof of Theorem 30

T −1
S (0) = FixT,

d(0, TS(xk)) = d(xk+1, xk) (48)

Combining (47) and (48) yields

d(0, TS(xk)) ≥ d(xk, T −1
S (0) ∩ D) − θ

(
d(xk, T −1

S (0) ∩ D)
)

∀k ∈ N (49)

By assumption (Id −θ)−1(·) is continuous on R+, strictly increasing, and
(Id−θ)−1(0) = 0, so

(Id−θ)−1 (d(0, TS(xk))) ≥ d(xk, T −1
S (0) ∩ D) ∀k ∈ N. (50)

Since this holds for any sequence (xk)k∈N initialized in D, we conclude that
TS is metrically subregular for 0 on D with gauge ρ = (Id −θ)−1. �

The next corollary is an immediate consequence of Lemma 31 and The-
orem 32.

Corollary 33. (necessity of metric subregularity for gauge monotone con-
vergence) In addition to the standing assumptions, let T (D) be boundedly
compact and assume that T is α-firmly nonexpansive at all y ∈ S with
the same constant α on D. Suppose that all sequences (xk)k∈N defined by
xk+1 = Txk and initialized in D are gauge monotone relative to S with rate
θ satisfying (35). Suppose, in addition, that (Id −θ)−1(·) is continuous on
R+, strictly increasing, and (Id −θ)−1(0) = 0. Then all sequences initialized
on D converge gauge monotonically to some x ∈ S with rate O(sk(t0)) where
sk(t) :=

∑∞
j=k θ(j)(t) and t0 := d(x0, S). Moreover, TS defined by (37) is met-

rically subregular for 0 relative to D on D with gauge ρ(·) = (Id−θ)−1(·).
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5. Examples

Most of the concrete examples provided here are for p-uniformly convex
spaces with p = c = 2, i.e. CAT (0) spaces, and these are mostly known.
We hint at a path beyond this setting and in the case of cyclic projections
obtain an extension of [3, Proposition 4.1] to complete, symmetric perpen-
dicular, p-uniformly convex spaces.

5.1. Proximal splitting

Let (H, d) be a Hadamard space, fi : H → H be proper lsc convex functions
for i = 1, 2, . . . N . Consider the problem

inf
x∈H

N∑

i=1

fi(x). (51)

In a Hadamard space the p-proximal mapping of a function f defined by (30)
simplifies to

prox2
f,λ(x) := argmin y∈H

{
f(y) + 1

2λd(x, y)2
}

. (52)

This has been studied in CAT (0) spaces in [2,7,23] and in the Hilbert ball
in [25]. To reduce notational clutter, we drop the superscript 2. In these
earlier works it was already known that resolvents of lsc convex functions
are (everywhere) α-firmly nonexpansive with α = 1/2. The specialization of
Corollary 23 to the case p = c = 2 confirms this. Applying backward-backward
splitting to this problem yields Algorithm 1. We are certainly not the first
to study this algorithm. Indeed, convergence has been established already in
[3, Theorem 4.1]. This conclusion also follows immediately from Theorem 27
upon application of Corollary 13 which shows that the composition of quasi α-
firmly nonexpansive prox mappings, proxfi,λi

, is quasi α-firmly nonexpansive
on H with constant αm given recursively by (26). If on a neighborhood of
FixTm, denoted by D, the mapping TFix T m∩D defined by (37)—which by
Proposition 4(i) simplifies to (38)—satisfies

d(x,Fix Tm ∩ D) ≤ ρ(d(Tmx, x)) ∀x ∈ D (53)

where ρ is a gauge given by (36) for τ = 1−αm

αm
, then by Theorem 30 the

sequence (xk) converges gauge monotonically to some x∗ ∈ FixTm ∩ D with
rate O(sk(t0)) where sk(t) :=

∑∞
j=k θ(j)(t) and t0 := d(x0,Fix Tm ∩ D) for θ

given implicitly by (36).

Algorithm 1: Proximal splitting
Parameters: Functions f1 . . . , fm and λi > 0 (i = 1, 2, . . . ,m).
Initialization: Choose x0 ∈ H.
for k = 0, 1, 2, . . . do

xk+1 = Tmxk :=
(
proxfm,λm

◦ · · · ◦ proxf2,λ2
◦proxf1,λ1

)
(xk)

By Corollary 23, on spaces with curvature bounded above, the p-proximal
mapping is only almost α-firmly nonexpansive, which then yields that the
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composition of p-proximal mappings is also only almost α-firmly nonexpan-
sive. However, the violation is given by εc = 2−c

c−1 , where c is the constant
of curvature of the space. This constant can be made arbitrarily small by
choosing a small enough domain. In this way, the violation can also be made
arbitrarily small. As shown in [32, Theorem 4.2] in the context of Euclidean
spaces, if TFix T m

is metrically subregular, then the violation of an α-firmly
nonexpansive mapping can be overcome to yield quantifiable (e.g. linear) con-
vergence on neighborhoods of FixTm. Based on the foundations established
here, this idea has been used in [29, Theorem 25] 1 to show for the first
time convergence of proximal splitting algorithms on spaces with positive
curvature.

5.2. Projected gradients

Here we specialize problem (51) to the case N = 2 and f2 = ιC , the indicator
function of some closed convex set C ⊂ H. Recall that in a Hadamard space
the Moreau–Yosida envelope of f is defined by

ef,λ(x) := inf
y∈H

(
f(y) + 1

2λd(x, y)2
)
.

In a Hilbert space setting, the proximal mapping of a convex function f and
the resolvent of its subdifferential are one and the same. Moreover, ef,λ is
continuously differentiable with ∇ef,λ = 1

λ

(
Id−proxf,λ

)
. A step of length τ

in the direction of steepest descent of the Moreau–Yosida envelope of f takes
the form

x − τ∇ef,λ(x) =
(
(1 − τ) Id +τ proxf,λ

)
(x).

Formally transposing this to a CAT (0) space yields the nonlinear analog to
the direction of steepest descent for ef,λ:

(1 − τ)x ⊕ τ proxf,λ(x). (54)

This leads to Algorithm 2, the analog to projected gradients in CAT (0) space,
which is nothing more than a projected resolvent/ projected proximal itera-
tion. Theorem 21 establishes that the mapping x �→

(
(1 − τ) Id ⊕τ proxf,λ

)

is α-firmly nonexpansive with constant α = 1/2. Therefore, by Theorem 11
the operator TPG is α-firmly nonexpansive on H with constant αPG = 2

3 .
Theorem 27 then guarantees that the sequence (xk) is Δ-convergent to some
x∗ ∈ FixTPG, with strong convergence whenever TPG is boundedly com-
pact. If in addition (53) is satisfied with T replaced by TPG and with gauge
ρ given by (36) for τ = 1/2, then, again, by Theorem 30 the sequence (xk)
converges gauge monotonically to some x∗ ∈ FixT with rate O(sk(t0)) where
sk(t) :=

∑∞
j=k θ(j)(t) and t0 := d(x0,Fix T ) for θ given implicitly by (36).

1In fact, [29] was completed after this study, though the publication date does not reflect
this.
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Algorithm 2: Metric projected gradients
Parameters: f : H → R , the closed set C ⊂ H, λ > 0 and τ ∈ (0, 1).
Initialization: Choose x0 ∈ H.
for k = 0, 1, 2, . . . do

xk+1 = TPG(xk) := PC

(
(1 − τ) Id ⊕τ proxf,λ

)
(xk)

5.3. Cyclic projections in p-uniformly convex spaces

For compositions of projectors we are not confined to Hadamard spaces. We
consider Algorithm 1 when the functions fi := ιCi

, the indicator functions of
closed convex sets Ci ⊂ G, where (G, d) is a complete, symmetric perpendic-
ular p-uniformly convex space with constant c. The p-proximal mappings of
indicator functions are metric projectors and so by Proposition 25 these are
pointwise α-firmly nonexpansive at all points in ∩iCi (assuming, of course,
that this is nonempty). By Lemma 10, when the intersection is nonempty the
cyclic projections mapping

TCP := PCm
· · · PC2PC1 (55)

is pointwise α-firmly nonexpansive at all points in ∩iCi = FixTCP with
constant αCP = m−1

m on G. The only asymptotic centers of subsequences
of cyclic projections are points in this intersection, and here the projectors,
and hence the cyclic projections mapping, are pointwise nonexpansive. So by
Theorem 27 the cyclic projections sequence Δ-converges to a point in ∩iCi

whenever this is nonempty, and converges strongly whenever at least one of
the sets Ci is compact. This generalizes [3, Proposition 4.1] which is limited
to CAT (κ) spaces (i.e. p = 2, c < 2 small enough).

If in addition

d(x,∩iCi) ≤ ρ(d(TCP x, x)) ∀x ∈ G (56)

where ρ is a gauge given by (36) for τ = 1
m−1 , then by Theorem 30 the

sequence (xk) converges gauge monotonically to some x∗ ∈ FixT with rate
O(sk(t0)) where sk(t) :=

∑∞
j=k θ(j)(t) and t0 := d(x0,Fix T ) for θ given

implicitly by (36).

6. Open problems

The property of being nonexpansive is fairly robust and carries over to com-
positions and convex combinations of mappings without requiring that those
operators share fixed points. Our notion of α-firmly nonexpansive mappings
appears to be much more demanding. Our development begs the question:
is the regularity of (pointwise) α-firmly nonexpansive mappings preserved
(with possibly different constants) under compositions and convex composi-
tions when these mappings do not share common fixed points? The answer
to this question has immediate bearing on the analysis of simple algorithms
like cyclic projections for inconsistent feasibility or coordinate descents in
nonlinear spaces.
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Another open problem is to find other characterizations for gauge metric
subregularity that make it easier to verify. In particular, are there easily veri-
fiable situations in nonlinear settings—like polyhedrality or semi-algebraicity
in Euclidean settings—where metric subregularity comes for free?
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